Thermomagnetic Convection in Ferrofluids : Finite Element Approximation and Application to Transformer Cooling

par Raphaël Zanella

Thèse de doctorat en Mécanique des fluides

Sous la direction de Caroline Nore et de Frédéric Bouillault.

Le président du jury était Frédéric Mazaleyrat.

Le jury était composé de Caroline Nore, Frédéric Mazaleyrat, Philippe Marty, Rachid Touzani, Yvan Avenas, Xavier Mininger, Olivier Moreau.

Les rapporteurs étaient Philippe Marty, Rachid Touzani.

  • Titre traduit

    Convection thermomagnétique dans les ferrofluides : approximation par éléments finis et application au refroidissement des transformateurs


  • Résumé

    Nous proposons d'exploiter la convection thermomagnétique, phénomène caractéristique des Ferro fluides, pour améliorer les transferts de chaleur dans les transformateurs. Les équations régissant le système se composent des équations de Navier-Stokes dans l'approximation de Boussinesq, de l'équation de la conservation de l'énergie et des équations de la magnétostatique. Les simulations sont menées avec notre code de recherche parallélisé SFEMaNS (Spectral/Finite Element for Maxwell and Navier-Stokes) pour des géométries axisymétriques, utilisant une décomposition spectrale dans la direction azimutale et des éléments finis de Lagrange dans le plan méridien. Afin de résoudre ce problème spécifique, divers développements sont apportés à SFEMaNS, tels que l'implémentation des forces magnétiques de Kelvin et de Helmholtz. Le code est d'abord appliqué au refroidissement d'un solénoïde dans une cuve cylindrique contenant de l'huile de transformateur ou un ferrofluide à base d'huile de transformateur. Les résultats montrent que l'utilisation du ferrofluide diminue la température maximale du système grâce à la convection thermomagnétique et au changement des propriétés thermophysiques du fluide. L'influence de différents paramètres (fraction volumique de nanoparticules, présence d'un cœur ferromagnétique, propriétés magnétiques des nanoparticules) est étudiée. En particulier, les simulations confirment l'intérêt des nanoparticules magnétiques à faible température de Curie. Nous montrons également sur cet exemple que deux densités de force magnétique égales à un gradient près, telles que les forces de Kelvin et de Helmholtz, donnent le même écoulement. Un bon accord qualitatif est trouvé entre les résultats numériques et expérimentaux utilisant de l'huile de transformateur ou du ferrofluide. Le code est ensuite appliqué au refroidissement d'un système proche d'un transformateur de 40 kVA (20 kV/400 V). Les résultats montrent à nouveau une réduction de la température maximale grâce au ferrofluide.


  • Résumé

    We propose to make use of thermomagnetic convection, a characteristic phenomenon of ferrofluids, to improve heat transfer in transformers. The governing equations consist in the Navier-Stokes equations under the Boussinesq approximation, the energy conservation equation and the magnetostatics equations. The simulations are performed with the in-house parallel code SFEMaNS (Spectral/Finite Element for Maxwell and Navier-Stokes) for axisymmetric geometries, using a spectral decomposition in the azimuthal direction and Lagrange finite elements in the meridian plane. In order to solve this specific problem, various developments are brought to SFEMaNS, such as the implementation of the Kelvin and Helmholtz magnetic forces. The code is first applied to the cooling of a coil in a cylindrical tank containing either transformer oil or transformer oil-based ferrofluid. The results show that the use of the ferrofluid reduces the maximum temperature in the system due to thermomagnetic convection and the change of the fluid thermophysical properties. The influence of different parameters (volume fraction of nanoparticles, presence of a ferromagnetic core, nanoparticle magnetic properties) is investigated. In particular, the simulations confirm the benefit of magnetic nanoparticles with a low Curie temperature. We also show on this example that two magnetic body forces equal up to a gradient, such as the Kelvin and Helmholtz forces, give the same flow. A good qualitative agreement is found between the numerical and experimental results using transformer oil or ferrofluid. The code is then applied to the cooling of an electromagnetic system close to a 40 kVA (20 kV/400 V) transformer. The results show again a reduction of the maximum temperature when using ferrofluid.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.