Optimisation de diodes Schottky pour les applications THz

par Eric Bernuchon

Thèse de doctorat en Electronique et Optoélectronique, Nano- et Microtechnologies

Sous la direction de Frédéric Aniel.

Soutenue le 23-10-2018

à Paris Saclay , dans le cadre de École doctorale Electrical, optical, bio-physics and engineering (Orsay, Essonne ; 2015-....) , en partenariat avec Centre de Nanosciences et de Nanotechnologies (2016-....) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était Philippe Dollfus.

Le jury était composé de Frédéric Aniel, Philippe Dollfus, Alain Maestrini, Luca Varani, Raymond Quéré.

Les rapporteurs étaient Alain Maestrini, Luca Varani.


  • Résumé

    Le domaine du Térahertz a suscité beaucoup d’intérêt de la part de la communauté scientifique ces dernières années. La diode Schottky constitue la pierre angulaire des circuits de détection, des multiplieurs de fréquence ou encore des mélangeurs dans cette bande de fréquence, notamment grâce à son comportement non-linéaire. Les travaux menés durant cette thèse visent à optimiser les caractéristiques de ce composant pour deux fonctions non-linéaires – la détection et la multiplication de fréquence – celles-ci ayant des facteurs de mérites bien spécifiques. Un même dispositif ne saurait les satisfaire conjointement La non-linéarité capacitive est généralement mise à profit pour la multiplication de fréquence alors que la détection s’appuie sur la non-linéarité résistive associée à la caractéristique statique. Pour réaliser cette optimisation, un code particulaire Monte-Carlo (MC) résolvant l’équation de Boltzmann couplée à l’équation de Poisson a été développé. La diode Schottky est un composant largement contrôlé par l’interface métal/semi-conducteur et la gestion des conditions aux limites constitue une étape clef dans la modélisation du dispositif. Le principe d’exclusion de Pauli doit être considéré pour un semi-conducteur très dopé et une distribution spécifique pour les porteurs injectés du côté du contact ohmique a été optimisée puis utilisée dans la modélisation de la diode. D’autres effets physiques à l’interface métal/semi-conducteur ont été implémentés tels que l’effet tunnel suivant différents degrés de raffinement, le phénomène de force image ou encore l’abaissement de la hauteur de barrière par le champ électrique dû aux états de surface. Cette modélisation MC a permis de déduire un schéma équivalent électrique petit-signal aux fréquences Térahertz dont les différents paramètres sont ajustés en prenant en compte la déplétion possible du substrat pour des diodes courtes. L’extraction du schéma équivalent peut s’effectuer suivant différentes stratégies : en excitant la diode avec un signal de faible amplitude ou encore à partir de l’étude des densités spectrales associées aux fluctuations de courant et de tension. Les phénomènes physiques pouvant mettre en défaut ce schéma électrique tels que la vitesse de saturation des porteurs ou le phénomène d’ionisation par choc en polarisation inverse sont discutés. Le recours à un schéma électrique est motivé par une volonté de l’intégrer facilement au cœur d’un circuit pour une fonction spécifique et de l’exploiter avec un logiciel commercial tel que ADS (Advanced Design System) dans une logique d’optimisation. Des simulations de type « Harmonic Balance » ont été menées afin d’étudier le rendement d’un circuit de détection et d’un multiplieur de fréquence pour dégager les caractéristiques optimales de la diode sur chacun de ces circuits. Le GaAs est souvent un semi-conducteur de choix pour la réalisation de circuits aux fréquences Térahertz grâce à sa maturité technologique et à sa haute mobilité électronique. D’autres semi-conducteurs tels que l’InGaAs, le GaSb ou encore le GaN sont également étudiés. Une diode avec un couple métal/semi-conducteur présentant une faible hauteur de barrière donne les meilleurs rendements de conversion pour la détection. Pour le multiplieur de fréquence, il existe un dopage optimal en fonction de la longueur de la couche active permettant de maximiser le rendement du circuit.

  • Titre traduit

    Schottky Diode Optimization for THz Applications


  • Résumé

    The terahertz field has generated significant interest from the scientific community in recent years. The Schottky diode is the cornerstone of detection circuits, frequency multipliers or mixers in this frequency band, thanks to its non-linear behavior. The work carried out during this thesis aims at optimizing the characteristics of this component for two non-linear functions - detection and frequency multiplication - these having very specific figures of merit. The same device can not satisfy them together. Capacitive non-linearity is generally used for frequency multiplication while the detection is based on the resistive non-linearity associated with the current-voltage characteristic. To achieve this optimization, a Monte Carlo (MC) particle code solving the Boltzmann transport equation coupled to the Poisson equation was developed. The Schottky diode is a component essentially controlled by the metal / semiconductor interface and the boundary conditions are a key step in the device modeling. The Pauli exclusion principle must be considered for a highly doped semiconductor and a specific distribution for the carriers injected on the ohmic contact side has been optimized and then used in the diode modeling. Other physical effects at the metal / semiconductor interface have been implemented, such as tunneling following different degrees of refinement, image force barrier lowering or the barrier height lowering by the electric field due to surface states. A small-signal equivalent circuit at Terahertz frequencies was deduced from the MC modeling. The parameters of this circuit are adjusted by taking into account the possible depletion of the substrate for short diodes. The extraction of the equivalent circuit can be carried out according to different strategies: exciting the diode with a low amplitude signal or studying the spectral densities associated with the current and voltage fluctuations. The physical phenomena that can make the equivalent circuit defective, such as the saturation velocity of carriers or the impact ionization at reverse bias, are discussed. An electrical circuit of the diode was used to be easily integrated into a global circuit for a specific function and exploit it in commercial software such as ADS (Advanced Design System). Harmonic balance simulations were conducted to study the performance of a detection circuit and a frequency multiplier to reach the optimal characteristics of the diode on each of these circuits. GaAs is often a semiconductor of choice for the design of circuits at Terahertz frequencies thanks to its technological maturity and its high electronic mobility. Other semiconductors such as InGaAs, GaSb or GaN are also investigated. A diode with a metal / semiconductor couple having a low barrier height gives the best conversion efficiencies for detection. For the frequency multiplier, there is an optimal doping as a function of the active layer length which maximizes the circuit efficiency.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.