Thèse soutenue

Numerical Study of Nanosecond Capillary and Surface Dielectric Barrier Discharges : Kinetics, Transport and Fluid Responses
FR  |  
EN
Accès à la thèse
Auteur / Autrice : Yifei Zhu
Direction : Svetlana Starikovskaia
Type : Thèse de doctorat
Discipline(s) : Physique des plasmas
Date : Soutenance le 04/05/2018
Etablissement(s) : Université Paris-Saclay (ComUE)
Ecole(s) doctorale(s) : École doctorale Ondes et matière (Orsay, Essonne ; 2015-....)
Partenaire(s) de recherche : Établissement opérateur d'inscription : École polytechnique (Palaiseau, Essonne ; 1795-....)
Laboratoire : Laboratoire de physique des plasmas (Palaiseau, Essonne ; 1997-....)
Jury : Président / Présidente : Jean-Hugues Paillol
Examinateurs / Examinatrices : Svetlana Starikovskaia, Anne Bourdon, Natalie Babaeva
Rapporteurs / Rapporteuses : Nicolas Naudé, Victor Soloviev

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les décharges pulsées nanoseconde sont caractérisées par un fort champ réduit (centaine Td) et une forte thermodynamique hors-équilibre. Ils ont de l’énergie électronique de quelques eV à quelques dizaine eV et la déposition d’énergie spécifique de 10⁻³ eV/mol à quelques eV/mol.Deux configurations particulières sont étudiées: (i) décharge capillaire nanoseconde (nCD) fonctionnant à la pression modérée et à une haute, et (ii) décharge contrôlée par barrière diélectrique surfacique de nanoseconde, fonctionnant à la pression atmosphérique ou à la pression plus élevée, et à une énergie spécifique de la déposition relativement faible.La décharge capillaire nanoseconde est un outil expérimental pour analyser le nanoseconde plasma dans certaines conditions extrêmes. Des expériences récentes de nCD ont révélé que la cinétique du plasma change considérablement quand l’énergie spécifique de la déposition est plus élevée. L'un des objectifs du travail est d'étudier numériquement les effets de la cinétique modifiée sur la technique classique de la mesure de l’actinométrie, et sur l’évolution spatial-temporelle du plasma dans la décharge et en post-décharge.La décharge contrôlée par barrière diélectrique surfacique de nanoseconde a été largement étudiée dans la communauté de l'aérodynamique. Cependant, au début de démarrer le travail, les paramètres de nSDBD n'étaient pas bien compris, la comparaison des calculs numériques et des résultats expérimentaux n'étaient pas disponibles. Par conséquent, la modélisation de nSDBD et la comparaison avec des résultats expérimentaux sous les mêmes paramètres est un autre objet de la thèse.Le travail dans ce manuscrit est organisé en trois parties. Dans la première partie, la modélisation numérique et les expérimentations de l’actinométrie basée sur l’Ar sont utilisées pour étudier la densité de l’oxygène atomique dans une décharge capillaire nanoseconde. Un schéma cinétique décrivant le comportement cohérent de l'ensemble des données expérimentales est développé. Les processus principaux, qui sont responsables de la population et de la décroissance des trois espèces intéressés sont sélectionnés à base de l’analyse de la sensibilité et du taux. Le rôle des réactions entre les espèces excitées et les électrons a l’entrée de la post-décharge pour une décharge pulsée au grand champ électrique et haute énergie spécifique de la déposition est discuté.La deuxième partie est consacrée à étudier, analyser et prévoir des caractéristiques de la décharge et de la post-décharge de nCD sous différents énergie spécifique de la déposition , basées sur un code auto - cohérent bidimensionnel, nonPDPsim. La propagation de la décharge a été modélisée. Deux modes de propagation ont été identifiés, trois formes d'ondes d'ionisation sont trouvées en variant le rayon de tube. Le taux de décroissance et la distribution radiale des électrons et de N2(C3) dans la post-décharge sont étudiés en respectant l’énergie spécifique de la déposition.Finalement, un modèle parallèle bidimensionnel PASSKEy («PArallel Streamer Solver with KinEtics») a été développé et validé pour modéliser le nSDBD. Une série de calculs numériques pour un seul pulse de nSDBD dans l'air à la pression atmosphérique à une amplitude de tension de 24 kV a été effectuée, les résultats ont été comparés avec des résultats expérimentaux dans les mêmes conditions. Vitesse calculée et mesurée De l’entrée de la décharge, courant électrique, carte plan 2D d'émission de N2(C3)→N2(B3), et perturbations hydrodynamiques provoquées par la décharge sur l'échelle de temps sont analysées de 0, 2 à 5us. L'effet de différents processus cinétiques dans la distribution 2D de la chaleur est étudié. Les données sont présentées et analysées pour la polarité de tension négative et positive. Un ensemble de calculs paramétriques avec différentes permittivité diélectrique, différent épaisseur des diélectriques et différente pression ambiantes sont présentés.