Nouvelles approches pour le partitionnement de grands graphes
Auteur / Autrice : | Alexandre Hollocou |
Direction : | Marc Lelarge, Thomas Bonald |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 19/12/2018 |
Etablissement(s) : | Paris Sciences et Lettres (ComUE) |
Ecole(s) doctorale(s) : | École doctorale Sciences mathématiques de Paris centre (Paris ; 2000-....) |
Partenaire(s) de recherche : | Laboratoire : École normale supérieure (Paris ; 1985-....). Département d'informatique |
établissement de préparation de la thèse : École normale supérieure (Paris ; 1985-....) | |
Equipe de recherche : Dynamics of geometric networks (Paris ; 2013-2023) | |
Jury : | Président / Présidente : Nicolas Vayatis |
Examinateurs / Examinatrices : Marc Lelarge, Thomas Bonald, Nicolas Vayatis, Cheng-Shang Chang, Renaud Lambiotte, Florence D'Alché-Buc, Laurent Viennot | |
Rapporteurs / Rapporteuses : Cheng-Shang Chang, Renaud Lambiotte |
Mots clés
Mots clés contrôlés
Résumé
Les graphes sont omniprésents dans de nombreux domaines de recherche, allant de la biologie à la sociologie. Un graphe est une structure mathématique très simple constituée d’un ensemble d’éléments, appelés nœuds, reliés entre eux par des liens, appelés arêtes. Malgré cette simplicité, les graphes sont capables de représenter des systèmes extrêmement complexes, comme les interactions entre protéines ou les collaborations scientifiques. Le partitionnement ou clustering de graphe est un problème central en analyse de graphe dont l’objectif est d’identifier des groupes de nœuds densément interconnectés et peu connectés avec le reste du graphe. Ces groupes de nœuds, appelés clusters, sont fondamentaux pour une compréhension fine de la structure des graphes. Il n’existe pas de définition universelle de ce qu’est un bon cluster, et différentes approches peuvent s’avérer mieux adaptées dans différentes situations. Alors que les méthodes classiques s’attachent à trouver des partitions des nœuds de graphe, c’est-à-dire à colorer ces nœuds de manière à ce qu’un nœud donné n’ait qu’une et une seule couleur, des approches plus élaborées se révèlent nécessaires pour modéliser la structure complexe des graphes que l’on rencontre en situation réelle. En particulier, dans de nombreux cas, il est nécessaire de considérer qu’un nœud donné peut appartenir à plus d’un cluster. Par ailleurs, de nombreux systèmes que l’on rencontre en pratique présentent une structure multi-échelle pour laquelle il est nécessaire de partir à la recherche de hiérarchies de clusters plutôt que d’effectuer un partitionnement à plat. De plus, les graphes que l’on rencontre en pratique évoluent souvent avec le temps et sont trop massifs pour être traités en un seul lot. Pour ces raisons, il est souvent nécessaire d’adopter des approches dites de streaming qui traitent les arêtes au fil de l’eau. Enfin, dans de nombreuses applications, traiter des graphes entiers n’est pas nécessaire ou est trop coûteux, et il est plus approprié de retrouver des clusters locaux dans un voisinage de nœuds d’intérêt plutôt que de colorer tous les nœuds. Dans ce travail, nous étudions des approches alternatives de partitionnement de graphe et mettons au point de nouveaux algorithmes afin de résoudre les différents problèmes évoqués ci-dessus.