Méthodes d'Analyse et de Recalage d'images radiographiques de fret et de Véhicules

par Abraham Marciano

Thèse de doctorat en Mathématiques

Sous la direction de Laurent David Cohen.

Soutenue le 03-07-2018

à Paris Sciences et Lettres , dans le cadre de Ecole doctorale de Dauphine (Paris) , en partenariat avec Centre de recherche en mathématiques de la décision (Paris) (laboratoire) , Université Paris-Dauphine (établissement de préparation de la thèse) et de Smiths Detection (entreprise) .

Le président du jury était Jamal Atif.

Le jury était composé de Laurent David Cohen, Jamal Atif, Isabelle Bloch, Laurent Younes, Ger Koomen, Najib Gadi.

Les rapporteurs étaient Isabelle Bloch, Laurent Younes.


  • Résumé

    La société contemporaine fait face à un niveau de menace sans précédent depuis la seconde guerre mondiale. La lutte contre le trafic illicite mobilise aussi l’ensemble desorganes de police, visant à endiguer le financement du crime organisé. Dans cet effort, les autorités s’engagent à employer des moyens de plus en plus modernes, afin notamment d’automatiser les processus d’inspection. L’objectif de cette étude est de développer des outils de vision par ordinateur afin d’assister les officiers de douanes dans la détection d’armes et de narcotiques. Letravail présenté examine l’emploi de techniques avancées de classification et de recalage d’images pour l’identification d’irrégularités dans des acquisitions radiographiques de fret. Plutôt que de recourir à la reconnaissance par apprentissage, nos méthodes revêtent un intérêt particulier lorsque les objets ciblés présentent des caractéristiques visuelles variées. De plus, elles augmentent notablement la détectabilité d’éléments cachés dans des zones denses, là où même les algorithmes de reconnaissance n’identifieraient pas d’anomalie. Nos travaux détaillent l’état de l’art des méthodes de classification et de recalage, explorant aussi diverses pistes de résolution. Les algorithmes sont testés sur d’importantes bases de données pour apprécier visuellement et numériquement leurs performances

  • Titre traduit

    Image Analysis and Registration Methods for Cargo and vehicles X-Ray Imaging


  • Résumé

    Our societies, faced with an unprecedented level of security threat since WWII, must provide fast and adaptable solutions to cope with a new kind of menace. Illicit trade also, oftencorrelated with criminal actions, is viewed as a defining stake by governments and agencies. Enforcement authorities are thus very demandingin terms of technological features, asthey explicitly aim at automating inspection processes. The main objective of our research is to develop assisting tools to detect weapons and narcotics for lawenforcement officers. In the present work, we intend to employ and customize both advanced classification and image registration techniques for irregularity detection in X-ray cargo screening scans. Rather than employing machine-learning recognition techniques, our methods prove to be very efficient while targeting a very diverse type of threats from which no specific features can be extracted. Moreover, the proposed techniques significantly enhance the detection capabilities for law-enforcement officers, particularly in dense regions where both humans or trained learning models would probably fail. Our work reviews state-of-the art methods in terms of classification and image registration. Various numerical solutions are also explored. The proposed algorithms are tested on a very large number ofimages, showing their necessity and performances both visually and numerically.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : PARIS-PSL (Paris). Université Paris-Dauphine. Service commun de la documentation : Thèses électroniques Dauphine.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.