Atomic structure, electronic states and relaxation dynamics in photovoltaic materials and interfaces from photoemission-related spectroscopies

par Min-I Lee

Thèse de doctorat en Physique

Sous la direction de Antonio Tejeda et de Pere Roca i cabarrocas.

Soutenue le 10-07-2018

à Paris Saclay , dans le cadre de École doctorale Physique en Île-de-France (Paris) , en partenariat avec Laboratoire de physique des solides (Orsay, Essonne) (laboratoire) et de Université Paris-Sud (établissement opérateur d'inscription) .

Le président du jury était Jean-Marc Themlin.

Le jury était composé de Antonio Tejeda, Pere Roca i cabarrocas, Jean-Marc Themlin, Wendy Flavell, Karol Hricovini, Emmanuelle Deleporte.

Les rapporteurs étaient Wendy Flavell, Karol Hricovini.

  • Titre traduit

    Structure atomique, états électroniques et dynamique de relaxation dans des matériaux et interfaces photovoltaïques par spectroscopies connexes à la photoémission


  • Résumé

    L'efficacité du processus photovoltaïque dépend du matériau actif à travers la structure de bande et la dynamique des porteurs de charge. Dans cette thèse, nous avons relié les propriétés électroniques et la dynamique de relaxation à la structure atomique des matériaux utilisés pour deux technologies différentes de cellules solaires, celle à base d’hétérostructures de silicium, et celle à base de pérovskites hybrides organiques-inorganiques. Dans les cellules solaires de silicium, nous avons analysé l'influence des défauts sur les propriétés électroniques des hétérostructures de silicium amorphe (a-Si:H/a-SIC:H/c-Si) par spectroscopies des niveaux de coeur et de la bande de valence. En particulier, nous avons quantifié le nombre de liaisons pendantes induites dans la couche a-Si:H par irradiation, et nous avons identifié les états électroniques qui leur sont associés. Enfin nous avons expliqué les transitions précédemment observées par photoluminescence. Dans les cellules solaires à pérovskite hybride, nous avons corrélé la structure atomique, la structure électronique et la dynamique électronique pour des pérovskites bi- et tridimensionnelles. Dans ce but nous avons utilisé tout un panel de techniques complémentaires: diffraction des rayons X, spectroscopie de photoémission résolue en angle, spectroscopie de photoémission inverse et photoémission à deux photons résolue en temps. Pour la pérovskite bidimensionnelle (C₆H₅C₂H₄NH₃)₂PbI₄, nous avons déterminé expérimentalement les bandes de valence et de conduction et nous les avons comparées aux simulations de la fonction spectrale. Pour la pérovskite tridimensionnelle CH₃NH₃PbI₃, nous avons aussi déterminé les structures de bande expérimentale et simulée. Des signatures spectrales très larges ont été observées expérimentalement, ce qui relaxe les conditions de transition optique avec un impact éventuel sur l'efficacité des cellules solaires. Tant dans les expériences que dans les calculs, nous observons que le poids spectral suit une périodicité cubique alors que le système est structurellement dans une phase tétragonale. Cette contradiction apparente s'explique par la largeur spectrale des bandes, qui cache le repliement dû à la distorsion tétragonale. En ce qui concerne la dynamique de relaxation, nous avons observé que les porteurs photoexcités se thermalisent dans une échelle de temps subpicoseconde par couplage aux vibrations des cations organiques. À des échelles de temps plus longues (10~100 picosecondes), la diffusion électronique contrôle la dynamique. Cette dynamique est affectée par les défauts induits par recuit, qui localisent les électrons photoexcités pendant plus de 300 picosecondes.


  • Résumé

    The efficiency of the photovoltaic process depends on the electronic band structure of the active material and the charge carrier dynamics. In this thesis, we have studied how these issues are related to the atomic structure in materials for two different technologies of solar cells, namely silicon heterostructure solar cells, and hybrid organic-inorganic perovskite solar cells. In silicon heterostructure solar cells, we have analyzed the impact of defects on the electronic properties of amorphous silicon heterostructures (a-Si:H/a-SIC:H/c-Si) by core level and valence band spectroscopies. In particular, we have quantified the number of dangling bonds inside a-Si:H layer upon irradiation, we have identified the electronic states associated to them, and we have understood the transitions previously observed by photoluminescence. In perovskite solar cells, we have correlated the atomic structure, the electronic structure and the electronic dynamics for two- and three-dimensional hybrid organic-inorganic perovskites. We have used with this goal a whole panel of complementary techniques: X-ray diffraction, angle-resolved photoemission spectroscopy, inverse photoemission spectroscopy, and time-resolved two-photon photoemission. In the two-dimensional perovskite (C₆H₅C₂H₄NH₃)₂PbI₄, the valence and conduction bands have been determined experimentally and compared to spectral function simulations. In the three-dimensional perovskite CH₃NH₃PbI₃, we have again determined the band structure and simulated it. Very broad spectral features have been experimentally observed, which relax the optical transition conditions impacting in the solarcell efficiencies. In both experiments and calculations, we observe that the spectral weight follows a cubic periodicity while the system is structurally in the tetragonal phase. This apparent contradiction is explained by the band broadness, which hides the band folding of the tetragonal distortion. As for the relaxation dynamics, we have observed that the photoexcited carriers thermalize in a subpicosecond time scale through the coupling to organic cation vibrations. At longer timescales (10~100 picoseconds), the electron diffusion controls the dynamics. This dynamics is affected by the annealing-induced defects, which localize the photoexcited electrons for more than 300 picoseconds.



Le texte intégral de cette thèse sera accessible librement à partir du 10-07-2019


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.