Contributions au co-design de noyaux irréguliers sur architectures manycore : cas du remaillage anisotrope multi-échelle en mécanique des fluides numérique

par Hoby Rakotoarivelo

Thèse de doctorat en Informatique

Sous la direction de Franck Pommereau.


  • Résumé

    La simulation numérique d'écoulements complexes telles que les turbulences ou la propagation d'ondes de choc implique un temps de calcul conséquent pour une précision industrielle acceptable. Pour accélérer ces simulations, deux recours peuvent être combinés : l'adaptation de maillages afin de réduire le nombre de points d'une part, et le parallélisme pour absorber la charge de calcul d'autre part. Néanmoins réaliser un portage efficient des noyaux adaptatifs sur des architectures massivement parallèles n'est pas triviale. Non seulement chaque tâche relative à un voisinage local du domaine doit être propagée, mais le fait de traiter une tâche peut générer d'autres tâches potentiellement conflictuelles. De plus, les tâches en question sont caractérisées par une faible intensité arithmétique ainsi qu'une faible réutilisation de données déjà accédées. Par ailleurs, l'avènement de nouveaux types de processeurs dans le paysage du calcul haute performance implique un certain nombre de contraintes algorithmiques. Dans un contexte de réduction de la consommation électrique, ils sont caractérisés par de multiples cores faiblement cadencés et une hiérarchie mémoire profonde impliquant un coût élevé et asymétrique des accès-mémoire. Ainsi maintenir un rendement optimal des cores implique d'exposer un parallélisme très fin et élevé d'une part, ainsi qu'un fort taux de réutilisation de données en cache d'autre part. Ainsi la vraie question est de savoir comment structurer ces noyaux data-driven et data-intensive de manière à respecter ces contraintes ?Dans ce travail, nous proposons une approche qui concilie les contraintes de localité et de convergence en termes d'erreur et qualité de mailles. Plus qu'une parallélisation, elle s'appuie une re-conception des noyaux guidée par les contraintes hardware en préservant leur précision. Plus précisément, nous proposons des noyaux locality-aware pour l'adaptation anisotrope de variétés différentielles triangulées, ainsi qu'une parallélisation lock-free et massivement multithread de noyaux irréguliers. Bien que complémentaires, ces deux axes proviennent de thèmes de recherche distinctes mêlant informatique et mathématiques appliquées. Ici, nous visons à montrer que nos stratégies proposées sont au niveau de l'état de l'art pour ces deux axes.

  • Titre traduit

    A co-design approach of irregular kernels on manycore architectures : case of multi-scale anisotropic remeshing in computational fluid dynamics


  • Résumé

    Numerical simulations of complex flows such as turbulence or shockwave propagation often require a huge computational time to achieve an industrial accuracy level. To speedup these simulations, two alternatives may be combined : mesh adaptation to reduce the number of required points on one hand, and parallel processing to absorb the computation workload on the other hand. However efficiently porting adaptive kernels on massively parallel architectures is far from being trivial. Indeed each task related to a local vicintiy need to be propagated, and it may induce new conflictual tasks though. Furthermore, these tasks are characterized by a low arithmetic intensity and a low reuse rate of already cached data. Besides, new kind of accelerators have arised in high performance computing landscape, involving a number of algorithmic constraints. In a context of electrical power consumption reduction, they are characterized by numerous underclocked cores and a deep hierarchy memory involving asymmetric expensive memory accesses. Therefore, kernels must expose a high degree of concurrency and high cached-data reuse rate to maintain an optimal core efficiency. The real issue is how to structure these data-driven and data-intensive kernels to match these constraints ?In this work, we provide an approach which conciliates both locality constraints and convergence in terms of mesh error and quality. More than a parallelization, it relies on redesign of kernels guided by hardware constraints while preserving accuracy. In fact, we devise a set of locality-aware kernels for anisotropic adaptation of triangulated differential manifold, as well as a lock-free and massively multithread parallelization of irregular kernels. Although being complementary, those axes come from distinct research themes mixing informatics and applied mathematics. Here, we aim to show that our devised schemes are as efficient as the state-of-the-art for both axes.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Contributions au co-design de noyaux irréguliers sur architectures manycore : cas du remaillage anisotrope multi-échelle en mécanique des fluides numérique


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Evry-Val d'Essonne. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.

Consulter en bibliothèque

à

Informations

  • Sous le titre : Contributions au co-design de noyaux irréguliers sur architectures manycore : cas du remaillage anisotrope multi-échelle en mécanique des fluides numérique
  • Détails : 1 vol. (167 p.)
  • Annexes : Bibliogr. p. 156-167.
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.