Nonlinéarités optiques du second ordre dans le silicium

par Mathias Berciano

Thèse de doctorat en Physique

Sous la direction de Laurent Vivien.

Soutenue le 14-12-2018

à Paris Saclay , dans le cadre de École doctorale Electrical, optical, bio-physics and engineering (Orsay, Essonne) , en partenariat avec Centre de Nanosciences et de Nanotechnologies (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était Philippe Delaye.

Le jury était composé de Laurent Vivien, Philippe Delaye, Vincent Laude, Christophe Peucheret, Frédéric Bœuf, Philippe Absil.

Les rapporteurs étaient Vincent Laude, Christophe Peucheret.


  • Résumé

    L’explosion de la demande en données a imposé de nouvelles exigences en terme de débit de transmission qui sont de plus en difficiles à satisfaire sans accroître considérablement les consommations énergétiques dans les centres de données, points névralgiques des réseaux de télécommunications. Dans ce contexte, la photonique silicium est considérée comme la solution la plus adaptée pour répondre de ces problématiques en remplaçant les interconnexions métalliques par des liaisons optiques à base de silicium. Le modulateur électro-optique constitue l’un des composants clés de ces liaisons optiques. Cependant, la centrosymétrie du silicium empêche l’exploitation de l’effet Pockels, un phénomène d’optique non linéaire très efficace dans la conception de modulateurs à très grande bande passante et à faible consommation énergétique. Cette limitation peut être néanmoins contournée lorsque des contraintes mécaniques sont appliquées au silicium de façon à briser sa symétrie d’inversion. Plusieurs travaux théoriques et expérimentaux ont alors été entrepris récemment pour mettre en évidence et quantifier l’effet Pockels induit par contraintes dans le silicium. Mais la nature semi-conductrice du silicium rend l’analyse de l’effet Pockels profondément complexe et cela a soulevé une controverse quant à sa réelle existence dans le silicium contraint. En effet, l’influence des porteurs libres dans le silicium et aux interfaces engendrent un fort signal de modulation, noyant la signature de l’effet Pockels. Pour enrayer les effets de porteurs, la solution apportée par le travail de thèse a été d’étudier le signal de modulation à hautes fréquences (> 5 GHz). Plusieurs études hyperfréquences de l’effet Pockels ont donc été menées dans des structures photoniques en silicium contraint et seront présentées dans ce manuscrit de thèse. Les premières études ont été réalisées sur une plate-forme SOI et les résultats expérimentaux ont permis de mettre en évidence la présence d’un signal de modulation électro-optique à hautes fréquences et dont l’intensité dépend clairement de l’orientation cristallographique du silicium et de l’amplitude de la contrainte appliquée sur celui-ci. Sur la base d’un modèle théorique décrivant le tenseur de susceptibilité électrique du second ordre χ(²), un modèle multiphysique a été développé et a permis de décrire de manière très précise à la fois les résultats expérimentaux et la distribution spatiale du χ(²) dans des guides d’onde silicium contraints. Ces travaux ont également permis de montrer que les faibles intensités des champs électriques appliqués dans les guides d’onde silicium, dues à la distribution des porteurs, sont en grande partie responsable de la faible efficacité de modulation par effet Pockels. Une seconde étude a donc été menée sur une plate-forme SOI modifiée et permettant la conception de circuits électriques plus performants avec des champs électriques générés plus intenses. Les résultats expérimentaux obtenus montrent une amélioration d’un facteur 20 de l’efficacité de modulation par effet Pockels en comparaison des premières études. De plus, le modèle multiphysique a de nouveau permis de décrire ces résultats, renforçant donc davantage sa validité. L’ensemble de ces travaux ouvrent notamment comme perspectives la possibilité d’obtenir un diagramme de l’œil électro-optique dans la mesure où une contrainte plus importante est appliquée aux guides d’onde silicium. De plus, le modèle décrivant le tenseur de susceptibilité électrique du second ordre χ(²) peut également être exploité pour décrire le phénomène de génération de seconde harmonique en optique guidée dont l’existence reste encore ambiguë à l’heure actuelle.

  • Titre traduit

    Second-order optical nonlinearities in silicon


  • Résumé

    The explosion of data demand imposed new requirements in terms of data transmission rate that are more and more difficult to meet without greatly increasing the power consumption in data centres, hot spots of telecommunications networks. In this context, silicon photonics is considered the most adapted solution to address these complex issues by replacing metallic interconnects by silicon-based photonic links. The electro-optic modulator is one major building block in such photonic links and ensure the conversion of data carried by an electric signal to an optical one. However, silicon being a centrosymmetric material, it cannot exhibit the Pockels effect, a very valuable optical nonlinear phenomenon used in most high-speed and low power consumption modulators. This limitation is nonetheless relaxed by applying deformations to the silicon lattice by means of stress in order to break its inversion symmetry. Numerous theoretical and experimental studies were reported to demonstrate and quantify the Pockels effect. But, the semiconductor nature of silicon tremendously complicate the analysis of the Pockels effect, which existence was questioned in strained silicon and source of controversy. Indeed, free carriers in silicon waveguides and at the interfaces induce a strong modulation signal, thereby screening Pockels effect. To stem the influence of free carriers, the work done in the thesis consisted in studying high frequency-based modulation signal (> 5 GHz). Various microwave studies were then performed in strained silicon photonic structures and will be presented in the following thesis manuscript. First studies were achieved on a SOI platform and the obtained experimental results demonstrated the presence of a weak high-frequency electro-optic modulation signal which intensity clearly depends on the silicon cristallographic direction and the level of stress applied to silicon. Based on a theoretical model describing the second-order nonlinear electric susceptibility χ(²), a multiphysic model has been developed and successfully described both experimental results and the spatial distribution of χ(²) within strained silicon waveguides. These studies also showed that the weak intensity of the applied electric fields, due to the free carriers distribution, are responsible for the weak measured Pockels-based modulation efficiencies. A second study has then been carried out on a modified SOI platform allowing the design of more efficient electric circuits inducing stronger electric fields. An improvement by a factor of 20 was observed on the obtained experimental results compared to the previous ones. Moreover, the multiphysic model could again describe those results, proving its reliability. As outlooks, electro-optic eye diagram of complex electric signals could be obtained at the condition of stronger stress applied to silicon waveguides. Furthermore, the model describing the second-order nonlinear susceptibility χ(²) can also be exploited to depict the second harmonic generation in strained silicon waveguides, which existence is still not clear for the moment.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.