Thèse soutenue

Croissance des degrés d'applications rationnelles en dimension 3

FR  |  
EN
Auteur / Autrice : Nguyen-Bac Dang
Direction : Charles Favre
Type : Thèse de doctorat
Discipline(s) : Mathématiques fondamentales
Date : Soutenance le 19/07/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Centre de Mathématiques Laurent Schwartz (Palaiseau ; 1965-....)
Jury : Président / Présidente : Paul Gauduchon
Examinateurs / Examinatrices : Charles Favre, Paul Gauduchon, Serge Cantat, Yves de Cornulier, Andreas Bernig
Rapporteurs / Rapporteuses : Serge Cantat, Keiji Oguiso

Résumé

FR  |  
EN

Cette thèse comporte trois chapitres indépendants portant sur l’itération des applicationsrationnelles sur des variétés projectives et plus spécifiquement sur l’étude du comportement dela suite des degrés des itérés de telles applications.Dans le premier chapitre, nous donnons une construction des invariants fondamentaux quesont les degrés dynamiques dans un cadre très général, et ce sans hypothèse ni sur la caractéristique ni sur les singularités de l’espace ambiant. Cette construction repose sur des propriétésde positivité des cycles algébriques, et propose une alternative aux approches analytiques deDinh et Sibony ou algébriques de Truong.Le second chapitre est issu d’un article écrit en commun avec Jian Xiao. Notre contributionporte sur des objets centraux en géométrie convexe appelés valuations. Nous transférons à l’espace des valuations des notions de positivité des cycles algébriques récemment introduites parLehmann et Xiao, ce qui nous permet d’étendre l’opération de convolution originellement définie par Bernig et Fu à une sous-classe de valuations suffisamment positives.Le troisième chapitre constitue le coeur de la thèse, et porte sur des estimations des degrésdynamiques des automorphismes dit modérés de la quadrique affine de dimension 3. Nos arguments sont de nature variée, et s’appuient sur l’action du groupe modéré sur un complexe carréCAT(0) et Gromov hyperbolique récemment introduite par Bisi, Furter et Lamy.Nous avons finalement collecté dans un dernier et court chapitre quelques pistes de recherchedirectement inspirées des travaux présentés ici.