Approche basées sur l'apprentissage en profondeur pour la segmentation des organes à risques dans les tomodensitométries thoraciques.

par Roger Trullo Ramirez

Thèse de doctorat en Informatique

Sous la direction de Su Ruan et de Caroline Petitjean.

Le président du jury était Liming Chen.

Les rapporteurs étaient Nicolas Thome, Mathieu Hatt.


  • Résumé

    La radiothérapie est un traitement de choix pour le cancer thoracique, l’une des principales causes de décès dans le monde. La planification de la radiothérapie nécessite de contourer non seulement la tumeur, mais également les organes à risque (OAR) situés près de la tumeur dans le thorax, tels que le coeur, les poumons, l’oesophage, etc. Cette segmentation permet de minimiser la quantité d’irradiation reçue pendant le traitement. Aujourd’hui, la segmentation de OAR est réalisée principalement manuellement par des cliniciens sur des images scanner (CT), malgré une prise en charge logicielle partielle. C’est une tâche complexe, sujette à la variabilité intra et interobservateur. Dans ce travail, nous présentons plusieurs méthodologies utilisant des techniques d’apprentissage profond pour segmenter automatiquement le coeur, la trachée, l’aorte et l’oesophage. En particulier, l’oesophage est particulièrement difficile à segmenter, en raison de l’absence de contraste et de variabilité de forme entre différents patients. Les réseaux profonds convolutionnels offrent aujourd’hui des performances de pointe en matière desegmentation sémantique, nous montrons d’abord comment un type spécifique d’architecture basée sur des skip connections peut améliorer la précision des résultats, par rapport à un réseau pleinement convolutionnel (FCN) standard. Dans une deuxième contribution, nous avons intégré des informations de contexte spatial au processus de segmentation, par le biais de réseaux collaboratifs, permettant les segmentations de chaque organe individuellement. Troisièmement, nous proposons une représentation différente des données, basée sur une carte de distance, utilisée en conjointement avec des réseaux adversariaux (GAN), comme un autre moyen de contraindre le contexte anatomique. Les méthodes proposées ont été évaluées sur une base d’images scanner de 60 patients. Les résultats montrent des résultats encourageants pour l’application clinique et souligne le potentiel des méthodes prenant en compte le contexte spatial dans la segmentation.

  • Titre traduit

    Deep learning based approaches for the segmentation of Organs at Risk in Thoracic Computed Tomography Scans


  • Résumé

    Radiotherapy is one of the options for treatment currently available for patients affected by cancer, one of the leading cause of deaths worldwide. Before radiotherapy, organs at risk (OAR) located near the target tumor, such as the heart, the lungs, the esophagus, etc. in thoracic cancer, must be outlined, in order to minimize the quantity of irradiation that they receive during treatment. Today, segmentation of the OAR is performed mainly manually by clinicians on Computed Tomography (CT) images, despite some partial software support. It is a tedious task, prone to intra and inter-observer variability. In this work, we present several frameworks using deep learning techniques to automatically segment the heart, trachea, aorta and esophagus. In particular, the esophagus is notably challenging to segment, due to the lack of surrounding contrast and shape variability across different patients. As deep networks and in particular fully convolutional networks offer now state of the art performance for semantic segmentation, we first show how a specific type of architecture based on skip connections can improve the accuracy of the results. As a second contribution, we demonstrate that context information can be of vital importance in the segmentation task, where we propose the use of two collaborative networks. Third, we propose a different, distance aware representation of the data, which is then used in junction with adversarial networks, as another way to constrain the anatomical context. All the proposed methods have been tested on 60 patients with 3D-CT scans, showing good performance compared with other methods.


Le texte intégral de cette thèse n'est pas accessible en ligne.
Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Approche basées sur l'apprentissage en profondeur pour la segmentation des organes à risques dans les tomodensitométries thoraciques.


Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?