Bootstrap and uniform bounds for Harris Markov chains

par Gabriela Ciolek

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Stéphan Clémençon.

Soutenue le 14-12-2018

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne ; 2015-....) , en partenariat avec Télécom ParisTech (établissement opérateur d'inscription) et de Laboratoire Traitement et communication de l'information (Paris ; 2003-....) (laboratoire) .

Le président du jury était Sana Louhichi.

Le jury était composé de Stéphan Clémençon, Patrice Bertail, Randal Douc, Cécile Durot.

Les rapporteurs étaient Kengo Kato, Olivier Wintenberger.

  • Titre traduit

    Bootstrap et bornes uniformes pour des chaînes de Markov Harris récurrentes


  • Résumé

    Cette thèse se concentre sur certaines extensions de la théorie des processus empiriques lorsque les données sont Markoviennes. Plus spécifiquement, nous nous concentrons sur plusieurs développements de la théorie du bootstrap, de la robustesse et de l’apprentissage statistique dans un cadre Markovien Harris récurrent positif. Notre approche repose sur la méthode de régénération qui s’appuie sur la décomposition d’une trajectoire de la chaîne de Markov atomique régénérative en blocs d’observations indépendantes et identiquement distribuées (i.i.d.). Les blocs de régénération correspondent à des segments de la trajectoire entre des instants aléatoires de visites dans un ensemble bien choisi (l’atome) formant une séquence de renouvellement. Dans la premiére partie de la thèse nous proposons un théorème fonctionnel de la limite centrale de type bootstrap pour des chaînes de Markov Harris récurrentes, d’abord dans le cas de classes de fonctions uniformément bornées puis dans un cadre non borné. Ensuite, nous utilisons les résultats susmentionnés pour obtenir unthéorème de la limite centrale pour des fonctionnelles Fréchet différentiables dans un cadre Markovien. Motivés par diverses applications, nous discutons la manière d’étendre certains concepts de robustesse à partir du cadre i.i.d. à un cas Markovien. En particulier, nous considérons le cas où les données sont des processus Markoviens déterministes par morceaux. Puis, nous proposons des procédures d’échantillonnage résiduel et wild bootstrap pour les processus périodiquement autorégressifs et établissons leur validité. Dans la deuxième partie de la thèse, nous établissons des versions maximales d’inégalités de concentration de type Bernstein, Hoeffding et des inégalités de moments polynomiales en fonction des nombres de couverture et des moments des temps de retour et des blocs. Enfin, nous utilisons ces inégalités sur les queues de distributions pour calculer des bornes de généralisation pour une estimation d’ensemble de volumes minimum pour les chaînes de Markov régénératives.


  • Résumé

    This thesis concentrates on some extensions of empirical processes theory when the data are Markovian. More specifically, we focus on some developments of bootstrap, robustness and statistical learning theory in a Harris recurrent framework. Our approach relies on the regenerative methods that boil down to division of sample paths of the regenerative Markov chain under study into independent and identically distributed (i.i.d.) blocks of observations. These regeneration blocks correspond to path segments between random times of visits to a well-chosen set (the atom) forming a renewal sequence. In the first part of the thesis we derive uniform bootstrap central limit theorems for Harris recurrent Markov chains over uniformly bounded classes of functions. We show that the result can be generalized also to the unbounded case. We use the aforementioned results to obtain uniform bootstrap central limit theorems for Fr´echet differentiable functionals of Harris Markov chains. Propelledby vast applications, we discuss how to extend some concepts of robustness from the i.i.d. framework to a Markovian setting. In particular, we consider the case when the data are Piecewise-determinic Markov processes. Next, we propose the residual and wild bootstrap procedures for periodically autoregressive processes and show their consistency. In the second part of the thesis we establish maximal versions of Bernstein, Hoeffding and polynomial tail type concentration inequalities. We obtain the inequalities as a function of covering numbers and moments of time returns and blocks. Finally, we use those tail inequalities toderive generalization bounds for minimum volume set estimation for regenerative Markov chains.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Télécom ParisTech. Bibliothèque scientifique et technique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.