Accelerating Monte Carlo particle transport with adaptively generated importance maps

par Michel Nowak

Thèse de doctorat en Énergie nucléaire

Sous la direction de Eric Dumonteil et de Jamal Atif.

Soutenue le 12-10-2018

à Paris Saclay , dans le cadre de Particules, hadrons, énergie et noyaux: Instrumentation, Imagerie, Cosmos et Simulation , en partenariat avec Université Paris-Sud (établissement opérateur d'inscription) et de Laboratoire de Transport Stochastique et Déterministe (Saclay, Essonne) (laboratoire) .

  • Titre traduit

    Accélération de simulations Monte Carlo de transport de particules par génération adaptative de cartes d’importance


  • Résumé

    Les simulations Monte Carlo de transport de particules sont un outil incontournable pour l'étude de problèmes de radioprotection. Leur utilisation implique l'échantillonnage d'événements rares grâce à des méthode de réduction de variance qui reposent sur l'estimation de la contribution d'une particule au détecteur. On construit cette estimation sous forme d'une carte d'importance.L’objet de cette étude est de proposer une stratégie qui permette de générer de manière adaptative des cartes d'importance durant la simulation Monte Carlo elle-même. Le travail a été réalisé dans le code de transport des particules TRIPOLI-4®, développé à la Direction de l’énergie nucléaire du CEA (Salay, France).Le cœur du travail a consisté à estimer le flux adjoint à partir des trajectoires simulées avec l'Adaptive Multilevel Splitting, une méthode de réduction de variance robuste. Ce développement a été validé à l'aide de l'intégration d'un module déterministe dans TRIPOLI-4®.Trois stratégies sont proposés pour la réutilisation de ce score en tant que carte d'importance dans la simulation Monte Carlo. Deux d'entre elles proposent d'estimer la convergence du score adjoint lors de phases d'exploitation.Ce travail conclut sur le lissage du score adjoint avec des méthodes d'apprentissage automatique, en se concentrant plus particulièrement sur les estimateurs de densité à noyaux.


  • Résumé

    Monte Carlo methods are a reference asset for the study of radiation transport in shielding problems. Their use naturally implies the sampling of rare events and needs to be tackled with variance reduction methods. These methods require the definition of an importance function/map. The aim of this study is to propose an adaptivestrategy for the generation of such importance maps during the Montne Carlo simulation. The work was performed within TRIPOLI-4®, a Monte Carlo transport code developped at the nuclear energy division of CEA in Saclay, France. The core of this PhD thesis is the implementation of a forward-weighted adjoint score that relies on the trajectories sampled with Adaptive Multilevel Splitting, a robust variance reduction method. It was validated with the integration of a deterministic module in TRIPOLI-4®. Three strategies were proposed for the reintegrationof this score as an importance map and accelerations were observed. Two of these strategies assess the convergence of the adjoint score during exploitation phases by evalutating the figure of merit yielded by the use of the current adjoint score. Finally, the smoothing of the importance map with machine learning algorithms concludes this work with a special focus on Kernel Density Estimators.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.