Systèmes Dynamiques Gravitationnels

par Alicia Simon-Petit

Thèse de doctorat en Mathématiques aux interfaces

Sous la direction de Jérôme Pérez.

Soutenue le 10-12-2018

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) , en partenariat avec École nationale supérieure de techniques avancées (Palaiseau, Essonne) (laboratoire) , École nationale supérieure de techniques avancées (Palaiseau, Essonne) (établissement opérateur d'inscription) et de Unité de Mathématiques Appliquées (laboratoire) .

Le président du jury était Christoph Kopper.

Le jury était composé de Jérôme Pérez, Christoph Kopper, Jean Pierre Marco, Julien Larena, Pierre-Henri Chavanis, Éric Gourgoulhon, Alain Chenciner, Jacques Féjoz.

Les rapporteurs étaient Jean Pierre Marco, Julien Larena.


  • Résumé

    L'histoire séculaire des systèmes dynamiques puise ses originesdansle développement du cadre mathématique en astronomie.L'objet de cette thèse est l'étude de propriétés de la gravitation de ce point de vue de la dynamiqueà différentes échelles cosmologiques.Dans la théorie du potentiel, l'isochronie définit généralement le mouvement d'oscillation harmonique de pendules.En 1959, le mathématicien et astronome Michel Hénon étend cette définition afin de caractériser les oscillationsorbitales d'étoiles, autour du centre du système à symétrie sphérique auquel elles appartiennent.Dans ce cas, la période d'oscillation peut dépendre de l'énergie de l'étoile.Aujourd'hui, son potentiel isochrone est majoritairement utiliséen simulation numérique pour ses propriétés analytiques d'intégrabilité, mais demeure par ailleurs souvent méconnu.Dans cette thèse, nous revisitons la caractérisation géométrique de l'isochronie comme initiée par Michel Hénon etcomplétons ainsi la famille des potentiels isochrones en physique. La classification de cet ensemblesous l'action de divers groupes mathématiques met en évidence une relation privilégiéeentre les isochrones.Nous montrons alors la nature keplérienne intrinsèque aux isochrones, laquelle est au coeur dela nouvelle relativité isochrone que nous présentons.Les conséquences de cette relativité en mécanique céleste, à savoirla généralisation de la troisième loi de Kepler, celle de la transformation de Bohlin ou Levi-Civita,et le théorème de Bertrand, conduisent à l'analyse du résultat d'un effondrement gravitationnel.Une analyse isochrone est développée pour caractériser un état de quasi-équilibredesystèmes auto-gravitants isolés, comme certains amas stellaires ou galaxies dynamiquement jeunes,à partir de propriétés orbitales de leurs étoiles ou contenu physique.A l'échelle cosmologique, la dynamique de l'univers dépendde sa composition énergétique. Elle peut s'exprimer sous forme d'unsystème dynamique conservatif, bien connu en écologie pour décrire la dynamiquede populations variées. Ce modèle dit de Lotka-Volterra est exploité pour décrireun espacetemps globalement homogène et isotrope, dont les composantes peuventêtre en interaction non uniquement gravitationnelle.Dans cet univers jungle, des comportements dynamiques effectifs à grande échelle pourraient conduire à une expansionaccélérée de l'univers sans nécessité d'énergie noire.

  • Titre traduit

    Gravitational Dynamical Systems


  • Résumé

    Dynamical systems have a centuries-long history with roots going back to the mathematical development for astronomy. In the modern formalism, the present thesis investigates dynamical properties of gravitation at different astrophysical or cosmological scales.In potential theory, isochrony often refers to harmonic oscillations of pendulums. In 1959, the mathematician and astronomer Michel Hénon introduced an extended definition of isochrony to characterize orbital oscillations of stars around the center of the system to which they belong. In that case, the period of oscillations can depend on the energy of the star. Today, Michel Hénon’s isochrone potential is mainly used for its integrable property in numerical simulations, but is not widely known. In this thesis, we revisit his geometrical characterization of isochrony and complete the family of isochrone potentials in physics. The classification of this family under different mathematical group actions highlights a particular relation between the isochrones. The actual Keplerian nature of isochrones is pointed out and stands at the heart of the new isochronerelativity, which are presented together.The consequences of this relativity in celestial mechanics — a generalization of Kepler’sThird law, Bohlin or Levi-Civita transformation, Bertrand’s theorem — are applied to analyze the result of a gravitational collapse. By considering dynamical orbital properties, an isochrone analysis is developed to possibly characterize a quasi-stationary state of isolated self-gravitating systems, such as dynamically young stellar clusters or galaxies.At a cosmological scale, the dynamics of the universe depends on its energy content. Its evolution can be expressed as an ecological dynamical system, namely a conservative generalized Lotka-Volterra model. In this framework of a spatially homogeneous and isotropic spacetime, named Jungle Universe, the dynamical impact of a non-gravitational interaction between the energy components is analyzed. As a result, effective dynamical behaviors could account for an accelerated expansion of the universe without dark energy.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Ecole Nationale Supérieure de Techniques Avancées. Centre de Documentation Multimédia.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.