Algorithmes efficaces pour l’apprentissage de réseaux de préférences conditionnelles à partir de données bruitées

par Fabien Labernia

Thèse de doctorat en Informatique

Sous la direction de Jamal Atif.

Soutenue le 27-09-2018

à Paris Sciences et Lettres , dans le cadre de Ecole doctorale de Dauphine (Paris) , en partenariat avec Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (Paris) (laboratoire) et de Université Paris-Dauphine (Etablissement de préparation de la thèse) .

Le président du jury était Isabelle Bloch.

Le jury était composé de Jamal Atif, Isabelle Bloch, Antoine Cornuéjols, Frédéric Koriche, Brice Mayag, Bruno Zanuttini.

Les rapporteurs étaient Antoine Cornuéjols, Frédéric Koriche.


  • Résumé

    La croissance exponentielle des données personnelles, et leur mise à disposition sur la toile, a motivé l’émergence d’algorithmes d’apprentissage de préférences à des fins de recommandation, ou d’aide à la décision. Les réseaux de préférences conditionnelles (CP-nets) fournissent une structure compacte et intuitive pour la représentation de telles préférences. Cependant, leur nature combinatoire rend leur apprentissage difficile : comment apprendre efficacement un CP-net au sein d’un milieu bruité, tout en supportant le passage à l’échelle ?Notre réponse prend la forme de deux algorithmes d’apprentissage dont l’efficacité est soutenue par de multiples expériences effectuées sur des données réelles et synthétiques.Le premier algorithme se base sur des requêtes posées à des utilisateurs, tout en prenant en compte leurs divergences d’opinions. Le deuxième algorithme, composé d’une version hors ligne et en ligne, effectue une analyse statistique des préférences reçues et potentiellement bruitées. La borne de McDiarmid est en outre utilisée afin de garantir un apprentissage en ligne efficace.

  • Titre traduit

    Efficient algorithms for learning conditional preference networks from noisy data


  • Résumé

    The rapid growth of personal web data has motivated the emergence of learning algorithms well suited to capture users’ preferences. Among preference representation formalisms, conditional preference networks (CP-nets) have proven to be effective due to their compact and explainable structure. However, their learning is difficult due to their combinatorial nature.In this thesis, we tackle the problem of learning CP-nets from corrupted large datasets. Three new algorithms are introduced and studied on both synthetic and real datasets.The first algorithm is based on query learning and considers the contradictions between multiple users’ preferences by searching in a principled way the variables that affect the preferences. The second algorithm relies on information-theoretic measures defined over the induced preference rules, which allow us to deal with corrupted data. An online version of this algorithm is also provided, by exploiting the McDiarmid's bound to define an asymptotically optimal decision criterion for selecting the best conditioned variable and hence allowing to deal with possibly infinite data streams.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Algorithmes efficaces pour l'apprentissage de réseaux de préférences conditionnelles à partir de données bruitées


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : PARIS-PSL (Paris). Université Paris-Dauphine. Service commun de la documentation : Thèses électroniques Dauphine.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.
Cette thèse a donné lieu à 1 publication .

Consulter en bibliothèque

à

Informations

  • Sous le titre : Algorithmes efficaces pour l'apprentissage de réseaux de préférences conditionnelles à partir de données bruitées
  • Détails : 1 vol. (180 p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse ?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.