Thèse soutenue

Algorithmes stochastiques pour simuler l'évolution microstructurale d'alliages ferritiques : une étude de la dynamique d'amas

FR  |  
EN
Auteur / Autrice : Pierre Terrier
Direction : Gabriel StoltzManuel Athènes
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 19/12/2018
Etablissement(s) : Paris Est
Ecole(s) doctorale(s) : École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2015-....)
Partenaire(s) de recherche : Laboratoire : Centre d'enseignement et de recherche en mathématiques et calcul scientifique (Champs-sur-Marne, Seine-et-Marne) - Centre d'Enseignement et de Recherche en Mathématiques et Calcul Scientifique / CERMICS
Jury : Président / Présidente : François Castella
Examinateurs / Examinatrices : Gabriel Stoltz, Manuel Athènes, Olga Mula Hernandez, Charles-Edouard Bréhier
Rapporteurs / Rapporteuses : Julien Salomon

Résumé

FR  |  
EN

Cette thèse s'intéresse au vieillissement des métaux au niveau microstructural. On étudie en particulier les défauts (amas de lacunes, interstitiels ou solutés) via un modèle de dynamique d'amas (DA), qui permet de prédire l'évolution des concentrations de défauts sur des temps longs (plusieurs dizaines d'années). Ce modèle est décrit par un système d'équations différentielles ordinaires (EDOs) de très grande taille, pouvant excéder la centaine de milliards d'équations. Les méthodes numériques classiques de simulation d'EDOs ne sont alors pas efficaces pour de tels systèmes. On montre dans un premier temps que la DA est bien posée et qu'elle vérifie certaines bonnes propriétés physiques comme la conservation de la quantité de matière et la positivité de la solution. On s'intéresse également à une approximation de la DA, qui prend la forme d'une équation aux dérivées partielles, de type Fokker--Planck. On caractérise en particulier l'erreur d'approximation entre la DA et cette approximation. Dans un second temps, on introduit un algorithme de simulation de la DA. Cet algorithme est basé sur un splitting de la dynamique ainsi que sur une interprétation probabiliste des équations de la DA (sous la forme d'un processus de saut) ou de son approximation de Fokker--Planck (sous la forme d'un processus de Langevin). Le but est de réduire le nombre d'équations à résoudre et d'accélérer par conséquent les simulations. On utilise enfin cet algorithme de simulation à différents modèles physiques. On confirme l'intérêt de ce nouvel algorithme pour des modèles complexes. On montre également que cet algorithme permet d'enrichir le modèle de dynamique d'amas à moindre coût