Maintien en conditions opérationnelles pour une flotte de véhicules : étude de la non stabilité des flux de rechange dans le temps

par Florence Ducros

Thèse de doctorat en Mathématiques appliquées

Sous la direction de Gilles Celeux.

Soutenue le 26-06-2018

à Paris Saclay , dans le cadre de École doctorale de mathématiques Hadamard (Orsay, Essonne) , en partenariat avec Laboratoire de mathématiques d'Orsay (laboratoire) , Université Paris-Sud (établissement opérateur d'inscription) et de Nexter systems (entreprise) .

Le président du jury était Pascal Massart.

Le jury était composé de Gilles Celeux, Pascal Massart, Olivier Gaudoin, Didier Chauveau, Patrick Pamphile, Zohra Cherfi-Boulanger.

Les rapporteurs étaient Olivier Gaudoin, Didier Chauveau.


  • Résumé

    Dans cette thèse, nous proposons une démarche méthodologique permettant de simuler le besoin en équipement de rechange pour une flotte de véhicules. Les systèmes se dégradent avec l’âge ou l’usage, et sont défaillants lorsqu’ils ne remplissent plus leur mission. L’usager a alors besoin d’une assurance que le système soit opérationnel pendant sa durée de vie utile. Un contrat de soutien oblige ainsi l’industriel à remédier à une défaillance et à maintenir le système en condition opérationnelle durant la durée du contrat. Ces dernières années, la mondialisation et l’évolution rapide des technologies obligent les constructeurs à proposer des offres de contrat de maintenance bien au-delà de la vie utile des équipements. La gestion de contrat de soutien ou d’extension de soutien requiert la connaissance de la durée de vie des équipements, mais aussi des conditions d’usages des véhicules, dépendant du client. L’analyse des retours clientèle ou des RetEx est alors un outil important d’aide à la décision pour l’industriel. Cependant ces données ne sont pas homogènes et sont très fortement censurées, ce qui rend les estimations difficiles. La plupart du temps, cette variabilité n’est pas observée mais doit cependant être prise en compte sous peine d’erreur de décision. Nous proposons dans cette thèse de modéliser l’hétérogénéité des durées de vie par un modèle de mélange et de concurrence de deux lois de Weibull. On propose une méthode d’estimation des paramètres capable d’être performante malgré la forte présence de données censurées.Puis, nous faisons appel à une méthode de classification non supervisée afin d’identifier des profils d’utilisation des véhicules. Cela nous permet alors de simuler les besoins en pièces de rechange pour une flotte de véhicules pour la durée du contrat ou pour une extension de contrat.

  • Titre traduit

    Maintenance, repair and operations for a fleet of vehicles : study of the non-stability of the flow of spares over time


  • Résumé

    This thesis gathers methodologicals contributions to simulate the need of replacement equipment for a vehile fleet. Systems degrade with age or use, and fail when they do not fulfill their mission. The user needs an assurance that the system is operational during its useful life. A support contract obliges the manufacturer to remedy a failure and to keep the system in operational condition for the duration of the MCO contract.The management of support contracts or the extension of support requires knowledge of the equipment lifetime and also the uses condition of vehicles, which depends on the customer. The analysis of customer returns or RetEx is then an important tool to help support the decision of the industrial. In reliability or warranty analysis, engineers must often deal with lifetimes data that are non-homogeneous. Most of the time, this variability is unobserved but has to be taken into account for reliability or warranty cost analysis.A further problem is that in reliability analysis, the data is heavily censored which makes estimations more difficult. We propose to consider the heterogeneity of lifetimes by a mixture and competition model of two Weibull laws. Unfortunately, the performance of classical estimation methods (maximum of likelihood via EM, Bayes approach via MCMC) is jeopardized due to the high number of parameters and the heavy censoring.To overcome the problem of heavy censoring for Weibull mixture parameters estimation, we propose a Bayesian bootstrap method, called Bayesian RestorationMaximization.We use an unsupervised clustering method to identify the profiles of vehicle uses. Our method allows to simulate the needs of spare parts for a vehicles fleet for the duration of the contract or for a contract extension.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris-Sud. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.