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Abstract

The nonlocal p-Laplacian operator, the associated evolution equation and variational regularization,

governed by a given kernel, have applications in various areas of science and engineering. In particular,

they are modern tools for massive data processing (including signals, images, geometry), and machine

learning tasks such as classification. In practice, however, these models are implemented in discrete

form (in space and time, or in space for variational regularization) as a numerical approximation to a

continuous problem, where the kernel is replaced by an adjacency matrix of a graph. Yet, few results

on the consistency of these discretization are available. In particular it is largely open to determine

when do the solutions of either the evolution equation or the variational problem of graph-based tasks

converge (in an appropriate sense), as the number of vertices increases, to a well-defined object in the

continuum setting, and if yes, at which rate. In this manuscript, we lay the foundations to address

these questions.

Combining tools from graph theory, convex analysis, nonlinear semigroup theory and evolution equa-

tions, we give a rigorous interpretation to the continuous limit of the discrete nonlocal p-Laplacian

evolution and variational problems on graphs. More specifically, we consider a sequence of (determin-

istic) graphs converging to a so-called limit object known as the graphon. If the continuous p-Laplacian

evolution and variational problems are properly discretized on this graph sequence, we prove that the

solutions of the sequence of discrete problems converge to the solution of the continuous problem gov-

erned by the graphon, as the number of graph vertices grows to infinity. Along the way, we provide

a consistency/error bounds. In turn, this allows to establish the convergence rates for different graph

models. In particular, we highlight the role of the graphon geometry/regularity. For random graph se-

quences, using sharp deviation inequalities, we deliver nonasymptotic convergence rates in probability

and exhibit the different regimes depending on p, the regularity of the graphon and the initial data.

Keywords: nonlocal diffusion, nonlocal regularization, p-Laplacian, graphs, graphon, graph limits,

numerical approximation, error bound, convergence rate, convex analysis.

Résumé

L’opérateur du p-Laplacien nonlocal, l’équation d’évolution et la régularisation variationnelle associées

régies par un noyau donné ont des applications dans divers domaines de la science et de l’ingénierie.

En particulier, ils sont devenus des outils modernes pour le traitement massif des données (y compris

les signaux, les images, la géométrie) et dans les tâches d’apprentissage automatique telles que la

classification. En pratique, cependant, ces modèles sont implémentés sous forme discrète (en espace

et en temps, ou en espace pour la régularisation variationnelle) comme approximation numérique d’un

problème continu, où le noyau est remplacé par la matrice d’adjacence d’un graphe. Pourtant, peu

de résultats sur la consistence de ces discrétisations sont disponibles. En particulier, il est largement

ouvert de déterminer quand les solutions de l’équation d’évolution ou du problème variationnel des

tâches basées sur des graphes convergent (dans un sens approprié) à mesure que le nombre de sommets

augmente, vers un objet bien défini dans le domaine continu, et si oui, à quelle vitesse. Dans ce

manuscrit, nous posons les bases pour aborder ces questions.

En combinant des outils de la théorie des graphes, de l’analyse convexe, de la théorie des semi-

groupes nonlinéaires et des équations d’évolution, nous interprétons rigoureusement la limite continue

du problème d’évolution et du problème variationnel du p-Laplacien discrets sur graphes. Plus précisé-

ment, nous considérons une suite de graphes (déterministes) convergeant vers un objet connu sous le

nom de graphon. Si les problèmes d’évolution et variationnel associés au p-Laplacien continu nonlocal

sont discrétisés de manière appropriée sur cette suite de graphes, nous montrons que la suite des solu-

tions des problèmes discrets converge vers la solution du problème continu régi par le graphon, lorsque

le nombre de sommets tend vers l’infini. Ce faisant, nous fournissons des bornes d’erreur/consistance.

– vii –



Cela permet à son tour d’établir les taux de convergence pour différents modèles de graphes. En parti-

culier, nous mettons en exergue le rôle de la géométrie/régularité des graphons. Pour les séquences de

graphes aléatoires, en utilisant des inégalités de déviation (concentration), nous fournissons des taux

de convergence nonasymptotiques en probabilité et présentons les différents régimes en fonction de p,

de la régularité du graphon et des données initiales.

Mots-clés: Diffusion nonlocale, régularisation nonlocale, p-Laplacien, graphes, graphons, limites de

graphes, approximation numérique, borne d’erreur, vitesse de convergence, analyse convexe.
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Chapter 1 1.1. Context, motivations and objectives

1.1 Context, motivations and objectives

1.1.1 Context

In recent years, evolutions based on Partial Differential Equations (PDEs) have shown to provide very

effective tools in various fields throughout science and engineering such as signal/image processing,

machine learning, computer vision and biology [10, 38, 88, 11, 58, 7]. Indeed, many problems to handle

end up solving an evolution problem involving different kinds of operators depending on the tasks

to carry out. Such PDE-based methods have the advantages of better mathematical modeling, con-

nections with physics and better geometrical approximations. Differential operators involved in these

PDEs are classically based on local derivatives, that reflect local interactions in the data. Recently,

nonlocal counterparts have been proposed in the context of image processing to design gradient-based

regularization functionals and PDEs associated with their minimization [63] for many image processing

tasks, such as denoising, deconvolution, segmentation, inpainting, optical-flow and more. Following

ideas from graph theory, it has been shown that many PDE-based processes, minimizations and com-

putation methods can be generalized to the nonlocal setting. A main advantage for image processing

is the ability to process both structures (geometrical parts) and textures within the same framework.

Among other operators, the nonlocal p-Laplacian operator have become more and more popular

both in the setting of Euclidean domains and on discrete graphs, as the p-Laplacian problem has been

possessing many important features shared by many practical problems in mathematics, physics, engi-

neering, biology, and economy, such as continuum mechanics, phase transition phenomena, population

dynamics [6, 7]. Some closely related applications can be found in image processing, such as spectral

clustering [34], computer vision and machine learning [45, 48, 72, 2, 99]. This operator is defined on

Lp(Ω) for a bounded domain Ω, p ∈ [1,+∞], being a set-valued mapping for p = 1 and p = ∞, as

follows

∆K
p (u(x)) = −

∫

Ω
K(x, y)

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))dy.

(A.1) Ω ⊂ R is a bounded domain, without loss of generality Ω = [0, 1].

(A.2) K(·, ·) is a symmetric, non-negative and bounded function on Ω2.

It can be seen as the nonlocal analogue of the p-Laplacian operator defined on W 1,p(Ω) for p ∈ [1,+∞[,

being also a set-valued mapping for p = 1 and p = ∞, as

∆p(u(x)) = div(
∣
∣∇u(x)

∣
∣p−2

∇u(x)),

which occurs also in many mathematical models and physical processes such as nonlinear diffu-

sion/filtration and non-Newtonian flows [19].

The nonlinear diffusion problem (Cauchy problem), known as the nonlocal p-Laplacian evolution

problem with homogeneous Neumann boundary conditions [7] associated to ∆K
p (·) is

{

ut(x, t) =
∂
∂tu(x, t) = −∆K

p (u(x, t)), a.e. x ∈ Ω, t > 0,

u(x, 0) = g(x), a.e. x ∈ Ω.
(Pnloc)

The nonlocal diffusion equation shares many properties with the corresponding local problem. If

the kernel K is properly rescaled, it has been shown in [5] that problem (Pnloc) converges strongly in

L∞ ((0, T );Lp(Ω)) to the well-known local p-Laplacian evolution equation
{

ut(x, t) =
∂
∂tu(x, t) = ∆p(u(x, t)), a.e. x ∈ Ω, t > 0,

u(x, 0) = g(x), a.e. x ∈ Ω,
(Ploc)

which corresponds for p = 2 to the heat equation ut(x, t) = ∆u(x, t), while the extreme case, p =

1, corresponds to the total variation flow with homogeneous Neumann boundary conditions. The

problem (Ploc) occurs also in many applications such as physics, biology or economy [77, 44].

– 2 –



Chapter 1 1.1. Context, motivations and objectives

Particularly, if K(x, y) = J(x − y), where the kernel J : Ω → R is a nonnegative continuous radial

function with compact support verifying J(0) > 0 and
∫

Ω J(x)dx = 1, nonlocal evolution equations of

the form

ut(x, t) = J ∗ u(x, t)− u(x, t) =

∫

Ω
J(x− y)(u(y, t)− u(x, t))dy, (P∗

nloc)

where ∗ stands for the convolution, have many applications in modeling diffusion processes [6, 14, 15,

35, 57, 110, 56]. As stated in [57], in modeling the dispersal of organisms in space when u(x, t) is their

density at the point x at time t, J(x − y) is considered as the probability distribution of jumping

from position y to position x, then, the expression J ∗ u − u represents transport due to long-range

dispersal mechanisms, that is the rate at which organisms are arriving to location x from any other

place. The integration is in Ω, imposing consequently that diffusion takes place only in Ω, there is no

flux of individuals across the boundary, from where comes the nonlocal analogue to Neumann boundary

conditions.

The evolution problem (Pnloc) can also be interpreted as the gradient flow associated to the Dirichlet

energy

Rp(v,K) =
1

2p

∫

Ω2

K(x, y)
∣
∣v(y)− v(x)

∣
∣pdydx, (1.1.1)

which is the nonlocal analogue to the energy functional 1
p

∫

Ω

∣
∣∇v

∣
∣p associated to the local p-Laplacian.

On the other hand, in the context of image processing, smoothing and denoising are key filtering

processes. Among the existing methods, the variational ones, based on regularization, provide a general

framework to design such efficient filter processes. Solutions of variational models can be obtained by

minimizing appropriate energy functions: an empirical loss plus a regularization term. The minimiza-

tion is usually performed by a descent method designed to solve the corresponding Euler-Lagrange

equations. In the nonlocal setting, the resulting discrete schemes are closely linked to an important

category of neighborhood filters which have shown their efficiency to better preserve fine and repetitive

image structures than local ones [76, 31]. Nonlocal regularization problems are much more powerful

on real world processing data than local ones due to their self-similarity and long range dependence.

Among these variational problems, the nonlocal variational p-Laplacian problem has become more and

more popular in the context of image processing for nonlocal (patch-based) regularization of inverse

problems and in data processing in graphs. This problem is defined as minimizing the sum of a data

fidelity term and a regularization term associated to the nonlocal energy functional (1.1.1), i.e;

min
u∈L2(Ω)

{

Eλ(u, g,K)
def

=
1

2λ

∥
∥u− g

∥
∥2

L2(Ω)
+Rp(u,K)

}

, (VPnloc)

λ ∈]0,+∞[ is a regularization parameter specifying the trade-off between the two competing terms.

1.1.2 Motivations

In many real-world problems, data can be represented on a graph. Each vertex of the graph corresponds

to a datum, and the edges encode the pairwise relationships or similarities among the data. A typical

example of graph data is the web. The vertices are just the web pages, and the edges denote the

hyperlinks. In market basket analysis, the items also form a graph by connecting any two items which

have appeared in the same shopping basket. For the particular case of images, pixels (represented by

nodes) have a specific organization expressed by their spatial connectivity. Therefore, a typical graph

used to represent images is a grid graph. For the particular case of unorganized data, a graph can also

be associated with by modeling neighborhood relationships between the data elements.

For these practical reasons, recently, there has been a surge of interest in adapting and solving

nonlocal PDEs such as (Pnloc) and variational problems such as (VPnloc) on data which is given by

– 3 –



Chapter 1 1.1. Context, motivations and objectives

Figure 1.1: Examples of images that can be represented by weighted graphs as their natural represen-

tation.

Figure 1.2: Examples of meshes that can be represented by weighted graphs as their natural represen-

tation.

Figure 1.3: Examples of networks that can be represented by weighted graphs as their natural repre-

sentation.

Figure 1.4: Example of point clouds/unorganized data that can be represented by weighted graphs.

arbitrary graphs and networks, since the data in practice is discrete, graphs constitute a natural struc-

ture suited to their representation. Using this framework, problems are directly expressed in a discrete

setting. This way to proceed encompasses local and nonlocal methods in the same framework by us-

ing appropriate graphs topologies and edge weights depending on the data structure and the task to

be performed. The demand for such methods is motivated by existing and potential future applica-

tions [46, 49]. These practical considerations lead naturally to a discrete time and space approximation

of (Pnloc) and a space approximation of (VPnloc) encoded by the structure of the graph. So that these

discrete problems can be applied in the same way to images, meshes or data of any size by simply

adapting the topology of the graph and the weight function. Motivated by these practical consider-

ations, much work has been done constructing and analyzing the discrete analogue of the nonlocal

continuous evolution/regularization for the p-Laplacian operator on graphs. The proposed framework

– 4 –



Chapter 1 1.1. Context, motivations and objectives

works on any discrete data represented by weighted graphs which allows to take into account the non-

local interactions in the data by explicitly introducing discrete nonlocal derivatives and functionals on

graphs of arbitrary topologies, to transcribe the continuous setting.

Before going deeper into details, Let us see an example to illustrate the use of the nonlocal p-

Laplacian evolution and regularization problems to deal with image processing tasks such as semi-

supervised segmentation and denoising relying on the nonlocal heat equation (2-Laplacian) by analyzing

the evolution equation in the continuous setting and then discretizing it on an appropriate graph

structure to get the desired result. An interesting advantageous of such a method/algorithm is the

connection between denoising and segmentation, where the same flow is used for both tasks and only

the initial conditions are different (see more details in [62, Section 5]).

(a) Original image (b) Segmented image

Figure 1.5: Segmentation of a textured image by a nonlocal graph. The first column presents the

original image with the initial markers super-imposed. The second one presents the result of the

segmentation via a nonlocal graph.

Coming back to our discrete analysis. For that, let us consider a partition (not necessarily uniform)

{th}
N
h=1 of the time interval [0, T ]. Let τh−1

def

=
∣
∣th − th−1

∣
∣ and the maximal size τ = max

h∈[N ]
τh. A fully

discrete counterpart (in space and Forward-Euler in time) of (Pnloc) on a given graph Gn is then given

by







uhi − uh−1
i

τh−1
=

1

n

n∑

j=1

Knij

∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ {1, · · · , n} × {1, · · · , N},

ui(0) = g0i , i ∈ {1, · · · , n}.

(Pd
nloc)

Similarly, that of (VPnloc) is given by

min
un∈Rn

{

En,λ
def

=
1

2λn

∥
∥un − gn

∥
∥2

2
+Rn,p(un,Kn)

}

, (VPd
nloc)

where

Rn,p(un,Kn)
def

=
1

2n2p

n∑

i,j=1

Knij

∣
∣unj − uni

∣
∣p. (1.1.2)

Knij can be seen as the adjacency matrix of the graph Gn.

The discrete nonlocal problems (Pd
nloc) and (VPd

nloc) are just approximations of the underlying con-

tinuous problems. Thus, the following legitimate questions have to be answered seperately for each

problem:

– 5 –



Chapter 1 1.2. Main contributions

(Q1) What is the structure of the solution of the discrete problem? is there any continuous limit

(as n→ +∞) at all? If yes, in what sense?

(Q2) What is the rate of convergence to this limit and what is its relation to the unique (strong)

solution of (Pnloc)/the unique global minimizer of (VPnloc)?

(Q3) What are the parameters involved in this convergence and what is their influence in the

corresponding rate?

(Q4) Can this continuum limit help us get better insight into discrete models/algorithms and design

new ones?

In the literature, numerous works have been carried out in the recent years attempting to answer some

of these questions. However most of them focus only on certain specific problems. As a consequence,

their results are rather limited and cannot be extended to complicated general cases.

1.1.3 Objectives

The main objectives of this work is to answer all questions (Q1)-(Q4) above for both the nonlocal

evolution and variational problems. We begin first by studying the nonlocal p-Laplacian evolution

problem (Pnloc). In Chapter 3, we answer question (Q1): we study the convergence and stability prop-

erties of the numerical solutions of the general discrete problem and give a general error estimate.

Based on this error bound, in Chapter 4, we give the rate of convergence to the continuous limit for

different graph models and specify the parameters involved in this rate and show their influence, which

answers questions (Q2)-(Q3). Secondly, we turn to study the nonlocal p-Laplacian variational prob-

lem (VPnloc). In Chapter 6, we give a general error estimate for the discrete problem (VPd
nloc). Next, in

Chapter 7, we specify the assumptions under which we are able to answer in detail questions (Q2)-(Q3).

1.2 Main contributions

1.2.1 The p-Laplacian evolution problem on graphs

Our first main result, which is at the heart of Chapter 3, establishes a general error bound for the

fully discretized p-Laplacian evolution problem (in space and time) using forward and backward Euler

schemes, respectively. This bound allows to deal with networks on convergent graph sequences and

prove the convergence of (Pd
nloc) to (Pnloc) and provide the corresponding rate to answer (Q1), (Q2)

and (Q3).

1.2.1.1 A digest of main results

For the nonlocal p-Laplacian evolution problem, we prove the following results:

(i) Kobayashi type estimates: error estimates to compare two trajectories corresponding to the

p-Laplacian evolution problem governed by two different kernels and initial data.

(ii) Consistency and error estimates of the numerical solutions to the fully discretized problem valid

uniformly for t ∈ [0, T ], T > 0.

(iii) Application to dynamical networks on simple and weighted graphs: convergence of discrete ap-

proximations on deterministic and random inhomogenous graphs to a continuum limit (governed

by graphons).

(iv) We quantify the corresponding convergence rates and we reveal the role of the data geome-

try/regularity and of p on these rates.
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I - General error bound: Kobayashi type estimates. We consider the forward Euler time-

discrete approximation to (Pnloc). The space approximation is seen through the use of the subscript n

to emphasize the fact that we use a kernel and an initial data depending on n. For that, we take again

the time partition mentioned previously






uhn(x)− uh−1
n (x)

τh−1
= −∆Kn

p (uh−1
n (x)), a.e. x ∈ Ω, h ∈ {1, · · · , N},

u0n(x) = g0n(x), a.e. x ∈ Ω.

(Pf
nloc,τ )

First, we prove that (Pf
nloc,τ ) is well-posed (i.e; starting from g0n(x) ∈ L∞(Ω), there exists a unique

accumulation point to the iterates of (Pf
nloc,τ )). Besides the forward Euler scheme, we prove the same

result for the backward Euler scheme.We consider a time-continuous extension of uhn obtained by a

time linear interpolation as follows

ǔn(x, t) =
th − t

τh−1
uh−1
n (x) +

t− th−1

τh−1
uhn(x), t ∈]th−1, th], x ∈ Ω. (1.2.1)

We prove the following theorem.

Theorem 1.2.1. Suppose p ∈]1,+∞[, g, g0n ∈ L∞(Ω) and K,Kn are measurable, symmetric and

bounded mappings.

Let u be the unique solution of problem (Pnloc), and ǔn is built as in (1.2.1) from the time-discrete

approximation uhn(x) defined in (Pf
nloc,τ ). Then

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C
(∥
∥gn − g0n

∥
∥
Lp(Ω)

+
∥
∥g − gn

∥
∥
Lp(Ω)

+
∥
∥K −Kn

∥
∥
Lp(Ω2)

)

+O(τ), (1.2.2)

where the constant C is independent of n.

C(0, T ;Lp(Ω)) denotes the space of uniformly time continuous functions with values in Lp(Ω) en-

dowed with the norm
∥
∥ ·
∥
∥
C(0,T ;Lp(Ω))

def

= sup
t∈[0,T ]

∥
∥ ·
∥
∥
Lp(Ω)

.

We also obtain convergence in Lp(Ω) for both time continuous and totally discretized problems.

Convergence in L2(Ω) norm is thus a corollary. We obtain these results without any extra regularity

assumption. In Chapter 4, we apply the above result to analyze the convergence rates of networks on

deterministic/random convergent graph sequences as summarized here after.

II - Convergence rates for networks on deterministic graph sequences For networks on

simple graph sequences, we show the convergence of the discrete solution to the continuous solution.

We provide the corresponding convergence rate. We show how the accuracy of the approximation

depends on the regularity of the boundary of support of the graphon.

In addition, for weighted graphs, we give a precise error estimate under the mild assumption that

both the kernel K and the initial data g are in Lipschitz spaces, which in particular contain functions

of bounded variation (these spaces will be detailed later on in Section 2.3).

Corollary 1.2.2. Suppose that p ∈]1,+∞[, K : Ω2 → [0, 1] is a symmetric and measurable function

in Lip(s, Lp(Ω2)), and g ∈ Lip(s, Lp(Ω)) ∩ L∞(Ω), s ∈]0, 1]. Then
∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ O(n−s) +O(τ). (1.2.3)

If Lip(s, Lp(Ω2)) is replaced with BV(Ω2), then the rate becomes
∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ O(n−1/p) +O(τ). (1.2.4)

For this graph model, we also study the limit as p→ ∞ and we prove that solutions to the semidis-

crete scheme converge uniformly to a nonlocal evolution problem.
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III - Convergence rates for networks on random graph sequences. Using sophisticated devi-

ation inequalities, we prove non-asymptotic convergence and give the rate of convergence of the discrete

solution to its continuous limit as the number of vertices n→ ∞.

To get the corresponding convergence rate, a supplementary assumption is added regarding the

kernel K and the initial data g, that is belonging to Lip(s′, Lq(Ω2)) and Lip(s, Lq(Ω)), respectively.

This measure allows us to identify different asymptotic regimes (n→ +∞) depending on the values of

p and the parameters s, s′ and q .

Theorem 1.2.3. Suppose that p ∈]1,+∞[, K ∈ L∞(Ω2) ∩ Lip(s′, Lq(Ω2)) is a symmetric and mea-

surable mapping with qn
∥
∥K
∥
∥
L∞(Ω2)

≤ 1 and g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), s, s′ ∈]0, 1]. Let θ
def

=

min (s, s′)min (1, q/p). Then, for T > 0, there exists a positive constant C, such that for any β > 0

and t ∈]0, e[

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C









β

log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2

1/p



+

(
t log(n)

n

)θ




+O(τ), (1.2.5)

with probability at least 1−
(
Tn−Cmin{q2p−1

n ,qpn}β + 2n−t
)
.

1.2.1.2 Relation to previous work

A general error bound. Concerning previous work for this model, the authors of [91] have already

obtained a similar conclusion under different but complementary assumptions. Indeed, they dealt with

the problem (Pnloc) in which only the case K(x, y) = J(x − y) was treated. First, they considered

a semi-discretization in space of this problem using a non-uniform partition of Ω. They showed that

the solutions of the obtained ODE system converge uniformly to the continuous one as the mesh

size goes to zero. Secondly, by discretizing also the time variable (using only the forward Euler

scheme) and presenting a totally discrete method, they showed that solutions to the numerical scheme

converge uniformly to the continuous solution as the mesh size and the time step go to zero. The

uniform convergence they establish, however, imposes the positivity of the solution which is a stringent

assumption. Furthermore, no error estimate was provided in [91], only asymptotic convergence was

supplied. Our results are much stronger since we provide a general error estimate that allows us to get

an Lp-norm convergence. We go further by adressing both forward and backward Euler schemes.

Networks on convergent graph sequences. Another closely related and important work dealing

with networks on graphs is that in [83, 84, 70] which paved the way to study limit phenomena of

evolution problems on both deterministic and random (dense and sparse) graphs. In [83], the author

focused on a nonlinear (nonlocal) heat evolution equation on graphs, where the operator ∆K
p was

replaced by the operator D
W : u ∈ L2(Ω) → −

∫

ΩW (x, y)D(u(y) − u(x))dy, with W (·, ·) verifying

Assumption (A.2) and in which the function D was assumed Lipschitz-continuous. This assumption

was essential to prove well-posedness (existence and uniqueness follow immediately from the Cauchy

Lipschitz Theorem), as well as to study the consistency in L2-norm of the spatial semi-discrete approx-

imation on simple and weighted graph sequences. Though this seminal work was quite inspiring to us,

it differs from our work in many crucial aspects. First, the nonlocal p-Laplacian evolution problem at

hand is different and cannot be covered by [83] where the function x 7→ x
∣
∣x
∣
∣p−2

lacks Lipschitzianity

for p ∈]1,+∞[, and thus raises several challenges (including well-posedness and error estimates). Our

results on Kobayashi-type estimates are also novel and are of independent interest beyond problems

on networks. We also consider both the semi-discrete and fully-discrete versions with both forward

and backward Euler approximations, that we fully characterize. For networks on random graphs,
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in [84] the author dealt with networks on dense random graphs. Again, he considered only the spatial

semi-discrete scheme for which he showed the convergence in probability of discrete solutions to the

continuous one relying on the central limit theorem (CLT). Thus, those results are asymptotic and no

convergence rate was provided. Our result goes much beyond this work by considering a more general

random graph model (the dense model is then just a particular case) and by exploiting sophisticated

deviation inequalities that permitted us not only to prove nonasymptotic bounds of the error between

the discrete model and the continuum one, but also to quantify the corresponding convergence rate.

1.2.2 The p-Laplacian variational problem on graphs

Turning to the variational problem, our major result which is the main of Chapter 6 establishes a general

error bound for the discretized p-Laplacian variational problem. This result answers question (Q1).

By exploiting this general error bound combined with a key regularity result of the solution that we

also provide in Chapter 6, we deal in Chapter 7 with networks on convergent graph sequences and prove

the convergence of (VPd
nloc) to (VPnloc) as well as quantify the corresponding convergence rate.

1.2.2.1 A digest of main results

For the nonlocal p-Laplacian variational problem, we prove the following results:

(i) General (L2-norm) error estimate to compare the unique solution of the discrete problem (VPd
nloc)

and the one of the continuum one (VPnloc).

(ii) Application to dynamical networks on simple and weighted graphs: capitalizing on (i), we show

convergence of discrete approximations on deterministic and random inhomogeneous graphs to

a continuum limit (governed by graphons).

(iii) We quantify the corresponding convergence rates and we reveal the role of the data geome-

try/regularity on these rates.

I -A general error estimate. We begin by studying the consistency of (VPnloc) in which we inves-

tigate functionals with a nonlocal regularization term corresponding to the p-Laplacian operator. We

first give a general error estimate controlling the convergence and regularity properties of the numerical

solutions for the general discrete variational problem (VPd
nloc). Under the assumption p ∈ [1,+∞[, as

n→ +∞, we prove that the solution to this problem, that can be regarded as a discrete approximation

of the initial problem via the kernel and the initial data discretization, converges to a nonlocal varia-

tional problem. In addition, we obtain convergence in the L2 norm. We obtain these results without

any extra regularity assumption.

Theorem 1.2.4. Suppose that g ∈ L2(Ω) and K is a nonnegative measurable, symmetric and bounded

mapping. Let u⋆ and u⋆n be the unique minimizers of (VPnloc) and (VPd
nloc), respectively. Then, we

have the following error bound.

(i) If p ∈ [1, 2], then

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C

(
∥
∥g − Ingn

∥
∥2

L2(Ω)
+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

)

,

(1.2.6)

where C is a positive constant independent of n.

(ii) If inf(x,y)∈Ω2 K(x, y) ≥ κ > 0, then for any p ∈ [1,+∞[,
∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C

(∥
∥g − Ingn

∥
∥2

L2(Ω)
+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − InKn

∥
∥
L∞(Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

)

,
(1.2.7)
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where C is a positive constant independent of n.

As we do for the evolution problem, the solution of (VPd
nloc) being discrete, to be able to compare it

with the continuum one of (VPnloc), we are in need of an intermediate function (also for the continuum

correspondings of Knij and gn), that is why we define the injector In and the projector Pn to get this

intermediate continuum function (these operators are defined in details in Chapter 6).

II - Convergence rates for networks on deterministic graph sequences. Secondly, we apply

these results, using the graph limits theory, to dynamical networks on simple and weighted dense graphs

to show that the approximation of minimizers of the discrete problems on simple and weighted graph

sequences converge to those of the continuous problem. Specifically, for simple graph sequences, we

show how the accuracy of the approximation depends on the regularity of the boundary of support of the

graphon. For networks on weighted graphs we give a precise error estimate under the mild assumption

that both the kernel K and the initial data g are in Lipschitz spaces, Lip(s, Lq(Ω)), Lip(s′, Lq(Ω2)),

respectively.

Theorem 1.2.5. Let p ∈ [1, 2[, and assume that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and

q ∈ [2/(3− p), 2]. Suppose moreover that K ∈ Lip(s′, Lq′(Ω2)), (s′, q′) ∈]0, 1]× [1,+∞[ and K(x, y) =

J(|x − y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded measurable mapping on Ω. Let u⋆ and u⋆n be

the unique minimizers of (VPnloc) and (VPd
nloc), respectively. Then, the following error bounds hold.

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ Cn−min{sq/2,s′,s′q′(1−p/2)}. (1.2.8)

where C is a positive constant independent of n.

III - Convergence rates for networks on random graph sequences. Then, relying on the

same error estimate, we study networks on inhomogeneous random graphs. More precisely, using

sophisticated deviation inequalities, we prove convergence and give the rate of convergence of the

discrete solution to its continuous limit with high probability under the same assumptions as for

deterministic graphs on the Kernel K and the initial data g.

Theorem 1.2.6. Suppose that p ∈ [1, 2[, g ∈ L2(Ω) and K is a nonnegative measurable, symmetric

and bounded mapping. Let u⋆ and u⋆n be the unique minimizers of (VPnloc) and (VPd
r,nloc), respectively.

Let p′ = 2
2−p .

(i) There exist positive constants C and C1 that do not depend on n, such that for any β > 0

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C








β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+
∥
∥g − Ingn

∥
∥2

L2(Ω)

+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − In

∧
KX

n

∥
∥
Lp′ (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

)

,

(1.2.9)

with probability at least 1− 2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β.

(ii) Assume moreover that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3 − p), 2], that

K(x, y) = J(|x−y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded measurable mapping on Ω, that

K ∈ Lip(s′, Lq′(Ω2)), (s′, q′) ∈]0, 1] × [p′,+∞] and qn
∥
∥K
∥
∥
L∞(Ω2)

≤ 1. Then there exist positive

constants C and C1 that do not depend on n, such that for any β > 0 and t ∈]0, e[

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C








β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+

(

t
log(n)

n

)min(sq/2,s′)




 ,

(1.2.10)

with probability at least 1−
(
2n−C1 min

(
q
(2p′−1)
n ,qp

′

n

)
β + n−t

)
.
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1.2.2.2 Relation to previous work

Nonlocal neighborhood filters. Since the work of Buades and Morel [31] on image filtering by

non-local means, several recent works have shown the interest of introducing non-local regularization

functions to take into account a more complex interactions and introduce more flexibility in the reg-

ularization functions [8, 33, 61, 36, 108]. Kindermann, Osher and Jones [103] interpreted non local

means and neighborhood filters as regularization based on non local functionals. Gilboa and Osher [62]

have proposed a non local quadratic functional of weighted differences for image regularization and

semi-supervised segmentation. These works can be considered as the non local analogues of Total

Variation models for image regularization. Most of the proposed regularization processes have been

proposed in the context of image processing where images are considered as continuous functions on

continuous domains. Then, one considers a continuous energy functional which is classically solved by

the corresponding Euler-Lagrange equation or its associated gradient flow. However, the discretization

of the underlying differential operators is difficult for high dimensional data and for image and data

defined on irregular domains.

Networks on graphs. In [59] the authors studied the consistency of a variational problem given in

terms of minimizing a functional corresponding to the total variation on random graphs. They looked

at the limit of the discrete total variation on graphs representing point clouds as the number of data

points goes to infinity. The limit was considered in the Γ-convergence sense [29]. Based on this result,

in [99], the authors considered a discrete p-Laplacian regularization problem on random geometric

graphs to carry out a semi-supervised learning task. Their aim was to assign real-valued labels to a set

of n sample points, provided a small training subset of N labeled points. To do so, they investigated

a family of regression problems and studied the asymptotic behavior when the number of unlabeled

points increases. To solve the regression problem, they considered a discrete objective functional

discretized in an appropriate way to encode the structure of the graph. Relying on tools of calculus

of variations and optimal transportation, they showed the (locally) uniform convergence of minimizers

of these nonlinear functionals in random discrete setting to the minimizers of the continuum energy

functional corresponding to the local p-Laplacian operator. These results on asymptotic behavior of

minimizers do not provide any error estimates for finite n.

For local variational problems, the authors of [109] have studied the numerical approximation of the

Rudin-Osher-Fatemi image smoothing model consisting of minimizing the following energy functional

E(v)
def

=
1

2λ

∥
∥u− g

∥
∥2

L2(Ω)
+
∣
∣v
∣
∣
BV(Ω)

,
∣
∣v
∣
∣
BV(Ω)

denotes the bounded variation seminorm. They bound the difference between the continuous

solution and the solutions to various finite-difference approximations to this model. They give a bound

of the L2-norm of the difference between these two solutions.

However, to the best of our knowledge, there is no rigorous study of numerical approximations for

the nonlocal variational problem (VPnloc).

1.3 Organisation of the manuscript

This manuscript consists of two parts and eight chapters.

Chapter 2: This chapter collects the necessary mathematical material used throughout the manuscript.

Chapter 3: In this chapter, we present our main result: the global error estimate for the discrete

p-Laplacian evolution problem. Our results include two main parts: the consistency of the time-

continuous problem (Theorem 3.3.1) and the consistency of the time discrete problem (Theorem 3.4.4).

We end up this chapter by a brief discussion of the relation of our estimates to Kobayashi type estimates.
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Chapter 4: In this chapter we present our results on networks on convergent graph sequences. We

apply our result on the consistency of the p-Laplacian evolution problem to networks on convergent

graph sequences. We deal first with deterministic dense graphs (simple and weighted graphs). In

Section 4.4, we generalize the above analysis to cover networks on random inhomogeneous graphs.

Chapter 5: In this chapter, we deal with the normalized p-Laplacian evolution problem on graphs. We

recall first the basic definitions and properties of the normalized p-Laplacian operator on graphs. Next,

in Section 5.4, we study the consistency of its associated diffusion problem. We finish this chapter by

showing some experiments related to data processing (filtering images/3D point clouds) to illustrate

the use of this operator.

Chapter 6: In this chapter, we present our main result for the variational p-Laplacian problem: the

error bound for the discrete problem. We also provide a key regularity result that will be useful for

the next chapter dealing with networks on convergent graph sequences.

Chapter 7: In this chapter, we present our results on networks on convergent graph sequences for

the nonlocal variational p-Laplacian problem. Doing the same way as for the evolution problem, we

deal first with dense deterministic graphs (simple and weighted) and then with random inhomogeneous

graphs in Section 7.3.

Chapter 8: This last chapter summarizes our contributions and draws important conclusions. It also

discusses several interesting perspectives and open problems.
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In this chapter, we collect the necessary mathematical material used in the manuscript.

Let R denote the set of real numbers, R+ the set of nonnegative reals, R = R∪ {+∞} the extended

real line and R
n the n-dimensional real Euclidean space. We denote by N the set of non-negative

integers, by N
∗, the set of positive integers. We use the notation [n] = {1, · · · , n}. For a set C,

∣
∣C
∣
∣

denotes its cardinality.

2.1 Tools from graph limits theory

We present some definitions and important results from the theory of graph limits that will be crucial to

our exposition. The theory of graph limits was introduced by Lovász and Szegedy in 2006 [80, 25] and

then further developed in a series of papers by Borgs et al. [23, 24]. A key goal of Lovász and Szegedy

was to understand large graph structures by characterizing convergence for sequences of graphs which

grow unboundedly, thereby constructing a natural ’limit object’.

2.1.1 Preliminaries

An undirected graph is a pair G = (V (G), E(G)) satisfying E(G) ⊂ V (G) × V (G). V (G) stands for

the set of vertices (or nodes, or points), each node i ∈ V (G) is an abstract representation of an element

of the data structure represented by the graph. E(G) denotes the edges (or lines) set and is composed
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of pairs of vertices (i, j). An edge represents the connection between two vertices. It is said then

that these two vertices are adjacent, or neighbors which is denoted by i ∼ j. In this manuscript, we

consider graphs without loops or parallel edges in which the edges are symmetric (these kind of graphs

are called simple). We can therefore define the set E(G) such that:

E(G)
def

= {(i, j) ∈ V (G)× V (G)|i ∼ j and i 6= j} . (2.1.1)

The usual way to picture a graph is by drawing a dot (or a cercle) for each vertex and joining two of

these dots by a line if the corresponding two vertices form an edge. Just the way these dots and lines

are drawn is irrelevant: all that matters is the information which pairs of vertices form an edge and

which do not.

Figure 2.1: Example of an undirected simple graph G with V (G) = {1, · · · , 5} nodes with edge set

E(G) = {(1, 4), (4, 2), (4, 5), (5, 3)}.

For a graph G, the adjacency matrix is a square
∣
∣V (G)

∣
∣ ×

∣
∣V (G)

∣
∣ matrix such that its elements

indicate whether pairs of vertices are adjacent or not in the graph. In the special case of a finite simple

graph, the adjacency matrix is a (0, 1)-matrix with zeros on its diagonal since edges from a vertex

to itself (loops) are not allowed in simple graphs. If the graph is undirected, the adjacency matrix is

symmetric. A non-standard way of visualizing graphs using another version of the adjacency matrix is

the so-called pixel picture. On the left of Figure 2.2 we see a graph (the Petersen graph). In the middle,

we see its adjacency matrix. On the right, we see another version of its adjacency matrix, where the

0’s are replaced by white pixels and the 1’s are replaced by black pixels.The whole picture is on the

unit square.

Figure 2.2: The Petersen graph, its adjacency matrix, and its pixel picture.

A weighted graph G is a graph with weight β(i, j) associated to each edge (i, j). We see in Figure 2.3

a picture of a weighted graph. The weight function represents the similarity between the vertices of

the graph. It is defined as β : V (G)×V (G) → Ω ⊂ R
+ (we restrict ourselves to the values in Ω = [0, 1]

in this manuscript). Since we are dealing with undirected graphs, the weight function is symmetric:

∀(i, j) ∈ V (G)2, β(i, j) = β(j, i). The adjacency matrix of a weighted graph is obtained by replacing
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the 1’s in the adjacency matrix by the weights of the edges. An unweighted graph is a weighted graph

where all the edge weights are 1.

For more information on graphs we refer the reader to [43].

Figure 2.3: Example of weighted graph with V (G) = {1, · · · , 5} nodes with edge set E(G) =

{(1, 2), (2, 3), (1, 4), (4, 2), (4, 5), (5, 3)} and {2, 4, 5, 5, 14, 34, 58} are weights assigned to edges.

2.1.2 Convergence of graph sequences

Let Gn = (V (Gn), E(Gn)), n ∈ N
∗, be a sequence of dense, i.e.,

∣
∣E(Gn)

∣
∣ = O(

∣
∣V (Gn)

∣
∣2) finite, and

simple graphs.

For two simple (unweighted) graphs F and G, hom(F,G) indicates the number of homomorphisms

(adjacency-preserving maps) from V (F ) to V (G). This number is normalized to get the homomorphism

density

t(F,G) =
hom(F,G)
∣
∣V (G)

∣
∣

∣
∣V (F )

∣
∣
.

This quantity can be interpreted as the probability that a random map of V (F ) into V (G) is a

homomorphism.

This notion is extended to weighted graphs. To every homomorphism φ : V (F ) → V (G), we let

homφ(F,G)
def
=

∏

(i,j)∈E(F )

βG(φ(i), φ(j)).

Then the homomorphism function is defined by

hom(F,G) =
∑

φ:V (F )→V (G)

homφ(F,G)

and the homomorphism density as defined for simple graphs

t(F,G) =
hom(F,G)
∣
∣V (G)

∣
∣

∣
∣V (F )

∣
∣
.

Suppose that the number of nodes of Gn tends to infinity. Suppose that the graphs Gn become more

and more similar in the sense that t(F,Gn) tends to a limit t(F ) for every simple graph F . Based on

this, the following notion of convergence is defined

Definition 2.1.1. The sequence of graphs {Gn}n∈N∗ is called convergent if t(F,Gn) is convergent for

every simple graph F .

Remark 2.1.2. Note that t(F,Gn) = O(1) if
∣
∣E(Gn)

∣
∣ = O(

∣
∣V (Gn)

∣
∣2) so that this definition is

meaningful only for sequences of dense graphs and otherwise the limit is 0 for every simple graph F
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with at least one edge. In the theory of graph limits, convergence in Definition 2.1.1 is called left-

convergence. Since this is the only convergence of graph sequences that we use, we would refer to the

left-convergent sequence as convergent (see [23, Section 2.5]).

Every finite simple graph Gn such that V (Gn) = [n] can be represented by a measurable function

KGn : Ω2 → Ω called a pixel kernel. Its construction is as follows: split the interval Ω into n equal

intervals Ω
(n)
1 , · · · ,Ω

(n)
n , and for every x ∈ Ω

(n)
i , y ∈ Ω

(n)
j define

KGn(x, y) =

{

1 if (i, j) ∈ E(Gn),

0 otherwise.
(2.1.2)

For weighted graphs with edge weights {β(i, j)}(i,j)∈V (G)2 , the pixel kernel KGn becomes

KGn(x, y) =

{

β(i, j) if (i, j) ∈ E(Gn),

0 otherwise.
(2.1.3)

This construction is not unique, however given a graph, the set of pixel kernels arising via (2.1.2) can

be considered to be equivalent via the weakly isomorphic relation (to be defined shortly).

Convergent graph sequences have a limit object, which can be represented as a measurable function.

Let K denote the space of all measurable bounded functions K : [0, 1] → R such that K(x, y) = K(y, x)

for all x, y ∈ [0, 1]. We also define K0 = {K ∈ K : 0 ≤ K ≤ 1}. The functions of this space are called

graphons.

The main motivation behind introducing graphons is that they provide a much more explicit repre-

sentation for this limit object as the following theorem shows.

Theorem 2.1.3 ([25, Theorem 2.1]). (i) For every convergent graph sequence {Gn}n∈N∗ , there is

a function K ∈ K0 such that t(F,Gn) → t(F,K) for every simple graph F , i.e.,

t(F,Gn) → t(F,K)
def
=

∫

ΩV (F )

∏

(i,j)∈E(F )

K(xi, xj)dx. (2.1.4)

(ii) This function K is uniquely determined up to measure-preserving transformation in the following

sense: for every other limit K ′ there are measure-preserving maps φ, ψ : Ω → Ω such that

K(φ(x), φ(y)) = K ′(ψ(x), ψ(y)).

(iii) Every function K ∈ K0 arises as the limit of a convergent graph sequence, i.e., for every K ∈ K0,

there is a sequence of graphs {Gn}n∈N∗ satisfying (2.1.4).

Remark 2.1.4. The above theorem gives a result of existence and uniqueness of the limit but it is not

a constructive result. In fact, there is a natural "limit object" in the form of a symmetric measurable

function K : Ω → Ω2 which arises as a limit of an appropriate graph sequence but this limit is not

expilicitly known for every graph sequence.

Remark 2.1.5. The homomorphism density (for the graphon) t(F,K) defined in (2.1.4) can be seen

as the extension of the homomorphism density on graphs. We can think of the interval Ω as the set of

nodes, and of the value K(x, y) as the weight of the node (x, y). Then the formula

t(F,K) =

∫

ΩV (F )

∏

(i,j)∈E(F )

K(xi, xj)
∏

i∈V (F )

dxi

is an infinite analogue of weighted homomorphism numbers.

We now introduce the cut norm which is used to construct the cut distance and define convergence

for graph sequences. In fact, an appropriate notion of distance between two arbitrary, possibly different

number of nodes graphs can be defined, such that convergent sequences are Cauchy in this metric and
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vice versa. The completion of the metric space of graphs relative to this metric can be described, and

its elements, i.e., limit objects for convergent graph sequences, can be characterized in various ways.

Let K be a graphon, the cut norm of K is defined by
∥
∥K
∥
∥
�

def

= sup
S,T∈LΩ

∣
∣

∫

S×T
K(x, y)dxdy

∣
∣,

where K ∈ L1(Ω2) and LΩ stands for the set of all Lebesgue measurable subsets of Ω. The cut norm

is a norm; this is easy to prove using standard arguments. Given a graphon K and a map φ from

Ω to Ω, we define the φ pull-back of K by Kφ : (x, y) 7→ K(φ(x), φ(y)). Let S(Ω) denote the set of

measure-preserving maps from Ω into Ω. Then the cut distance between two graphons K and W is

defined by

d�(K,W )
def
= inf

φ∈S(Ω)

∥
∥K −W φ

∥
∥.

This ’distance’ function is only a pseudo-distance function since different graphons can have distance

zero. This issue can be rectified by considering the quotient space of weakly isomorphic graphons (to

be shortly defined) (see also [78, Sections 8.2 and 10.7] for more details).

Definition 2.1.6 ([23, Theorem 2.6]). The sequence of dense graphs {Gn}n∈N∗ is said to converge

if {KGn}n is a Cauchy sequence with respect to the cut distance.

An interesting consequence of this definition is that the space of graphs, or equivalently pixel kernels,

is not closed under the cut distance. The space of graphons (larger than the space of graphs) defines

the completion of this space.

Informally a graphon can be thought of as a generalization of the adjacency matrix of a (weighted)

graph which has a continuum number of vertices. It should be noted that the cut norm and cut distance

definitions extend naturally to the larger space of graphons. Hence, geometrically, the graphon K can

be interpreted as the limit of KGn defined in (2.1.2) (and (2.1.3)) for the cut-norm.

We now define convergence of a graph sequence to a kernel via the cut distance.

Definition 2.1.7 ([23, Theorem 2.6]). Let {Gn}n∈N∗ be a sequence of graphs and let K ∈ K0. Then

Gn → K as n→ ∞ if and only if d�(KGn ,K) → 0 as n→ ∞.

A useful observation that will be used throughout this manuscript is the following:

d�(K,W ) ≤
∥
∥K −W

∥
∥
�
≤
∥
∥K −W

∥
∥
L1(Ω2)

≤
∥
∥K −W

∥
∥
Lp(Ω2)

≤ 1 ∀p ∈ [1,+∞]. (2.1.5)

Thus, convergence of the sequence of pixel kernels {KGn}n∈N∗ (recall constructions (2.1.2) and (2.1.3))

in the Lp-norm implies the convergence of the graph sequence {Gn}n∈N∗ ([25, Theorem 2.3]). In other

words, convergence in L2-norm of {KGn}n∈N∗ is sufficient to prove convergence of a sequence of graphs

with respect to Definition 2.1.7.

We now introduce the weakly isomorphic relation, denoted ≈, which identifies sets of graphons which

all have a cut distance of zero apart [78, Corollary 10.34]. Let K, W ∈ K0 be two graphons, we say

that K and W are weakly isomorphic if and only if

d�(K,W ) = 0.

We can just take the easy way out, and call two graphons K and W weakly isomorphic if t(F,K) =

t(F,W ) for every simple graph F .

From these definitions, an important consequence (observation) is that every point in the completion

is defined by a Cauchy sequence, which tends to a graphon K. Two Cauchy sequences define the same

point of the completion if and only if merging them we get a Cauchy sequence, which implies that they

have the same limit graphon (up to weak isomorphism). Conversely, every graphon is the limit of a

Cauchy sequence and so it corresponds to a point in the completion.

Before we move on to give some illustrative examples, an important remark is in order.
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Remark 2.1.8. In this manuscript, we focused only in exposing results of graph sequences convergence

with respect to a single metric (the cut-metric) among the metrics defined in [26, 27, 23, 24, 79, 80].

In fact, in these papers, the authors introduced several natural metrics for graphs (we can cite in

addition to the cut-metric dcut, the count (or subgraph) metric dsup, and the partition-metric dpart),

and showed that they are equivalent, in that if {Gn}n∈N∗ is a sequence of graphs with
∣
∣V (Gn)

∣
∣→ ∞,

then if {Gn}n∈N∗ is Cauchy with respect to one of these metrics then it is Cauchy with respect to all

of them.

Example 2.1.9 (Half graphs). LetGn,n denote the bipartite graph on 2n nodes {1, · · · , n, 1′, · · · , n′},

where i is connected to j′ if and only if i ≤ j. It is easy to see that this sequence is convergent and its

limit is the function

K(x, y) =

{

1, if
∣
∣x− y

∣
∣ ≥ 1/2,

0, otherwise.
(2.1.6)

Figure 2.4 shows an example of the half-graph for n = 16, its pixel picture and the corresponding

graphon.

Figure 2.4: (a) A half-graph of 16 vertices. (b) The plot of its pixel picture. (c) The corresponding

graphon.

Example 2.1.10 (Nearest neighbor graph). Let V = [n]. The nearest neighbor (nn) of i is a

point j, j 6= i with minimum distance for a given similarity metric from i . To make the nearest

neighbor unique we choose the point j with maximum index in case of ties and denote by nn(i) the

set of neighbors of vertex i. By nature, the neighborhood relations of a nn-graph are not necessarily

symmetric. In order to preserve the property of symmetry of the edges, we use in this manuscript a

symmetric (or reciprocal) version of the nn-graph. In this version, the E set of edges is defined by

E(G)
def

= {(i, j)|i ∈ nn(j) or j ∈ nn(i)}.

The nn-graph plays a prominent role in non-local data analysis and processing methods, and in par-

ticular in non-local models for image processing. It will then be of particular interest in applications.
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Figure 2.5: (a) A nearest-neighbour graph with 16 vertices. (b) The plot of its pixel picture. (c) The

corresponding graphon.

Example 2.1.11 (Simple threshold graphs). These graphs are defined on the set [n] by connecting

i and j if and only if i+ j ≤ n. These graphs converge to the graphon defined by K(x, y) = 1l(x+y≤1),

which we call the simple threshold graphon.

Figure 2.6 displays an example of the threshold graph for n = 16 vertices, its pixel picture and the

corresponding graphon.

Figure 2.6: (a) A simple-threshold graph with 16 vertices. (b) The plot of its pixel picture. (c) The

corresponding graphon.

2.1.3 Determinisitc graph models

In this section, we present the deterministic graph models that will be used in Chapters 4 and 7 when

we treat networks on convergent graph sequences. These models are chosen to illustrate our results on

the consistency of the nonlocal p-Laplacian evolution and variational problems (Pnloc) and (VPnloc),

respectively. These models are of interest in their own and were constructed in [83].

2.1.3.1 Simple graphs

We fix n ∈ N
∗, divide Ω into n intervals

Ω
(n)
1 =

[

0,
1

n

[

,Ω
(n)
2 =

[
1

n
,
2

n

[

, . . . ,Ω
(n)
j =

[
j − 1

n
,
j

n

[

, . . . ,Ω(n)
n =

[
n− 1

n
, 1

[

,

and let Qn be the partition of Ω, Qn = {Ω
(n)
i , i ∈ [n]}. Denote Ω

(n)
ij

def

= Ω
(n)
i × Ω

(n)
j .

First, we consider the case of a sequence of simple graphs converging to {0, 1}-graphon.
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We define a sequence of simple graphs Gn = (V (Gn), E(Gn)) such that V (Gn) = [n] and

E(Gn) =
{

(i, j) ∈ [n]2 : Ω
(n)
ij ∩ supp(K) 6= ∅

}

,

where

supp(K) =
{
(x, y) ∈ Ω2 : K(x, y) 6= 0

}
. (2.1.7)

As we mentioned before, the kernel K represents the corresponding graphon, that is the limit as n→ ∞

of the function KGn : Ω2 → {0, 1} such that

KGn(x, y) =







1, if (i, j) ∈ E(Gn) and (x, y) ∈ Ω
(n)
ij ,

0 otherwise.

As n→ ∞, {KGn}n∈N∗ converges to the {0, 1}-valued mapping whose support is defined by (2.1.7).

2.1.3.2 Weighted graphs

We now review a more general class of graph sequences. We consider two sequences of weighted graphs

generated by a given graphon K.

Let K : Ω2 → [a, b] a, b > 0, be a symmetric measurable function which will be used to assign

weights to the edges of the graphs considered below.

Next, we define the quotient of K and Qn denoted K/Qn as a weighted graph with n nodes

K/Qn =
(

[n], [n]× [n], K̂n

)

.

As before, weights (K̂n)ij are obtained by averaging K over the sets in Qn

(K̂n)ij = n2
∫

Ω
(n)
i ×Ω

(n)
j

K(x, y)dxdy. (2.1.8)

The second sequence of weighted graphs is constructed as follows

G(Xn,K) =
(

[n], [n]× [n], K̆n

)

,

where

Xn =

{
1

n
,
2

n
, · · · , 1

}

, (K̆n)ij = K

(
i

n
,
j

n

)

. (2.1.9)

One can easily see that K̂n is the projection of K on the space of piecewise constant functions and K̆n

is nothing but the sampling of K at the vertices of the graph.

2.1.4 Random graphs

The theory of random graphs was founded in the late 1950s and early 1960s by Erdös and Rényi [50],

who started the systematic study of the space G(n,M) of graphs with n labeled vertices and M =M(n)

edges, with all graphs equiprobable. Nearly the same time, Gilbert [60] introduced the closely related

model G(n, p) of random graphs on n labeled vertices: a random G(n, p) ∈ G(n, p) is obtained by

selecting edges independently, each with probability p = p(n). As Erdös and Rényi are the founders

of the theory of random graphs, it is not surprising that both G(n, p) and G(n,M) are now known as

Erdös-Rényi random graphs.

The theory of random graphs lies at the intersection between graph theory and probability theory.

Let V be a set of n points, say V = [n]. The aim is to turn the set G of all graphs on V into a probability

space. Intuitively we should be able to generate G ∈ G randomly as follows: for each e ∈ V × V we

decide by some random experiments wether or not e shall be an edge of G, these experiments are
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performed independently and for each the probability of accepting e as an edge of G is equal to some

fixed number p ∈ [0, 1].

Later, Lovász et al. [25] defined a more general random graph model. Given any symmetric measur-

able function K : Ω2 → Ω and an integer n > 0, we can generate a random graph G(n,K) on node

set V as follows. Generate n independent numbers X1, ...,Xn from the uniform distribution on Ω,

and then connect nodes i and j with probability K(Xi,Xj). As a special case, if K is the constant

p-valued function, we get G(n, p). This sequence is convergent almost surely, and in fact it converges

to the weighted graph with one node and one loop with weight p.

We now present some canonical examples of graph sequences which converge to a given graphons.

Example 2.1.12 (The Erdös-Renyi graphs.). Let p ∈]0, 1[ and consider the sequence of ran-

dom graphs G(n, p) = (V (G(n, p)), E(G(n, p))) such that V (G(n, p)) = [n] and the probability

P{(i, j) ∈ E(G(n, p))} = p for any (i, j) ∈ [n]2. Then for any simple graph F , t(F,G(n, p)) con-

verges almost surely to p

∣
∣E(F )

∣
∣

as n→ ∞ [23] and {G(n, p)} converges almost surely to the p-constant

graphon.

Figure 2.7 shows a realization of the Erdös-Renyi graph model for n = 16, its pixel picture and the

corresponding graphon.

Figure 2.7: (a) A realization of the Erdös-Renyi random graph model with p = 0.5. (b) Its pixel

picture. (c) The corresponding graphon.

Example 2.1.13 (Uniform attachement graphs). We define a (dense) uniform attachment graph

sequence as follows: if we have a current graph Gn with n nodes, then we create a new isolated node,

and then for every pair of previously nonadjacent nodes, we connect them with probability 1/n.

One can prove that with probability 1, the sequence {Gn}n∈N∗ has a limit, which is the function

K(x, y) = min(x, y) [78, Proposition 11.40].

Figure 2.8 shows an example of the uniform attatchment graph for n = 16, its pixel picture and the

corresponding graphon.
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Figure 2.8: (a) A realization of the uniform attachment graph random model. (b) Its pixel picture.

(c) The corresponding graphon.

Example 2.1.14 (Small World random graphs). Let Xn = {x1, · · · , xn} be a sequence of n points

from Ω and let K ∈ K0 be a {0, 1}-graphon. We assume that K is almost everywhere continuous on

Ω2 and its support has a positive Lebesgue measure. Next, define

Kp(x, y)
def

= (1− p)K(x, y) + p(1−K(x, y)), p ∈ [0, 0.5]. (2.1.10)

The Small World random graph sequence Gn([n], E(Gn)) is constructed as follows. For every (i, j) ∈

[n]2, i 6= j

P((i, j) ∈ E(Gn)) = Kp(xi, xj).

The decision whether to include (i, j) to E(G) is made independently for each pair (i, j) ∈ [n]2, i 6= j.

Note that for p = 0.5, this graph becomes the Erdös-Renyi graph with parameter p = 1/2.

Figure 2.9 shows an example of the small world random graph for n = 16, its pixel picture and the

corresponding graphon.

Figure 2.9: (a) A realization of the small world random graph model with p = 0.1. (b) Its pixel picture.

(c) The corresponding graphon.

2.1.5 The random inhomogeneous graph model

The classical random graph models defined previously (and various other models) are ’homogeneous’ in

the sense that all vertices are exactly equivalent in the definition of the model. Furthermore, in a typical

realization, most vertices are in some sense similar to most others. For example, the vertex degrees

in G(n, p) or in G(n,M) do not vary very much: their distribution is close to a Poisson distribution.

However, many large real-world graphs are highly inhomogeneous. One reason is that the vertices

may have been ’born’ at different times, with old and new vertices having very different properties.

Experimentally, the spread of degrees is often very large. In particular, in many examples the degree
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distribution follows a power law. In the last few years, this has led to the introduction and analysis of

many new random graph models designed to incorporate or explain these features.

We describe in this section the model of inhomogeneous random graphs that will be used throughout.

The construction of this inhomogeneous random graph model was proposed in [20, 21, 22].

Definition 2.1.15. Fix n ∈ N
∗ and let K be a symmetric measurable function on Ω2. Generate the

graph Gn = (V (Gn), E(Gn))
def

= Gqn(n,K) as follows:

1) Generate n independent and identically distributed (i.i.d.) random variables (X1, · · · ,Xn)
def

= X

from the uniform distribution on Ω. Let
{
X(i)

}

i∈[n]
be the order statistics of the random vector

X, i.e. X(i) is the i-th smallest value.

2) Conditionally on X, join each pair (i, j) ∈ [n]2 of vertices independently, with probability qn
∧
KX

nij ,

i.e. for every (i, j) ∈ [n]2, i 6= j,

P ((i, j) ∈ E(Gn)|X) = qn
∧
KX

nij , (2.1.11)

where
∧
KX

nij
def

= min

(

1
∣
∣ΩX

nij

∣
∣

∫

ΩX

nij

K(x, y)dxdy, 1/qn

)

, (2.1.12)

and

ΩX
nij

def

=]X(i−1),X(i)]×]X(j−1),X(j)] (2.1.13)

where qn is non-negative and uniformly bounded in n.

A graph Gqn(n,K) generated according to this procedure is called a K-random inhomogeneous graph

generated by a random sequence X.

We now formulate our assumptions on the graph sequence {Gqn(n,K)}n∈N.

Assumption 2.1.16. We suppose that qn and K are such that the following hold:

(A.1) Gqn(n,K) converges almost surely and its limit is the graphon K ∈ L∞(Ω2);

(A.2) sup
n≥1

qn ≤ 1.

There is no loss of generality in taking 1 in the bound of (A.2).

Although we shall give general results in Sections 4 and 7 that hold under (A.1)-(A.2), it is helpful

to bear in mind one particular example of the general class of models we shall study. This example is

inspired by the so-called almost dense (or non uniform) random graphs (see [21, Section 3.4]).

Proposition 2.1.17. Suppose K ∈ L∞(Ω2) is a symmetric measurable function. Choose the parameter

qn = n−g(n) where g(n) = o(1). Then, assumptions (A.1) and (A.2) are in force.

Proof : Since the graphon K ∈ L∞(Ω2) and qn = n−o(1), the arguments to prove [21, Lemma 3.5

and Lemma3.8], that were designed for the graph model described in Remark 4.4.1 (given later on in

Section 4.4.1), can be adapted to cover our graph model with (2.1.11) to show that the sequence of

random graphs Gqn(n,K) indeed converges almost surely to the graphon K in the metric dsub (see [21,

Section 2.1] for details about this metric). This shows (A.1). (A.2) is trivially verified. �

Remark 2.1.18. The graph model of Proposition 2.1.17 encompasses the dense random graph model

(i.e., with Θ(n2) edges) extensively studied in [80, 25], by taking the choice g(n) log(n) = C, for C > 0,

and thus qn = e−C . This graph model allows also to generate sparse graphs (but not too sparse), i.e.,

with o(n2) but ω(n) edges. For example, one can take gn = C log(n)−δ, where δ ∈]0, 1[, in which case

one has qn = exp(−C log(n)1−δ) = o(1).
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2.2 Tools from analysis

2.2.1 Convex analysis on Hilbert spaces

We here collect some important results from convex analysis which will be used in the up coming

chapters. A comprehensive account on convex analysis on Hilbert spaces can be found in [16]. Denote

H a real Hilbert space endowed with inner product
〈
·, ·
〉

and associated norm
∥
∥ ·
∥
∥.

Definition 2.2.1 (Convex set). A set S of H is convex, if

∀x, x′ ∈ S, ∀t ∈]0, 1[, tx+ (1− t)x′ ∈ S.

Let S ⊆ H be a non-empty set and function F : S → R. The domain of F is

dom(F )
def

= {x ∈ S : F (x) < +∞}.

F is called proper if −∞ /∈ F (S) and dom(F ) 6= ∅.

Definition 2.2.2 (Convex function). A function F : H → R is convex if

∀x, x′ ∈ H, ∀t ∈ [0, 1], F (tx+ (1− t)x′) ≤ tF (x) + (1− t)F (x′).

Definition 2.2.3 (Strongly convex function). A function F : H → R is strongly convex with

parameter m > 0 if

∀x, x′ ∈ H, ∀t ∈ [0, 1], F (tx+ (1− t)x′) ≤ tF (x) + (1− t)F (x′)−
m

2
t(1− t)

∥
∥x− x′

∥
∥2.

Definition 2.2.4 (Lower semi-continuous function). Given a function F : H → R and a point

x ∈ H. F is lower-semi continuous (lsc) at x if

lim
x→x′

inf F (x′) ≥ F (x).

The class of proper, convex and lsc functions on H is denoted as Γ0(H).

Definition 2.2.5 (Indicator function). Let S ⊆ H be a convex non-empty closed set, the indicator

function of S, iS ∈ Γ0(H), is defined by

iS =

{

0, if x ∈ S,

+∞, otherwise.
(2.2.1)

Definition 2.2.6 (Subdifferential). Let F ∈ Γ0(H) the subdifferential of F is the set-valued operator

∂F : H → 2H such that for x ∈ H

∂F (x)
def

=
{
η ∈ H : F (x′)− F (x) ≥

〈
η, x′ − x

〉
, ∀x′ ∈ H

}
. (2.2.2)

F is subdifferentiable at x if ∂F (x) 6= ∅, and an element of ∂F (x) is called a subgradient.

We have the following result whose proof can be found in [16, Proposition 17.26(i)].

Lemma 2.2.7. Let F : H → R̄ be proper and convex, and let x ∈ dom(F ). Suppose that F is Gâteaux

differentiable at x. Then ∂F (x) = {∇F (x)}.

The proof of this result can be found in [16, Proposition 17.26(i)].

In plain words, a Gâteaux differentiable function at x is subdifferentiable there with its gradient as

its unique subgradient.

Definition 2.2.8 (Normal cone). Let S ⊆ H be a non-empty closed convex set. The normal cone

operator is the subdifferential of the indicator function of S, i.e.,

NS(x)
def

= ∂iS(x) =

{{
η ∈ H :

〈
η, x′ − x

〉
≤ 0, ∀x′ ∈ H

}
if x ∈ S,

∅ otherwise.
(2.2.3)
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2.2.2 Accretive operators and non-linear semi-groups

All the definitions and results with proofs can be found for instance in [7].

Let (X ,
∥
∥ ·
∥
∥) be a Banach space. Let A : X → 2X be a set-valued operator. For notational

convenience, the operator will be sometimes identified with its graph by denoting (x, y) ∈ A for y ∈

A(x). Dom(A)
def

= {x ∈ X : Ax 6= ∅} is called the domain of A and R(A)
def

= {Ax : x ∈ Dom(A)}

its range.

Definition 2.2.9 (Accretive operator). An operator A in X is accretive if
∥
∥x− x̂

∥
∥ ≤

∥
∥x− x̂+ λ(y − ŷ)

∥
∥ whenever λ > 0 and (x, y), (x̂, ŷ) ∈ A.

Definition 2.2.10 (Non-expansive operator). An operator A : X → X is called non-expansive if

it is 1-Lipschitz continuous, i.e.
∥
∥A(x)−A(x̂)

∥
∥ ≤

∥
∥x− x̂

∥
∥, ∀x, x̂ ∈ X .

Definition 2.2.11 (Resolvent). Let A : X → 2X and γ > 0. The resolvent of A is defined by

Jγ A
def
= (I+ γA)−1.

We have the following equivalent characterization of accretivity, whose proof can be found in e.g.,

[96].

Lemma 2.2.12. The operator A is accretive if and only if its resolvent is a single-valued non-expansive

map on Dom(JλA) for λ > 0.

Definition 2.2.13 (m-accretive operator). An operator A : X → 2X is m-accretive if it is accretive

and Dom(JλA) = X for some (hence all) λ > 0.

In the Hilbertian case, the notion of m-accretivity coincides with maximal monotonicity which is

the celebrated Minty theorem.

Crandall and Liggett introduced in [40] the following limit:

S(t)x0 = lim
n→∞

(Jt/nA)
n.

Under some closedness assumptions on the operator A, they proved that this limit exists and defines

a strongly continuous semigroup {S(t)}t≥0 on X . This semigroup plays an important role for proving

solution existence and uniqueness of the abstract Cauchy problem
{

ẋ+Ax ∋ 0,

x(t0) = x0.
(2.2.4)

More precisely, x(t)
def

= S(t− t0)x0 is the unique strong solution to the abstract Cauchy problem (2.2.4).

In the context of the non-local p-Laplacian evolution equation that will be at the heart of Part I, this

exponential formula will be instrumental to prove not only for well-posedness, but also to establish

Lipschitz continuity of the solution as a function of the initial data. A key step to prove this is to show

that the nonlocal p-Laplacian operator belongs to a rich family of operators known as m-completely

accretive operators.

In [18], Ph. Bénilan and M. G Crandall introduced a class of operators named completely accretive,

for which the semigroup S(t) (see [18]) is order-preserving and non-expansive in every Lp, p ∈ [1,+∞].

Here we outline some of the main ideas given in [18].

Let Θ be an open set of RN and let M(Θ) be the space of measurable functions from Θ into R. For

u, v ∈ M(Θ), we write

u≪ u if and only if

∫

Θ
j(u)dx ≤

∫

Θ
j(u)dx

for all j ∈ J0
def

= {j : R → [0,+∞], j convex, lsc, j(0) = 0}.
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Definition 2.2.14 (Completely accretive operator). Let A be an operator in M(Θ). We say that

A is completely accretive if

u− û≪ u− û+ λ(v − v̂) for all λ > 0 and all (u, û), (v, v̂) ∈ A.

The definition of completely accretive operators does not refer explicitly to topologies or norms.

However, if A is completely accretive in M(Θ) and A ⊂ Lp(Θ)×Lp(Θ), p ∈ [1,∞] then A is accretive

in Lp(Θ).

Definition 2.2.15 (m-completely accretive operator). An operator A on X is completely accretive

if it is completely accretive and dom(JA) = X , A is said m-completely accretive.

2.2.3 Mean value theorem for continuous functions

In this section we state a lemma that is a generalization of the Lagrange mean value theorem retaining

only the continuity assumption, but weakening the differentiability hypothesis. But before this, we

state the following classical lemma which is useful throughout the manuscript.

Lemma 2.2.16. For α ∈]0, 1] and a, b ≥ 0, we have

(a+ b)α ≤ aα + bα.

Lemma 2.2.17. Suppose that the real-valued function f is continuous on [a, b], where a < b, both a

and b being finite. If the right and left-derivatives f ′+ and f ′− exist as extended-valued functions on

]a, b[, then there exists c ∈]a, b[ such that either

f ′+(c) ≤
f(b)− f(a)

b− a
≤ f ′−(c)

or

f ′−(c) ≤
f(b)− f(a)

b− a
≤ f ′+(c).

If moreover f ′+ and f ′− coincide on ]a, b[, then f is differentiable at c and

f(b)− f(a) = f ′(c)(b− a).

Proof : From [42, p. 115] (see also [114]), we have under the sole continuity assumption of f on

[a, b] that either
f(c+ h)− f(c)

h
≤
f(b)− f(a)

b− a
≤
f(c)− f(c− d)

d
or

f(c)− f(c− d)

d
≤
f(b)− f(a)

b− a
≤
f(c+ h)− f(c)

h
,

for all h > 0 and d > 0 such that (c + h, c − d) ∈]a, b[2. Passing to the limit as h → 0+ and d → 0+

(the limits exist in [−∞,+∞] by assumption), we get our inequalities. When f ′+ and f ′− coincide on

]a, b[, and in particular at c, the inequalities become an equality f ′+(c) = f ′−(c) = f(b)−f(a)
b−a , and the

derivative at c is finite, whence differentiability follows. �

Let us apply this result to f : t ∈ R 7→
∣
∣t
∣
∣p−2

t, p > 1. f is a continuous1 monotonically increasing

and odd function on R . It is moreover everywhere differentiable for p ≥ 2, and for p ∈]1, 2[ it is

differentiable except at 0, where f ′+(0) = f ′−(0) = +∞. For all c 6= 0, we have f ′(c) = (p − 1)
∣
∣c
∣
∣p−2

.

Thus applying Lemma 2.2.17, we get the following corollary.

1Observe that f is not even continuous at 0 when p = 1, and thus Lemma2.2.17 cannot be applied when 0 ∈ [a, b].

– 26 –



Chapter 2 2.3. Lipschitz spaces on bounded domains

Corollary 2.2.18. Let a < b, both a and b being finite. Then, for any p > 1, there exists c ∈]a, b[\{0}

such that
∣
∣b
∣
∣p−2

b−
∣
∣a
∣
∣p−2

a = (p− 1)
∣
∣c
∣
∣p−2

(b− a).

2.2.4 Embeddings of Lp spaces on bonded domains

Since Ω has finite Lebesgue measure, we have the classical inclusion Lq(Ω) ⊂ Lp(Ω) for 1 ≤ p ≤ q <

+∞. More precisely assume without loss of generality that
∣
∣Ω
∣
∣ = 1, Then

∥
∥f
∥
∥
Lp(Ω)

≤
∣
∣Ω
∣
∣1/p−1/q∥∥f

∥
∥
Lq(Ω)

=
∥
∥f
∥
∥
Lq(Ω)

≤
∥
∥f
∥
∥
L∞(Ω)

, (2.2.5)

We also have the following useful (reverse) bound.

Lemma 2.2.19. For any 1 ≤ q < p < +∞ we have
∥
∥f
∥
∥
Lp(Ω)

≤
∥
∥f
∥
∥1−q/p

L∞(Ω)

∥
∥f
∥
∥q/p

Lq(Ω)
.

In particular, for q = 1
∥
∥f
∥
∥
Lp(Ω)

≤
∥
∥f
∥
∥1−1/p

L∞(Ω)

∥
∥f
∥
∥1/p

L1(Ω)
.

Proof : Using Hölder inequality, we have

∥
∥f
∥
∥
Lp(Ω)

=

(∫

Ω

∣
∣f
∣
∣q
∣
∣f
∣
∣p−q

)1/p

≤

((∫

Ω

∣
∣f
∣
∣q
)
∥
∥f
∥
∥p−q

L∞(Ω)

)1/p

=
∥
∥f
∥
∥1−q/p

L∞(Ω)

∥
∥f
∥
∥q/p

Lq(Ω)
.

�

2.3 Lipschitz spaces on bounded domains

In this section, we introduce the Lipschitz spaces Lip(s, Lp(Ωd)), for d ∈ {1, 2}, which contain functions

with, roughly speaking, s "derivatives" in Lp(Ωd) [41, Ch. 2, Section 9]. These spaces will be a key tool

for us to study networks on convergent graph sequences as we will be able to get non-asymptotic error

estimates for different graph models when adding the assumption of belonging to these spaces to the

kernel K(·, ·) and the initial condition g(·) in (Pnloc) and (VPnloc).

Definition 2.3.1. For F ∈ Lp(Ωd), p ∈ [1,+∞], we define the (first-order) Lp(Ωd) modulus of smooth-

ness by

ω(F, h)p
def

= sup
z∈Rd,|z|<h

(∫

x,x+z∈Ωd

∣
∣F (x+ z)− F (x)

∣
∣pdx

)1/p

. (2.3.1)

The Lipschitz spaces Lip(s, Lp(Ωd)) consist of all functions F for which
∣
∣F
∣
∣
Lip(s,Lp(Ωd))

def

= sup
h>0

h−sω(F, h)p < +∞.

We restrict ourselves to values s ∈]0, 1] as for s > 1, only constant functions are in Lip(s, Lp(Ωd)).

It is easy to see that
∣
∣F
∣
∣
Lip(s,Lp(Ωd))

is a semi-norm. Lip(s, Lp(Ωd)) is endowed with the norm

∥
∥F
∥
∥
Lip(s,Lp(Ω2))

def

=
∥
∥F
∥
∥
Lp(Ω2)

+
∣
∣F
∣
∣
Lip(s,Lp(Ωd))

.
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The space Lip(s, Lp(Ω2)) is the Besov space Bs
p,∞ [41, Ch. 2, Section 10] which are very popular in

approximation theory. In particular, Lip(1, L1(Ωd)) contains the space BV(Ωd) of functions of bounded

variation on Ωd, i.e. the set of functions F ∈ L1(Ωd) such that their variation is finite:

VΩ2(F )
def

= sup
h>0

h−1
d∑

i=1

∫

Ωd

∣
∣F (x+ hei)− F (x)

∣
∣dx < +∞

where ei, i ∈ {1, d} are the coordinate vectors in R
d; see [41, Ch. 2, Lemma 9.2]. Thus Lipschitz spaces

are rich enough to contain functions with both discontinuities and fractal structure.

Let us define the piecewise constant approximation of a function F ∈ Lp(Ω2) (a similar reasoning

holds on Ω),

F̂n(x, y)
def

=
1

∣
∣Ω

(n)
ij

∣
∣

∑

ij

(∫

Ω2

F (x′, y′)χ
Ω

(n)
ij

(x′, y′)dx′dy′
)

χ
Ω

(n)
ij

(x, y),

where χ
Ω

(n)
ij

is the characteristic function of Ω
(n)
ij . Clearly, F̂n is nothing but the projection PVn2 (F )

of F on the n2-dimensional subspace Vn2 of Lp(Ω2) defined as Vn2 = Span

{

χ
Ω

(n)
ij

: (i, j) ∈ [n]2
}

.

Let us define the piecewise constant approximation of a function F ∈ Lq(Ω2) (a similar reasoning

holds of course on Ω) on a partition of Ω2 into cells Ωnij
def

=
{
]xi−1, xi]×]yj−1, yj ] : (i, j) ∈ [n]2

}
of

maximal mesh size δ
def

= max
(i,j)∈[n]2

max(|xi − xi−1| ,
∣
∣yj − yj−1

∣
∣),

Fn(x, y)
def

=
n∑

i,j=1

FnijχΩnij (x, y), Fij =
1

∣
∣Ωnij

∣
∣

∫

Ωnij

F (x, y)dxdy.

Clearly, Fn is nothing but the orthogonal projection of F on the n2-dimensional subspace of Lq(Ω2)

defined as

Span
{
χΩnij : (i, j) ∈ [n]2

}
.

Lemma 2.3.2. There exists a positive constant Cs, depending only on s, such that for all F ∈

Lip(s, Lq(Ωd)), d ∈ {1, 2}, s ∈]0, 1], q ∈ [1,+∞],
∥
∥F − Fn

∥
∥
Lq(Ωd)

≤ Csδ
s
∣
∣F
∣
∣
Lip(s,Lq(Ωd))

. (2.3.2)

Proof : Using the general bound [41, Ch. 7, Theorem7.3] for the error in spline approximation, and

in view of Definition 2.3.1, we have
∥
∥F − Fn

∥
∥
Lq(Ωd)

≤ Csω(F, δ)q = Cδs(δ−sω(F, δ)q) ≤ Csδ
s
∣
∣F
∣
∣
Lip(s,Lq(Ωd))

.

�

An immediate consequence is the following result.

Lemma 2.3.3. Assume that F ∈ L∞(Ωd) ∩ Lip(s, Lq(Ωd)), d ∈ {1, 2}, s ∈]0, 1], q ∈ [1,+∞], and let

p ∈]1,+∞[. Then there exists a positive constant C(p, q, s), depending on p, q and s such that
∥
∥F − Fn

∥
∥
Lp(Ωd)

≤ C(p, q, s)δsmin{1,q/p}. (2.3.3)

Proof : We have

∥
∥F − Fn

∥
∥
Lp(Ωd)

≤







∥
∥F − Fn

∥
∥
Lq(Ω)

≤ C
∣
∣F
∣
∣
Lip(s,Lq(Ω))

δs, if q ≥ p;

∥
∥F − Fn

∥
∥1−q/p

L∞(Ωd)

∥
∥F − Fn

∥
∥q/p

Lq(Ωd)
≤ C

(

2
∥
∥F
∥
∥
L∞(Ω)

)1−q/p ∣
∣F
∣
∣q/p

Lip(s,Lq(Ωd))
δsq/p

otherwise,
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where we used (2.2.5) (resp. Lemma 2.2.19) and Lemma 2.3.2 in the first (resp. second) case. �

2.4 Tools from probability theory

We here provide two well-known deviation inequalities that will be play a key role in establishing non-

asymptotic (sharp) deviation bounds when studying our models on networks on random inhomogeneous

graphs in Sections 4.4 and 7.3.

Rosenthal’s inequality [69]. Let n be a positive integer, γ ≥ 2 and U1, . . . , Un be n zero mean

independent random variables such that sup
i∈{1,··· ,n}

E(
∣
∣Ui

∣
∣γ) < ∞. Then there exists a constant C > 0

such that

E

(∣
∣
∣
∣
∣

n∑

i=1

Ui

∣
∣
∣
∣
∣

γ)

≤ Cmax





n∑

i=1

E(|Ui|
γ),

(
n∑

i=1

E(U2
i )

)γ/2


 .

Bernstein’s inequality [102, Theorem 6]. Let n be a positive integer and U1, . . . , Un be n zero

mean independent random variables such that there exists a constant M > 0 satisfying sup
i∈[n]

|Ui| ≤

M <∞. Then, for any υ > 0,

P

(
n∑

i=1

Ui ≥ υ

)

≤ exp






−

υ2

2

(
n∑

i=1
E
(
U2
i

)
+ υM/3

)






.
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The Nonlocal p-Laplacian Evolution

Problem





Chapter 3

General Error Bound

Main contributions of this chapter

◮ Kobayashi type estimates: Error estimates to compare two trajectories corresponding

to the p-Laplacian governed by two kernels and initial data (Theorem 3.3.1).

◮ Consistency and error estimates of the numerical solutions to the fully-discretized prob-

lem valid uniformly for t ∈ [0, T ], where T > 0 (Theorem 3.4.4)

The content of this chapter appeared in [66].
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In this chapter, we present a consistency analysis for the nonlocal p-Laplacian evolution problem.

Our results include three main parts: well-posedness, consistency of the time-continuous problem and

that of the time-discrete problem. For the time-discrete problem, both forward and backward Euler

schemes for time discretization are addressed. We prove the convergence of these schemes before we

compare the corresponding problems to the continuous one. The obtained error bound will be used

in the next chapter to analyze networks on convergent graph sequences. Finally, the usefulness of our

results is illustrated by applying them to a coupled nonlocal evolution system with a source term to

establish its consistency.

3.1 Introduction

3.1.1 Problem statement

Let us recall now the nonlinear diffusion problem (Pnloc) introduced in Section 1.1.1:
{

ut(x, t) =
∂
∂tu(x, t) = −∆K

p (u(x, t)), a.e. x ∈ Ω, t > 0,

u(x, 0) = g(x), a.e. x ∈ Ω,
(Pnloc)

where p is a fixed but arbitrary number in ]1,+∞[ and ∆K
p is the nonlocal Laplacian operator:

∆K
p (u(x, t)) = −

∫

Ω
K(x, y)

∣
∣u(y, t)− u(x, t)

∣
∣p−2

(u(y, t)− u(x, t))dy,

Ω ⊂ R is a bounded domain, without loss of generality Ω = [0, 1], and is a symmetric, non-negative and

bounded function. As we precise in Section 1.1.1, for (Pnloc) we are dealing with Neumann boundary

conditions. Indeed, since we are integrating in Ω we are imposing that diffusion takes place only in

Ω. There is no flux across the boundary. Hence, we are dealing here with the nonlocal analogue to

Neumann boundary conditions.

When dealing with local evolution equations, two models of nonlinear diffusion have been extensively

studied in the literature, the porous medium equation vt = ∆(
∣
∣v
∣
∣m−1

v) and the p-Laplacian evolution

vt = div(
∣
∣∇v

∣
∣p−2

∇v). For the first case, the nonlocal analogous equation was studied in [7, Chapter

5]. The nonlocal analog of the p-Laplacian equation was studied as well in [7] for the particular case

K(x, y) = J(x−y). Together with the study of existence and uniqueness of the solution, an important

result is proved in [7], that is, if the kernel J is rescaled in an appropriate way, the corresponding
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solutions of the nonlocal p-Laplacian evolution problems converge strongly in L∞((0, T );Lp(Ω)) to the

solution of the local p-Laplacian evolution problem. Our main goal in this chapter is to study first

the existence and uniqueness of the solution for problem (Pnloc) governed by the bi-variate symmetric

kernel and then study its consistency.

3.1.2 Relation to prior work

The authors of [91] have already studied numerical approximations of (Pnloc) under different but com-

plementary assumptions. Indeed, in that paper, only the case K(x, y) = J(x − y) was considered.

The authors showed that solutions to the numerical scheme converge to the continuous solution for

both semi-discrete and totally discrete approximations. However, the convergence is only uniform and

requires the positivity of the solution.

3.2 Well-posedness

We begin by studying the well posedness of (Pnloc). To do so, we treat problem (Pnloc) from the point

of view of nonlinear semigroup theory (see Section 2.2.2). For that, we start by giving some preliminary

properties of the nonlocal p-Laplacian operator ∆K
p .

Proposition 3.2.1.

(i) ∆K
p is positively homogenous of degree p− 1 ;

∆K
p (αu(x, t)) = αp−1∆K

p (u(x, t)), α > 0.

(ii) Lp−1(Ω) ⊂ Dom(∆K
p ) if p > 2;

(iii) For 1 < p ≤ 2 , Dom(∆K
p ) = L1(Ω) and ∆K

p is closed in L1(Ω)× L1(Ω);

(iv) For p ∈]1,+∞[, ∆K
p is completely accretive and satisfies the range condition

Lp(Ω) ⊂ R(I+∆K
p ). (3.2.1)

Consequently, the resolvent Jλ∆K
p

is single-valued and nonexpansive in Lq(Ω) for q ∈ [1,+∞].

Proof : Statements (i) and (ii) are immediate.

(iii) In fact ∆K
p is closed in L1(Ω) × L1(Ω) if its graph is closed in L1(Ω) × L1(Ω). That is, if

un ∈ Dom(∆K
p ) such that un

L1(Ω)
−→ u and ∆K

p un
L1(Ω)
−→ f , then u ∈ Dom(∆K

p ) and f = ∆K
p u, which

arises automatically from the continuity of the operator ∆K
p .

(iv) See [7, THeorem 6.7]. �

Remark 3.2.2. Arguments are more intricate for p = 1 (we still have complete accretivity but the

range condition becomes only L∞(Ω) ⊂ Dom(Jλ∆K
1
)). The problem is still open for p = +∞.

Solutions of (Pnloc) will be understood in the following sense:

Definition 3.2.3. A solution of (Pnloc) in [0, T ] is a function

u ∈W 1,1(0, T ;L1(Ω)),

that satisfies u(x, 0) = g(x) a.e. x ∈ Ω and

ut(x, t) = −∆K
p (u(x, t)) a.e. in Ω×]0, T [.
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Remark 3.2.4. Observe that since u ∈ W 1,1(0, T ;L1(Ω)), we have that u is also a strong solution

(see [7, DefinitionA.3]). Indeed,

C(0, T ;L1(Ω)) ⊂W 1,1(0, T ;L1(Ω))

W 1,1(0, T ;L1(Ω)) ⊂W 1,1
loc (0, T ;L

1(Ω))







⇒ u ∈ C(0, T ;L1(Ω)) ∩W 1,1
loc (0, T ;L

1(Ω)).

We are now in position to study well-posedness of problem (Pnloc).

Theorem 3.2.5. Suppose p ∈]1,+∞[ and let g ∈ Lp(Ω).

(i) For any T > 0, there exists a unique strong solution in [0, T ] of (Pnloc).

(ii) Moreover, for q ∈ [1,+∞], if gi ∈ Lq(Ω), i = 1, 2, and ui is the solution of (Pnloc) with initial

condition gi, then
∥
∥u1(t)− u2(t)

∥
∥
Lq(Ω)

≤
∥
∥g1 − g2

∥
∥
Lq(Ω)

, ∀t ∈ [0, T ]. (3.2.2)

Remark 3.2.6. For p ∈ [1,+∞], taking the initial data in Lp(Ω), one can show existence and unique-

ness of a mild but not a strong solution as L1(Ω) and L∞(Ω) are not reflexive spaces and thus do not

have the Radon-Nikodym property (see [7, Theorem A.29 and Proposition A.35]). For p = 1, one can

still establish uniqueness by studying the limit of (Pnloc) as p → ∞ (see [7, Chapter 7, Theorem 7.2],

however, (3.2.2) is not verified anymore.

The proof of Theorem 3.2.5 is an extension of that of [7, Theorem 6.8] to the case of a symmetric,

nonnegative and bounded kernel K as in our setting (see [7, Remark 6.9]). For this, we only need to

show the corresponding versions of [7, Lemmas 6.5 and 6.6] (which are stated there without a proof).

The first lemma to prove is that corresponding to [7, Lemmas 6.5]. It consists in an integration for

the nonlocal p-Laplacian operator, which plays the same role as the integration by parts for the local

p-Laplacian.

Lemma 3.2.7. For every u, v ∈ Lp(Ω),

−

∫

Ω

∫

Ω
K(x, y)

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))dyv(x)dx

=
1

2

∫

Ω

∫

Ω
K(x, y)

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))(v(y)− v(x))dydx.

Proof : Let Ω′ be a bounded subset of R and let Γ ⊂ R \ int(Ω′).

For α : (Ω′ ∪ Γ)× (Ω′ ∪ Γ) → R , u : Ω′ ∪ Γ → R, and f : (Ω′ ∪ Γ)× (Ω′ ∪ Γ) → R. We define as in

[64] the following generalized nonlocal operators

(a) Generalized gradient

G(u)(x, y)
def

= (u(y)− u(x))α(x, y), x, y ∈ Ω′ ∪ Γ,

(b) Generalized nonlocal divergence

D(f)(x, y)
def

=

∫

Ω′∪Γ
(f(x, y)α(x, y)− f(y, x)α(y, x))dy, x ∈ Ω′,

(c) Generalized normal component

N (f)(x, y)
def

= −

∫

Ω′∪Γ
(f(x, y)α(x, y)− f(y, x)α(y, x))dy, x ∈ Γ.

– 36 –



Chapter 3 3.2. Well-posedness

With the above notation in place, the authors in [64] prove that for v : Ω′ ∪ Γ → R and s : Ω′ ∪ Γ ×

Ω′ ∪ Γ → R, the following identity holds
∫

Ω′

vD(s)dx+

∫

Ω′∪Γ

∫

Ω′∪Γ
sG(v)dydx =

∫

Γ
vN (s)dx. (3.2.3)

Let µ : (Ω′ ∪ Γ)× (Ω′ ∪ Γ) → R be given by

µ(x, y)
def

= |α(x, y)|p.

In our particular case µ is the kernel K(·, ·), so that we suppose that α is symmetric. Hence, the

following identity

D(|G(u)|p−2G(u)) = Lpu
def

= 2

∫

Ω′∪Γ
|u(y)− u(x)|p−2(u(y)− u(x))µ(x, y)dy

was also shown in [64, (5.3)] for p = 2. The general case was proved in [68], that is

Lpu = D(
∣
∣G(u)

∣
∣p−2

G(u)). (3.2.4)

The equality holds whenever both sides are finite.

Applying (3.2.3) with s(x, y) =
∣
∣G(u)

∣
∣p−2

G(u)(x, y) and using the identity (3.2.4), we obtain

∫

Ω′

Lp(u)vdx+

∫

Ω′∪Γ

∫

Ω′∪Γ
(
∣
∣G(u)

∣
∣p−2

G(u)).G(v)dxdy =

∫

Γ
N (
∣
∣G(u)

∣
∣p−2

G(u))vdx.

Hence
∫

Ω′

Lpvdx = −

∫

Ω′∪Γ

∫

Ω′∪Γ
(
∣
∣G(u)

∣
∣p−2

G(u))G(v)dxdy +

∫

Γ
vN (

∣
∣G(u)

∣
∣p−2

= −

∫

Ω′∪Γ

∫

Ω′∪Γ
(
∣
∣G(u)

∣
∣p−2

G(u))G(v)dxdy

+

∫

Γ

(

−

∫

Ω′∪Γ

∣
∣G(u)

∣
∣p−2

G(u)(x, y)α(x, y)−
∣
∣G(u)

∣
∣p−2

G(u)(y, x)α(y, x)dy

)

vdx

= −

∫

Ω′∪Γ

∫

Ω′∪Γ

∣
∣G(u)

∣
∣p−2

G(u))G(v)dxdy

−

∫

Γ

∫

Ω′∪Γ
α(x, y)

(∣
∣G(u)

∣
∣p−2

G(u)(x, y)−
∣
∣G(u)

∣
∣p−2

G(u)(y, x)
)

dyvdx

= −

∫

Ω′∪Γ

∫

Ω′∪Γ

∣
∣G(u)

∣
∣p−2

G(u))G(v)dxdy −

∫

Γ
Lp(u)vdx.

Thus ∫

Ω′∪Γ
Lp(u)vdx = −

∫

Ω′∪Γ

∫

Ω′∪Γ
|G(u)|p−2G(u))G(v)dxdy. (3.2.5)

Replacing G with its form in (3.2.5) and taking Ω = Ω′ ∪ Γ as this nonlocal integration formula does

not contain any boundary terms, so that, the values of u could be nonzero on the domain Γ without

affecting the formula, we get the desired result. �

From this lemma the following monotonicity result can be deduced.

Lemma 3.2.8. Let T : R → R be a nondecreasing function. Then

(i) For every u, v ∈ Lp(Ω) such that T (u− v) ∈ Lp(Ω), we have
∫

Ω
(∆K

p u(x)−∆K
p v(x))T (u(x)− v(x))dx

=
1

2

∫

Ω

∫

Ω
K(x, y)(T (u(y)− v(y))− T (u(x)− v(x)))

×
(∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))−
∣
∣v(y)− v(x)

∣
∣p−2

(v(y)− v(x))
)

dydx.

(3.2.6)
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(ii) Moreover, if T is bounded (3.2.6) holds for every u, v ∈ Dom(∆K
p ).

Proof :

(i) We have
∫

Ω
(∆K

p u(x)−∆K
p v(x))T (u(x)− v(x))dx

=

∫

Ω

(

−

∫

Ω
K(x, y)

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))dy

)

T (u(x)− v(x))dx

+

∫

Ω

(∫

Ω
K(x, y)

∣
∣v(y)− v(x)

∣
∣p−2

(v(y)− v(x))dy

)

T (u(x)− v(x))dx

= −

∫

Ω

∫

Ω
K(x, y)(

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))−

∣
∣v(y)− v(x)

∣
∣p−2

(v(y)− v(x)))dyT (u(x)− v(x))dx

= −

∫

Ω

∫

Ω
K(x, y)

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))dyT (u(x)− v(x))dx−

−

∫

Ω

∫

Ω
K(x, y)

∣
∣v(y)− v(x)

∣
∣p−2

(v(y)− v(x))dyT (u(x)− v(x))dx

=
1

2

∫

Ω

∫

Ω
K(x, y)

∣
∣u(y)− u(x)

∣
∣p−2

(u(y)− u(x))(T (u(y)− v(y))− T (u(x)− v(x))dxdy

−
1

2

∫

Ω

∫

Ω
K(x, y)

∣
∣v(y)− v(x)

∣
∣p−2

(v(y)− v(x))(T (u(y)− v(y))− T (u(x)− v(x))dxdy

= −
1

2

∫

Ω

∫

Ω
K(x, y)(

∣
∣u(y)− u(x)

∣
∣p−2

− |v(y)− v(x)|p−2(v(y)− v(x)))

× (T (u(y)− v(y))− T (u(x)− v(x))dxdy.

(ii) If T is bounded , we have

∀u, v ∈ Dom(∆K
p ), T (u− v) ∈ Lp(Ω).

�

In order to make this manuscript as self-contained as possible, we now give a sketch of the proof of

Theorem 3.2.5.

Proof of Theorem 3.2.5: The first step is the fact that the operator ∆K
p verifies Proposition 3.2.1

(precisely the fourth statement)

In short this means that for any φ ∈ Lp(Ω) there is a unique solution to the problem u+∆K
p (u) = φ

and the resolvent J∆K
p

is a non-expansive mapping in Lq(Ω) for all 1 ≤ q ≤ +∞. Combining this

with [7, Theorem A.29], we get the existence of a mild solution to (Pnloc) On the other hand this mild

solution is a strong solution under the hypothesis of the theorem thanks to the complete accretivity of

∆K
p and the range condition (3.2.1) using ([7, Proposition A.35]). Finally the stability principle (3.2.2)

is a consequence of [7, Theorem A.28]. �

3.3 Consistency of the time-continuous problem

We begin our study by giving a general consistency result from which we shall extract particular con-

sistency bounds for every specific model of convergent graph sequences that we will treat in Chapter 4.

To do this, let us consider the following Neumann evolution problem as (Pnloc)
{

∂
∂tun(x, t) = −∆Kn

p (un(x, t)), (x, t) ∈ Ω×]0, T ]

un(x, 0) = gn(x), x ∈ Ω.
(Pn

nloc)

– 38 –



Chapter 3 3.3. Consistency of the time-continuous problem

Though not needed in this chapter, the use of the subscript n is a matter of notation and emphasizes

the fact that Kn and gn depend on the parameter n. This will be clear in the application to graph

sequences in Chapter 4.

Now we state and prove our main consistency and convergence theorem.

Theorem 3.3.1. Suppose p ∈]1,+∞[, g, gn ∈ L∞(Ω) and K,Kn are measurable, symmetric and

bounded mappings. Then (Pnloc) and (Pn
nloc) have unique solutions, respectively, u and un. Moreover

the following hold.

(i) We have the error estimate
∥
∥u− un

∥
∥
C(0,T ;Lp(Ω))

≤ C
(∥
∥g − gn

∥
∥
Lp(Ω)

+
∥
∥K −Kn

∥
∥
Lp(Ω2)

)

, (3.3.1)

where the constant C is independent of n.

(ii) Moreover, if gn → g and Kn → K as n→ ∞, almost everywhere on Ω and Ω2, respectively, then
∥
∥u− un

∥
∥
C(0,T ;Lp(Ω))

−→
n→∞

0.

Proof : In the proof, Ci is any absolute constant independent of n (but may depend on p). Ex-

istence and uniqueness of the solutions u and un in the sense of Definition 3.2.3 is a consequence of

Theorem 3.2.5.

(i) For 1 < p < +∞, we define the function

Ψ : x ∈ R 7→
∣
∣x
∣
∣p−2

x = sign(x)
∣
∣x
∣
∣p−1

.

Denote ξn(x, t) = un(x, t)− u(x, t), by subtracting (Pnloc) from (Pn
nloc), we have a.e.

∂ξn(x, t)

∂t
=

∫

Ω
Kn(x, y){Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))}dy

+

∫

Ω
(Kn(x, y)−K(x, y))Ψ(u(y, t)− u(x, t))dy.

(3.3.2)

Next, we multiply both sides of (3.3.2) by Ψ(ξn(x, t)) and integrate over Ω to get

1

p

∫

Ω

∂

∂t

∣
∣ξn(x, t)

∣
∣pdx =

∫

Ω2

Kn(x, y){Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))}Ψ(ξn(x, t))dxdy

+

∫

Ω2

(Kn(x, y)−K(x, y))Ψ(u(y, t)− u(x, t))Ψ(ξn(x, t))dxdy.

(3.3.3)

We estimate the first term on the right-hand side of (3.3.3) using the fact that Kn is bounded

so that there exists a positive constant M independent of n, such that,
∥
∥Kn

∥
∥
L∞(Ω2)

≤M ,

∣
∣

∫

Ω2

Kn(x, y){Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))}Ψ(ξn(x, t))dxdy
∣
∣

≤M

∫

Ω2

∣
∣Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy.

Now, applying Corollary 2.2.18 with a = un(y, t)−un(x, t) and b = u(y, t)−u(x, t) (without loss

of generality we assume that b > a), we get
∫

Ω2

∣
∣Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

≤ (p− 1)

∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣
∣
∣η(x, y, t)

∣
∣p−2∣∣ξn(x, t)

∣
∣p−1

dxdy, (3.3.4)

where η(x, y, t) is an intermediate value between a and b. As we have supposed that g ∈ L∞(Ω)

and gn ∈ L∞(Ω), and as |Ω| is finite, so that L∞(Ω) ⊂ Lp(Ω), we deduce from (3.2.2) in
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Theorem 3.2.5 that for any (x, y) ∈ Ω2 and t ∈ [0, T ], we have






∣
∣η(x, y, t)

∣
∣p−2

≤
∣
∣u(y, t)− u(x, t)

∣
∣p−2

≤
(

2
∥
∥u(t)

∥
∥
L∞(Ω)

)p−2
≤ C1 for p ∈ [2,+∞[,

∣
∣η(x, y, t)

∣
∣p−2

≤
∣
∣un(y, t)− un(x, t)

∣
∣p−2

≤
(

2
∥
∥un(t)

∥
∥
L∞(Ω)

)p−2
≤ C

′

1 for p ∈]1, 2[.

(3.3.5)

Inserting (3.3.5) into (3.3.4), and then using the Hölder and triangle inequalities, it follows that

M

∫

Ω2

∣
∣Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

≤M(p− 1)C1

∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

= C2

∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

≤ C2

(∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣pdxdy

) 1
p

×

(∫

Ω

∣
∣ξn(x, t)

∣
∣pdx

) p−1
p

≤ 2C2

∥
∥ξn(t)

∥
∥p

Lp(Ω)
.

(3.3.6)

We bound the second term on the right-hand side of (3.3.3) as follows

∣
∣

∫

Ω2

(Kn(x, y)−K(x, y))Ψ(u(y, t)− u(x, t))Ψ(ξn(x, t))dxdy
∣
∣

=
∣
∣

∫

Ω2

(Kn(x, y)−K(x, y))× sign(u(y, t)− u(x, t))
∣
∣u(y, t)− u(x, t)

∣
∣p−1

Ψ(ξn(x, t))dxdy
∣
∣

≤ 2p−1
∥
∥u(t)

∥
∥p−1

L∞(Ω)

∣
∣

∫

Ω2

∣
∣Kn(x, y)−K(x, y)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy
∣
∣

≤ 2p−1
∥
∥u(t)

∥
∥p−1

L∞(Ω)

(∫

Ω

∣
∣ξn(x, t)

∣
∣pdx

) p−1
p

×

(∫

Ω2

∣
∣Kn(x, y)−K(x, y)

∣
∣pdxdy

) 1
p

≤ 2C3

∥
∥ξn(t)

∥
∥p−1

Lp(Ω)

∥
∥Kn −K

∥
∥
Lp(Ω2)

.

(3.3.7)

Bringing together (3.3.6) and (3.3.7), and using standard arguments to switch the derivation and

integration signs (Leibniz rule), we have

d

dt

∥
∥ξn(t)

∥
∥p

Lp(Ω)
≤ 2pC2

∥
∥ξn(t)

∥
∥p

Lp(Ω)
+ 2pC3

∥
∥Kn −K

∥
∥
Lp(Ω2)

∥
∥ξn(t)

∥
∥p−1

Lp(Ω)
. (3.3.8)

Let ε > 0 be arbitrary but fixed, and set

ψε(t) =
(∥
∥ξn(t)

∥
∥p

Lp(Ω)
+ ε
)1/p

.

By (3.3.8),
d

dt
ψε(t)

p ≤ 2pC2ψε(t)
p + 2pC3

∥
∥Kn −K

∥
∥
Lp(Ω)

ψε(t)
p−1. (3.3.9)

Since ψε(t) is positive on [0, T ], from (3.3.9), we have

d

dt
ψε(t) ≤ 2C2ψε(t) + 2C3

∥
∥Kn −K

∥
∥
Lp(Ω2)

, t ∈ [0, T ].

We apply Gronwall’s inequality for ψε(t) on [0, T ] to get

sup
t∈[0,T ]

ψε(t) ≤
(

ψε(0) + 2C3T
∥
∥Kn −K

∥
∥
Lp(Ω2)

)

exp{2C2T}. (3.3.10)

Since ε > 0 is arbitrary, (3.3.10) implies

sup
t∈[0,T ]

∥
∥ξn(t)

∥
∥
Lp(Ω)

≤
(∥
∥g − gn

∥
∥
Lp(Ω)

+ 2C3T
∥
∥Kn −K

∥
∥
Lp(Ω2)

)

exp{2C2T}. (3.3.11)

The desired result holds.
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(ii) Since gn, g ∈ L∞(Ω) ⊂ Lp(Ω) and |Ω| is finite, the dominated convergence theorem implies that

limn→+∞

∥
∥gn
∥
∥
Lp(Ω)

=
∥
∥g
∥
∥
Lp(Ω)

. The same reasoning applies to Kn and K. Passing to the limit

in (3.3.1) and using the Scheffé-Riesz theorem (see [74, Lemma2]), we get the claim.

�

Remark 3.3.2. Observe that, since |Ω| is finite, we have the classical inclusion Lp(Ω) ⊂ L2(Ω) for

p ≥ 2, which leads to the following bound
∥
∥u− un

∥
∥
C(0,T ;L2(Ω))

≤
∣
∣Ω
∣
∣
1
2
− 1

p
∥
∥u− un

∥
∥
C(0,T ;Lp(Ω))

=
∥
∥u− un

∥
∥
C(0,T ;Lp(Ω))

,

as
∣
∣Ω
∣
∣ = 1. For p ∈]1, 2], we have, thanks to Lemma 2.2.19, boundedness of the solutions and Jensen

inequality,
∥
∥u− un

∥
∥2

C(0,T ;L2(Ω))
= O

(∥
∥u− un

∥
∥p

C(0,T ;Lp(Ω))

)

= O
(∥
∥g − gn

∥
∥p

Lp(Ω)
+
∥
∥K −Kn

∥
∥p

Lp(Ω2)

)

.

In summary, there is also convergence with respect to the L2-norm.

3.4 Consistency of the time-discrete problem

3.4.1 Forward Euler discretization

We now consider the following time-discrete approximation of (Pnloc), the forward Euler discretization

applied to (Pn
nloc). For that, let us consider a partition (not necessarily uniform) {th}

N
h=1 of the time

interval [0, T ]. Let τh−1
def

=
∣
∣th− th−1

∣
∣ and the maximal size τ = max

h∈[N ]
τh, and denote uhn(x)

def

= un(x, th).

Then, consider







uhn(x)− uh−1
n (x)

τh−1
= −∆Kn

p (uh−1
n (x)), x ∈ Ω, h ∈ [N ],

u0n(x) = g0n(x), x ∈ Ω.

(Pf
nloc,τ )

Before turning to the consistency result, one may wonder whether (Pf
nloc,τ ) is well-posed. In the

following result, we show that for p ∈]1,+∞[, and starting from g0n ∈ L∞(Ω), there exists a unique

weak accumulation point to the iterates of (Pf
nloc,τ ). In turn, in the case of practical interest where

the problem is finite-dimensional (in fact Euclidean case) as for the application to graphs, we do have

existence and uniqueness. Recall the function Rp from (1.1.1).

Lemma 3.4.1. Consider problem (Pf
nloc,τ ). Assume that g0n ∈ L∞(Ω). Let τh =

αh

max(
∥
∥∆Kn

p (uhn)
∥
∥
L2(Ω)

, 1)
,

and suppose that
+∞∑

h=1

αh = +∞ and
+∞∑

h=1

α2
h < +∞. Then, the iterates of problem (Pf

nloc,τ ), starting

from g0n, have a unique weak accumulation point u⋆. Moreover, there are constants β, ε > 0 such that

min
0≤i≤h

Rp(u
i
n,Kn)−Rp(u

⋆,Kn) ≤ max(β, 1)
ε2 +

∑h
i=0 α

2
i

2
∑h

i=0 αi

.

Remark 3.4.2. (a) Our condition on the time-step τh is reminiscent of the subgradient method. It

can be seen as a non-linear CFL-type condition which depends on the data since ∆Kn
p is not

Lipschitz-continuous but only locally so, hence the dependence of τh on
∥
∥∆Kn

p (uhn)
∥
∥
L2(Ω)

.

(b) The rate of convergence on Rp depends on the choice of {αh}h. If one performs N steps on the

interval [0, T ], one can take

αh =
ε

(N + 1)1/2+ν
, h = 0, . . . , N, with ν ∈]0, 1/2[,
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which entails a convergence rate of max(β,1)ε2

(N+1)1/2−ν . The smaller ν the faster the rate.

Before proving Lemma 3.4.1 recall fromDefinition 2.2.6 the subdifferential of a function F ∈ Γ0(L
2(Ω)).

Let F : L2(Ω) → R∪{+∞} be a proper lower-semicontinuous and convex function. The subdifferential

of F at u ∈ L2(Ω) is the set-valued operator ∂F : L2(Ω) → 2L
2(Ω) given by

∂F (u) =
{
η ∈ L2(Ω) : F (v)− F (u) ≥

〈
η, u− v

〉
, ∀v ∈ L2(Ω)

}
,

where
〈
., .
〉

denotes the inner product in L2(Ω).

Proof : Since p > 1, we consider in the Hilbert space L2(Ω) the subdifferential ∂Rp(·,Kn) whose

graph is in L2(Ω) × L2(Ω). It is immediately seen that Rp is convex and Gâteaux-differentiable, and

thus ∂Rp(u) =
{
∆Kn

p (u)
}

(from Lemma 2.2.7). Moreover, it is maximal monotone (or equivalently

m-accretive on L2(Ω)), see [7, p. 198]. Consequently, using that g0n ∈ L∞(Ω) ⊂ L2(Ω), and so is uhn by

induction, a solution to (Pf
nloc,τ ) coincides with that of

{

uhn(x) = uh−1
n (x)− τh−1η

h−1, ηh−1 ∈ ∂Rp(u
h
n,Kn)

u0n(x) = g0n(x), x ∈ Ω,

i.e. the subgradient method with initial point g0n. Observe that (∂Rp(·,Kn))
−1(0) 6= ∅ (0 is in it).

Thus with the prescribed choice of τh, we deduce from [3, Theorem 1] that the sequence of iterates uhn
has a unique weak accumulation u⋆ ∈ (∂Rp(·,Kn))

−1(0).

The claim on the rate is classical 1. We here provide a simple and self-contained proof. Since Rp is

continuous and convex on L2(Ω), it is locally Lipschitz continuous [16, Theorem 8.29]. Moreover, the

sequence
{
uhn
}

h
is bounded, and hence, ∃ε > 0 such that

∥
∥uhn − u⋆

∥
∥
L2(Ω)

≤ ε, ∀h ≥ 0. In turn, Rp is

Lipschitz continuous around u⋆ with Lipschitz constant, say β. Denote rhn = uhn − u⋆. We have
∥
∥rhn
∥
∥2

L2(Ω)
=
∥
∥rh−1

n − τh−1η
h−1
∥
∥2

L2(Ω)

=
∥
∥rh−1

n

∥
∥2

L2(Ω)
− 2

αh−1

max
(
∥
∥ηh−1

∥
∥

L2(Ω)
,1
)

〈
ηh−1, rh−1

n

〉
+ α2

h−1

≤
∥
∥rh−1

n

∥
∥2

L2(Ω)
− 2

αh−1

max
(
∥
∥ηh−1

∥
∥

L2(Ω)
,1
)

(

Rp(u
h−1
n ,Kn))−Rp(u

⋆,Kn)
)

+ α2
h−1,

where we used the subdifferential inequality above to get that

Rp(u
⋆,Kn) ≥ F (uh−1

n ,Kn)−
〈
ηh−1, rh−1

n

〉
.

Summing up these inequalities we obtain

2

h∑

i=0

αi

(
Rp(u

i
n,Kn)−Rp(u

⋆,Kn)
)
≤ max(β, 1)

(

∥
∥r0n
∥
∥2

L2(Ω)
+

h∑

i=0

α2
i

)

,

whence we deduce

min
0≤i≤h

Rp(u
i
n)−Rp(u

⋆) ≤ max(β, 1)
ε2 +

∑h
i=0 α

2
i

2
∑h

i=0 αi

.

�

Since the aim is to compare the solutions of problems (Pnloc) and (Pf
nloc,τ ), the solution of (Pf

nloc,τ )

being discrete, so that it is convenient to introduce an intermediate model which is the continuous

extension of the discrete problem using the discrete function un(x) = (u1n(x), · · · , u
N
n (x)). Therefore,

we consider a time-continuous extension of uhn obtained by a time linear interpolation as follows

ǔn(x, t) =
th − t

τh−1
uh−1
n (x) +

t− th−1

τh−1
uhn(x), t ∈]th−1, th], x ∈ Ω, (3.4.1)

1See e.g. [86, Theorem3.2.2] in finite dimension with a slightly different normalization of the step size τh.
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and a time piecewise constant approximation

ūn(x, t) =

N∑

h=1

uh−1
n (x)χ]th−1,th](t). (3.4.2)

Then, by construction of ǔn(x, t) and ūn(x, t), we have the following evolution problem

{
∂
∂t ǔn(x, t) = −∆Kn

p (ūn(x, t)), (x, t) ∈ Ω×]0, T ]

ǔn(x, 0) = g0n(x), x ∈ Ω.
(3.4.3)

Lemma 3.4.3. Assume that g0n ∈ L∞(Ω). Let ǔn and ūn be the functions defined in (3.4.1) and (3.4.2),

respectively, then
∥
∥ūn(t)− ǔn(t)

∥
∥
Lp(Ω)

= O(τ), t ∈ [0, T ]. (3.4.4)

Proof : It is easy to see that for t ∈]th−1, th],

∥
∥ūn(t)− ǔn(t)

∥
∥
Lp(Ω)

≤ (th − t)
∥
∥
uhn − uh−1

n

τh−1

∥
∥
Lp(Ω)

≤ τ
∥
∥
uhn − uh−1

n

τh−1

∥
∥
Lp(Ω)

= τ
∥
∥∆Kn

p (uh−1
n )

∥
∥
Lp(Ω)

≤ τ
∥
∥∆Kn

p (uh−1
n )

∥
∥
L∞(Ω)

≤ τ2p−1
∥
∥uh−1

n

∥
∥p−1

L∞(Ω)
.

By induction, for all h ≥ 1, we have (see Lemma 3.4.1)

∥
∥uhn

∥
∥
L∞(Ω)

≤
∥
∥uh−1

n

∥
∥
L∞(Ω)

+ α2p−1
∥
∥uh−1

n

∥
∥p−1

L∞(Ω)
< +∞,

where α = sup
h≥1

αh < +∞. Since t is arbitrary, we obtain a global estimate for all t ∈ [0, T ]. �

We are in position now to give our consistency result for the time-discrete problem.

Theorem 3.4.4. Suppose p ∈]1,+∞[, g, g0n ∈ L∞(Ω) and K,Kn are measurable, symmetric and

bounded mappings.

Let u be the unique solution of problem (Pnloc), and ǔn is built as in (3.4.1) from the time-discrete

approximation uh−1
n defined in (Pf

nloc,τ ). Then

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C
(∥
∥gn − g0n

∥
∥
Lp(Ω)

+
∥
∥g − gn

∥
∥
Lp(Ω)

+
∥
∥K −Kn

∥
∥
Lp(Ω2)

)

+O(τ), (3.4.5)

where the constant C is independent of n.

Proof : We follow the same lines as in the proof of Theorem 3.3.1. Denote ξ̌n(x, t) = ǔn(x, t) −

un(x, t) and ξ̄n(x, t) = ūn(x, t)− un(x, t). We thus have a.e.

∂ξ̌n
∂t

=

∫

Ω
Kn(x, y){Ψ(ūn(y, t)− ūn(x, t))−Ψ(un(y, t)− un(x, t))}dy. (3.4.6)

Next, we multiply both sides of (3.4.6) by Ψ(ξ̌n(x, t)) and integrate over Ω using the relation (3.4.3)

to get

1

p

∫

Ω

∂

∂t

∣
∣ξ̌n(x, t)

∣
∣pdx =

∫

Ω2

Kn(x, y){Ψ(ūn(y, t)− ūn(x, t))−Ψ(un(y, t)− un(x, t))}Ψ(ξ̌n)(x, t)dxdy.

(3.4.7)

Similarly to the proof of Theorem 3.3.1, we bound the term on the right-hand side of (3.4.7) using

the fact that Kn is bounded, then applying Corollary 2.2.18 between ūn(y, t)− ūn(x, t) and un(y, t)−
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un(x, t), inequality (3.3.5), and finally using Hölder and triangle inequalities. Altogether, this yields

∣
∣

∫

Ω2

Kn(x, y){Ψ(ūn(y, t)− ūn(x, t))−Ψ(un(y, t)− un(x, t))}Ψ(ξ̌n)(x, t)dxdy
∣
∣

≤ C2

∫

Ω2

∣
∣ξ̄n(y, t)− ξ̄n(x, t)

∣
∣
∣
∣ξ̌n(x, t)

∣
∣p−1

dxdy

≤ C2

(∫

Ω2

∣
∣ξ̄n(y, t)− ξ̄n(x, t)

∣
∣pdxdy

) 1
p

×

(∫

Ω

∣
∣ξn(x, t)

∣
∣pdx

) p−1
p

≤ 2C2

∥
∥ξ̄n(t)

∥
∥
Lp(Ω)

∥
∥ξ̌n(t)

∥
∥p−1

Lp(Ω)
.

(3.4.8)

By virtue of Lemma 3.4.3 and the triangle inequality for ξ̄n(·, ·), there exists a positive constant C ′

such that ∥
∥ūn(t)− un(t)

∥
∥
Lp(Ω)

≤
∥
∥ūn(t)− ǔn(t)

∥
∥
Lp(Ω)

+
∥
∥ǔn(t)− un(t)

∥
∥
Lp(Ω)

≤ C ′τ +
∥
∥ξ̌n(t)

∥
∥
Lp(Ω)

.
(3.4.9)

Hence, bringing together (3.4.8) and (3.4.9), we obtain

d

dt

∥
∥ξ̌n(t)

∥
∥p

Lp(Ω)
≤ 2pC2

∥
∥ξ̌n(t)

∥
∥p

Lp(Ω)
+ 2pC ′τ

∥
∥ξ̌n(t)

∥
∥p−1

Lp(Ω)
. (3.4.10)

Arrived at this stage, we proceed in the same way using the Gronwall’s lemma as in the proof of

Theorem 3.3.1, to get

sup
t∈[0,T ]

∥
∥ξ̌n(t)

∥
∥
Lp(Ω)

≤
(∥
∥g0n − gn

∥
∥
Lp(Ω)

+ 2C ′Tτ
)

exp{2C2T}. (3.4.11)

Then,
∥
∥ǔn − un

∥
∥
C(0,T ;Lp(Ω))

≤ C
∥
∥g0n − gn

∥
∥
Lp(Ω)

+ C
′′
τ. (3.4.12)

Using the triangle inequality and (3.3.1) in Theorem 3.3.1, we get
∥
∥ǔn − u

∥
∥
C(0,T ;Lp(Ω))

≤
∥
∥ǔn − un

∥
∥
C(0,T ;Lp(Ω))

+
∥
∥un − u

∥
∥
C(0,T ;Lp(Ω))

≤ C
′′
τ + C

(∥
∥g0n − gn

∥
∥
Lp(Ω)

+
∥
∥g − gn

∥
∥
Lp(Ω)

+
∥
∥K −Kn

∥
∥
Lp(Ω2)

)

.
(3.4.13)

�

3.4.2 Backward Euler discretization

Our result in Theorem 3.4.4 also holds when we deal with the backward Euler discretization






uhn(x)− uh−1
n (x)

τh−1
= −∆Kn

p (uhn(x)), x ∈ Ω, h ∈ [N ],

u0(x) = g0n(x), x ∈ Ω,

(Pb
n,τ )

which can also be rewritten as the implicit update






uhn(x) = J
τh−1∆

Kn
p

(uh−1
n )(x), x ∈ Ω, h ∈ [N ],

u0(x) = g0n(x), x ∈ Ω,

and the resolvent J
τh−1∆

Kn
p

def

=
(
I+ τh−1∆

Kn
p

)−1
is a single-valued non-expansive operator on Lp(Ω)

since ∆Kn
p is m-accretive [71]. In addition, problem (Pb

n,τ ) is well-posed as we state now.

Lemma 3.4.5. Let g0n ∈ Lp(Ω). Suppose that τ
def

= inf
h
τh > 0 or

+∞∑

h=1

τ
max(2,p)
h = +∞, then the iterates

of (Pb
n,τ ), starting from g0n, have a unique weak accumulation point u⋆ ∈ (∆K

p )−1(0). Moreover, if
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τ > 0, then for h ≥ 1

∥
∥∆Kn

p (uhn)
∥
∥
Lp(Ω)

≤
2
∥
∥g0n − u⋆

∥
∥
Lp(Ω)

(τCp)1/max(p,2)h1/max(p,2)
.

Proof : ∆Kn
p is accretive on Lp(Ω) (see the proof of [7, Theorem 6.7]). Moreover, it is well-known

that for p ∈]1,+∞[, Lp(Ω) is a uniformly convex and a uniformly smooth Banach space, whose con-

vexity modulus verifies

δLp(Ω)(ε) ≥

{

p−12−pεp p ∈ [2,+∞[,

(p− 1)ε2/8 p ∈]1, 2].

Thus, we are in position to apply [95, Theorem3] to get uniqueness of the weak accumulation point.

Let us turn to the rate. By m-accretiveness ∆Kn
p , J

τh−1∆
Kn
p

is a single-valued operator on the entire

Lp(Ω), and verifies for any v, w ∈ Lp(Ω) and λ ∈ [0, 1],
∥
∥J

τh−1∆
Kn
p

(v)−J
τh−1∆

Kn
p

(w)
∥
∥
Lp(Ω)

≤
∥
∥λ(v−w)+(1−λ)(J

τh−1∆
Kn
p

(v)−J
τh−1∆

Kn
p

(w))
∥
∥
Lp(Ω)

. (3.4.14)

We now evaluate (3.4.14) at v = uh−1
n , w = u⋆ and λ = 1/2, and combine it with [111, Corollary 2].

This leads us to consider two possible cases.

(a) p ∈]2,+∞[: since uhn = J
τh−1∆

Kn
p

(uh−1
n ) and u⋆ is a fixed point of J

τh−1∆
Kn
p

, and in view of [111,

Corollary 2, (3.4)], we have
∥
∥uhn − u⋆

∥
∥p

Lp(Ω)
≤
∥
∥1
2(u

h−1
n − u⋆) + 1

2(u
h
n − u⋆)

∥
∥p

Lp(Ω)

≤ 1
2

∥
∥uh−1

n − u⋆
∥
∥p

Lp(Ω)
+ 1

2

∥
∥uhn − u⋆

∥
∥p

Lp(Ω)
− 2−pcp

∥
∥uh−1

n − uhn
∥
∥p

Lp(Ω)

≤
∥
∥uh−1

n − u⋆
∥
∥p

Lp(Ω)
− 2−pcp

∥
∥uhn − uh−1

n

∥
∥p

Lp(Ω)
,

where we used non-expansiveness of J
τh−1∆

Kn
p

to get the last inequality. cp = (1+νp−1
p )(1+νp)

1−p,

where νp is the unique solution to (p− 2)νp−1+(p− 1)νp−2 = 1, for ν ∈]0, 1[. Summing up these

inequalities and using the fact that
∥
∥uh+1

n − uhn
∥
∥
Lp(Ω)

≤
∥
∥uhn − uh−1

n

∥
∥
Lp(Ω)

again by non-expansiveness of J
τh−1∆

Kn
p

, we arrive at

τh
∥
∥∆Kn

p (uhn)
∥
∥p

Lp(Ω)
≤ h

∥
∥uhn − uh−1

n

∥
∥p

Lp(Ω)
≤

h∑

i=1

∥
∥uin − ui−1

n

∥
∥p

Lp(Ω)
≤ 2p

∥
∥g0n − u⋆

∥
∥p

Lp(Ω)
/cp.

(b) p ∈]1, 2]: using now [111, Corollary 2, (3.7)] and similar arguments to the first case, we get the

inequality
∥
∥uhn − u⋆

∥
∥2

Lp(Ω)
≤
∥
∥uh−1

n − u⋆
∥
∥2

Lp(Ω)
− 2−2(p− 1)

∥
∥uhn − uh−1

n

∥
∥2

Lp(Ω)
.

Summing up again we end up with

τh
∥
∥∆Kn

p (uhn)
∥
∥2

Lp(Ω)
≤ h

∥
∥uhn − uh−1

n

∥
∥2

Lp(Ω)
≤

h∑

i=1

∥
∥uin − ui−1

n

∥
∥2

Lp(Ω)
≤ 4
∥
∥g0n − u⋆

∥
∥2

Lp(Ω)
/(p− 1).

�

Remark 3.4.6. (a) Observe that the assumption on the initial condition in Lemma 3.4.5 is weaker

than that of Lemma 3.4.1.

(b) As expected, the stability constraint needed on the time-step sequence is less restrictive than for

the explicit/forward discretization.
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(c) Given that
{∥
∥uh+1

n − uhn
∥
∥p

Lp(Ω)

}

h
is a decreasing and summable sequence, one can show that the

rate
∥
∥∆Kn

p (uhn)
∥
∥
Lp(Ω)

= O(h−1/max(p,2)) is in fact
∥
∥∆Kn

p (uhn)
∥
∥
Lp(Ω)

= o(h−1/max(p,2)).

Equipped with this result, the proof of an analogue to Theorem 3.4.4 in the implicit case is similar

to that of the explicit case modulo the following change

ūn(x, t) =
N∑

h=1

uhn(x)χ]th−1,th](t).

3.4.3 Relation to Kobayashi type estimates

Consider the evolution problem
{

ut +A(t)u(t) ∋ f(t),

u(0) = g.
(CP)

A problem of the form (CP) is called an abstract Cauchy problem. The evolution problem (Pnloc) we

deal with can be viewed as a particular case of (CP) in its autonomous-homogeneous case, i.e. the

operator A(t) ≡ ∆K
p does not depend on time and the source term f ≡ 0.

Problem (CP) in the autonomous-homogeneous case was studied by Kobayashi in [73], where he

constructed sequences of approximate solutions which converge in an appropriate sense to a solution

to the differential inclusion. He provided an inequality that estimates the distance between arbitrary

points of two independent sequences generated by the so called proximal iterations, from which, he

derived quantitative estimates to compare the continuous and discrete trajectories using the backward

Euler scheme. These estimates have similar flavour to ours when K = Kn. Later on, these results

were generalized to the non-autonomous case as well as to the case where the trajectories are defined

by two differential inclusions systems (i.e. different operators A); see [4] and references therein for

a thorough review. The latter bounds, expressed in our notation, are provided only in terms of
∥
∥∆K

p (v) − ∆Kn
p (v)

∥
∥
Lp(Ω)

. We go further by exploiting the properties of our operators to get sharp

estimates in terms of the data
∥
∥K−Kn

∥
∥
Lp(Ω2)

. This is more meaningful in our context where we recall

that the goal is to study the fully discretized nonlocal p-Laplacian problem on graphs.

3.5 Application to a coupled nonlocal p-Laplacian evolution system

Here we present an illustration of how the consistency results that we get for problem (Pnloc) can be

applied in a more general context. In particular we show the consistency of a nonlocal evolution system

introduced in [54].

Throughout the section, we consider the following norm

∀(u, v) ∈ (Lp(Ω))2 ,
∥
∥(u, v)

∥
∥
C(0,T ;(Lp(Ω))2) = sup

t∈[0,T ]

(∥
∥u(t)

∥
∥
Lp(Ω)

+
∥
∥v(t)

∥
∥
Lp(Ω)

)

, p ∈]1,+∞[, T > 0,

where u et v are

3.5.1 Problem formulation

In [54], the authors propose to study the following nonlocal evolution system:






ut(x, t) = −∆K
p (u(x, t))− 2λv(x, t), a.e. x ∈ Ω, t > 0,

vt(x, t) = −∆K
2 (v(x, t))− (f(x)− u(x, t)), a.e. x ∈ Ω, t > 0,

u(x, 0) = f(x), v(x, 0) = 0, a.e x ∈ Ω,

(Snloc)
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where λ > 0. Here the kernel K : RN × R
N → R is a nonnegative continuous smooth functions with

compact support contained in Ω×B(0, d) ⊂ R
N × R

N with

0 < sup
y∈B(0,d)

K(x, y) = R(x) ∈ L∞(Ω). (3.5.1)

Furthermore, K satisfies
∫

RN

K(x, y)dx = 1.

In [54, Theorem 2.1], the authors prove the existence and uniqueness of the solution to (Snloc) that is

the couple (u, v) ∈
[
C(0, T ;L1(Ω)) ∩W 1,1(0, T ;L1(Ω))

]2
.

3.5.2 Consistency of the semidiscrete scheme

Let us consider the following coupled system with Neumann boundary conditions as (Snloc)






∂
∂tun(x, t) = −∆Kn

p (un(x, t))− 2λvn(x, t), a.e. x ∈ Ω, t ∈ [0, T ],
∂
∂tvn(x, t) = −∆Kn

2 (vn(x, t))− (fn(x)− un(x, t)), a.e. x ∈ Ω, t ∈ [0, T ],

un(x, 0) = fn(x), vn(x, 0) = 0, a.e. x ∈ Ω.

(Sn
nloc)

As we have done in Section 3.3, the main goal is to compare the couple of solutions of (Sn
nloc) to that

of (Snloc) and get a uniform error bound. This is the statement of the following theorem.

Theorem 3.5.1. Suppose p ∈]1,+∞[, f, fn ∈ L∞(Ω) and K,Kn are measurable, symmetric and

bounded mappings. Then (Snloc) and (Sn
nloc) have unique solutions, respectively, (u, v) and (un, vn).

Moreover the following hold.

(i) We have the error estimate

∥
∥(u− un, v − vn)

∥
∥
C(0,T ;(Lp(Ω))2) ≤ C

(∥
∥f − fn

∥
∥
Lp(Ω)

+
∥
∥K −Kn

∥
∥
Lp(Ω2)

)

, (3.5.2)

where the constant C is independent of n.

(ii) Moreover, if fn → f and Kn → K as n→ ∞, almost everywhere on Ω and Ω2, respectively, then
∥
∥(u− un, v − vn)

∥
∥
C(0,T ;(Lp(Ω))2) −→

n→∞
0.

Proof : In the proof, Ci is any absolute constant independent of n (but may depend on p).

(i) For 1 < p < +∞, we define the function

Ψ : R → R

x 7→
∣
∣x
∣
∣p−2

x = sign(x)
∣
∣x
∣
∣p−1

.

Denote ξn(x, t) = un(x, t) − u(x, t) and ζn(x, t) = vn(x, t) − v(x, t), by subtracting (Snloc) from

(Sn
nloc), we have

∂ξn
∂t

=

∫

Ω
Kn(x, y){Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))}dy

+

∫

Ω
(Kn(x, y)−K(x, y))Ψ(u(y, t)− u(x, t))dy − 2λζn(x, t).

(3.5.3)

∂ζn
∂t

=

∫

Ω
Kn(x, y){(vn(y, t)− vn(x, t))− (v(y, t)− v(x, t))}dy

+

∫

Ω
(Kn(x, y)−K(x, y))(v(y, t)− v(x, t))dy − (fn − f)(x) + ξn(x, t).

(3.5.4)
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Next, we multiply both sides of (3.5.3) and (3.5.4) by Ψ(ξn(x, t)) and Ψ(ζn(x, t)), respectively,

and integrate over Ω

1

p

∫

Ω

∂

∂t

∣
∣ξn(x, t)

∣
∣pdx =

∫

Ω2

Kn(x, y){Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))}Ψ(ξn(x, t))dxdy

+

∫

Ω2

(Kn(x, y)−K(x, y))Ψ(u(y, t)− u(x, t))Ψ(ξn(x, t))dxdy

− 2λ

∫

Ω
ζn(x, t)Ψ(ξn(x, t))dx.

(3.5.5)

1

p

∫

Ω

∂

∂t

∣
∣ζn(x, t)

∣
∣pdx =

∫

Ω2

Kn(x, y){(vn(y, t)− vn(x, t))− (v(y, t)− v(x, t))}Ψ(ζn(x, t))dxdy

+

∫

Ω2

(Kn(x, y)−K(x, y))(v(y, t)− v(x, t))Ψ(ζn(x, t))dxdy

−

∫

Ω
(fn − f)(x)Ψ(ζn(x, t))dx+

∫

Ω
ξn(x, t)Ψ(ζn(x, t))dx.

(3.5.6)

We estimate the first term on the right-hand side of (3.5.5) using the fact that Kn is bounded

so that there exists a positive constant M independent of n, such that,
∥
∥Kn

∥
∥
L∞(Ω2)

≤M ,

∣
∣

∫

Ω2

Kn(x, y){Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))}Ψ(ξn(x, t))dxdy
∣
∣

≤M

∫

Ω2

∣
∣Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy.

Now, applying Corollary 2.2.18 with a = un(y, t)−un(x, t) and b = u(y, t)−u(x, t) (without loss

of generality we assume that b > a), we get
∫

Ω2

∣
∣Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

≤ (p− 1)

∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣
∣
∣η(x, y, t)

∣
∣p−2∣∣ξn(x, t)

∣
∣p−1

dxdy, (3.5.7)

where η(x, y, t) is an intermediate value between a and b. As we have supposed that f ∈ L∞(Ω)

and fn ∈ L∞(Ω), and as Ω is a compact set, so that L∞(Ω) ⊂ Lp(Ω), we deduce

∣
∣η(x, y, t)

∣
∣p−2

≤
∣
∣u(y, t)− u(x, t)

∣
∣p−2

≤
(

2
∥
∥u(t)

∥
∥
L∞(Ω)

)p−2

≤ C1.
(3.5.8)

Inserting (3.5.8) into (3.5.7), and then using the Hölder and triangle inequalities, it follows that

M

∫

Ω2

∣
∣Ψ(un(y, t)− un(x, t))−Ψ(u(y, t)− u(x, t))

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

≤M(p− 1)C1

∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

= C2

∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy

≤ C2

(∫

Ω2

∣
∣ξn(y, t)− ξn(x, t)

∣
∣pdxdy

) 1
p

×

(∫

Ω

∣
∣ξn(x, t)

∣
∣pdx

) p−1
p

≤ 2C2

∥
∥ξn(t)

∥
∥p

Lp(Ω)
.

(3.5.9)
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We bound the second term on the right-hand side of (3.5.5) as follows

∣
∣

∫

Ω2

(Kn(x, y)−K(x, y))Ψ(u(y, t)− u(x, t))Ψ(ξn(x, t))dxdy
∣
∣

=
∣
∣

∫

Ω2

(Kn(x, y)−K(x, y))× sign(u(y, t)− u(x, t))
∣
∣u(y, t)− u(x, t)

∣
∣p−1

Ψ(ξn(x, t))dxdy
∣
∣

≤ 21/p
∥
∥u(t)

∥
∥p−1

L∞(Ω)

∣
∣

∫

Ω2

∣
∣Kn(x, y)−K(x, y)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dxdy
∣
∣

≤ 21/p
∥
∥u(t)

∥
∥p−1

L∞(Ω)
×

(∫

Ω2

∣
∣Kn(x, y)−K(x, y)

∣
∣pdxdy

) 1
p
(∫

Ω

∣
∣ξn(x, t)

∣
∣pdx

) p−1
p

≤ 2C3

∥
∥Kn −K

∥
∥
Lp(Ω2)

∥
∥ξn(t)

∥
∥p−1

Lp(Ω)
.

(3.5.10)

Using the hölder inequality, we estimate the last term on the right-hand side of (3.5.5)

2λ
∣
∣

∫

Ω
ζn(x, t)Ψ(ξn(x, t))dx

∣
∣ ≤ 2λ

∫

Ω

∣
∣ζn(x, t)

∣
∣
∣
∣ξn(x, t)

∣
∣p−1

dx

≤ 2λ
∥
∥ζn(t)

∥
∥
Lp(Ω)

∥
∥ξn(t)

∥
∥p−1

Lp(Ω)
.

(3.5.11)

Similarly to before, we estimate (3.5.6) using the same arguments with the function Ψ(x) = x

(for p = 2), to obtain

∣
∣

∫

Ω2

Kn(x, y){(vn(y, t)− vn(x, t))− (v(y, t)− v(x, t))}Ψ(ζn(x, t))dxdy
∣
∣

≤M

∫

Ω2

∣
∣ζn(y, t)− ζn(x, t)

∣
∣
∣
∣ζn(x, t)

∣
∣p−1

dxdy

≤ 2M
∥
∥ζn(t)

∥
∥p

Lp(Ω)
.

(3.5.12)

∣
∣

∫

Ω2

(Kn(x, y)−K(x, y))(v(y, t)− v(x, t))Ψ(ζn(x, t))dxdy
∣
∣ ≤ 2C4

∥
∥Kn −K

∥
∥
Lp(Ω2)

∥
∥ζn(t)

∥
∥p−1

Lp(Ω)
.

(3.5.13)

Applying the Hölder inequality to the last term on the right-hand side of (3.5.6), we get

∣
∣

∫

Ω
ξn(x, t)Ψ(ζn(x, t))dx−

∫

Ω
(fn − f)(x)Ψ(ζn(x, t))dx

∣
∣

≤
∥
∥fn − f

∥
∥
Lp(Ω)

∥
∥ζn(t)

∥
∥p−1

Lp(Ω)
+
∥
∥ξn(t)

∥
∥
Lp(Ω)

∥
∥ζn(t)

∥
∥p−1

Lp(Ω)
.

(3.5.14)

So, putting together (3.5.9), (3.5.10) and (3.5.11), we have

d

dt

∥
∥ξn(t)

∥
∥p

Lp(Ω)
≤ 2pC2

∥
∥ξn(t)

∥
∥p

Lp(Ω)
+ 2pC3

∥
∥Kn −K

∥
∥
Lp(Ω2)

∥
∥ξn(t)

∥
∥p−1

Lp(Ω)

+ 2pλ
∥
∥ζn(t)

∥
∥
Lp(Ω)

∥
∥ξn(t)

∥
∥p−1

Lp(Ω)

= 2pC2

∥
∥ξn(t)

∥
∥p

Lp(Ω)
+
(

2pC3

∥
∥Kn −K

∥
∥
Lp(Ω2)

+ 2pλ
∥
∥ζn(t)

∥
∥
Lp(Ω)

)∥
∥ξn(t)

∥
∥p−1

Lp(Ω)
.

(3.5.15)

Next, combining (3.5.12), (3.5.13) and (3.5.14), we get

d

dt

∥
∥ζn(t)

∥
∥p

Lp(Ω)
≤ 2pM

∥
∥ζn(t)

∥
∥p

Lp(Ω)
+ 2pC3

∥
∥Kn −K

∥
∥
Lp(Ω2)

∥
∥ζn(t)

∥
∥p−1

Lp(Ω)

+ p
∥
∥fn − f

∥
∥
Lp(Ω)

∥
∥ζn(t)

∥
∥p−1

Lp(Ω)
+ p
∥
∥ξn(t)

∥
∥
Lp(Ω)

∥
∥ζn(t)

∥
∥p−1

Lp(Ω)
.

(3.5.16)

Adopting the same strategy 2 as in the proof of Theorem 3.4.4, we obtain

d

dt

∥
∥ξn(t)

∥
∥
Lp(Ω)

≤ 2C2

∥
∥ξn(t)

∥
∥
Lp(Ω)

+ 2C3

∥
∥Kn −K

∥
∥
Lp(Ω2)

+ 2λ
∥
∥ζn(t)

∥
∥
Lp(Ω)

(3.5.17)

2Using the function ψε(·).
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and

d

dt

∥
∥ζn(t)

∥
∥
Lp(Ω)

≤ 2M
∥
∥ζn(t)

∥
∥
Lp(Ω)

+2C3

∥
∥Kn−K

∥
∥
Lp(Ω2)

+
∥
∥ξn(t)

∥
∥
Lp(Ω)

+
∥
∥fn−f

∥
∥
Lp(Ω)

. (3.5.18)

Summing up (3.5.17) and (3.5.18), we have the following inequality

d

dt

(∥
∥ξn(t)

∥
∥
Lp(Ω)

+
∥
∥ζn(t)

∥
∥
Lp(Ω)

)

≤ (2max(M,C2) + max(2λ, 1))
︸ ︷︷ ︸

=C(λ,p)

(∥
∥ξn(t)

∥
∥
Lp(Ω)

+
∥
∥ζn(t)

∥
∥
Lp(Ω)

)

+ 4C3

∥
∥Kn −K

∥
∥
Lp(Ω2)

+
∥
∥fn − f

∥
∥
Lp(Ω)

.

(3.5.19)

We apply the Gronwall’s inequality on [0, T ] to get

sup
t∈[0,T ]

(∥
∥ξn(t)

∥
∥
Lp(Ω)

+
∥
∥ζn(t)

∥
∥
Lp(Ω)

)

≤
(∥
∥fn − f

∥
∥
Lp(Ω)

+ 4C3T
∥
∥Kn −K

∥
∥
Lp(Ω2)

)

exp{2CT}.

(3.5.20)

Since we have
∥
∥(u− un), (v − vn)

∥
∥
C(0,T ;(Lp(Ω))2) ≤ sup

t∈[0,T ]

(∥
∥u(t)− un(t)

∥
∥
Lp(Ω)

+
∥
∥v(t)− vn(t)

∥
∥
Lp(Ω)

)

,

then, the desired result holds.

(ii) It follows immediately from the Scheffe-Riesz theorem (see [74, Lemma 2]).

3.5.3 Consistency of the fully discrete scheme

We now consider the following time-discrete approximation of (Snloc), the forward Euler discretization

applied to (Sn
nloc). For that, as we have done before, we take again the partition {τh}

N
h=1 of the

time interval [0, T ] of maximal size τ = max
h∈[N ]

τh, i.e; τh−1
def

=
∣
∣th − th−1

∣
∣ and let uhn(x)

def

= un(x, th),

vhn(x)
def

= un(x, th). Then, consider






uhn(x)− uh−1
n (x)

τh−1
= −∆Kn

p uh−1
n (x)− 2λvh−1

n (x), a.e. x ∈ Ω, h ∈ [N ],

vhn(x)− vh−1
n (x)

τh−1
= −∆Kn

2 vh−1
n − (fn(x)− uh−1

n (x)), a.a. x ∈ Ω, h ∈ [N ],

u0n = fn(x), v0n = 0, a.e. x ∈ Ω.

(Sf
nloc,τ )

Since the aim is to compare the solutions of problems (Snloc) and (Sf
nloc,τ ), the solution of (Sf

nloc,τ )

being discrete, so that it is convenient to introduce an intermediate model which is the continuous

extension of the discrete problem using the discrete functions un(x) = (u1n(x), · · · , u
N
n (x)) and vn(x) =

(v1n(x), · · · , v
N
n (x)). Therefore, we consider a time-continuous extensions of uhn and vhn, respectively,

obtained by a linear interpolations as follows

ǔn(x, t) =
th − t

τh−1
uh−1
n (x) +

t− th−1

τh−1
uhn(x), t ∈]th−1, th], x ∈ Ω, (3.5.21)

v̌n(x, t) =
th − t

τh−1
vh−1
n (x) +

t− th−1

τh−1
vhn(x), t ∈]th−1, th], x ∈ Ω, (3.5.22)

and a time piecewise-constant approximations

ūn(x, t) =
N∑

h=1

uh−1
n (x)χ]th−1,th](t), (3.5.23)

v̄n(x, t) =
N∑

h=1

vh−1
n (x)χ]th−1,th](t). (3.5.24)
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Then, by construction of ǔn(x, t) and v̌n(x, t), we have the following evolution system






∂
∂t ǔn(x, t) = −∆Kn

p (ūn(x, t))− 2λv̄n(x, t), (x, t) ∈ Ω×]0, T ],
∂
∂t v̌n(x, t) = −∆Kn

2 (v̄n(x, t))− (fn(x)− ūn(x, t)), (x, t) ∈ Ω×]0, T ],

ǔn(x, 0) = fn(x), v̌n(x, 0) = 0 x ∈ Ω.

(3.5.25)

We have the following convergence result.

Theorem 3.5.2. Suppose p ∈]1,+∞[, f, fn ∈ L∞(Ω) and K,Kn are measurable, symmetric and

bounded mappings.

Let (u, v) be the unique couple of solutions of system (Snloc), and ǔn, v̌n are built as in (3.5.21)

and (3.5.22), respectively, from the time-discrete approximations uh−1
n and vh−1

n defined in (Sf
nloc,τ ),

respectively. Then
∥
∥(u− un, v − vn)

∥
∥
C(0,T ;(Lp(Ω))2) ≤ C

(∥
∥f − fn

∥
∥
Lp(Ω)

+
∥
∥K −Kn

∥
∥
Lp(Ω2)

)

+O(τ), (3.5.26)

where the constant C is independent of n.

Proof : We follow the same lines as in the proof of Theorem 3.3.1. Denote ξ̌n(x, t) = ǔn(x, t) −

un(x, t) and ξ̄n(x, t) = ūn(x, t)−un(x, t) and ζ̌n(x, t) = v̌n(x, t)− vn(x, t), ζ̄n(x, t) = v̄n(x, t)− vn(x, t).

The result of Lemma 3.4.3 remains the same for v, we have
∥
∥v̄n(t)− v̌n(t)

∥
∥
Lp(Ω)

= O(τ), t ∈ [0, T ]. (3.5.27)

Therefrom, we follow the same lines of the proof of Theorem 3.4.4, by fitting it as we have done in that

of Theorem 3.3.1 dealing with ξ̌n(x, t) and ζ̌n(x, t) and applying the Gronwall’s lemma separately for

each function, combined with (3.5.27) we get the desired result. �
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Chapter 4

Convergence Rates for Networks on

Convergent Graph Sequences

Main contributions of this chapter

◮ We apply the error estimate of Chapter 3 to dynamical networks on convergent graph

sequences (simple and weighted dense deterministic graphs first and random inhomoge-

neous ones second).

◮ We show that the approximation of solutions of the discrete problems on these graph

sequences converge to those of the continuum problem.

◮ We quantify also the rate of convergence for each graph model.

◮ We reveal the role of the data regularity and the parameter p on the rate of convergence.

The content on deterministic graphs is published in [66]. The case of random graphs is at the heart

of [65].
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In this chapter, relying on the general error estimate we obtained in the previous chapter, we deal with

networks on convergent graph sequences and quantify the rate of convergence of the discrete solution

to the continuous one for two categories of graph sequences.

(i) Deterministic simple and weighted, dense graphs. For weighted graphs, we also investigated the

limit as p→ ∞ of the discrete model.

(ii) Random inhomogeneous weighted graphs.

Throughout the section, for a given vector u = (u1, · · · , un)
⊤ ∈ R

n, we define the norm
∥
∥ ·
∥
∥
p,n

∥
∥u
∥
∥
p,n

=

(

1

n

n∑

i=1

∣
∣ui
∣
∣p

) 1
p

. (4.0.1)

4.1 Introduction

4.1.1 Problem statement

Recall the discrete form (Pd
nloc) of problem (Pnloc) on a graph sequence Gn = ([n], E(Gn))) from Sec-

tion 1.1.1. For that, let’s redefine the partition (not necessarily uniform) {th}
N
h=1 of the time interval

[0, T ]. Let τh−1
def

=
∣
∣th − th−1

∣
∣ and the maximal size τ = max

h∈[N ]
τh







uhi − uh−1
i

τh−1
=

1

n

n∑

j=1

Knij

∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

ui(0) = g0i , i ∈ [n].

(Pd
nloc)

As we have explained in the introduction of the manuscript, (Knij)1≤i,j≤n is seen as the adjacency

matrix of the graph sequence Gn. Its explicit form will be clear later when dealing with each graph

model, keeping in mind that the graph sequence converges to a given graphon. Thus, (Pd
nloc) induces a

discrete diffusion process parametrized by the structure of the graph whose adjacency matrix captures

the (nonlocal) interactions. The initial condition g0 = (g01, · · · , g
0
n)

⊤ will also be defined explicitly from

the continuous initial data g(·) of (Pnloc).
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Chapter 4 4.1. Introduction

4.1.2 Related work

Dealing with networks on convergent graph sequences, an important work focusing in this subject is

that in [83, 84, 70] which paved the way to study limit phenomena of evolution problems on both

deterministic and random (dense and sparse) graphs.

4.1.2.1 Networks on deterministic graphs

In [83], the author focused on a nonlinear (nonlocal) heat evolution equation on graphs, where the

operator ∆K
p was replaced by the operator

D
W (u(x)) = −

∫

Ω
W (x, y)D(u(y)− u(x))dy,

withW (·, ·) verifying Assumption (A.2) and in which the functionD was assumed Lipschitz-continuous.

This assumption was essential to prove well-posedness (existence and uniqueness follow immediately

from the contraction principle), as well as to study the consistency in L2-norm of the spatial semi-

discrete approximation on simple and weighted graph sequences. Though this seminal work was quite

inspiring to us, it differs from our work in many crucial aspects. First, the nonlocal p-Laplacian evolu-

tion problem at hand is different and cannot be covered by [83] where the function x 7→ x
∣
∣x
∣
∣p−2

lacks

Lipschitzianity for p ∈]1,+∞[, and thus raises several challenges (including for well-posedness and

error estimates). We also consider both the semi-discrete and fully-discrete versions with both forward

and backward Euler approximations, that we fully characterize which is not the case in [83] where only

the semi-discrete scheme was considered (so that no consistency proof was needed when dealing with

networks on graphs). In addition to that, for networks on weighted graphs only the uniform conver-

gence of the discrete problem to the continuous nonlocal heat equation (2-Laplacian) was established,

we go further by quantifying the rate of convergence of (Pd
nloc) to (Pnloc) and giving a non-asymptotic

error bound.

4.1.2.2 Networks on random graphs

In [84] and earlier [83], the author studied convergence of discrete approximations of a nonlinear heat

equation governed by a Lipschitz continuous potential, first on dense deterministic graphs and then on

dense random ones, without discretization of time. However, though the work of [84] was important

to us, it differs markedly from ours in many crucial aspects. Indeed, we use some standard arguments

from numerical analysis of evolution problems but also specific and sophisticated ones tied to the

p-Laplacian. Typically, well-posedness and Lipschitz continuity of the solutions w.r.t. to the kernel

and initial data for the evolution problem with the p-Laplacian is much harder to establish than for

the problem considered in [83, 84] (see [66]). Second, comparing [84] and our current work, we use

completely different paths to prove consistency in the random case. Indeed, while the claim in [84]

is asymptotic by nature as it completely relies on application of the central limit theorem (CLT), the

latter argument cannot be applied to our evolution problem (except for the trivial case p = 2). Rather,

we establish a nonasymptotic deviation inequality, both in the partly and completely random graph

model, relying on a careful control of a random process using sharp inequalities from probability theory

(Rosenthal and Bernstein, see Lemma 4.4.10). Thus, we are able to provide the probability of success

of our bound for fixed n and we exhibit the dependence of both the error bound and the probability

on the problem parameters (p, T , graph model, kernel K, initial data g). This is in a stark contrast

to the asymptotic claims in [84].

In [70], the authors extended the analysis of [84] to sparse random graphs corresponding to L2(Ω2)

graphons and proved almost sure consistency. While a first version of this paper was under review,

we also became aware of the recent preprint [82] which studied the Kuramoto model on a sequence
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Chapter 4 4.2. Networks on simple graphs

of converging dense and sparse graph sequences. It proved almost sure convergence of the discrete

problems on such graphs to continuum limit with time intervals of size T = O(log(n)). In addition to

the fact that our evolution problem is different and more intricate, our random graph model is different

from that of [70, 82]. Both models allow for sparse graphs, but ours only for those with o(n2) but

ω(n) edges with bounded graphons, while theirs covers graphs with O(n) edges and Lq(Ω2) graphons.

Whether our results on the p-Laplacian can be extended to such sparse graphs is an open problem.

In fact, even well-posedness (existence and uniqueness) of the p-Laplacian evolution problem (Pnloc)

with unbounded kernels K remains completely open in the literature. Our results can also cope with

time intervals T = O(log(n)) as discussed in Remark 4.4.5(v). Observe finally that the convergence

claim of [70] is asymptotic (almost sure convergence), relying on the standard Markov inequality and

Borel-Cantelli lemma, while ours are nonasymptotic with a precise probability of success.

4.2 Networks on simple graphs

We begin our study by dealing with the simplest graph model that we defined in Section 2.1.3.1.

Remember briefly that this graph model converges to the {0, 1}-graphon.

A fully discrete counterpart of (Pnloc) on {Gn}n is given by







uhi − uh−1
i

τh−1
=

1

n

∑

j:(i,j)∈E(Gn)

∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

ui(0) = g0i , i ∈ [n],

(Ps,d
nloc)

where

g0i = n

∫

Ω
(n)
i

g0n(x)dx

is the average value of g0n(x) on Ω
(n)
i .

Let us recall that our main goal is to compare the solutions of the discrete and continuous models

and establish some consistency results. Since the two solutions do not live on the same spaces, it is

practical to represent some intermediate model that is the continuous extension of the discrete problem,

using the vector Uh = (uh1 , u
h
2 , · · · , u

h
n)

T whose components uniquely solve the previous system (Ps,d
nloc)

(see Lemma 3.4.1) to obtain the following piecewise time linear interpolation on Ω× [0, T ]

ǔn(x, t) =
th − t

τh−1
uh−1
i +

t− th−1

τh−1
uhi if x ∈ Ω

(n)
i , t ∈]th−1, th], (4.2.1)

and the following piecewise constant approximation

ūn(x, t) =

n∑

i=1

N∑

h=1

uh−1
i χ]th−1,th](t)χΩ

(n)
i

(x). (4.2.2)

So that ǔn uniquely solves the following problem
{

∂
∂t ǔn(x, t) = −∆

Ks
n

p (ūn(x, t)), (x, t) ∈ Ω×]0, T ],

ǔ0n(x) = g0n(x), x ∈ Ω,
(Ps

nloc)

where

g0n(x) = gi
def

= n

∫

Ω
(n)
i

gn(x)dx if x ∈ Ω
(n)
i , i ∈ [n],

gn being the initial condition taken in problem (Pn
nloc) and Ks

n(x, y) is the piecewise constant function
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such that for (x, y) ∈ Ω
(n)
ij , (i, j) ∈ [n]2







n2
∫

Ω
(n)
ij

K(x, y)dxdy if Ω
(n)
i × Ω

(n)
j ∩ supp(K) 6= ∅,

0 otherwise.

As Gn is a simple graph, Ks
n is a {0, 1}-valued mapping.

By analogy of what was done in [83], the rate of convergence of the solution of the discrete problem

to the solution of the limiting problem depends on the regularity of the boundary bd(supp(K)) of the

support closure. Following [83], we recall the upper box-counting (or Minkowski-Bouligand) dimension

of bd(supp(K)) as a subset of R2:

ρ
def

= dimB(bd(supp(K))) = lim sup
δ→0

logNδ(bd(supp(K)))

− log δ
, (4.2.3)

where Nδ(bd(supp(K))) is the number of cells of a (δ× δ)-mesh that intersect bd(supp(K)) (see [55]).

Corollary 4.2.1. Suppose that p ∈]1,+∞[, g ∈ L∞(Ω), and

ρ ∈ [0, 2[.

Let u and ǔn denote the functions corresponding to the solutions of (Pnloc) and (Ps
nloc), respectively.

Then for any ǫ > 0 there exists N(ǫ) ∈ N such that for any n ≥ N(ǫ)

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C
(∥
∥g − gn

∥
∥
Lp(Ω)

+ n−((2−ρ)/p−ǫ)
)

+O(τ), (4.2.4)

where the positive constant C is independent of n.

Proof : By Theorem 3.4.4, we have

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C
(∥
∥g − gn

∥
∥
Lp(Ω)

+
∥
∥gn − g0n

∥
∥
Lp(Ω)

+
∥
∥K −Ks

n

∥
∥
Lp(Ω)

)

+O(τ). (4.2.5)

Since both (Ps
nloc) and (Ps,d

nloc) problems share the same initial data, we have that
∥
∥gn−g

0
n

∥
∥
Lp(Ω)

= 0. It

remains to estimate
∥
∥K −Ks

n

∥
∥
Lp(Ω)

. To do this, we follow the same proof strategy as in [83, Theorem

4.1] . For that, consider the set of discrete cells Ω
(n)
ij overlying the boundary of the support of K

S(n) =
{

(i, j) ∈ [n]2 : Ω
(n)
ij ∩ bd(supp(K)) 6= ∅

}

.

For any ǫ > 0 and sufficiently large n, we have
∣
∣S(n)

∣
∣ ≤ nρ+ǫ.

It is easy to see that K and Ks
n coincide almost everywhere on cells Ω

(n)
ij for which (i, j) /∈ S(n). Thus

for any ǫ > 0 and all sufficiently large n, we have

∥
∥K −Ks

n

∥
∥p

Lp(Ω2)
=

∫

Ω2

|K(x, y)−Ks
n(x, y)|

pdxdy ≤
∣
∣S(n)

∣
∣n−2 ≤ n−(2−ρ−ǫ). (4.2.6)

Assembling (4.2.5) and (4.2.6), the desired result holds. �

4.3 Networks on weighted graphs

In this section, we deal with the weighted graph models defined in Section 2.1.3.2.
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4.3.1 Networks on K/Qn

We consider the totally discrete counterpart of (Pnloc) on K/Qn






uhi − uh−1
i

τh−1
=

1

n

n∑

j=1

(K̂n)ij
∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

ui(0) = g0i , i ∈ [n],

(P̂w,d
nloc)

where K̂n is defined in (2.1.8) and g0i is the average value of g0n(x) on Ω
(n)
i .

Combining the piecewise constant function ǔn in (4.2.1) with ūn in (4.2.2), we rewrite (P̂w,d
nloc) as

{
∂
∂t ǔn(x, t) = −∆

K̂w
n

p (ūn(x, t)), (x, t) ∈ Ω×]0, T ],

ǔ0n(x) = g0n(x), x ∈ Ω,
(P̂w

nloc)

where K̂w
n and g0n are the piecewise constant functions such that

K̂w
n (x, y) = (K̂n)ij for (x, y) ∈ Ω

(n)
i × Ω

(n)
j ,

g0n(x) = gi for x ∈ Ω
(n)
i , i ∈ [n].

Remark 4.3.1. As already emphasized in [83, Remark 5.1], it is instructive to note that (P̂w
nloc) can

be viewed as the time discretized Galerkin approximation of problem (Pnloc). Indeed, let Vn denote a

n-dimensional subspace of L∞(Ω)

Vn = Span
{

χ
Ω

(n)
i

: i ∈ [n]
}

.

Replacing u(x, t) in (Pnloc) with

ǔn(x, t) =

n∑

k=1

ǔk(t)χΩ
(n)
k

(x) ∈ Vn,

where

ǔk(t) =
th − t

τh−1
uh−1
k +

t− th−1

τh−1
uhk , t ∈]th−1, th],

and projecting the resulting equation on Vn, we arrive at (P̂w,d
nloc).

Corollary 4.3.2. Suppose that p ∈]1,+∞[, K : Ω2 → [0, 1] is a symmetric measurable function, and

g ∈ L∞(Ω). Let u and ǔn be the solutions of (Pnloc) and (P̂w
nloc), respectively. Then

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

−→
n→∞,τ→0

0. (4.3.1)

Proof : This proof strategy was used in [83, Theorem 5.2]. For fixed (i, j) ∈ [n]2, it is easy to see

that {Ω
(n)
ij }n is a decreasing sequence,

∞⋂

n=1
Ω
(n)
ij = {(x, y)}, and

(K̂n)ij =
1

∣
∣Ω

(n)
ij

∣
∣

∫

Ω
(n)
ij

Kn(x, y)dxdy.

Then, by the Lebesgue differentiation theorem (see e.g. [89, Theorem 3.4.4]), we have

K̂w
n −→

n→∞
K,

almost everywhere on Ω2, whence, using the same arguments on R, we have also that gn −→
n→∞

g almost

everywhere on Ω. Thus, combining Theorem 3.4.4 and statement (ii) in Theorem 3.3.1, the desired

result follows. �
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To quantify the rate of convergence in (4.3.1), we need to add some supplementary assumptions on

the kernel K and the initial data g. This is where the Lipschitz spaces introduced in Section 2.3 play

a prominent role.

We are in position to state the following error bound.

Corollary 4.3.3. Suppose that p ∈]1,+∞[, K : Ω2 → [0, 1] is a symmetric and measurable function

in Lip(s, Lp(Ω2)), and g ∈ Lip(s, Lp(Ω)) ∩ L∞(Ω), s ∈]0, 1]. Let u and ǔn be the solutions of (Pnloc)

and (P̂w
nloc) respectively. Then

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ O(n−s) +O(τ). (4.3.2)

If Lip(s, Lp(Ω2)) is replaced with BV(Ω2), then the rate becomes
∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ O(n−1/p) +O(τ). (4.3.3)

Proof : By Theorem 3.4.4, we have

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C
(∥
∥g − gn

∥
∥
Lp(Ω)

+
∥
∥gn − g0n

∥
∥
Lp(Ω)

+
∥
∥K − K̂w

n

∥
∥
Lp(Ω)

)

+O(τ).

Since the initial conditions for both (P̂w,d
nloc) and (P̂w

nloc) stem from the same initial data, we have that
∥
∥gn − g0n

∥
∥
Lp(Ω)

= 0. The claimed rates then follow by invoking Lemma 2.3.2 since K̂w
n = PVn2 (K) and

gn = PVn(g). �

4.3.1.1 The limit as p → ∞

Let us consider the numerical fully discrete approximation of the problem (Pnloc) using the function

K̂n defined in (2.1.8)






Up
i,h − Up

i,h−1

τh−1
=

1

n

n∑

j=1

(K̂n)ij
∣
∣Up

j,h−1 − Up
i,h−1

∣
∣p−2

(Up
j,h−1 − Up

i,h−1), (i, h) ∈ [n]× [N ],

Up
i,0 = g0i , i ∈ [n],

(4.3.4)

where the vector Up ∈ R
nN . This problem is associated to the energy functional

Rp(V ) =
1

2pn2

n∑

i=1

n∑

j=1

(K̂n)ij
∣
∣Vj − Vi

∣
∣p,

in the Euclidean space R
n.

As before, we consider the linear interpolation of Up as follows

R
n ∋ Ǔp(t) =

th − t

τh−1
Up
h−1 +

t− th−1

τh−1
Up
h , t ∈]th−1, th], (4.3.5)

and a piecewise constant approximation

R
n ∋ Ūp(t) = Up

h , t ∈]th−1, th]. (4.3.6)

Consequently, Ǔp obeys the following evolution equation






dǓp(t)

dt
=

1

n

n∑

j=1

(K̂n)ij
∣
∣Ūp

j (t)− Ūp
i (t)

∣
∣p−2

(Ūp
j (t)− Ūp

i (t)), (i, t) ∈ [n]×]0, T ],

Up
i (0) = g0i , i ∈ [n].

(4.3.7)
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Now we define






dUp(t)

dt
=

1

n

n∑

j=1

(Kn)ij
∣
∣Up

j (t)− Up
i (t)

∣
∣p−2

(Up
j (t)− Up

i (t)), (i, t) ∈ [n]×]0, T ],

Up
i (0) = g0i , i ∈ [n].

(4.3.8)

To avoid triviality, we suppose that supp(K̂n) 6= ∅, and define the non-empty compact convex set

S∞ =
{

v ∈ R
nN :

∣
∣vj − vi

∣
∣ ≤ 1, for (i, j) ∈ supp(K̂n)

}

,

where the subscript ∞ will be made clear shortly. Indeed, taking the limit as p→ ∞ of Rp, one clearly

sees that this limit is ıS∞ (see Definition 2.2.8). Then, the nonlocal time continuous limit problem can

be written as 





dU∞

dt
+NS∞(U∞(t)) ∋ 0, t ∈]0, T ],

U∞
i (0) = g0i , i ∈ [n],

(P∞
nloc)

Theorem 4.3.4. Suppose that supp(K̂n) 6= ∅ and g0 ∈ S∞. Let Ǔp be the solution of (4.3.4). If U∞

is the unique solution to (P∞
nloc), then

lim
p→∞

lim
τ→0

sup
t∈[0,T ]

∣
∣Ǔp(t)− U∞(t)

∣
∣ = 0, (4.3.9)

where τ = max
h∈[N ]

τh is is the maximal size of intervals in the partition of [0, T ].

Remark 4.3.5. Note that one cannot interchange the order of limits; the limit as τ → 0 must be

taken before the limit as p→ ∞. The reason will be made clear in the proof.

Proof : Using the triangle inequality, we have
∣
∣Ǔp(t)− U∞(t)

∣
∣ ≤

∣
∣Ǔp(t)− Up(t)

∣
∣+
∣
∣Up(t)− U∞(t)

∣
∣.

First, proceeding exactly as in the proof of Theorem 3.4.4, and more precisely inequality (3.4.12), we

get
∣
∣Ǔp(t)− Up(t)

∣
∣ ≤ C ′τ (4.3.10)

for C ′ ≥ 0. Since the constant C ′ in (4.3.10) depends on p, we first take the limit as τ → 0, to get

lim
τ→0

sup
t∈[0,T ]

∣
∣Ǔp(t)− Up(t)

∣
∣ = 0 (4.3.11)

Now, arguing as in [91, Theorem 3.2] (which in turn relies on [30, Theorem 3.1]), we have additionally

that

lim
p→∞

sup
t∈[0,T ]

∣
∣Up(t)− U∞(t)

∣
∣ = 0. (4.3.12)

Hence, the combination of (4.3.11) and (4.3.12) yields (4.3.9). �

Remark 4.3.6. Note that we get the same result when dealing with the implicit Euler scheme,

following the changes mentioned in Section 3.4.2.

4.3.1.2 Networks on G(Xn, K)

The analysis of the problem (Pnloc) on G(Xn,K) remains the same modulo the definition of the

piecewise constant approximation

K̆w
n (x, y) = (K̆n)ij for (x, y) ∈ Ω

(n)
ij ,
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where we recall K̆n from (2.1.9). The fully discrete counterpart of (Pnloc) on G(Xn,K) is given by






uhi − uh−1
i

τ
=

1

n

n∑

j=1

(K̆n)ij
∣
∣uhi − uh−1

i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

ui(0) = g0i , i ∈ [n].

(P̆w,d
nloc)

It is worth mentioning that (P̆w,d
nloc) is the time discretized approximation of the problem (Pnloc) using

the collocation method. Roughly speaking, it is about the projection of (Pnloc) on Xn (see (2.1.9)) via

the interpolation operator Pn : L∞(Ω) → Xn which to each u(th, .) ∈ L∞(Ω) associates the unique

function f(th, .) such that for all i ∈ [n], u(th,
i
n) = f(th,

i
n). See [93] for more details.

We assume further that the kernel K is almost everywhere continuous on Ω2. By construction of

K̆w
n (see (2.1.9)),

K̆w
n (x, y) → K(x, y), as n→ ∞,

at every point of continuity of K, i.e., almost everywhere. Thus, using the Sheffe-Riesz theorem, we

have
∥
∥K − K̆w

n

∥
∥
Lp(Ω2)

→ 0 as n→ ∞.

Thereby, the proof of Corollary 4.3.3 applies to the situation at hand. Hence, we have the following

result.

Corollary 4.3.7. Suppose that p ∈]1,+∞[, K : Ω2 → [0, 1] is a symmetric measurable function, which

is continuous almost everywhere on Ω2, and g ∈ L∞(Ω). Let u be the solution of (Pnloc), and ǔn be the

piecewise constant extension as in (4.2.1) using the sequence in (P̆w,d
nloc). Then

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

→ 0 as n→ ∞.

Remark 4.3.8. The result of Theorem 4.3.4 remains the same for this graph model taking the kernel

(K̆n)ij instead of (K̂n)ij .

4.4 Networks on random inhomogeneous graphs

4.4.1 Reminders of the random inhomogeneous graph model

In this section, we deal with networks on random inhomogeneous graphs. First, recall the graph model

that we perform our analysis with, this model is described in details in Section 2.1.5. The fully discrete

counterpart of (Pnloc) on the graph Gqn(n,K) is given by







uhi − uh−1
i

τh−1
=

1

n

∑

j:(i,j)∈E(Gn)

∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ),

u0i = gi, i ∈ [n].

(Pd
nloc)

Recall the inhomogeneous random graph model introduced in Section 2.1.5.

Remark 4.4.1. In the context of numerical analysis, we are primarily interested not only in the error

bounds of the discrete problem, but more importantly in the (nonasymptotic) rate of convergence.

This is why our attention aims specifically at this graph model and not at the original inhomogeneous

random model defined in [20, 21], i.e. the model constructed replacing (2.1.11) by

P ((i, j) ∈ E(Gn)) = min (qnK(Xi,Xj), 1) .

Our error bounds that we will state shortly cover also this graph model. More specifically, the first

statements of Theorem 4.4.4 and Theorem 4.4.7 hold. However, with this model, even our convergence

claim (not to mention the rate) of the discrete scheme does not hold unless the kernel K and the intial

data g are additionally supposed almost everywhere continuous.
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We denote by x = (x1, · · · ,xn) the realization of X. To lighten the notation, we also denote

ΩX
ni

def

=]X(i−1),X(i)], Ωx
ni

def

=]x(i−1),x(i)], and Ωx
nij

def

=]x(i−1),x(i)]×]x(j−1),x(j)] i, j ∈ [n]. (4.4.1)

As the realization of the random vector X is fixed, we define
∧
Kx

nij as

∧
Kx

nij
def

= min

(

1
∣
∣Ωx

nij

∣
∣

∫

Ωx

nij

K(x, y)dxdy, 1/qn

)

. (4.4.2)

In the rest of the section, the following random variables will be useful. Let λij , (i, j) ∈ [n]2, i 6= j,

be i.i.d. random variables such that qnλij follows a Bernoulli distribution with parameter qn
∧
Kx

nij . We

consider the i.i.d. random variables Υij such that the distribution of qnΥij conditionally on X = x

is that of qnλij . Thus qnΥij follows a Bernoulli distribution with parameter E
(
qn

∧
KX

nij

)
, where E(·) is

the expectation operator (here with respect to the distribution of X).

4.4.2 Consistency of the nonlocal p-Laplacian on random inhomogeneous graphs

Having defined the structure of the network and the discrete counterpart of (Pnloc) on it, we are now

in position to state our main error bounds between the discrete dynamics and their continuous ones.

First, in Section 4.4.2.1, we assume that X is deterministic. Capitalizing on this result, we will then

deal with the totally random model (i.e.; generated by random nodes) in Section 4.4.2.2 by a simple

marginalization argument.

4.4.2.1 Networks on graphs generated by deterministic nodes

We define the parameter δ(n) as the maximal size of the spacings between the the ordered values x(i)

δ(n) = max
i∈[n]

∣
∣x(i) − x(i−1)

∣
∣. (4.4.3)

Next, we consider the following system of difference equations on Gqn(n,K)1 :






uhi − uh−1
i

τh−1
=

1

n

n∑

j=1

λij
∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

u0i = gi, i ∈ [n],

(Pd,d
nloc)

where

gi =
1

∣
∣Ωx

ni

∣
∣

∫

Ωx

ni

g(x)dx.

Recall from Section 4.4.1 that λij are the i.i.d. random variables such that qnλij follows the Bernoulli

distribution with parameter qn
∧
Kx

nij .

Before turning to our convergence result, we pause here to make the following two important obser-

vations.

Remark 4.4.2. Coming back to Definition 2.1.15, one can easily check that Gqn(n,K) is actually a

product probability space2

Ωn
def

= ΩV
n ×ΩE

n
def

=
(

ΩV
n

def

= [0, 1]n, 2Ω
V
n ,P

)

×
(

ΩE
n

def

= {0, 1}n(n+1)/2 , 2Ω
E
n ,P

)

.

1This is clear by proper normalization by qn (by dividing and multiplying by qn). We abuse notation to lighten the

system.
2To keep notation simple, we allow for loops, in our random graph model. Excluding loops would not lead to any

changes in the analysis.
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So that, rigorously speaking, if we take a random event ω from Ωn, problem (Pd,d
nloc) must be written

using λij(ω) instead of λij , and likewise for all other random variables. For notational simplicity, we

drop ω. But it is important to keep in mind that the evolution equations we write involving random

variables must be understood in this sense.

Remark 4.4.3. As the reader may have remarked, the sum in the right-hand side of (Pd,d
nloc) is divided

by n instead of a weighted sum with weights
∣
∣x(i) − x(i−1)

∣
∣−1

which would be expected if we interpret

this sum as a Riemann sum. The scaling by n reminds us of an equidistant design regarding the space-

discretization, despite the fact that the nodes are chosen not necessarily equispaced. However, given

that the xi’s are realizations of i.i.d. uniform variables on Ω, the uniform spacing choice still makes

sense. Indeed, using classical results on order statistics of uniform variables, see, e.g., [97, Section 1.7],

it can be shown that each spacing X(i) −X(i−1) concentrates around i/n for i ∈ [n].

We are now in position to tackle our main goal: comparing the solutions of the discrete and con-

tinuous problems and establish our rate of convergence. Since the two solutions do not live on the

same spaces, it is reasonable to represent some intermediate model that is the continuous extension of

the discrete problem, using the vector Uh = (uh1 , u
h
2 , · · · , u

h
n)

⊤ whose components uniquely solve the

previous system (Pd,d
nloc) (as we have shown in Lemma 3.4.5) to obtain the following piecewise linear

interpolation on Ω× [0, T ]

ǔn(x, t) =
th − t

τh−1
uh−1
i +

t− th−1

τh−1
uhi if x ∈ Ωx

ni, t ∈]th−1, th], (4.4.4)

and a piecewise approximation

ūn(x, t) =
n∑

i=1

N∑

h=1

uh−1
i χ]th−1,th](t)χΩx

ni
(x). (4.4.5)

Then, ǔn uniquely solves the following problem
{

∂
∂t ǔn(x, t) = −∆Λn

p (ūn(x, t)), x ∈ Ω, t > 0,

ǔn(x, 0) = gn(x), x ∈ Ω,
(PΛn

nloc)

where the random variable

Λn(x, y) = λij for (x, y) ∈ Ωx
nij ,

and

gn(x) = gi if x ∈ Ωx
ni, i ∈ [n].

Toward our goal of establishing error bounds, we need an intermediate discrete problem for the p-

Laplacian. This is defined as






vhi − vh−1
i

τh−1
=

1

n

n∑

j=1

∧
Kx

nij

∣
∣vh−1

j − vh−1
i

∣
∣p−2

(vh−1
j − vh−1

i ), (i, h) ∈ [n]× [N ],

v0i = gi, i ∈ [n].

(
∧
P

d

nloc)

The discrete problem (
∧
P

d

nloc) can also be viewed as a discrete p-Laplacian evolution problem over a

complete3 weighted graph on n vertices, where the weight of edge (i, j) is
∧
Kx

nij .

Using the vectorV h
n = (vh1 , v

h
2 , · · · , v

h
n)

⊤ whose components uniquely solve the system (
∧
P

d

nloc) , sim-

ilarly to before, we define the following linear interpolation on Ω× [0, T ]

v̌n(x, t) =
th − t

τh−1
vh−1
i +

t− th−1

τh−1
vhi if x ∈ Ωx

ni, t ∈]th−1, th], (4.4.6)

3Recall that a complete graph is a simple undirected graph in which each pair of vertices is connected by an edge.
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and a piecewise-constant approximation

v̄n(x, t) =
n∑

i=1

N∑

h=1

vh−1
i χ]th−1,th](t)χΩx

ni
(x). (4.4.7)

We also define the piecewise-constant extension
∧
Kn on Ω2

∧
Kn(x, y) =

∑

(i,j)∈[n]2

∧
Kx

nijχΩx

nij
(x, y). (4.4.8)

Then, by construction, v̌n(x, t) uniquely solves the following problem






∂
∂t v̌n(x, t) = −∆

∧
Kn
p (v̄n(x, t)), x ∈ Ω, t > 0,

v̌n(x, 0) = gn(x), x ∈ Ω,
(
∧
Pnloc)

where

gn(x) = gi for x ∈ Ωx
ni, i ∈ [n].

The first main result of the section is the following theorem.

Theorem 4.4.4. Suppose that p ∈]1,+∞[, K ∈ L∞(Ω2) is a symmetric and measurable mapping,

and g ∈ L∞(Ω). Let u and Uh denote the solutions to (Pnloc) and (Pd,d
nloc), respectively. Let ǔn be the

continuous extension of Uh given in (4.4.4). Then, the following hold:

(i) for T > 0, there exist positive constants C1 and C2, independent of n and T , such that for any
β > 0

∥

∥u−ǔn

∥

∥

C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))









β
log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2





1/p

+
∥

∥K −
∧

Kn

∥

∥

Lp(Ω2)
+

∥

∥g − gn
∥

∥

Lp(Ω)
+ τ






,

(4.4.9)

with probability at least 1− n−C2q
2p−1
n β.

(ii) Suppose furthermore that g ∈ Lip(s, Lq(Ω)) and K ∈ Lip(s′, Lq(Ω2)), q ∈ [1,+∞], s, s′ ∈]0, 1],
and qn

∥
∥K
∥
∥
L∞(Ω2)

≤ 1. Then, for T > 0, there exist positive constants C1 and C2, independent

of n and T , such that for any β > 0

∥

∥u− ǔn

∥

∥

C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))









β
log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2





1/p

+ δ(n)min(s,s′)min(1,q/p) + τ






,

(4.4.10)

with probability at least 1− n−C2q
2p−1
n β, where δ(n) is the spacing parameter defined in (4.4.3).

Before proceeding to the proof, some remarks are in order.

Remark 4.4.5.

(i) The constant in (4.4.9) depends on p and the data via
∥
∥g
∥
∥
L∞(Ω)

and
∥
∥K
∥
∥
L∞(Ω2)

. For the

bound (4.4.10), it also depends on (q, s, s′).

(ii) By Lemma 2.2.16, it is clear that the first term in the bounds (4.4.9)-(4.4.10) can be replaced by

β1/p
(
log(n)

n

)1/p

+
max

(

q
−(1−1/p)
n , q

−1/2
n

)

n1/2
.

(iii) The last term in the latter bound can be rewritten as

n−1/2max
(

q−(1−1/p)
n , q−1/2

n

)

=

{

(qnn)
−1/2 if p ∈]1, 2],

q
1/p
n (q2nn)

−1/2 if p > 2.
(4.4.11)
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Thus, if infn≥1 qn > 0, as is the case when the graph is dense (see discussion after Proposi-

tion 2.1.17), then the term (4.4.11) is in the order of n−1/2 with probability at least 1 − n−cβ

for some c > 0. If qn is allowed to be o(1), i.e., sparse graphs (see Proposition 2.1.17), then

(4.4.11) is o(1) if either qnn → +∞ for p ∈]1, 2], or q2nn → +∞ for p > 2. The probability of

success is at least 1 − e−C2β log(n)1−δ
provided that qn = log(n)−δ/(2p−1), with δ ∈ [0, 1[. Ob-

serve that all these conditions on qn are fulfilled by the graph model of Proposition 2.1.17 for

g(n) = δ/(2p− 1) log(log(n))/ log(n).

(iv) In fact, if infn≥1 qn ≥ c > 0, then we have
∑

n≥1 n
−C2q

2p−1
n β ≤

∑

n≥1 n
−C2c2p−1β < +∞ provided

that β > (C2c
2p−1)−1. Thus, if this holds, invoking the (first) Borel-Cantelli lemma, it follows

that the bounds of Theorem 4.4.4 hold almost surely. The same reasoning carries over for the

bounds of Theorem 4.4.7.

(v) For finite fixed T , the term T exp(c1T ), for c1 > 0, in the bound becomes a constant. One can

even allow for time intervals of size T = c2 log(n), c2 > 0, in which case this term scales as

O(nc1c2 log(n)). Thus this term can be dominated by the other rates in n if c1c2 is sufficiently

small (see Remark 4.4.8(ii) for details).

(vi) One may wonder if the functional space assumption made on g and K in claim (ii) is reasonable or

even makes sense. The answer is affirmative. Indeed, Lipschitz spaces are rich enough to include

both functions with discontinuities and even fractal structure. For instance, from [78], one can

show that the graphon corresponding to the nearest neighbour graphs, which are very popular

in practice (e.g. in image processing [49, 46]), are typical examples satisfying Assumptions (A.1)-

(A.2) with qn = 1 and K is a {0, 1}-valued function living on the space of bounded variation

functions, which in turn is Lip(1, L1(Ω2)).

To prove Theorem 4.4.4, we first show the following key lemma.

Lemma 4.4.6. Under the assumptions of Theorem 4.4.4, for T > 0, there exist positive constants C1

and C2, independent of n and T , such that for any β > 0

P

(∥
∥v̌n − ǔn

∥
∥
C(0,T ;Lp(Ω))

≥ ε
)

≤ n−C2q
2p−1
n β ,

where

ε = C1T exp (O(T ))

((

β
log(n)

n
+max

(

q−(p−1)
n , q−p/2

n

) 1

np/2

)1/p

+ τ

)

.

Proof of Lemma 4.4.6: For 1 < p < +∞, we define the function

Ψ : R → R

x 7→ |x|p−2 x = sign(x)|x|p−1.

First, for an appropriate choice of τh, using [66, Lemma 5.1], we have that both (Pd,d
nloc) and (

∧
P

d

nloc)

are well posed. In turn Uh and V h are bounded and V h uniquely solves (
∧
P

d

nloc), and similarly for ǔn

and v̌n as solutions to (PΛn
nloc) and (

∧
Pnloc). Observe also that v̌n(·, t) and ǔn(·, t) are both constants

over Ωx
ni. Similarly, v̄n(·, t) and ūn(·, t) are also constants over the cell Ωx

ni. We therefore used the

shorthand notations for the vector-valued functions ūn(t) = (ūni(t))i∈[n]
def

= (ūn(xi, t))i∈[n] and v̄n(t) =

(v̄n(t))i∈[n]
def

= (v̄n(xi, t))i∈[n], and likewise for ǔn(t) and v̌n(t). Let us denote ξ̌n(t) = ǔn(t) − v̌n(t)

and ξ̄n(t) = ūn(t)− v̄n(t). By subtracting both sides of (PΛn
nloc) from those of (

∧
Pnloc), evaluated at the
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cell Ωx
ni, we obtain

d

dt
ξ̌ni(t) =

1

n

n∑

j=1

(

λijΨ(ūnj(t)− ūni(t))−
∧
Kx

nijΨ(v̄nj(t)− v̄ni(t))

)

= Zni(t) +
1

n

n∑

j=1

∧
Kx

nij

(
Ψ(ūnj(t)− ūni(t))−Ψ(v̄nj(t)− v̄ni(t))

)
,

(4.4.12)

where

Zni(t) =
1

n

n∑

j=1

(λij −
∧
Kx

nij)αij(t) and αij(t) = Ψ(ūnj(t)− ūni(t)), ∀(i, j) ∈ [n]2, t ∈ [0, T ]. (4.4.13)

By our discussion above, we have sup(i,j)∈[n]2,t∈[0,T ] |αij(t)| < +∞. We multiply both sides of (4.4.12)

by 1
nΨ(ξ̌ni(t)) and sum over i to obtain

1

p

d

dt

∥
∥ξ̌n(t)

∥
∥p

p,n
=

1

n

n∑

i=1

Zni(t)Ψ(ξ̌ni(t))+
1

n2

n∑

i,j=1

∧
Kx

nij

(
Ψ(ūnj(t)−ūni(t))−Ψ(v̄nj(t)−v̄ni(t))

)
Ψ(ξ̌ni(t)).

(4.4.14)

We estimate the first term on the right-hand side of (4.4.14) using the Hölder inequality, to get

1

n

∣
∣
∣
∣
∣

n∑

i=1

Zni(t)Ψ(ξ̌ni(t))

∣
∣
∣
∣
∣
≤

1

n

(
n∑

i=1

∣
∣Zni(t)

∣
∣p

) 1
p

×

(
n∑

i=1

∣
∣ξ̌ni(t)

∣
∣p

) p−1
p

≤
∥
∥Zn(t)

∥
∥
p,n

∥
∥ξ̌n(t)

∥
∥p−1

p,n
. (4.4.15)

Now, using the fact that
∧
Kx

nij ≤
∥
∥K
∥
∥
L∞(Ω2)

(see (2.1.12)), ∀(i, j) ∈ [n]2, and applying [66, Corol-

lary B.1] to the function Ψ between a = v̄nj(t) − v̄ni(t) and b = ūnj(t) − ūni(t) (without loss of

generality, we suppose that b > a), we get

∣
∣
∣
∣
∣
∣

1

n2

n∑

i,j=1

∧
Kx

nij

(
Ψ(ūnj(t)− ūni(t))−Ψ(v̄nj(t)− v̄ni(t)

)
Ψ(ξni(t))

∣
∣
∣
∣
∣
∣

≤
(p− 1)

∥
∥K
∥
∥
L∞(Ω2)

n2

n∑

i,j=1

∣
∣ξ̄nj − ξ̄ni

∣
∣
∣
∣ηn(t)

∣
∣p−2∣∣ξ̌ni

∣
∣p−1

,

(4.4.16)

where ηn(t) is an intermediate value between a and b. Using that fact that g ∈ L∞(Ω) and the

construction of ūn(·), we deduce from [66, Theorem3.1(ii)] that for t ∈ [0, T ]

∣
∣ηn(t)

∣
∣p−2

≤
∣
∣ūnj(t)− ūni(t)

∣
∣p−2

≤
(
2
∥
∥u(·, t)

∥
∥
L∞(Ω)

)p−2
≤
(
2
∥
∥g
∥
∥
L∞(Ω)

)p−2
. (4.4.17)

Let C2 =
(
2
∥
∥g
∥
∥
L∞(Ω)

)p−2∥∥K
∥
∥
L∞(Ω2)

. Inserting (4.4.17) into (4.4.16), and then using the Hölder and
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triangle inequalities, it follows that
∣
∣
∣
∣
∣
∣

1

n2

n∑

i,j=1

∧
Kx

nij

(
Ψ(ūnj(t)− ūni(t))−Ψ(v̄nj(t)− v̄ni(t)

)
Ψ(ξ̌ni(t))

∣
∣
∣
∣
∣
∣

≤ C2
p− 1

n2

n∑

i,j=1

∣
∣ξ̄nj(t)− ξ̄ni(t)

∣
∣
∣
∣ξ̌ni
∣
∣p−1

≤ C2
p− 1

n2










n∑

i,j=1

∣
∣ξ̄nj(t)− ξ̄ni(t)

∣
∣p





1
p



∑

i,j

∣
∣ξ̌ni(t)

∣
∣p





p−1
p






≤ C2
p− 1

n2










n∑

i,j=1

∣
∣ξ̄nj(t)

∣
∣p





1
p

+





n∑

i,j=1

∣
∣ξ̄ni(t)

∣
∣p





1
p








n
2(p−1)

p

(

1

n

n∑

i=1

∣
∣ξ̌ni(t)

∣
∣p

) p−1
p





≤ C2
p− 1

n2

(

2n
2
p
∥
∥ξ̄n(t)

∥
∥
p,n

)(

n
2(p−1)

p
∥
∥ξ̌n(t)

∥
∥p−1

p,n

)

≤ 2C2(p− 1)
∥
∥ξ̄n(t)

∥
∥
p,n

∥
∥ξ̌n(t)

∥
∥p−1

p,n
.

(4.4.18)

Using the triangle inequality combined with [66, Lemma 5.2], we have
∥
∥ξ̄n(t)

∥
∥
p,n

=
∥
∥v̄n(t)− ūn(t)

∥
∥
p,n

≤
∥
∥v̄n(t)− v̌n(t)

∥
∥
p,n

+
∥
∥v̌n(t)− ǔn(t)

∥
∥
p,n

+
∥
∥ǔn(t)− ūn(t)

∥
∥
p,n

≤ Cτ +
∥
∥ξ̌n(t)

∥
∥
p,n

+ C ′τ

≤ C ′′τ +
∥
∥ξ̌n(t)

∥
∥
p,n
.

(4.4.19)

Putting together (4.4.14), (4.4.15), (4.4.18) and (4.4.19), we have

d

dt

∥
∥ξ̌n(t)

∥
∥p

p,n
≤
∥
∥Zn(t)

∥
∥
p,n

∥
∥ξ̌n(t)

∥
∥p−1

p,n
+ 2C2(p− 1)

(

C ′′τ +
∥
∥ξ̌n(t)

∥
∥
p,n

)∥
∥ξ̌n(t)

∥
∥p−1

p,n

≤
(

2C3(p− 1)τ +
∥
∥Zn(t)

∥
∥
p,n

)∥
∥ξ̌n(t)

∥
∥p−1

p,n
+ 2C2(p− 1)

∥
∥ξ̌n(t)

∥
∥p

p,n
.

(4.4.20)

Then, from (4.4.20) via the Gronwall’s inequality in its differential form (see, e.g., [51, Appendix B]),

we obtain

∥
∥ǔn − v̌n

∥
∥
C(0,T ;Lp(Ω))

= sup
t∈[0,T ]

∥
∥ξ̌n(t)

∥
∥
p,n

≤

(

2C3Tτ +

∫ T

0

∥
∥Zn(t)

∥
∥
p,n
dt

)

exp (2C2T ) . (4.4.21)

It remains to bound
∫ T
0

∥
∥Zn(t)

∥
∥
p,n
dt. For this purpose, we use Lemma 4.4.10 (see Section 4.4.4)4.

Thus, plugging the bound of Lemma 4.4.10(i) into inequality (4.4.21), we get the desired conclusion. �

We are now ready to prove our main result.

Proof of Theorem 4.4.4:

(i) Using the triangle inequality, we have
∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤
∥
∥u− v̌n

∥
∥
C(0,T ;Lp(Ω))

+
∥
∥v̌n − ǔn

∥
∥
C(0,T ;Lp(Ω))

. (4.4.22)

Since by construction
∧
Kn is a bounded mapping, we bound the first term on the right-hand side

of (4.4.22) using [66, Theorem5.1]5 to get

∥
∥u− v̌n

∥
∥
C(0,T ;Lp(Ω))

= O

(

T exp(O(T ))
(∥
∥K −

∧
Kn

∥
∥
Lp(Ω2)

+
∥
∥g − gn

∥
∥
Lp(Ω)

+ τ
)
)

, (4.4.23)

4This inequality is sharp as can be seen for instance from assertion (ii) of Lemma 4.4.10, at least for p ≥ 2.
5Here, we have made the constant explicit in T compared to the statement in Theorem3.4.4.
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Claim (4.4.9) then follows by plugging (4.4.23) and Lemma 4.4.6 into (4.4.22).

(ii) Our assumption on qn together with (4.4.2) and (4.4.8) entail that

∧
Kn(x, y) =

∑

(i,j)∈[n]2

KnijχΩx

nij
(x, y), Knij =

1
∣
∣ΩX

nij

∣
∣

∫

ΩX

nij

K(x, y)dxdy.

Since g ∈ Lip(s, Lq(Ω)) and K ∈ Lip(s′, Lq(Ω2)), we can invoke Lemma 2.3.3 to get

∥
∥K −

∧
Kn

∥
∥
Lp(Ω2)

≤ C(p, q, s′)δ(n)s
′ min(1,q/p) and

∥
∥g − gn

∥
∥
Lp(Ω)

≤ C(p, q, s)δ(n)smin(1,q/p).

(4.4.24)

Inserting the bound (4.4.24) into (4.4.9), and using the fact that δ(n) < 1, yields (4.4.10).

�

4.4.2.2 Networks on graphs generated by random nodes

Let us now turn to the totally random graph model. Consider the following system of difference

equations on the totally random graph Gqn(n,K)6 :






uhi − uh−1
i

τh−1
=

1

n

∑

{j: (i,j)∈E(Gqn (n,K))}

∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), h ∈ [N ]

u0i = gi, i ∈ [n].

(Pr,d
nloc)

As we have done before, we consider the continuous extension of the solution vector Uh = (uh1 ,

uh2 , · · · , u
h
n)

⊤, that is a linear interpolation on Ω× [0, T ]

ǔn(x, t) =
th − t

τh−1
uh−1
i +

t− th−1

τh−1
uhi if x ∈ ΩX

ni, t ∈]th−1, th], (4.4.25)

and a piecewise approximation

ūn(x, t) =
n∑

i=1

N∑

h=1

uh−1
i χ]th−1,th](t)χΩX

ni
(x). (4.4.26)

Then, we have
{

∂
∂t ǔn(x, t) = −∆Γn

p (ūn(x, t)), x ∈ Ω, t > 0,

ǔn(x, 0) = gn(x), x ∈ Ω
(PΓn

n )

where

gn(x) = gi if x ∈ ΩX
ni, i ∈ [n],

and the random variable Γn is such that

Γn(x, y) = Υij for (x, y) ∈ ΩX
nij .

If conditioned with respect to a realization x = (x1, · · · ,xn) of the random vector X, problem (Pr,d
nloc)

can be rewritten on Gqn(n,K) in the following form






uhi − uh−1
i

τh−1
=

1

n

n∑

j=1

λij
∣
∣uh−1

j − uh−1
i

∣
∣p−2

(uh−1
j − uh−1

i ), (i, h) ∈ [n]× [N ],

u0i = gi, i ∈ [n].

(Pd,d
nloc)

By capitalizing on the results obtained for the the case where {Gqn(n,K)}n∈N was generated by the

deterministic sequence x, we get the following result.

6Recall again from Remark 4.4.2, that rigorously speaking, each random variable involved in the problems and equa-

tions of this section should be understood as a function of an event ω from Ωn. This dependence is dropped only to

lighten notation.
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Theorem 4.4.7. Suppose that p ∈]1,+∞[, K ∈ L∞(Ω2) is a symmetric and measurable mapping,

and g ∈ L∞(Ω). Let u and Uh denote the solutions to (Pnloc) and (Pr,d
nloc), respectively. Let ǔn be the

continuous extension of Uh given in (4.4.25). Then, the following hold:

(i) For T > 0, there exist positive constants C1 and C2, independent of n and T , such that for any
β > 0

∥

∥u−ǔn

∥

∥

C(0,T ;Lp(Ω))
≤ C1T exp (O(T ))









β
log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2





1/p

+
∥

∥K −
∧

Kn

∥

∥

Lp(Ω2)
+

∥

∥g − gn
∥

∥

Lp(Ω)
+ τ






,

(4.4.27)

with probability at least 1− n−C2q
2p−1
n β.

(ii) Suppose furthermore that g ∈ Lip(s, Lq(Ω)) and K ∈ Lip(s′, Lq(Ω2)), s, s′ ∈]0, 1], and qn
∥
∥K
∥
∥
L∞(Ω2)

≤

1. Let θ
def

= min (s, s′)min (1, q/p). Then, for T > 0, there exist positive constants C1 and C2,
independent of n and T , such that for any β > 0 and t ∈]0, e[

∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≤ C1T exp (O(T ))









β

log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2

1/p



+

(
t log(n)

n

)θ

+ τ




 ,

(4.4.28)

with probability at least 1−
(
n−C2q

2p−1
n β + n−t

)
.

The dependence of the constant C in the parameters is similar to Remark 4.4.5(ii).

Remark 4.4.8.

(i) The dependence of the constant C in the parameters is similar to Remark 4.4.5(i).

(ii) As observed in Remark 4.4.5(v), one can take T = c2 log(n), in which case T exp(c1T ) =

c2n
c1c2 log(n), with c1, c2 > 0. Consequently, if one sets qn = log(n)−δ/(2p−1), for δ ∈]0, 1[ (see

Remark 4.4.5(iii)), then the bound in (4.4.28) scales as O
(

log(n)s

nmin(1/p,1/2,θ)−c1c2

)

, for some s > 0,

which converges to 0 provided that c1c2 < min(1/p, 1/2, θ).

As a preparatory step to prove Theorem 4.4.7, the following lemma is instrumental. It establishes

that the spacings between the n uniformly distributed nodes are O(log(n)/n) with high probability.

Lemma 4.4.9. Consider the sequence of random spacings (X(1),X(2) −X(1), · · · , 1−X(n)), where we

recall
{
X(i)

}n

i=1
are the order statistics of X. Let t ∈]0, e[. Then, for any i ∈ [n]

δi
def

= X(i) −X(i−1) ≤ t
log(n)

n
, (4.4.29)

with probability at least 1− n−t.

Proof of Lemma 4.4.9: Since Xi are i.i.d. uniform random variables on Ω, we have, by virtue

of [97, Theorem 1.6.7] that the random variables δi, i ∈ [n], have the same distribution as the random

variables Zi/
∑n+1

k=1 Zk, where Z1, · · · , Zn+1 are i.i.d standard exponential random variables. In addi-

tion, invoking [97, Lemma 1.6.6], we know that Sn+1
def

=
∑n+1

k=1 Zk is a Gamma random variable with

parameters (1, n+ 1) (thus having the density fSn+1(s) = e−ssn/n!, s ≥ 0).

Now, combining these two observations, we obtain by straightforward integral calculations that for
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any ε ∈ [0, 1[

P(δi ≥ ε) = P(Zi ≥ εSn+1) = P((1− ε)Zi ≥ ε(Sn+1 − Zi))

= P

(

Zn+1 ≥
ε

1− ε
Sn

)

=

∫ +∞

0
P

(

Zn+1 ≥
ε

1− ε
s

)

fSn(s)ds

=

∫ +∞

0
e−

ε
1−ε

se−s sn−1

(n− 1)!
ds

= (1− ε)n.

(4.4.30)

The equality of the second line stems from an equality in distribution, since Sn+1 − Zi has the same

distribution as Sn and Zi has the same distribution as Zn+1, and the fact that Zi and Sn+1 − Zi

are independent. Taking ε = t log(n)n ∈]0, 1[, and using the standard inequality log(1 − u) ≤ −u, for

u ∈ [0, 1], we get

P(δi ≥ ε) = (1− ε)n = exp(n log(1− ε)) ≤ exp(−nε) = n−t.

�

Proof of Theorem 4.4.7: The idea of the proof is to take the conditional probability with respect

to a fixed realization x = (x1, · · · ,xn) of the random vector X, then use the bound in Theorem 4.4.4,

which is independent of x, and finally integrate with respect to the uniform density on Ωn.

(i) We have

P

(∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≥ ε′
)

=
1
∣
∣Ω
∣
∣n

∫

Ωn

P

(∥
∥u− ǔn

∥
∥
C(0,T ;Lp(Ω))

≥ ε′|X = x
)

dx

≤
1
∣
∣Ω
∣
∣n

∫

Ωn

n−C2q
2p−1
n βdx

= n−C2q
2p−1
n β ,

(4.4.31)

with

ε
′ = C1T exp (O(T ))









β
log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2





1/p

+
∥

∥K −
∧

Kn

∥

∥

Lp(Ω2)
+

∥

∥g − gn
∥

∥

Lp(Ω)
+ τ






.

Thus, (4.4.27) follows from the fact that the obtained bound in (4.4.9) is independent of the random choice of x.

(ii) In view of (4.4.24), we can argue that

P

(

∥

∥K −
∧

Kn

∥

∥

Lp(Ω2)
+

∥

∥g − gn
∥

∥

Lp(Ω)
≥ κ

)

≤ P

(

(

C(p, q, s) + C(p, q, s′)
)

δ(n)θ ≥ κ
)

.

Taking κ =
(

C(p, q, s) + C(p, q, s′)
)

(

t
log(n)

n

)θ

, for t ∈]0, e[, and applying Lemma 4.4.9, we deduce that

P

(

∥

∥K −
∧

Kn

∥

∥

Lp(Ω2)
+

∥

∥g − gn
∥

∥

Lp(Ω)
≥ κ

)

≤ n
−t
.

Denote the events

A1 :
{

∥

∥v̌n − ǔn

∥

∥

C(0,T ;Lp(Ω))
≤ ε

}

A2 :

{

∥

∥K −
∧

Kn

∥

∥

Lp(Ω2)
+

∥

∥g − gn
∥

∥

Lp(Ω)
≤ κ

′

}

and their complements Ac
i , where

ε = CT exp (O(T ))









β
log(n)

n
+

max
(

q
−(p−1)
n , q

−p/2
n

)

np/2





1/p

+ τ






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and κ′ = CT exp (O(T ))
(

t
log(n)

n

)θ

, with C the largest constants among the one in claim (i) and
(

C(p, q, s) + C(p, q, s′)
)

. Using the union bound, we get

P

(

∥

∥u− ǔn

∥

∥

C(0,T ;Lp(Ω))
≤ ε+ κ

′
)

≥ P
(

∩
2
i=1Ai

)

= 1− P
(

∪
2
i=1A

c
i

)

≥ 1−
2

∑

i=1

P (Ac
i ) ≥ 1−

(

n
−C2q

2p−1
n β + n

−t
)

,

which yields the desired claim.

�

4.4.3 Asymptotic regimes

A close inspection of the error bound in (4.4.28) (Theorem4.4.7) reveals three contributions:

• Spatial discretization: the first contribution is materialized in the first term which scales as (see

Remark 4.4.5(i))

O





(
log(n)

n

)1/p

+
max

(

q
−(1−1/p)
n , q

−1/2
n

)

n1/2



 .

This term represents the spatial discretization error when approximating the continuous evolu-

tion equation (Pnloc) on the random inhomogeneous graph model Gqn(n,K) generated according

to Definition 2.1.15 with the graphon K.

• Data approximation: the second term is O

((
log(n)

n

)θ
)

which captures the error of discretizting

the initial data g and the graphon K. The presence of the error on K is clearly tied to the

nonlocal nature of the evolution equation on graphs. This approximation error depends on the

regularity of g and K, and the latter encodes the geometry/structure of the underlying graphs.

The more regular g and K are, the faster the convergence rate.

• Time discretization: the last term, which is O(τ), is classical and corresponds to the time dis-

cretization error.

At this stage, one may wonder which of the first two terms dominate, or in other words, what

are the different regimes exhibited by the convergence rate as a function of the problem parameters

(p, q, s, s′). This is quite important as it will reveal which nonlocal p-Laplacian evolution problems are

harder/easier to discretize by highlighting the role of each parameter, and for instance that of p and

the impact of nonlocality (i.e. graphon structure).

Toward this goal, we first make the error measure in (4.4.28) independent of p and we choose to quan-
tify the error in the classical L2(Ω) norm. Consequently, thanks to Lemma 2.2.16 and Lemma 2.2.19,
as well as boundedness of the solutions, it is not difficult to see that

∥
∥u− ǔn

∥
∥
C(0,T ;L2(Ω))

=







O

((

β log(n)
n

)1/p

+
max(q−(1−1/p)

n ,q−1/2
n )

n1/2 +
(

t log(n)
n

)θ

+ τ

)

, p ∈ [2,+∞[

O

((

β log(n)
n

)1/2

+
max(q−(p−1)/2

n ,q−p/4
n )

np/4 +
(

t log(n)
n

)pθ/2

+ τp/2
)

p ∈]1, 2],

(4.4.32)

holds with probability at least 1−
(
n−C2q

2p−1
n β + n−t

)
.

To make the rest of the discussion more concrete we will take qn = log(n)−δ/(2p−1), with δ ∈

[0, 1[, which covers both dense (δ = 0) and non-dense (δ ∈]0, 1[) graphs; see Remark 4.4.5(iii)) and

Section 2.1.5). Thus, we have

max
(

q−(1−1/p)
n , q−1/2

n

)

=

{

O
(
log(n)1/2

)
p ∈ [2,+∞[

O
(
log(n)p/4

)
p ∈]1, 2],
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In turn, the second term in (4.4.32) is bounded by
(
log(n)

n

)min(p/4,1/2)

, ∀p ∈]1,+∞[. (4.4.33)

Without loss of generality7, we also suppose that s = s′ and q ≤ p so that θ = sq/p ∈]0, q/p] ⊂]0, 1].
In this case, (4.4.32) reads

∥
∥u− ǔn

∥
∥
C(0,T ;L2(Ω))

= O

((
log(n)

n

)min(1/p,1/2,sq/p)min(p/2,1)

+ τmin(p/2,1)

)

.

The term depending on n then exhibits four different regimes as a function of p, s and q (see

Figure 4.1). Indeed, it is straightforward to see that it scales as






(
log(n)

n

)sq/p
for p ≥ 2, sq ∈]0, 1],

(
log(n)

n

)1/p
for p ≥ 2, sq ∈]1, p],

(
log(n)

n

)sq/2
for p ∈]1, 2], sq ∈]0, p/2],

(
log(n)

n

)p/4
for p ∈]1, 2], sq ∈ [p/2, p].

Figure 4.1: Different regimes according to the values of p and s, and q.

In particular, the convergence rate shows a transition phenomenon at p = 2. The rate increases with

p for p ∈]2,+∞[ while it decreases with p for p ∈]1, 2] and sq ∈ [p/2, p]. As expected, the dependence

of the rate on the initial data g and graphon K is more prominent as they become irregular, i.e. for

smaller values of sq. For small sq and p ∈]1, 2], the rate is independent of p.

4.4.4 A key deviation result

The following lemma establishes a key deviation inequality for sup
t∈[0,T ]

∥
∥Zn(t)

∥
∥
p,n

where Zn(·) is a random

process defined as

Zni(t) =
1

n
αij(t)

n∑

j=1

(λij − γij), (4.4.34)

7This setting is true for many graphons, see, e.g., Remark 4.4.5(vi).
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where sup(i,j)∈[n]2,t∈[0,T ] |αij(t)| < +∞, and the λij ’s are independent random variables such that qnλij
is Bernoulli with parameter qnγij . It is obvious that this process covers that in (4.4.13) as a special

case.

Lemma 4.4.10. Let Zn(·) be the random process defined in (4.4.34). Then, we have

(i) For p ∈ [1,+∞[, T > 0, there exists a positive constant C, such that for any β > 0

P

(∫ T

0

∥
∥Zn(t)

∥
∥
p,n
dt ≥ ε

)

≤ n−Cq2p−1
n β ,

with

ε = T

(

β
log(n)

n
+ C3max

(

q−(p−1)
n , q−p/2

n

) 1

np/2

)1/p

,

where C3 is a positive constant which will be explicit in the proof.

(ii) For p ∈ [2,+∞[, suppose that there exists a positive constant C, such that for t > 0

inf
j∈[n]

1

n

∑

i>j

α2
ij(t)

qn
γij(1− qnγij) ≥ C.

Then,

E

(∫ T

0

∥
∥Zn(t)

∥
∥p

p,n
dt

)

∼
T

np/2
.

Proof of Lemma 4.4.10:

(i) Using the Jensen inequality, we have

P

(∫ T

0

∥
∥Zn(t)

∥
∥
p,n
dt ≥ ε

)

≤ P

(

T p−1

∫ T

0

∥
∥Zn(t)

∥
∥p

p,n
dt ≥ εp

)

.

Let us first recall that qnλij are independent Bernoulli random variables with parameters qnγij .

For the sake of simplicity, set, for (i, j) ∈ [n]2, Yni
def

=
∫ T
0

∣
∣ 1
n

n∑

j=1
Unij(t)

∣
∣pdt, where Unij(t)

def

=

αij(t)(λij − γij). We have

I
def

= P

(∫ T

0

∥
∥Zn(t)

∥
∥p

p,n
dt ≥ T 1−pεp

)

= P

(

1

n

(
n∑

i=1

Yni − E(Yni)

)

≥ T 1−pεp −
1

n

n∑

i=1

E(Yni)

)

.

It remains now to bound E (Yni). We distinguish the cases where p ≥ 2 and p ∈]1, 2[.

• p ≥ 2. Using the Rosenthal inequality with the independent according to j zero-mean

random variables Unij(t), we have

E (Yni) =
1

np

∫ T

0
E




∣
∣

n∑

j=1

Unij(t)
∣
∣p



 dt

≤
C1T

np
sup

t∈[0,T ]
max






n∑

j=1

E(
∣
∣Unij(t)

∣
∣p),





n∑

j=1

E(Unij(t)
2)





p/2



 . (4.4.35)

We have

E
(∣
∣Unij(t)

∣
∣p
)
= q−p

n

∣
∣αij(t)

∣
∣p
∣
∣qnγij(1− qnγij)

p + (qnγij)
p(1− qnγij)

∣
∣

= q−(p−1)
n

∣
∣αij(t)

∣
∣pγij

(
1− qnγij

)(
(qnγij)

p−1 + (1− qnγij)
p−1
)
.

Taking p = 2, we get

E(Unij(t)
2) = q−1

n α2
ij(t)γij(1− γij).
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Since sup(i,j)∈[n]2,t∈[0,T ] |αij(t)| < +∞, and γij is also bounded and p being greater than 2,

there exists C2 > 0, such that,

max






n∑

j=1

E(
∣
∣Unij(t)

∣
∣p),





n∑

j=1

E(Unij(t)
2)





p/2



 ≤ C2max

(
nq−(p−1)

n , np/2q−p/2
n

)

≤ C2max
(
q−(p−1)
n , q−p/2

n

)
np/2.

Therefore
1

n

n∑

i=1

E (Yni) ≤ C1C2T max
(

q−(p−1)
n , q−p/2

n

)

n−p/2. (4.4.36)

• p ∈ [1, 2[. Observe that by the mutual independence of the random variables {λij}(i,j)∈[n]2 ,

we deduce that {Unij(t)}
n
j=1 are independent and zero-mean random variables. Thus

E









n∑

j=1

Unij(t)





2

 = Var





n∑

j=1

Unij(t)



 =

n∑

j=1

E
(
Unij(t)

2
)
. (4.4.37)

Therefore, applying the Jensen inequality to the concave function x 7→ xp/2, we obtain

E (Yni) ≤
T

np
sup

t∈[0,T ]
E




∣
∣

n∑

j=1

Unij(t)
∣
∣p



 ≤
T

np
sup

t∈[0,T ]



E









n∑

j=1

Unij(t)





2







p/2

=
T

np
sup

t∈[0,T ]





n∑

j=1

E
(
Unij(t)

2
)





p/2

=
T

np
sup

t∈[0,T ]





n∑

j=1

αij(t)
2

qn
γij(1− qnγij)





p/2

≤
C2T

q
p/2
n

n−p/2 ≤ C2T max
(

q−(p−1)
n , q−p/2

n

)

n−p/2.

(4.4.38)

Altogether, we have shown that for any p ≥ 1,

1

n

n∑

i=1

E (Yni) ≤ C3T max
(

q−(p−1)
n , q−p/2

n

)

n−p/2, (4.4.39)

where C3 = C2max(1, C1).

Hence, setting Wni = Yni − E (Yni) and κ = T 1−pεp − C3T max
(

q
−(p−1)
n , q

−p/2
n

)

n−p/2, we have

I ≤ P

(

1

n

n∑

i=1

Wni ≥ κ

)

.

Let ε > 0 such that κ > 0. Observe that the random variables {Wni}
n
i=1 are independent,

zero-mean, and obey:

⊲ sup
i∈[n]

∣
∣Wni

∣
∣ ≤ 2 sup

i∈[n]

∣
∣Yni

∣
∣ ≤ C4T , since αij and qnγij are both uniformly bounded.

⊲
n∑

i=1
E
(
W 2

ni

)
=

n∑

i=1
Var (Yni) ≤

n∑

i=1
E
(
Y 2
ni

)
. Using the Jensen inequality with the function

x 7→ x2, and replacing the exponent "p" in inequality (4.4.35), by "2p" which is greater

than 2, we obtain
n∑

i=1

E
(
W 2

ni

)
≤

n∑

i=1

E
(
Y 2
ni

)
≤ C5T

2max
(

q−(2p−1)
n , q−p

n

) 1

np−1
.
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We are then in position to apply the Bernstein inequality to {Wni}
n
i=1 according to the index i,

whence we get, after some elementary algebra

P

(

1

n

n∑

i=1

Wni ≥ κ

)

≤ exp






−

n2κ2

2

(
n∑

i=1
E
(
W 2

ni

)
+ nκC4T/3

)







≤ exp

(

−
C6

2
min

(
q2p−1
n , qpn

) nκ2

n−pT 2 + κT

)

.

Taking κ = βT log(n)
n > Tn−p, for p ≥ 1, we have after straightforward calculations

P

(

1

n

n∑

i=1

Wni ≥ κ

)

≤ exp

(

−
C6

4
min

(
q2p−1
n , qpn

)
nκ/T

)

= n−
C6
4

min(q2p−1
n ,qpn)β .

In turn,

I ≤ P

(

1

n

n∑

i=1

Wni ≥ κ

)

≤ n−Cmin(q2p−1
n ,qpn)β .

For this choice of κ, observe that

κ = βT
log(n)

n
⇔ T 1−pεp − C3T max

(

q−(p−1)
n , q−p/2

n

)

n−p/2 = βT
log(n)

n

⇔ ε = T

(

β
log(n)

n
+ C3max

(

q−(p−1)
n , q−p/2

n

) 1

np/2

)1/p

.

Thus

P

(∫ T

0

∥
∥Zn(t)

∥
∥
p,n
dt ≥ ε

)

≤ n−Cmin(q2p−1
n ,qpn)β . (4.4.40)

As qn ≤ 1 by (A.2) and 2p− 1 ≥ p for p ∈≥ 1, we obviously have min
(

q2p−1
n , qpn

)

= q2p−1
n .

(ii) Recalling the notation in the proof of claim (i), we have

∀(i, j) ∈ [n]2,
1

n

n∑

i=1

Yni =
1

n

∫ T

0

n∑

i=1

∣
∣Zni(t)

∣
∣pdt =

1

np+1

∫ T

0

n∑

i=1

∣
∣

n∑

j=1

Unij(t)
∣
∣pdt.

Thus, for p ∈ [2,+∞[, applying the Jensen inequality and using (4.4.37), we have

1

n

n∑

i=1

E(Yni) =
1

np+1

∫ T

0

n∑

i=1

E




∣
∣

n∑

j=1

Unij(t)
∣
∣p



 dt

≥
1

np+1

∫ T

0

n∑

i=1



E





n∑

j=1

Unij(t)





2



p/2

dt

=
1

np+1

∫ T

0

n∑

i=1



Var





n∑

j=1

Unij(t)









p/2

dt

=
1

np+1

∫ T

0

n∑

i=1





n∑

j=1

Var(Unij(t))





p/2

dt

=
1

np+1

∫ T

0

n∑

i=1





n∑

j=1

α2
ij(t)

qn
γij(1− qnγij)





p/2

dt

≥ Cp/2Tn−p−1np/2+1 ≥
Cp/2T

np/2
.
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Combining this lower-bound with the upper-bounded (4.4.39), we get the claimed equivalence.

�
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Chapter 5

The Normalized p-Laplacian Evolution

Problem on Graphs

Main contributions of this chapter

◮ We deal with the discrete (in space) normalized p-Laplacian evolution problem on

graphs. We establish the well-posedness of this problem.

◮ We illustrate the use of this problem on filtering images and 3D point clouds.
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By convention, the Hilbert space of vectors associating a real value to each vertex i ∈ V of a weighted

graph Gn = (V,E,Kn) is denoted by H(V ). Each un : V → R in H(V ) associates a real value un(i) to

each vertex i ∈ V . One can see un as a column vector Un = [un(1), · · · , un(n)]
⊤ of Rn, where n =

∣
∣V
∣
∣

and in which each component corresponds to a vertex i ∈ V . The space H(V ) is endowed with the

inner product defined for two vectors un, vn ∈ H(V ) by
〈
un, vn

〉
=
∑

i∈V

un(i)vn(i).

5.1 Introduction

The normalized p-Laplacian recently introduced in its infinite form in connection with a stochastic

game called the Tug-of-War game [115] and Tug-of-War with noise [90] is a normalized version of the

p-Laplacian. The interest of this class of operators derives from the fact that it contains particular cases

for the p-Laplacian depending on the value of p. One can find the mean curvature operator for p = 1,

a multiple of the ordinary Laplace operator for p = 2. In the homogeneous case, the game p-Laplacian

equation coincides with the variational p-Laplacian equation for which many approximations have been

proposed. Some of these approximations are based on finite elements [13]. Some other approximations

using finite difference were also proposed for the normalized p-Laplacian for p = 1, p = ∞ and

p ≥ 2 [87]. One can also cite the approximations of the normalized p-Laplacian for 1 ≤ p ≤ ∞

by statistical operators [98]. Nevertheless, all of these proposed methods deal with regular domains.

However, potential existing and future applications require to tackle this problem in general domains

or graphs with arbitrary topology.

Motivated by the desire to extend this operator on all kinds of discrete domains, the authors of [1]

have proposed an adaptation and generalization of the normalized p-Laplacian on weighted graphs

using the frame of EdPs [105, 47]. This adaptation can be considered as a new class of p-Laplacian on

graphs as an interpolation between the nonlocal 1-Laplacian, the nonlocal infinity Laplacian and the

nonlocal 2-Laplacian on graphs.

In this chapter, motivated by this recent work dealing with the normalized p-Laplacian on graphs, we

study the Cauchy problem associated to this operator on graphs and show the existence and uniqueness

of a solution to this diffusion problem. First, we begin by recalling the definition of the normalized

p-Laplacian as given in [90]. Then, we recall the main definitions related to the normalized p-Laplacian

on graphs using the ’so-called’ statistical operators proposed in [1]. Finally, we show some applications

in image and data processing such as filtering to illustrate the use of this class of operators on graphs.
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5.2 The normalized p-Laplacian

We recall from Section 1.1.1 that the local p-Laplacian operator of a function u : Ω ⊂ R
N → R is given

for 1 ≤ p <∞ as

∆pu = div(
∣
∣∇u

∣
∣p−2

∇u).

In the case p = ∞, it is traditionally given by ∆∞u =
N∑

i=1

N∑

j=1

∂u
∂xi

∂u
∂xi

∂2u
∂xi∂xj

.

The game or normalized p-Laplacian recently introduced in [90] is written as for 1 ≤ p <∞

∆Nor
p u =

1

p

∣
∣∇u

∣
∣2−p

div(
∣
∣∇u

∣
∣p−2

∇u). (5.2.1)

When p = ∞

∆Nor
∞ u =

∣
∣∇u

∣
∣−2

∆∞u.

∆Nor
p is called normalized since it is homogeneous of degree 1, i.e. ∆Nor

p (s u) = s .∆Nor
p u for s ∈ R

in contrast to the p-Laplacian which is homogeneous of degree p− 1 (see Proposition 3.2.1). Thus, the

parabolic problems involving the normalized p-Laplacian are scale invariant. This is a useful property

in the context of image processing. If u is a smooth function, equation (5.2.1) can be rewritten as

(see [107]):

∆Nor
p u =

(p− 2)

p
∆Nor

∞ u+
1

p
∆u

=
(p− 2)

p
∆Nor

∞ u+
2

p
∆Nor

2 u

= α(p)∆Nor
∞ u+ β(p)∆Nor

2 u

(5.2.2)

with α(p) = (p − 2)/p and β(p) = 2/p. In plain words, ∆Nor
p is a convex combination of ∆Nor

∞ and

∆Nor
2 for p ≥ 2.

The game p-Laplacian for p = 1 can be written as:

∆Noru = div

(
∇(u)

|∇(u)|

)
∣
∣∇(u)

∣
∣. (5.2.3)

As ∆Nor
1 u = ∆u−∆Nor

∞ u, (5.2.2) can be rewritten as:

∆Nor
p u = α′(p)2∆

Nor
2 u+ β′(p)∆Nor

1 u, (5.2.4)

with α′(p) = 2(p−1)
p and β′(p) = 2−p

p , which is again a convex sum for p ∈ [1, 2].

In view of (5.2.2) and (5.2.4), the game p-Laplacian for 1 ≤ p ≤ ∞ can be rewritten in the form of

a convex sum as:

∆Nor
p u =

{
2
p∆

Nor
2 u+ p−2

p ∆Nor
∞ u for 2 ≤ p ≤ ∞;

2(p−1)
p ∆Nor

2 u+ 2−p
p ∆Nor

1 u for 1 ≤ p ≤ 2.
(5.2.5)

5.3 The normalized p-Laplacian on graphs

In [1] and earlier [105], the authors have proposed an extension of the game (normalized) p-Laplacian

on weighted graphs. For this they introduced statistical operators needed to define the normalized

p-Laplacian they propose. In this section we recall these definitions as well as the new definition of the

game p-Laplacian on weighted graphs.
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5.3.1 Nonlocal statistical operators on weighted graphs

All the definitions below are borrowed from [1] and slightly modified/adjusted to be adapted to our

setting and notations.

We first define the following difference operators on graphs needed to define the normalized p-

Laplacian on graphs and we give some classical definitions of the nonlocal p-Laplacian on graphs

resulting from these defintions.

Let us fix a weighted graph Gn = (V,E,Kn). The directional derivative (or edge derivative) of a

function un at a vertex i along an edge e = (i, j) ∈ E(Gn), is defined as

∂jun(i)
def

= Knij(un(j)− un(i)).

The difference operator GKn : H(V ) → H(E) is given for all un ∈ H(V ) and (i, j) ∈ E(Gn) by

(GKnun)(i, j)
def

= ∂jun(i).

The weighted gradient of a function un ∈ H(V ) at vertex i is the vector of all edge derivatives

(∇Knun)(i)
def

= ((∂jun)(i))
⊤
j:(i,j)∈E(G).

The discrete nonlocal p-Laplacian operator of un ∈ H(V ) (see (Pd
nloc)) evaluated at a vertex i ∈ V for

1 ≤ p <∞ reads

∆Kn
p (un)(i)

def

=
∑

j:(i,j)∈E(G)

Knij

∣
∣un(j)− un(i)

∣
∣p−2

(un(j)− un(i)).

For p = 2, we obtain the 2-Laplacian as follows:

∆Kn
2 (un)(i) =

∑

j:(i,j)∈E(G)

Knij(un(j)− un(i)).

For p = 1, we obtain the following 1-Laplacian on graphs:

∆Kn
1 (un)(i)

def

=
∑

j:(i,j)∈E(G)

Knij sign(un(j)− un(i)),

with

sign(x) =

{

1 if x ≥ 0,

−1 otherwise.

The ∞-Laplacian on graphs is defined in [45] by

∆Kn
∞ (un)(i)

def

=
1

2

[

max
j:(i,j)∈E(G)

(Knij max((un(j)− un(i)), 0)) + min
j:(i,j)∈E(G)

(Knij min((un(j)− un(i)), 0))

]

.

Now, we define the following nonlocal statistical operators, which are extensions of the classical local

operators (Mean, Max, Min, Midrange, Median):

NLMean(un)(i) =

∑

j:(i,j)∈E(G)

Knijun(j)

∑

j:(i,j)∈E(G)

Knij
,

NLMax(un)(i) = max
j:(i,j)∈E(G)

(Knij max(un(j)− un(i), 0)) + un(i),

NLMin(un)(i) = max
j:(i,j)∈E(G)

(Knij max(un(i)− un(j), 0)) + un(i),

NLMidrange(un)(i) =
1

2
(NLMin(un)(i) + NLMax(un)(i)),

NLMedian(un)(i) =median((∇Knun)(i)) + un(i),

(5.3.1)
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where median is the classical discrete median operator defined as follows. For xi ∈ R and i = 1...,m

median1≤j≤m{xj} =







x(m+1
2 ) if m is odd,

x(m2 )+x(m2 +1)
2 if m is even.

(5.3.2)

with {x(1), · · · , x(m)} a nondecreasing arrangement of {x1, ..., xm}.

One can see that by setting Knij = 1, for (i, j) ∈ [n]2, we recover the classical statistical Mean,

Midrange, and Median filters.

Definition 5.3.1 ([1, Section 3.1]). The normalized version of the nonlocal 1-Laplacian, 2-Laplacian

and ∞-Laplacian are defined as:

∆Nor
Kn,2(un)(i) =NLMean(un)(i)− un(i),

∆Nor
Kn,1(un)(i) =NLMedian(un)(i)− un(i),

∆Nor
Kn,∞(un)(i) =NLMidrange(un)(i)− un(i).

(5.3.3)

An important observation is that these operators are related to partial operators on graphs in the

following way.

∆Nor
Kn,2(un)(i) =

1

µ(i)
∆Kn

2 (un)(i),

∆Nor
Kn,∞(un)(i) = ∆Kn

∞ (un)(i),

∆Nor
Kn,1(un)(i) = median(∇Kn(un)(i)),

(5.3.4)

where µ(i) is the degree of the vertex i ∈ V .

5.3.2 Game p-Laplacian on graphs

Using the discrete version (5.3.3) of game p-Laplacian with p = 1, p = 2 and p = ∞, we propose the

game p-Laplacian on graphs, which can be seen as a nonlocal version of (5.2.5). This is given by the

following equations.

∆Nor
Kn,p(un)(i) =

{
2
p∆

Nor
Kn,2(un)(i) +

p−2
p ∆Nor

Kn,∞(un)(i) for 2 ≤ p ≤ ∞,
2(p−1)

p ∆Nor
Kn,2(un)(i) +

2−p
p ∆Nor

Kn,1(un)(i) for 1 ≤ p ≤ 2.
(5.3.5)

Using (5.3.3) and (5.3.5), the game p-Laplacian formulation on weighted graphs can be rewritten as

∆Nor
Kn,p(un)(i) = NLA(un)(i)− un(i), (5.3.6)

where NLA(un)(i) is a nonlocal average operator as

NLA(un)(i) =







2
pNLMean(un)(i) +

p−2
p NLMidrange(un)(i),

for 2 ≤ p ≤ ∞,
2(p−1)

p NLMean(un)(i) +
2−p
p NLMedian(un)(i),

for 1 ≤ p ≤ 2.

(5.3.7)
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5.4 The discrete evolution problem

5.4.1 Problem statement

Given a function g : V → R, we study the following discrete Cauchy problem
{

∂
∂tun(i, t) = ∆Nor

Kn,pun(i, t) in V × [0, T ],

un(i, 0) = gni in V.
(PNor,d

nloc )

Our goal in this section is to study well-posedness of this problem.

5.4.2 Existence and uniqueness

The operator ∆Nor
Kn,p can be rewritten in the following form

∆Nor
Kn,pun(i, t) = ∆Fun(i, t) = F

(
un((j1 ∼ i), t), · · · , un((jm ∼ i), t)

)
− un(i, t)

= F (un
(
(j ∼ i), t)

)
− un(i, t), y ∈ Vm(x), m ≤ n,

where the operator F will be described later on. We can see that f is a solution of (PNor,d
nloc ) if and only

if it is a solution of the integral equation

un(i, t) = Kgun(i, t), (5.4.1)

where

Kgun(i, t)
def

=

∫ t

0
es−tF (un((j1 ∼ i), t), · · · , un((jm ∼ i), t))ds+ e−tg(i).

We verify that the operators defined in (5.3.1) are all averaging operators according to the following

definition taken from [75].

Definition 5.4.1. Let F : Rm → R be a continuous function. We call F an averaging operator if it

satisfies the following set of conditions :

(i) F (0, · · · , 0) = 0 and F (1, · · · , 1) = 1;

(ii) F (tx1, · · · , txm) = tF (x1, · · · , xm) for all t ∈ R;

(iii) F (t+ x1, · · · , t+ xm) = t+ F (x1, · · · , xm) for all t ∈ R;

(iv) F is nondecreasing with respect to each variable.

Based on this definition, we have the following lemma.

Lemma 5.4.2. It holds that, if (x1, · · · , xm), (y1, · · · , ym) ∈ R
m, then

xj ≤ yj + max
1≤j≤m

{xj − yj} for all j ∈ {1, · · · ,m}.

Let F be an averaging operator. As a result of combining (iii) and (iv) in definition 5.4.1, we have

F (x1, · · · , xm) ≤ F (y1, · · · , ym) + max
1≤j≤m

{xj − yj}.

Therefore

F (x1, · · · , xm)− F (y1, · · · , ym) ≤ max
1≤j≤m

{xj − yj},

and moreover
∣
∣F (x1, · · · , xm)− F (y1, · · · , ym)

∣
∣ ≤

∥
∥x− y

∥
∥
∞
. (5.4.2)

Lemma 5.4.3. The operators defined in (5.3.1) are averaging operators.
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Proof :

• NLMean un(i, t) = F1(un((j1 ∼ i), t), · · · , un((jm ∼ i), t)) = 1
∑

j:(i,j)∈E(G)

Knij

∑

j:(i,j)∈E(G)

Knijun(j).

(i) F1(0, · · · , 0) = 0 and F1(1, · · · , 1) =
1

∑

j:(i,j)∈E(G)

Knij

∑

j:(i,j)∈E(G)

Knij = 1

(ii) For all s ∈ R,

F1(sun((j1 ∼ i), t), · · · , sun((jm ∼ i), t)) =
1

∑

j:(i,j)∈E(G)

Knij

∑

j:(i,j)∈E(G)

Knijsun(j, t)

=
s

∑

j:(i,j)∈E(G)

Knij

∑

j:(i,j)∈E(G)

Knijun(j, t)

= sF1(un((j1 ∼ i), t), · · · , un((jm ∼ i), t)).

(iii) For all s ∈ R

F1(s+ un((j1 ∼ i), t), · · · , s+ un((jm ∼ i), t))

=
1

∑

j:(i,j)∈E(G)

Knij

∑

j:(i,j)∈E(G)

Knij(s+ un(j, t))

=
1

∑

j:(i,j)∈E(G)

Knij



s
∑

j:(i,j)∈E(G)

Knij +
∑

j:(i,j)∈E(G)

Knijun(j, t)





= s+
1

∑

j:(i,j)∈E(G)

Knij

∑

j:(i,j)∈E(G)

Knijun(j, t)

= s+ F1(un((j1 ∼ i), t), · · · , un((jm ∼ i), t)).

(iv) F1 is nondecreasing with respect to each variable. Indeed, for i ∈ {1, · · · ,m}, taking

g : V × [0, T ] → R, such that g((j ∼ i), t) ≥ un((j ∼ i), t). Since the weight function Knij

is positive, we have

F1(g(j, t)) ≥ F1(un(j, t)).

• NLMax un(i, t) = F2(un((j1 ∼ i), t), · · · , un((jm ∼ i), t))

= max
j:(i,j)∈E(G)

(
Knij max(un(j)− un(i), 0)

)
+ un(i, t).

(i) F2(0, · · · , 0) = 0 and F2(1, · · · , 1) = 1.

(ii) For all s ∈ R,

F2(sun((j1 ∼ i), t), · · · , sun((jm ∼ i), t))

= max
j:(i,j)∈E(G)

(Knij max(sun(j, t)− sun(i, t), 0)) + sun(i, t)

= max
j:(i,j)∈E(G)

(sKnij max((un(j, t)− un(i, t)), 0)) + sun(i, t)

= s max
j:(i,j)∈E(G)

(sKnij max((un(j, t)− un(i, t)), 0)) + sun(i, t)

= sF2(un((j1 ∼ i), t), · · · , un((jm ∼ i), t)).

(iii) For all s ∈ R,

F2(s+ un((j1 ∼ i), t), · · · , s+ un((jm ∼ i), t))

= max
j:(i,j)∈E(G)

(Knij max((s+ un(j, t))− (s+ un(i, t)), 0)) + (s+ un(i, t))

= max
j:(i,j)∈E(G)

(Knij max(un(j, t)− un(i, t), 0)) + un(i, t) + s

= s+ F2(un((j1 ∼ i), t), · · · , un((jm ∼ i), t)).
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(iv) F2 is nondecreasing with respect to each variable. Indeed, for i ∈ {1, · · · ,m}, taking

g : V × [0, T ] → R, such that g((j ∼ i), t) ≥ un((j ∼ i), t). Since the weight function Knij

is positive, we have

max(g(j, t)− un(i, t), 0) ≥ max(un(j, t)− un(i, t), 0)

⇒ Knij max(g(j, t)− un(i, t), 0) ≥ Knij max(un(j, t)− un(i, t), 0)

⇒ F2(g((j ∼ i), t)) ≥ F2(un((j ∼ i), t)).

• NLMin un(i, t) = F3(un((j1 ∼ i), t), · · · , un((jm ∼ i), t))

= max
j:(i,j)∈E(G)

(Knij max(un(i) − un(j), 0)) + un(i, t). By symmetry, using the

same arguments as before, we have that NLMin(·) is also an average operator.

• NLMidrange un(i, t) =
1
2(NLMinun(i, t)+NLMaxun(i, t). By construction, the operator NLMidrange(·)

is a linear combination between two averaging operators.

• NLMedianun(i, t) = F4(un((j1 ∼ i), t), · · · , un((jm ∼ i), t))

= median
j:(i,j)∈E(G)

(Knij(un(j, t)− un(i, t)) + un(i, t))

= median
j:(i,j)∈E(G)

(Knijun(j, t) + (1−Knij)un(i, t))

= median
1≤j≤m

(Knijun((j ∼ i), t) + (1−Knij)un(i, t)).

If we call Xi
def

= Knijun((j ∼ i), t) + (1−Knij)un(i, t), then the median operator is defined as

follows

median1≤i≤m{Xi}
def

=







X(m+1
2 ) if m is odd,

X(m2 )+X(m2 +1)
2 if m is even.

with {X(1), · · · , X(m)} is a nondecreasing rearrangement of {X1, · · · , Xm}.

(i) F4(0, · · · , 0) = 0, F4(1, · · · , 1) = 1.

(ii) For all s ∈ R,

F4(sun((j1 ∼ i), t), · · · , sun((jm ∼ i), t)) = median1≤i≤m{sXi}

= s median1≤i≤m{Xi}.

(iii) For all s ∈ R,

F4(s+ un((j1 ∼ i), t), · · · , s+ un((jm ∼ i), t)) = median1≤i≤m{s+Xi}

= s+ median1≤i≤m{Xi}.

(iv) F4 is nondecreasing with respect to each variable. It follows immediately from the definition

of the median operator.

�

Let ℓ∞(V ) be the space of bounded vectors in H(V ).

Theorem 5.4.4. Assume g ∈ ℓ∞(V ). Then there exists a unique solution in C(0, T ; ℓ∞(V )) of (PNor,d
nloc ).

Proof : By construction, the operator ∆Nor
Kn,p defined in (5.3.1) is a linear combination of averaging

operators, and is in turn itself an averaging operator. It then follows from Lemmas 5.4.3 and 5.4.2 that

∆Nor
Kn,p is Lipschitz continuous on ℓ∞(V ). This allows us to conclude immediately applying the Cauchy

Lipschitz theorem. �
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5.5 Numerical experiments

In this section, we illustrate the behavior of the normalized p-Laplacian operator presented in this

chapter, through the associated discrete Cauchy problem on graphs. The experiments provided are

not here to solve a particular problem but rather to highlight the potentialities of this operator.

For this, we solve the discrete evolution Cauchy problem (PNor,d
nloc ) for which the initial function g is

application-dependent.

To solve (PNor,d
nloc ) iteratively we use an explicit forward Euler time discretization:

∂

∂t
un(i, t) =

uh+1
n (i)− uhn(i)

∆t
, (5.5.1)

with uhn(i) = un(i, h∆t), h ∈ [N ].

Hence, we can try to solve (PNor,d
nloc ) by the following iteration scheme:

{

uh+1
n (i) = uhn(i) + ∆t∆Nor

Kn,pu
h
n(i) in V,

u0n(i) = gni in V.
(5.5.2)

Using ∆Nor
Kn,p = NLA (un)− un and setting ∆t = 1, we get the nonlocal average filter
{

uh+1
n (i) =

{
2
p NLMean uhn(i) +

p−2
p NLMidrange uhn(i) for 2 ≤ p ≤ ∞,

2(p−1)
p NLMean uhn(i) +

2−p
p NLMedian uhn(i) for 1 ≤ p ≤ 2.

(5.5.3)

5.5.1 Weighted graph construction

There exists several popular methods to transform discrete data {u1, · · · , un} into a weighted graph

G. Considering a set of vertices V (G), the construction of such graphs consists in modeling the

neighborhood relationships between the data through the definition of a set of edges E and using a

pairwise distance measure d : V (G) × V (G) → R
+. In the particular case of images, the ones based

on geometric neighborhoods are particularly well-adapted to represent the geometry of the space, as

well as the geometry of the function defined on that space. One can quote:

• Grid graphs which are most natural structures to describe an image with a graph. Each pixel is

connected by an edge to its adjacent pixels. Classical grid graphs are 4-adjacency grid graphs

and 8-adjacency grid graphs. Larger adjacency can be used to model nonlocal neighborhoods.

• k-nearest neighborhood (nn) graphs where each vertex is connected with its k-nearest neighbors

according to d. Such construction implies to build a directed graph, as the neighborhood rela-

tionship is not symmetric. Nevertheless, an undirected graph can be obtained while adding an

edge between two vertices i and js if i is among the k-nearest neighbors of j or if j is among the

k-nearest neighbors of i (see Example 2.1.10).

The weights of the edges will capture the similarity between vertices such that

Knij =

{

s(i, j) if (i, j) ∈ E(G),

0, otherwise,
(5.5.4)

where is : E(G) → R
+ is a similarity function. Typically, one can choose:

• s0(i, j) = 1;

• s1(i, j) = e−
d(i,j)

σ with σ > 0, where d is a metric controlling the similarity between edges, and σ

is a scale parameter.

• For patch-based methods, the similarity function is

s2(i, j) = e−
d(i,j)2

σ2 ,
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Figure 5.1: Colored point cloud filtering with the Normalized p-Laplacian ∆Nor
Kn,p. First column presents

results with a local knn-graph (with k = 5 and Kn = 1). Second column presents results under the

same configuration but with different similarity function (Kn =color, which depends on the color

similarity between two different 3D-points). The last column presents nonlocal results obtained with

a larger neighborhood (with Kn depending on patches). In all cases results are provided for p = 1,

p = 2, p = 10 and p = ∞.
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where now d(i, j) =
∥
∥P(j) − P(i)

∥
∥
2
, and P : i ∈ V 7→ P(i) ∈ R

m is the patch extraction

operator at i. For each node/vertex i, P(i) is an m-dimensional real vector containing, e.g.,

spatial coordinates, intensities, etc., of the neighbours of i. This definition of patches is valid

only for grid-graphs and cannot be considered for arbitrary graphs. To compute the patch on a

3D point cloud, the reader is referred to [81].

5.5.2 Results

Figure 5.1 and Figure 5.2 show respectively filtering effects on an image and a colored point cloud by

implementing (5.5.3) with several parameters. The weight functions Kn are computed from the colors

of images or the point cloud. Results are shown with Kn = s0 (constant weight), Kn = s1 (color-based)

and Kn = s2 (patch-based).

When Kn 6= 1, an adaptive filtering processing (taking into account the difference of the colors in the

image/ point cloud) is obtained that can better preserve some features of the graph signal, depending

on the graph weights. When patch-based weights (Kn = s2) are considered, repetitive (or texture)

patterns are better preserved while providing the usual expected simplification effects.
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Figure 5.2: Colored image filtering with the Normalized p-Laplacian ∆Nor
Kn,p. First column presents

results with a local 8-adjacency grid graph where each pixel is characterized by it’s grayscale value

(with Kn = 1). Second column presents results under the same configuration but with different

similarity function (Kn =color, which depends on the color similarity between two different pixels).

The last column presents nonlocal results obtained with a larger neighborhood (with Kn depending

on patches). In all cases results are provided for p = 1, p = 2, p = 10 and p = ∞.
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Chapter 6

General Error Bound

Main contributions of this chapter

◮ We establish well-posedness of (VPnloc).

◮ We give a general error estimate in L2(Ω) controlling the error of between the continuous

extension of the numerical solution to the discrete variational problem (VPd
nloc) and its

continuum analogue of (VPnloc) (Theorem 6.3.2).

◮ The dependence of the error bound on the error induced by discretizing the kernel and

the initial data is made explicit.

These results are part of [67].
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6.1 Introduction

6.1.1 Problem statement

Let us recall the variational problem we introduced in Section 1.1.1

min
u∈L2(Ω)

{

Eλ(u, g,K)
def

=
1

2λ

∥
∥u− g

∥
∥2

L2(Ω)
+Rp(u,K)

}

, (VPnloc)

Rp(u,K)
def

=
1

2p

∫

Ω2

K(x, y)
∣
∣u(y)− u(x)

∣
∣pdxdy, (6.1.1)

where p ∈ [1,+∞[ and K and Ω satisfy assumptions (A.1)-(A.2).

Here λ is a positive regularization parameter that balances the relative importance of the smoothness

of the minimizer and fidelity to the initial data. The chief goal of this chapter is to study numerical

approximations of the nonlocal variational problem (VPnloc), which in turn, will allow us to establish

consistency estimates of the discrete counterpart of this problem on graphs in Chapter 7.

In the context of image processing, smoothing and denoising are key processing tasks. Among the

existing methods, the variational ones, based on nonlocal regularization such as (VPnloc), provide a

popular and versatile framework to achieve these goals. In image processing, such variational problems

are in general formulated and studied on the continuum and then discretized on sampled images. On

the other hand, many data sources, such as point clouds or meshes, are discrete by nature. Thus,

handling such data necessitates a discrete counterpart of (VPnloc), which reads

min
un∈Rn

{

En,λ
def

=
1

2λn

∥
∥un − gn

∥
∥2

2
+Rn,p(un,Kn)

}

, (VPd
nloc)

where

Rn,p(un,Kn)
def

=
1

2n2p

n∑

i,j=1

Knij

∣
∣unj − uni

∣
∣p. (6.1.2)

Our aim is to study the relationship between the variational problems (VPnloc) and (VPd
nloc). More

specifically we aim at deriving error estimates between the corresponding minimizers, respectively u⋆

and u⋆n.

6.1.2 Relation to prior work

Nonlocal regularization in machine learning The authors in [59] studied the consistency of

rescaled total variation minimization on random point clouds in R
d with a clustering application.

They considered the total variation on graphs with a radially symmetric and rescaled kernel K(x, y) =

ε−dJ((x−y)/ε), ε > 0. This corresponds to an instance of Rn,p for d = 1 and p = 1. For an appropriate

scaling of ε with respect to n and under some assumptions on J , those authors they proved that the
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discrete total variation on graphs Γ-converges in an appropriate topology, as n → ∞, to weighted

local total variation, where the weight function is the density of the point cloud distribution. This

work were extended in [99] to the graph p-Laplacian for semisupervised learning in R
d. More precisely,

the authors considered a constrained and penalized minimization of Rn,p with a radially symmetric

and rescaled kernel as explained before. They investigated asymptotic behavior when the number of

unlabeled points increases, with a fixed number of training points. They uncovered ranges on the

scaling of ε with respect to n for the asymptotic consistency (in Γ-convergence sense) to hold. For

the same problem, the authors of [2] obtained iterated pointwise convergence of graph p-Laplacians to

the continuum p-Laplacian; see [99] for a thorough review in the context of machine learning. Note

however that all these results on asymptotic behavior of minimizers do not provide any error estimates

for finite n and do not provide precise guidance on what ε would lead to best approximation.

Nonlocal regularization in imaging Several edge-aware filtering schemes have been proposed in

the literature [113, 100, 106, 101]. The nonlocal means filter [8] averages pixels that can be arbitrary

far away, using a similarity measure based on distance between patches. As shown in [103, 92],

these filters can also be interpreted within the variational framework with nonlocal regularization

functionals. They correspond to one step of gradient descent on (VPd
nloc) with p = 2, where Knij =

J(xi − xj) is computed from the input noisy image g using either a distance between the pixels xi
and xj [113, 106, 101] or a distance between the patches around xi and xj [8, 104]. This nonlocal

variational denoising can be related to sparsity in an adapted basis of eigenvector of the nonlocal

diffusion operator [39, 104, 92]. This nonlocal variational framework was also extended to handle

several linear inverse problems [103, 62, 32, 63]. In [94, 52, 112], the authors proposed a variational

framework with nonlocal regularizers on graphs to solve linear inverse problems in imaging where both

the image to recover and the graph structure are inferred.

Consistency of the ROF model For local variational problems, the only work on consistency that

we are aware of is the one of [109] who studied the numerical approximation of the Rudin-Osher-Fatemi

(ROF) model, which amounts to minimizing in L2(Ω2) the well-known energy functional

E(v)
def

=
1

2λ

∥
∥u− g

∥
∥2

L2(Ω2)
+
∥
∥v
∥
∥
TV(Ω2)

,

where g ∈ L2(Ω2), and
∥
∥ ·
∥
∥
TV(Ω2)

denotes the total variation seminorm. They bound the difference

between the continuous solution and the solutions to various finite-difference approximations to this

model. They gave an error estimate in L2(Ω2) of the difference between these two solutions and showed

that it scales as n
−

s
2(s+1) , where s ∈]0, 1] is the smoothness parameter of the Lipschitz space containing

g.

However, to the best of our knowledge, there is no such consistency result in the nonlocal variational

setting. In particular, the problem of the continuum limit and consistency of (VPd
nloc) with error

estimates is still open in the literature. It is our aim in this work to rigorously settle this question.

6.2 Well-posedness

Before carrying out the consistency of (VPnloc), we need to ensure the existence and uniqueness of a

solution, that is, the absolute minimizer of problem (VPnloc). We have the following result:

Theorem 6.2.1. Suppose that p ∈ [1,+∞[, K is a nonnegative measurable and bounded mapping, and

g ∈ L2(Ω). Then, Eλ(·, g,K) has a unique minimizer in
{

u ∈ L2(Ω) : Rp(u,K) ≤ (2λ)−1
∥
∥g
∥
∥2

L2(Ω)

}

,

and En,λ(·, gn,Kn) has a unique minimizer.

Proof : The arguments are standard (coercivity, lower semicontinuity and strict convexity) but we

provide a self-contained proof (only for Eλ(·, g,K)). Let {u⋆k}k∈N be a minimizing sequence in L2(Ω).
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By optimality and Jensen’s inequality, we have
∥
∥u⋆k

∥
∥2

L2(Ω)
≤ 2

(

2λEλ(u
⋆
k, g,K) +

∥
∥g
∥
∥2

L2(Ω)

)

≤ 2
(

2λEλ(0, g,K) +
∥
∥g
∥
∥2

L2(Ω)

)

= 4
∥
∥g
∥
∥2

L2(Ω)
< +∞.

(6.2.1)

Moreover

Rp(u
⋆
k,K) ≤ Eλ(u

⋆
k, g,K) ≤ Eλ(0, g,K) =

1

2λ

∥
∥g
∥
∥2

L2(Ω)
< +∞. (6.2.2)

Thus
∥
∥u⋆k

∥
∥
L2(Ω)

is bounded uniformly in k so that the Banach-Alaoglu theorem for L2(Ω) and com-

pactness provide a weakly convergent subsequence (not relabelled) with a limit ū ∈ L2(Ω). By lower

semicontinuity of the L2(Ω) norm with respect to weak convergence and that of Rp(·,K), ū must be

a minimizer. The uniqueness follows from strict convexity of
∥
∥ ·
∥
∥2

L2(Ω)
and convexity of Rp(·,K). �

Remark 6.2.2. Theorem 6.2.1 can be extended to linear inverse problems where the data fidelity

inEλ(0, g,K) is replaced by
∥
∥g−Au

∥
∥2

L2(Σ)
, and where A is a continuous linear operator. The case where

A : L2(Ω) → L2(Σ) is injective is immediate. The general case is more intricate and would necessitate

appropriate assumptions on A and a Poincaré-type inequality. For instance, if A : Lp(Ω) → L2(Σ),

and the kernel of A intersects constant functions trivially, then using the Poincaré inequality in [7,

Proposition 6.19], one can show existence and uniqueness in Lp(Ω), and thus in L2(Ω) if p ≥ 2. We

omit the details here as this is beyond the scope of the manuscript.

We now turn to provide useful characterization of the minimizers u⋆ and u⋆n. We stress that the

minimization problem (VPnloc) that we deal with is considered over L2(Ω) (L2(Ω) ⊂ Lp(Ω) only for

p ∈ [1, 2]) over which the function Rp(·,K) may not be finite. In correspondence, we will consider the

subdifferential of the proper lower semicontinuous convex function Rp(·,K) on L2(Ω) defined as

∂Rp(u,K)
def

=
{

η ∈ L2(Ω) : Rp(v,K) ≥ Rp(u,K) +
〈
η, v − u

〉

L2(Ω)
, ∀v ∈ L2(Ω)

}

,

and ∂Rp(u,K) = ∅ if Rp(u,K) = +∞.

Lemma 6.2.3. Suppose that the assumptions of Theorem 6.2.1 hold. Then u⋆ is the unique solution

to (VPnloc) if and only if

u⋆ = proxλRp(·,K)(g)
def

= (I+ λ∂Rp(·,K))−1 (g). (6.2.3)

Moreover, the proximal mapping proxλRp(·,K) is non-expansive on L2(Ω), i.e., for g1, g2 ∈ L2(Ω), the

corresponding minimizers u⋆1, u
⋆
2 ∈ L2(Ω) obey
∥
∥u⋆1 − u⋆2

∥
∥
L2(Ω)

≤
∥
∥g1 − g2

∥
∥
L2(Ω)

. (6.2.4)

A similar claim is easily obtained for (VPd
nloc) as well.

Proof : The proof is again classical. By the first order optimality condition and since the squared

L2(Ω)-norm is Fréchet differentiable, u⋆ is the unique solution to (VPnloc) if, and only if,

0 ∈
1

2λ
(u⋆ − g) + ∂Rp(u

⋆,K),

and the first claim follows. Writing the subgradient inequality for u⋆1 and u⋆2 we have

Rp(u
⋆
2,K) ≥ Rp(u

⋆
1,K) +

〈
g1 − u⋆1, u

⋆
2 − u⋆1

〉

L2(Ω)

Rp(u
⋆
1,K) ≥ Rp(u

⋆
2,K) +

〈
g2 − u⋆2, u

⋆
1 − u⋆2

〉

L2(Ω)
.

Adding these two inequalities we get
∥
∥u⋆2 − u⋆1

∥
∥2

L2(Ω)
≤
〈
u⋆2 − u⋆1, g2 − g1

〉

L2(Ω)
,
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and we conclude upon applying Cauchy-Schwartz inequality. �

We now formally derive the directional derivative of Rp(·,K) when p ∈]1,+∞[. For this the sym-

metry assumption on K is needed as well. Let h ∈ L2(Ω). Then the following derivative exists

d

dt
Rp(u+ th,K)|t=0 =

1

2

∫

Ω2

K(x, y) |u(y)− u(x)|p−2 (u(y)− u(x))(v(y)− v(x))dxdy.

Since K is symmetric, we apply the integration by parts formula in [66, Lemma A.1] (or split the

integral in two terms and apply a change of variable (x, y) 7→ (y, x)), to conclude that

d

dt
Rp(u+ th,K)|t=0 = −

∫

Ω2

K(x, y) |u(y)− u(x)|p−2 (u(y)− u(x))v(x)dxdy =
〈
∆K

p , v
〉

L2(Ω)
,

where

∆K
p = −

∫

Ω2

K(x, y) |u(y)− u(x)|p−2 (u(y)− u(x))dy

is precisely the nonlocal p-Laplacian operator, see [7, 66]. This shows that under the above assumptions,

Rp(·,K) is Fréchet differentiable (hence Gâteaux differentiable) on L2(Ω) with Fréchet gradient ∆K
p .

6.3 Error estimate for the discrete variational problem

6.3.1 Projector and injector

Let us recall the subdevision of Ω into n intervals

Ω
(n)
1 =

[

0,
1

n

[

,Ω
(n)
2 =

[
1

n
,
2

n

[

, . . . ,Ω
(n)
j =

[
j − 1

n
,
j

n

[

, . . . ,Ω(n)
n =

[
n− 1

n
, 1

[

,

and recall Qn = {Ω
(n)
i , i ∈ [n]} and Ω

(n)
ij

def

= Ω
(n)
i ×Ω

(n)
j . Without loss of generality, we assume that the

points are equispaced so that |Ω
(n)
i | = 1/n, where |Ω

(n)
i | is the measure of Ω

(n)
i . The discussion can be

easily extended to non-equispaced points by appropriate normalization; see Section 7.3.

We also consider the operator Pn : L1(Ω) → R
n

(Pnv)i
def

=
1

|Ω
(n)
i |

∫

Ω
(n)
i

v(x)dx.

This operator can be also seen as a piecewise constant projector of u on the space of discrete functions.

For simplicity, and with a slight abuse of notation, we keep the same notation for the projector

Pn : L1(Ω2) → R
n×n.

We assume that the discrete initial data gn and the discrete kernel Kn are constructed as

gn = Png
def

= (gn1, · · · , gnn)
⊤ and Kn = PnK

def

= (Knij)1≤i,j≤n, (6.3.1)

where

gni = (Png)i =
1

|Ω
(n)
i |

∫

Ω
(n)
i

g(x)dx and Knij = (PnK)ij =
1

|Ω
(n)
ij |

∫

Ω
(n)
ij

K(x, y)dxdy. (6.3.2)

As we mentioned previously, our aim is to study the relationship between the minimizer u⋆ of

Eλ(·, g,K) and the discrete minimizer u⋆n of En,λ(·, gn,Kn) and estimate the error between solutions of

discrete approximations and the solution of the continuous model. But the solution of problem (VPd
nloc)

being discrete, it is convenient to introduce an intermediate model which is the continuous extension of

the discrete solution. Towards this goal, we consider the piecewise constant injector In of the discrete
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functions u⋆n and gn into L2(Ω), and of Kn into L∞(Ω2), respectively. This injector In is defined as

Inun(x)
def

=

n∑

i=1

uniχΩ
(n)
i

(x),

Ingn(x)
def

=

n∑

i=1

gniχΩ
(n)
i

(x),

InKn(x, y)
def

=

n∑

i=1

n∑

j=1

KnijχΩ
(n)
i ×Ω

(n)
j

(x, y),

(6.3.3)

where we recall that χC is the characteristic function of the set C, i.e., takes 0 on C and 1 otherwise.

With these definitions, we have the following well-known properties whose proofs are immediate

using the
∥
∥ ·
∥
∥
q,n

norm defined in (4.0.1) with the usual adaptation for q = +∞.

Lemma 6.3.1. For a function v ∈ Lq(Ω), q ∈ [1,+∞], we have
∥
∥Pnv

∥
∥
q,n

≤
∥
∥v
∥
∥
Lq(Ω)

; (6.3.4)

and for vn ∈ R
n

∥
∥Invn

∥
∥
Lq(Ω)

=
∥
∥vn
∥
∥
q,n
. (6.3.5)

In turn
∥
∥InPnv

∥
∥
Lq(Ω)

≤
∥
∥v
∥
∥
Lq(Ω)

. (6.3.6)

It is immediate to see that the composition of the operators In and Pn yields the operator PVn = InPn

which is the orthogonal projector on the subspace Vn
def

= Span
{

χ
Ω

(n)
i

: i ∈ [n]
}

of L1(Ω).

6.3.2 Main result

Our goal is to bound the difference between the unique minimizer of the continuous functional Eλ(·, g,K)

defined on L2(Ω) and the continuous extension by In of that of En,λ(·, gn,Kn). We are now ready to

state the main result of this section.

Theorem 6.3.2. Suppose that g ∈ L2(Ω) and K is a nonnegative measurable, symmetric and bounded

mapping. Let u⋆ and u⋆n be the unique minimizers of (VPnloc) and (VPd
nloc), respectively. Then, we

have the following error bounds.

(i) If p ∈ [1, 2], then

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C

(
∥
∥g − Ingn

∥
∥2

L2(Ω)
+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

)

,

(6.3.7)

where C is a positive constant independent of n.

(ii) If inf(x,y)∈Ω2 K(x, y) ≥ κ > 0, then for any p ∈ [1,+∞[,

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C

(∥
∥g − Ingn

∥
∥2

L2(Ω)
+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − InKn

∥
∥
L∞(Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

)

,
(6.3.8)

where C is a positive constant independent of n.

Observe that 2/(3 − p) ≤ p for p ∈ [1, 2]. Thus by standard embeddings of Lq(Ω) spaces for Ω

bounded, we have for p ∈ [1, 2]
∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
≤
∥
∥K − InKn

∥
∥
L∞(Ω2)

and
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)
≤
∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

,

– 96 –



Chapter 6 6.3. Error estimate for the discrete variational problem

which means that our bound in (6.3.7) not only does not require an extra-assumption on K but is

also sharper than (6.3.8). The assumption on K in the second statement seems difficult to remove or

weaken. Whether this is possible or not is an open question that we leave to a future work.

Proof :

(i) Since Eλ(·, g,K) is a strongly convex function, we have

1

2λ

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ Eλ(Inu

⋆
n, g,K)− Eλ(u

⋆, g,K)

≤
(
Eλ(Inu

⋆
n, g,K)− En,λ(u

⋆
n, gn,Kn)

)
−
(
Eλ(u

⋆, g,K)− En,λ(u
⋆
n, gn,Kn)

)
.

(6.3.9)

A closer inspection of Eλ and En,λ and equality (6.3.5) allows to assert that

Eλ(Inu
⋆
n, Ingn, InKn) = En,λ(u

⋆
n, gn,Kn). (6.3.10)

Now, applying the Cauchy-Schwarz inequality and using (6.3.10), we have

Eλ(Inu
⋆
n, g,K) =

1

2λ

∥
∥Inu

⋆
n − g

∥
∥2

L2(Ω)
+Rp(Inu

⋆
n,K)

=
1

2λ

∥
∥Inu

⋆
n − Ingn

∥
∥2

L2(Ω)
+

1

λ

〈
Inu

⋆
n − Ingn, Ingn − g

〉

L2(Ω)

+
1

2λ

∥
∥Ingn − g

∥
∥2

L2(Ω)
+Rp(Inu

⋆
n,K)

≤
1

2λ

∥
∥Inu

⋆
n − Ingn

∥
∥2

L2(Ω)
+

1

λ

∥
∥Inu

⋆
n − Ingn

∥
∥
L2(Ω)

∥
∥Ingn − g

∥
∥
L2(Ω)

+
1

2λ

∥
∥Ingn − g

∥
∥2

L2(Ω)
+Rp(Inu

⋆
n,K)

≤ En,λ(u
⋆
n, gn,Kn) +

1

2λ

∥
∥Ingn − g

∥
∥2

L2(Ω)
+

1

λ

∥
∥Inu

⋆
n − Ingn

∥
∥
L2(Ω)

∥
∥Ingn − g

∥
∥
L2(Ω)

+
(
Rp(Inu

⋆
n,K)−Rp(Inu

⋆
n, InKn)

)

≤ En,λ(u
⋆
n, gn,Kn) +

1

2λ

∥
∥Ingn − g

∥
∥2

L2(Ω)
+

1

λ

∥
∥Inu

⋆
n − Ingn

∥
∥
L2(Ω)

∥
∥Ingn − g

∥
∥
L2(Ω)

+
1

2p

∣
∣
∣
∣

∫

Ω2

(
K(x, y)− InKn(x, y)

)∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

∣
∣
∣
∣
.

(6.3.11)

As we suppose that g ∈ L2(Ω) and since Inu
⋆
n is the (unique) minimizer of Eλ(·, Ingn, InKn) (by

virtue of (6.3.10)), it is immediate to see, using (6.3.6), that

1

2λ

∥
∥Inu

⋆
n − Ingn

∥
∥2

L2(Ω)
≤

1

2λ

∥
∥Inu

⋆
n − Ingn

∥
∥2

L2(Ω)
+Rp(Inu

⋆
n, InKn)

≤ Eλ(0, Ingn, InKn)

=
1

2λ

∥
∥Ingn

∥
∥2

L2(Ω)

=
1

2λ

∥
∥InPng

∥
∥2

L2(Ω)

≤
1

2λ

∥
∥g
∥
∥2

L2(Ω)
< +∞,

and thus

∥
∥Inu

⋆
n − Ingn

∥
∥
L2(Ω)

≤
∥
∥g
∥
∥
L2(Ω)

def

= C1. (6.3.12)
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Since p ∈ [1, 2], by Hölder and triangle inequalities, and (6.2.1) applied to Inu
⋆
n, we have that

∣
∣
∣
∣

∫

Ω2

(
K(x, y)− InKn(x, y)

)∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

∣
∣
∣
∣

≤
∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)

(∫

Ω2

∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣2dxdy

)p/2

≤ 2p
∥
∥Inu

⋆
n

∥
∥p

L2(Ω)

∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)

≤ 22p
∥
∥InPng

∥
∥p

L2(Ω)

∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)

≤ 22p
∥
∥g
∥
∥p

L2(Ω)

∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
= C2

∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
,

(6.3.13)

where C2
def

= 22pCp
1 .

We now turn to bounding the second term on the right-hand side of (6.3.9). Using (6.3.6) and

the fact that u⋆n is the (unique) minimizer of (VPd
nloc), we have

Eλ(Inu
⋆
n, Ingn, InKn) ≤ Eλ(InPnu

⋆, Ingn, InKn)

=
1

2λ

∥
∥InPnu

⋆ − InPng
∥
∥2

L2(Ω)
+Rp(InPnu

⋆, InKn)

≤
1

2λ

∥
∥u⋆ − g

∥
∥2

L2(Ω)
+Rp(u

⋆,K) +Rp(InPnu
⋆, InKn)−Rp(u

⋆,K)

≤ Eλ(u
⋆, g,K) + (Rp(InPnu

⋆,K)−Rp(u
⋆,K))

+ (Rp(InPnu
⋆, InKn)−Rp(InPnu

⋆,K)).
(6.3.14)

We bound the second term on the right-hand side of (6.3.14) by applying the mean value theorem

on [a(x, y), b(x, y)] to the function t ∈ R
+ 7→ tp with a(x, y) = |u⋆(y) − u⋆(x)| and b(x, y) =

|InPnu
⋆(y) − InPnu

⋆(x)|. Let η(x, y)
def

= ρa(x, y) + (1 − ρ)b(x, y), ρ ∈ [0, 1], be an intermediate

value between a(x, y) and b(x, y). We then get
∣
∣Rp(InPnu

⋆,K)−Rp(u
⋆,K)

∣
∣

=
∣
∣

∫

Ω2

K(x, y)
(∣
∣InPnu

⋆(y)− InPnu
⋆(x)

∣
∣p −

∣
∣u⋆(y)− u⋆(x)

∣
∣p
)
dxdy

∣
∣

= p
∣
∣

∫

Ω2

K(x, y)η(x, y)p−1
(∣
∣InPnu

⋆(y)− InPnu
⋆(x)

∣
∣−
∣
∣u⋆(y)− u⋆(x)

∣
∣
)
dxdy

∣
∣

≤ pC3

∫

Ω2

η(x, y)p−1
∣
∣ (InPnu

⋆(y)− u⋆(y))− (InPnu
⋆(x)− u⋆(x))

∣
∣dxdy

≤ 2pC3

∫

Ω2

η(x, y)p−1
∣
∣InPnu

⋆(x)− u⋆(x)
∣
∣dxdy,

(6.3.15)

where we used the triangle inequality, symmetry after the change of variable (x, y) 7→ (y, x), and

boundedness of K, say
∥
∥K
∥
∥
L∞(Ω2)

def

= C3. Thus using Hölder and Jensen inequalities as well

as (6.3.6), and arguing as in (6.3.13), leads to
∣
∣Rp(InPnu

⋆,K)−Rp(u
⋆,K)

∣
∣

≤ 2pC3

∥
∥η
∥
∥p−1

L2(Ω2)

∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

≤ 2pC3

(

ρ
∥
∥a
∥
∥
L2(Ω2)

+ (1− ρ)
∥
∥b
∥
∥
L2(Ω2)

)p−1 ∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

≤ 2pC3

∥
∥a
∥
∥p−1

L2(Ω2)

∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

≤ 22p−1pC3

∥
∥g
∥
∥p−1

L2(Ω)

∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)
= C4

∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

(6.3.16)

where C4
def

= 22p−1pCp−1
1 .
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To bound the last term on the right-hand side of (6.3.14), we follow the same steps as for

establishing (6.3.13) and get

|Rp(InPnu
⋆, InKn)−Rp(InPnu

⋆,K)|

≤

∫

Ω2

∣
∣K(x, y)− InKn(x, y)

∣
∣
∣
∣InPnu

⋆(y)− InPnu
⋆(x)

∣
∣pdxdy

≤ C2

∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
.

(6.3.17)

Finally, plugging (6.3.11), (6.3.12), (6.3.13), (6.3.14), (6.3.16) and (6.3.17) into (6.3.9), we get

the desired result.

(ii) The case p ≥ 2 follows the same proof steps, except that now, we need to modify inequali-

ties (6.3.13), (6.3.16) and (6.3.17) which do not hold anymore.

Under our assumption on K, and using (6.2.2), (6.3.13) now reads
∫

Ω2

∣
∣K(x, y)− InKn(x, y)

∣
∣
∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

≤ κ−1
∥
∥K − InKn

∥
∥
L∞(Ω2)

∫

Ω2

InKn(x, y)
∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

= κ−1
∥
∥K − InKn

∥
∥
L∞(Ω2)

Rp(Inu
⋆
n, InKn)

≤ (2λκ)−1C2
1

∥
∥K − InKn

∥
∥
L∞(Ω2)

,

(6.3.18)

where C1 =
∥
∥g
∥
∥
L2(Ω)

as in the proof of (i).

Applying Hölder inequality in (6.3.15) and using again (6.2.2) and the assumption on K, we

obtain
∣
∣Rp(InPnu

⋆,K)−Rp(u
⋆,K)

∣
∣

≤ 2pC3

(∫

Ω2

∣
∣InPnu

⋆(y)− InPnu
⋆(x)

∣
∣pdxdy

)(p−1)/p ∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

≤ 2κ(1−p)/ppC3

(∫

Ω2

InKn(x, y)
∣
∣InPnu

⋆(y)− InPnu
⋆(x)

∣
∣pdxdy

)(p−1)/p ∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

= 2κ(1−p)/ppC3 (Rp(Inu
⋆
n, InKn))

(p−1)/p
∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

≤ 2(2λκ)(1−p)/ppC3C
2(p−1)/p
1

∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

.

(6.3.19)

To get the new form of (6.3.17), we use (6.3.6), (6.2.2) and the assumption on K to arrive at

|Rp(InPnu
⋆, InKn)−Rp(InPnu

⋆,K)|

≤

∫

Ω2

∣
∣K(x, y)− InKn(x, y)

∣
∣
∣
∣InPnu

⋆(y)− InPnu
⋆(x)

∣
∣pdxdy

≤
∥
∥K − InKn

∥
∥
L∞(Ω2)

∫

Ω2

∣
∣u⋆(y)− u⋆(x)

∣
∣pdxdy

≤ κ−1
∥
∥K − InKn

∥
∥
L∞(Ω2)

∫

Ω2

K(x, y)
∣
∣u⋆(y)− u⋆(x)

∣
∣pdxdy

= κ−1
∥
∥K − InKn

∥
∥
L∞(Ω2)

Rp(u
⋆,K)

≤ (2λκ)−1C2
1

∥
∥K − InKn

∥
∥
L∞(Ω2)

.

(6.3.20)

Plugging now (6.3.11), (6.3.12), (6.3.14), (6.3.18), (6.3.19) and (6.3.20) into (6.3.9), we conclude

the proof.

�
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6.3.3 Regularity of the minimizer

Thee error bound of Theorem 6.3.2 contain three terms: one which corresponds to the error in discretiz-

ing g, the second is the discretization error of the kernel K, and the last term reflects the discretization

error of the minimizer u⋆ of the continuous problem (VPnloc). Thus, this form is not convenient to

transfer our bounds to networks on graph and establish convergence rates. Clearly, we need a control

on the term
∥
∥InPnu

⋆ − u⋆
∥
∥
Lq(Ω)

on the right-hand side of (6.3.7)-(6.3.8). This is what we are about

to do in the following key regularity lemma. In a nutshell, it states that if the kernel K only depends

on |x− y| (as is the case for many kernels used in data processing), then as soon as the initial data g

belongs to some Lipschitz space, so does the minimizer u⋆.

Lemma 6.3.3. Suppose g ∈ L∞(Ω)∩Lip(s, Lq(Ω)) with s ∈]0, 1] and q ∈ [1,+∞]. Suppose furthermore

that K(x, y) = J(|x− y|), where J is a nonnegative bounded measurable mapping on Ω.

(i) If q ∈ [1, 2], then u⋆ ∈ Lip(sq/2, Lq(Ω)).

(ii) If q ∈ [2,+∞], then u⋆ ∈ Lip(sq/2, L2(Ω)).

The boundedness assumption on g can be removed for q = 2.

Proof : We denote the torus T
def

= R/2Z. For any function u ∈ L2(Ω), we denote by ū ∈ L2(T) its

periodic extension such that

ū(x) =

{

u(x) if x ∈ [0, 1],

u(2− x) if x ∈]1, 2],
(6.3.21)

In the rest of the proof, we use letters with bars to indicate functions defined on T.

Let us define

Ēλ/2(v̄, ḡ, J)
def

=
1

λ

∥
∥v̄ − ḡ

∥
∥2

L2(T)
+ R̄p(v̄, J)

where

R̄p(v̄, J)
def

=
1

2p

∫

T2

J(|x− y|)
∣
∣v̄(y)− v̄(x)

∣
∣pdxdy.

Consider the following minimization problem

min
v̄∈L2(T)

Ēλ/2(v̄, ḡ, J), (6.3.22)

which also has a unique minimizer by arguments similar to those ofTheorem 6.2.1. Since u⋆ is the

unique minimizer of (VPnloc), we have, using (6.3.21),

Ēλ/2(ū⋆, ḡ, J) =
2

λ

∥
∥u⋆ − g

∥
∥2

L2(Ω)
+ 4Rp(u

⋆, J)

= 4Eλ(u
⋆, g, J)

< 4Eλ(v, g, J), ∀v 6= u⋆

= Ēλ/2(v̄, ḡ, J), ∀v̄ 6= ū⋆,

(6.3.23)

which shows that ū⋆ is the unique minimizer of (6.3.22). Then, we have via Lemma 6.2.3

ū⋆ = proxλ/2R̄p(·,J)
(ḡ). (6.3.24)

We define the translation operator

(Thv)(x) = v(x+ h), ∀h ∈ R.

Now, using our assumption on the kernel K, that is K(x, y) = J(|x−y|) (then invariant by translation),
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Chapter 6 6.3. Error estimate for the discrete variational problem

and periodicity of the functions on T, we have

Ēλ/2(v̄, Thḡ, J) =
1

λ

∥
∥v̄ − Thḡ

∥
∥2

L2(T)
+ R̄p(v̄, J)

=
1

λ

∥
∥Th(T−hv̄ − ḡ)

∥
∥2

L2(T)

+

∫

T2

J(|x− y|)
∣
∣v̄((y + h)− h)− v̄((x+ h)− h)

∣
∣pdxdy

=
1

λ

∥
∥T−hv̄ − ḡ

∥
∥2

L2(T)
+

∫

T2

J(|x− y|)
∣
∣T−hv̄(y)− T−hv̄(x)

∣
∣pdxdy

=
1

λ

∥
∥T−hv̄ − ḡ

∥
∥2

L2(T)
+

∫

T2

J(|x− y|)
∣
∣T−hv̄(y)− T−hv̄(x)

∣
∣pdxdy

= Ēλ/2(T−hv̄, ḡ, J).

This implies that the unique minimizer v̄⋆ of Ēλ/2(·, Thḡ, J) given by (see Lemma 6.2.3)

v̄⋆ = proxλ/2R̄p(·,J)
(Thḡ), (6.3.25)

is also the unique minimizer of Ēλ/2(T−h·, ḡ, J). But since Ēλ/2(·, ḡ, J) has a unique minimizer ū⋆, we

deduce from (6.3.24) and (6.3.25) that

Thproxλ/2R̄p(·,J)
(ḡ) = proxλ/2R̄p(·,J)

(Thḡ). (6.3.26)

That is, the proximal mapping of λ/2R̄p(·, J) commutes with translation.

We now split the two cases of q.

(i) For q ∈ [1, 2]: combining (6.3.24), (6.3.26), (6.2.4), [66, Lemma C.1] and that L2(Ω) ⊂ Lq(Ω), we

have ∥
∥Thū⋆ − ū⋆

∥
∥
Lq(T)

=
∥
∥proxλ/2R̄p(·,J)

(Thḡ)− proxλ/2R̄p(·,J)
(ḡ)
∥
∥
Lq(T)

≤
∥
∥proxλ/2R̄p(·,J)

(Thḡ)− proxλ/2R̄p(·,J)
(ḡ)
∥
∥
L2(T)

≤
∥
∥Thḡ − ḡ

∥
∥
L2(T)

≤
∥
∥g
∥
∥1−q/2

L∞(Ω)

∥
∥Thḡ − ḡ

∥
∥q/2

Lq(T)
≤ C1

∥
∥Thḡ − ḡ

∥
∥q/2

Lq(T)
.

(6.3.27)

Let Ωh
def

= {x ∈ Ω : x+ h ∈ Ω}. Recalling the modulus of smoothness in (2.3.1), we have

w(u⋆, t)q
def

= sup
|h|<t

∥
∥Thu

⋆ − u⋆
∥
∥
Lq(Ωh)

≤ C2 sup
|h|<t

∥
∥Thū⋆ − ū⋆

∥
∥
Lq(T)

≤ C1C2

(

sup
|h|<t

∥
∥Thḡ − ḡ

∥
∥
Lq(T)

)q/2

= C1C2w(ḡ, t)
q/2
q

≤ C1C2(C3w(g, t)q)
q/2.

(6.3.28)

We get the last inequality by applying the Whitney extension theorem [41, Ch. 6, Theorem 4.1].

Invoking Definition 2.3.1, there exists a constant C > 0 such that

|u⋆|Lip(sq/2,Lq(Ω))
def

= sup
t>0

t−sq/2w(u⋆, t)q ≤ C

(

sup
t>0

t−sw(u⋆, t)q

)q/2

≤ C |g|
q/2
Lip(s,Lq(Ω)) , (6.3.29)

whence the claim follows after observing that u⋆ ∈ L2(Ω) ⊂ Lq(Ω).

(ii) For q ∈ [2,+∞], we argue as in (6.3.27) to show that
∥
∥Thū⋆ − ū⋆

∥
∥
L2(T)

≤ C1

∥
∥Thḡ − ḡ

∥
∥q/2

Lq(T)
.

The rest of the proof is similar to that of (i).
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�

In view of the regularity Lemma 6.3.3 and Theorem 6.3.2, one can derive convergence rates but only

for p ∈ [1, 2]. Indeed, the approximation bounds of Lemma 2.3.2 cannot be applied to u⋆ − InPnu
⋆ for

p ≥ 2 since the bound in Theorem 6.3.2(ii) is in the Lp(Ω) norm while Lemma 6.3.3 proves that u⋆ is

only in Lip(sq/2, L2(Ω)). In particular, one cannot invoke (2.3.3) since there is no guarantee that u⋆

is bounded. This is the reason why in Chapter 7, we will only focus on the case p ∈ [1, 2].
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Convergence Rates for Networks on

Convergent Graph Sequences

Main contributions of this chapter

◮ We apply the error estimate of Chapter 6 to networks on simple and weighted dense

graphs and we show that the approximation of minimizers of the discrete problems on

simple and weighted graph sequences converge to those of the continuous problem.

◮ Under very mild conditions on the kernel and the initial data, typically belonging to

Lipschitz functional spaces, precise convergence rates are exhibited.

◮ We study networks on random inhomogeneous graphs. We establish nonasymptotic

convergence claims and give the rate of convergence of the discrete solution to its con-

tinuous limit with high probability under the same assumptions on the kernel and the

initial data.

◮ We reveal the role of the data regularity/geometry of the graph models and the param-

eter p on the rate of convergence.

These results are part of [67] .
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In this chapter, we present an analysis of networks on convergent graph sequences for the variational

p-Laplacian problem. Our results include three main parts: We show that the approximation of

minimizers of the discrete problems on simple and weighted graph sequences converge to those of the

continuous problem.This sets the question that solving a discrete variational problem on graphs has

indeed a continuum limit. Under very mild conditions on K and g, typically belonging to Lipschitz

functional spaces, precise convergence rates can be exhibited. These functional spaces allow to cover a

large class of graphs (through K) and initial data g, including those functions of bounded variation. For

simple graph sequences, we also show how the accuracy of the approximation depends on the regularity

of the boundary of the support of the graph limit. Finally, building upon these error estimates, we

study networks on random inhomogeneous graphs. We combine them with sharp deviation inequalities

to establish nonasymptotic convergence claims and give the rate of convergence of the discrete solution

to its continuous limit with high probability under the same assumptions on the kernel K and the

initial data g.

7.1 Networks on simple graphs

Recall the construction of the simple graph model {Gn}n∈N∗ described in Section 2.1.3.1. The discrete

counterpart of (VPnloc) on the graph Gn is then given by

min
un∈Rn






En,λ(un, gn,Kn)

def

=
1

2λn

∥
∥un − gn

∥
∥2

2
+

1

n2

∑

i,j:(i,j)∈E(Gn)

∣
∣unj − uni

∣
∣p






, (VPd

s,nloc)

where the initial data gn is given by (6.3.2). For this model, InKn(x, y) is the piecewise constant

function such that for (x, y) ∈ Ω
(n)
ij , (i, j) ∈ [n]2

InKn(x, y) =







1

|Ω
(n)
ij |

∫

Ω
(n)
ij

K(x, y)dxdy if Ω
(n)
ij ∩ supp(K) 6= ∅,

0 otherwise.

(7.1.1)

Relying on what we did in Sectionsimplegraphs, the rate of convergence of the solution of the discrete

problem to the solution of the limiting problem depends on the regularity of the boundary bd(supp(K))

of the support closure. Recall the upper box-counting (or Minkowski-Bouligand) dimension ρ defined

in (4.2.3).

Theorem 7.1.1. Assume that p ∈ [1, 2], g ∈ L2(Ω). Let u⋆ and u⋆n be the unique minimizers of

(VPnloc) and (VPd
s,nloc), respectively. Then, the following hold.

(i) We have
∥
∥Inu

⋆
n − u⋆

∥
∥
L2(Ω)

−→
n→+∞

0.
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(ii) For p ∈ [1, 2[: assume moreover g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3− p), 2],

that ρ ∈ [0, 2[ and that K(x, y) = J(|x − y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded

measurable mapping on Ω. Then for any ǫ > 0 there exists N(ǫ) ∈ N such that for any n ≥ N(ǫ)

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω))
≤ Cn−min{sq/2,(2−p)(1− ρ+ǫ

2
)},

where C is a positive constant independent of n.

(iii) For p = 2: under the same assumptions as (ii), we have
∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω))
≤ Cn−min{sq/2,2},

where C is a positive constant independent of n.

Proof :

(i) In view of (6.3.2), by the Lebesgue differentiation theorem (see e.g. [89, Theorem 3.4.4]), we have

Ingn(x) −→
n→∞

g(x), InPnu
⋆(x) −→

n→∞
u⋆(x) and InKn(x, y) −→

n→∞
K(x, y)

almost everywhere on Ω and Ω2, respectively. Combining this with Fatou’s lemma and (6.3.6),

we have

∥
∥g
∥
∥2

L2(Ω)
=

∫

Ω

∣
∣
∣ lim
n→∞

Ingn(x)
∣
∣
∣

2
dx =

∫

Ω
lim inf
n→∞

|Ingn(x)|
2dx

≤ lim inf
n→∞

∥
∥Ingn

∥
∥2

L2(Ω)

≤ lim sup
n→∞

∥
∥InPng

∥
∥2

L2(Ω)
≤
∥
∥g
∥
∥2

L2(Ω)
,

which entails that limn→∞

∥
∥Ingn

∥
∥
L2(Ω)

=
∥
∥g
∥
∥
L2(Ω)

. Similarly, we have limn→∞

∥
∥InPnu

⋆
∥
∥

L
2

3−p (Ω)
=

∥
∥u⋆
∥
∥

L
2

3−p (Ω)
. Since g ∈ L2(Ω), u⋆ ∈ L2(Ω) ⊂ L

2
3−p (Ω) (Theorem 6.2.1), we are in position to

apply the Riesz-Scheffé lemma [74, Lemma 2] to deduce that
∥
∥Ingn − g

∥
∥
L2(Ω)

−→
n→∞

0 and
∥
∥InPnu

⋆ − u⋆
∥
∥

L
2

3−p (Ω)
−→
n→∞

0.

Observe that for simple graphs, InKn is not an orthogonal projection of K (see (7.1.1)) and thus,

the above argument proof used for g and u⋆ does not hold. We argue however using the fact that

K is bounded, |Ω| < ∞, and that ∀n and (x, y) ∈ Ω2, |InKn(x, y)| ≤
∥
∥K
∥
∥
L∞(Ω)

. We can thus

invoke the dominated convergence theorem to get that
∥
∥InKn −K

∥
∥

L
2

2−p (Ω2)
−→
n→∞

0.

Passing to the limit in (6.3.7), we get the claim.

(ii) In the following C is any positive constant independent of n. Since g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)),

q ≤ 2, and we are dealing with a uniform partition of Ω (|Ω
(n)
i | = 1/n, ∀i ∈ [n]), we get using

inequality (2.3.3) that
∥
∥Ingn − g

∥
∥
L2(Ω)

≤ Cn−smin{1,q/2} = Cn−sq/2. (7.1.2)

By Lemma 6.3.3(i), we have u⋆ ∈ Lip(sq/2, Lq(Ω)), and it follows from (2.3.2) and the fact that

q ≥ 2/(3− p) that
∥
∥InPnu

⋆ − u⋆
∥
∥

L
2

3−p (Ω)
≤
∥
∥InPnu

⋆ − u⋆
∥
∥
Lq(Ω)

≤ Cn−sq/2. (7.1.3)

Combining (7.1.2) and (7.1.3), we get
∥
∥Ingn−g

∥
∥2

L2(Ω)
+
∥
∥Ingn−g

∥
∥
L2(Ω)

+
∥
∥InPnu

⋆−u⋆
∥
∥

L
2

3−p (Ω)
≤ C

(
n−sq+n−sq/2

)
≤ Cn−sq/2. (7.1.4)
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It remains to bound
∥
∥K−InKn

∥
∥

L
2

2−p (Ω2)
. For that, consider the set of discrete cells Ω

(n)
ij overlying

the boundary of the support of K

S(n) =
{

(i, j) ∈ [n]2 : Ω
(n)
ij ∩ bd(supp(K)) 6= ∅

}

and C(n) =
∣
∣S(n)

∣
∣.

For any ǫ > 0 and sufficiently large n, we have

C(n) ≤ nρ+ǫ.

It is easy to see that K and InKn coincide almost everywhere on cells Ω
(n)
ij such that (i, j) /∈ S(n).

Thus, for any ǫ > 0 and all sufficiently large n, we have

∥
∥K − InKn

∥
∥

2
2−p

L
2

2−p (Ω2)
≤ C(n)n−2 ≤ n−2(1− ρ+ǫ

2
). (7.1.5)

Inserting (7.1.4) and (7.1.5) into (6.3.7), the desired result follows.

(iii) For p = 2, let ΩS(n) =
⋃

(i,j)∈S(n)Ω
(n)
ij . We then have

∥
∥K − InKn

∥
∥
L∞(Ω2)

≤
∥
∥K − InKn

∥
∥
L∞(Ω2\ΩS(n))

+
∥
∥K − InKn

∥
∥
L∞(ΩS(n))

=
∥
∥K − InKn

∥
∥
L∞(ΩS(n))

≤ max
(i,j)∈S(n)

sup
(x,y)∈Ω

(n)
ij

|K(x, y)− InKn(x, y)| ≤ n−2.

�

7.2 Networks on weighted graphs

We now turn to the more general class of deterministic weighted graph sequences. The kernel K is

used to assign weights to the edges of the graphs considered bellow, we allow only positive weights.

These weights Knij are obtained by averaging K over the cells in the partition Qn following (6.3.2),

and InKn is given by (6.3.3).

Proceeding similarly to the proof of statement (i) of Theorem 7.1.1, we conclude immediately that
∥
∥Inu

⋆
n − u

∥
∥
L2(Ω)

−→
n→+∞

0.

We are rather interested now in quantifying the rate of convergence in (6.3.7). To do so, we need to

add some regularity assumptions on the kernel K.

Theorem 7.2.1. Let p ∈ [1, 2[, and assume that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and

q ∈ [2/(3 − p), 2]. Suppose moreover that K(x, y) = J(|x − y|), ∀(x, y) ∈ Ω2, with J a nonnegative

bounded measurable mapping on Ω. Let u⋆ and u⋆n be the unique minimizers of (VPnloc) and (VPd
nloc),

respectively. Then, the following error bounds hold.

(i) If p ∈ [1, 2[ K ∈ Lip(s′, Lq′(Ω2)), (s′, q′) ∈]0, 1]× [1,+∞[, then
∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ Cn−min{sq/2,s′,s′q′(1−p/2)}. (7.2.1)

where C is a positive constant independent of n.

In particular, if g ∈ L∞(Ω) ∩ BV(Ω) and K ∈ L∞(Ω2) ∩ BV(Ω2), then
∥
∥Inu

⋆
n − u

∥
∥2

L2(Ω)
= O

(
np/2−1

)
. (7.2.2)

(ii) If p ∈ [1, 2] and K ∈ Lip(s′, Lq′(Ω2)), (s′, q′) ∈]0, 1]× [2/(2− p),+∞], then
∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ Cn−min{sq/2,s′}. (7.2.3)

where C is a positive constant independent of n.
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In particular, if g ∈ L∞(Ω) ∩ BV(Ω) then

∥
∥Inu

⋆
n − u

∥
∥2

L2(Ω)
= O

(
n−min{1/2,s′}

)
. (7.2.4)

Proof : In the following C is any positive constant independent of n. Under the setting of the

theorem, for all cases, (7.1.4) still holds. It remains to bound
∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
. This is achieved

using (2.3.3) for case (i) and (2.3.2) for case (ii), which yields







∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
≤ Cn−s′ min{1,q′(1−p/2)} for case (i),

∥
∥K − InKn

∥
∥

L
2

2−p (Ω2)
≤
∥
∥K − InKn

∥
∥
Lq′ (Ω2)

≤ Cn−s′ for case (ii).
(7.2.5)

Plugging (7.1.4) and (7.2.5) into (6.3.7), the bounds (7.2.1) and (7.2.3) follow.

We know that BV(Ω) ⊂ Lip(1/2, L2(Ω)). Thus setting s = s′ = 1/2 and q = q′ = 2 in (7.2.1), and

observing that 1− p/2 ∈ [0, 1/2], the bound (7.2.2) follows. That of (7.2.4) is immediate. �

When p = 1 (i.e., nonlocal total variation), g ∈ L∞(Ω)∩Lip(s, L2(Ω)) and K is a sufficiently smooth

function, one can infer from Theorem 7.2.1 that the solution to the discrete problem (VPd
nloc) converges

to that of the continuous problem (VPnloc) at the rate O(n−s). This is to be compared to the slower

convergence rate O(n−s/(s+1)) established in [109, Theorem 4.1 and 5.1] for the discretization of the

local ROF model.

7.3 Networks on random inhomogeneous graphs

We now turn to applying our bounds of Theorem 6.3.2 of Chapter 6 to networks on random inhomo-

geneous graphs. Recall the random inhomogeneous graph model defined in Section 2.1.5.

Following the same reasoning as that done for networks on random graphs for the evolution problem

in Section 4.4.2.1, we assume first that the sequence X is deterministic. Capitalizing on this result,

we will then deal with the totally random model (i.e.; generated by random nodes) in Section 7.3.2 by

a simple marginalization argument combined with additional assumptions to get the convergence and

quantify the corresponding rate.

7.3.1 Networks on graphs generated by deterministic nodes

As we have mentioned before, we shall denote x = (x1, · · · ,xn) as we assume that the sequence of

nodes is deterministic. Recall the parameter δ(n) defined in (4.4.3).

Next, we consider the discrete counterpart of (VPnloc) on the graph Gn

min
un∈Rn






En,λ(un, gn,Kn)

def

=
1

2λn

∥
∥un − gn

∥
∥2

2
+

1

2pn2

n∑

i,j=1

λij
∣
∣unj − uni

∣
∣p






, (VPd

d,nloc)

where

gi =
1

∣
∣Ωx

ni

∣
∣

∫

Ωx

ni

g(x)dx.

Theorem 7.3.1. Suppose that p ∈ [1, 2[, g ∈ L2(Ω) and K is a nonnegative measurable, symmetric

and bounded mapping. Let u⋆ and u⋆n be the unique minimizers of (VPnloc) and (VPd
d,nloc), respectively.

Let p′ = 2
2−p .
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(i) There exist positive constants C and C1 that do not depend on n, such that for any β > 0

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C








β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+
∥
∥g − Ingn

∥
∥2

L2(Ω)

+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − In

∧
Kx

n

∥
∥
Lp′ (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

)

,

(7.3.1)

with probability at least 1− 2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β.

(ii) Assume moreover that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3 − p), 2], that

K(x, y) = J(|x− y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded measurable mapping on Ω, and

K ∈ Lip(s′, Lq′(Ω2)), (s′, q′) ∈]0, 1]× [p′,+∞]. Then there exist positive constants C and C1 that

do not depend on n, such that for any β > 0

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C








β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+ δ(n)−min(sq/2,s′)




 ,

(7.3.2)

with probability at least 1− 2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β.

Proof : In the following C is any positive constant independent of n.

(i) We start by arguing as in the proof of Theorem 6.3.2. Similarly to (6.3.9), we now have

1

2λ

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤
(
Eλ(Inu

⋆
n, g,K)− En,λ(u

⋆
n, gn,Λn)

)
−
(
Eλ(u

⋆, g,K)− En,λ(u
⋆
n, gn,Λn)

)
.

(7.3.3)

The first term can be bounded similarly to (6.3.11)-(6.3.12) to get

Eλ(Inu
⋆
n, g,K)− En,λ(u

⋆
n, gn,Λn) ≤ C

(

∥
∥Ingn − g

∥
∥2

L2(Ω)
+
∥
∥Ingn − g

∥
∥
L2(Ω)

+

∣
∣
∣
∣

∫

Ω2

(
K(x, y)− InΛn(x, y)

)∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

∣
∣
∣
∣

)

≤ C

(

∥
∥Ingn − g

∥
∥2

L2(Ω)
+
∥
∥Ingn − g

∥
∥
L2(Ω)

+

∣
∣
∣
∣

∫

Ω2

(
K(x, y)− In

∧
Kx

n(x, y)
)∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

∣
∣
∣
∣

+

∣
∣
∣
∣

∫

Ω2

(
In

∧
Kx

n(x, y)− InΛn(x, y)
)∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

∣
∣
∣
∣

)

.

(7.3.4)

The second term in (7.3.4) is O

(
∥
∥K − In

∧
Kx

n

∥
∥
Lp′ (Ω2)

)

, see (6.3.13). For the last term, we have
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using Jensen and Hölder inequalities,
∣
∣
∣
∣

∫

Ω2

(
In

∧
Kx

n(x, y)− InΛn(x, y)
)∣
∣Inu

⋆
n(y)− Inu

⋆
n(x)

∣
∣pdxdy

∣
∣
∣
∣

≤ 2p−1

(
∫

Ω

∣
∣
∣
∣

∫

Ω

(
In

∧
Kx

n(x, y)− InΛn(x, y)
)
dy

∣
∣
∣
∣

∣
∣Inu

⋆
n(x)

∣
∣pdx

+

∫

Ω

∣
∣
∣
∣

∫

Ω

(
In

∧
Kx

n(x, y)− InΛn(x, y)
)
dx

∣
∣
∣
∣

∣
∣Inu

⋆
n(y)

∣
∣pdy

)

≤ C

((
∫

Ω

∣
∣
∣
∣

∫

Ω

(
In

∧
Kx

n(x, y)− InΛn(x, y)
)
dy

∣
∣
∣
∣

p′

dx

)1/p′

+

(
∫

Ω

∣
∣
∣
∣

∫

Ω

(
In

∧
Kx

n(x, y)− InΛn(x, y)
)
dx

∣
∣
∣
∣

p′)

dy

)1/p′ )

= C
(∥
∥Zn

∥
∥
p′,n

+
∥
∥Wn

∥
∥
p′,n

)

,

(7.3.5)

where

Zni
def

=
1

n

n∑

j=1

(
∧
Kx

nij − λij

)

and Wnj
def

=
1

n

n∑

i=1

(
∧
Kx

nij − λij

)

.

By virtue of Lemma 4.4.10, which is valid since p′ ∈ [2,+∞[, there exists a positive constant C1,

such that for any β > 0

P

(∥
∥Zn

∥
∥
p′,n

≥ ε
)

≤ n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β ,

with

ε =



β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

. (7.3.6)

The same bound also holds for
∥
∥Wn

∥
∥
p′,n

. A union bound then leads to
∥
∥Zn

∥
∥
p′,n

+
∥
∥Wn

∥
∥
p′,n

≤ 2ε (7.3.7)

with probability at least 1− 2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β .

Let us now turn to the second term in (7.3.3). Using (6.3.6) and the fact that u⋆n is the unique

minimizer of (VPd
d,nloc), we have

Eλ(Inu
⋆
n, Ingn, InΛn)− Eλ(u

⋆, g,K) ≤ (Rp(InPnu
⋆,K)−Rp(u

⋆,K))

+ (Rp(InPnu
⋆, InKn)−Rp(InPnu

⋆,K))

+ (Rp(InPnu
⋆, InΛn)−Rp(InPnu

⋆, InKn)) .

(7.3.8)

The first term is bounded as in (6.3.16), which yields
∣
∣Rp(InPnu

⋆,K)−Rp(u
⋆,K)

∣
∣ ≤ C

∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)
. (7.3.9)

The second term follows from (6.3.17)
∣
∣Rp(InPnu

⋆, InKn)−Rp(InPnu
⋆,K)

∣
∣ ≤ C

∥
∥K − InKn

∥
∥
Lp′ (Ω2)

. (7.3.10)

The last term is upper-bounded exactly as in (7.3.5) and (7.3.7).

Inserting (7.3.4), (7.3.5), (7.3.7), (7.3.8), (7.3.9) and (7.3.10) into (7.3.3), we get the claimed

bound.

(ii) Insert (7.1.4) and (7.2.5) into (7.3.1) after replacing 1/n by δ(n).

�
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7.3.2 Networks on graphs generated by random nodes

Let us turn now to the totally random model. The discrete counterpart of (VPnloc) on the totally

random sequence of graphs {Gqn}n∈N∗ is given by

min
un∈Rn






En,λ(un, gn,Kn)

def

=
1

2λn

∥
∥un − gn

∥
∥2

2
+

1

n2

n∑

i,j=1

Υij

∣
∣unj − uni

∣
∣p






, (VPd

r,nloc)

where we recall that the random variables Υij are the independent with qnΥij following the Bernoulli

distribution with parameter E

(

qn
∧
KX

nij

)

defined above.

Observe that for the totally random model, δ(n) is a random variable. Thus, we have to to derive

a bound on it. In Lemma 4.4.9, we shown that

δ(n) ≤ t
log(n)

n
, (7.3.11)

with probability at least 1− n−t, where t ∈]0, e[.

Combining this bound with Theorem 7.3.1 (after conditioning and integrating) applied to the totally

random sequence {Gqn}n∈N∗ , we get the following result.

Theorem 7.3.2. Suppose that p ∈ [1, 2[, g ∈ L2(Ω) and K is a nonnegative measurable, symmetric

and bounded mapping. Let u⋆ and u⋆n be the unique minimizers of (VPnloc) and (VPd
r,nloc), respectively.

Let p′ = 2
2−p .

(i) There exist positive constants C and C1 that do not depend on n, such that for any β > 0

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C








β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+
∥
∥g − Ingn

∥
∥2

L2(Ω)

+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − In

∧
KX

n

∥
∥
Lp′ (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

)

,

(7.3.12)

with probability at least 1− 2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β.

(ii) Assume moreover that g ∈ L∞(Ω) ∩ Lip(s, Lq(Ω)), with s ∈]0, 1] and q ∈ [2/(3 − p), 2], that

K(x, y) = J(|x−y|), ∀(x, y) ∈ Ω2, with J a nonnegative bounded measurable mapping on Ω, that

K ∈ Lip(s′, Lq′(Ω2)), (s′, q′) ∈]0, 1] × [p′,+∞] and qn
∥
∥K
∥
∥
L∞(Ω2)

≤ 1. Then there exist positive

constants C and C1 that do not depend on n, such that for any β > 0 and t ∈]0, e[

∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ C








β
log(n)

n
+

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+

(

t
log(n)

n

)min(sq/2,s′)




 ,

(7.3.13)

with probability at least 1−
(
2n−C1 min

(
q
(2p′−1)
n ,qp

′

n

)
β + n−t

)
.

Proof : Again, C will be any positive constant independent of n.

(i) Let

ε′ = C








β
log(n)

n
+ C

max
(

q
−(p′−1)
n , q

−p′/2
n

)

np′/2





1/p′

+
∥
∥g − Ingn

∥
∥2

L2(Ω)
+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − In

∧
KX

n

∥
∥
Lp′ (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)

)

.

– 110 –



Chapter 7 7.4. Numerical results

Using (7.3.1), and independence of this bound fromx, we have

P

(∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≥ ε′

)

=
1
∣
∣Ω
∣
∣n

∫

Ωn

P

(∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≥ ε′|X = x

)

dx

≤
1
∣
∣Ω
∣
∣n

∫

Ωn

2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
βdx

= 2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β .

(ii) Recall ε in (7.3.6) and κ = C
(

t log(n)n

)min(sq/2,s′)
. Denote the event

A1 :

{
∥
∥g − Ingn

∥
∥2

L2(Ω)
+
∥
∥g − Ingn

∥
∥
L2(Ω)

+
∥
∥K − In

∧
KX

n

∥
∥
Lp′ (Ω2)

+
∥
∥u⋆ − InPnu

⋆
∥
∥

L
2

3−p (Ω)
≤ κ

}

.

In view of (7.1.4), (7.2.5) and (7.3.11), and that under our assumptions
∧
KX

n = KX
n , we have

P (A1) ≥ P

(

δ(n) ≤ t
log(n)

n

)

≥ 1− n−t.

Let the event

A2 :
{∥
∥Zn

∥
∥
p′,n

+
∥
∥Wn

∥
∥
p′,n

≤ 2ε
}

,

and denote Ac
i the complement of the event Ai. It then follows from (7.3.7) and the union bound

that

P

(∥
∥Inu

⋆
n − u⋆

∥
∥2

L2(Ω)
≤ 2Cε+ κ

)

≥ P (A1 ∩A2) = 1− P (Ac
1 ∪A

c
2)

≥ 1−
2∑

i=1

P (Ac
i ) ≥ 1−

(

2n−C1 min
(
q
(2p′−1)
n ,qp

′

n

)
β + n−t

)

,

which leads to the claimed result.

�

When p = 1 (i.e., nonlocal total variation), g ∈ L∞(Ω)∩Lip(s, L2(Ω)) and K is a sufficiently smooth

function, one can deduce from Theorem 7.3.2 that with high probability, the solution to the discrete

problem (VPd
r,nloc) converges to that of the continuous problem (VPnloc) at the rateO

((
log(n)

n

)−min(1/2,s)
)

.

Compared to the deterministic graph model, there is overhead due to the randomness of the graph

model which is captured in the rate and the extra-logarithmic factor.

7.4 Numerical results

In this section, we will apply the variational regularization problem (VPd
nloc) to a few applications, and

illustrate numerically our bounds.

7.4.1 Minimization algorithm

The algorithm we will describe in this subsection is valid for any p ∈ [1,+∞]1. The minimization

problem (VPd
nloc) can be rewritten in the following form

min
un∈Rn

1

2

∥
∥un − gn

∥
∥2

2
+
λn
p

∥
∥∇Knun

∥
∥p

p
, (7.4.1)

where λn = λ/(2n), ∇Kn is the (nonlocal) weighted gradient operator with weights Knij , defined as

∇Kn :Rn → R
n×n

1Obviously limp→+∞
1
p

∥

∥ ·
∥

∥

p

p
= ι‖un‖

∞
≤1.
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un 7→ Vn, Vnij = K
1/p
nij (unj − uni), ∀(i, j) ∈ [n]2.

This is a linear operator whose adjoint, the (nonlocal) weighted divergence operator denoted divKn .

It is easy to show that

divKn :Rn×n → R
n

Vn 7→ un, uni =
n∑

m=1

K
1/p
nmiVnmi −

n∑

j=1

K
1/p
nij Vnij , ∀n ∈ [n].

Problem (7.4.1) can be easily solved using standard duality-based first-order algorithms. For this we

follow [53].

By standard conjugacy calculus, the Fenchel-Rockafellar dual problem of (7.4.1) reads

min
Vn∈Rn×n

1

2

∥
∥gn − divKnVn

∥
∥2

2
+
λn
q

∥
∥Vn/λn

∥
∥q

q
, (7.4.2)

where q is the Hölder dual of p, i.e. 1/p + 1/q = 1. One can show with standard arguments that

the dual problem (7.4.2) has a convex compact set of minimizers for any p ∈ [1,+∞[. Moreover, the

unique solution u⋆n to the primal problem (7.4.1) can be recovered from any dual solution V ⋆
n as

u⋆n = gn − divKnV
⋆
n .

It remains now to solve (7.4.2). The latter can be solved with the (accelerated) FISTA iterative

scheme [85, 17, 37] which reads in this case

W k
n = V k

n +
k − 1

k + b
(V k

n − V k−1
n )

V k+1
n = prox

γ λn
q

∥
∥·/λn

∥
∥

q

q

(

W k
n + γ∇Kn

(
gn − divKn(W

k
n )
))

uk+1
n = gn − divKnV

k+1
n ,

(7.4.3)

where γ ∈
]
0,
(
sup∥∥un

∥
∥

2
=1

∥
∥∇Knun

∥
∥
2

)−1]
, b > 2, and we recall that proxτF is the proximal mapping

of the proper lsc convex function F with τ > 0, i.e.,

proxτF (W ) = Argmin
V ∈Rn×n

1

2

∥
∥V −W

∥
∥2

2
+ τF (V ).

The convergence guarantees of scheme (7.4.3) are summarized in the following proposition.

Proposition 7.4.1. The primal iterates ukn converge to u⋆n, the unique minimizer of (VPd
nloc), at the

rate
∥
∥ukn − u⋆n

∥
∥
2
= o(1/k).

Proof : Combine [53, Theorem 2] and [9, Theorem 1.1]. �

Let us turn to the computation of the proximal mapping prox
γ λn

q

∥
∥·/λn

∥
∥

q

q

. Since
∥
∥ ·
∥
∥q

q
is separable,

one has that

prox
γ λn

q

∥
∥·/λn

∥
∥

q

q

(W ) =

(

proxγ λn
q
|·/λn|

q(Wij)

)

(i,j)∈[n]2
.

Moreover, as |·|q is an even function on R, proxγ λn
q
|·/λn|

q is an odd mapping on R, that is,

proxγ λn
q
|·/λn|

q(Wij) = proxγ λn
q
|·/λn|

q(|Wij |) sign (Wij) .

In a nutshell, one has to compute proxγ λn
q
|·/λn|

q(t) for t ∈ R
+. We distinguish different situations

depending on the value of q:
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• q = +∞ (i.e., p = 1): this case amounts to computing the orthogonal projector on [−λn, λn],

which reads

t ∈ R
+ 7→ P[−λn,λn](t) = min

(
t, λn

)
.

• q = 1 (i.e., p = +∞): this case corresponds to the well-known soft-thresholding operator, which

is given by

t ∈ R
+ 7→ proxγ|·|(t) = max

(
t− γ, 0

)
.

• q = 2 (i.e., p = 2): it is immediate to see that

proxγ/(2λn)|·|2(t) =
t

1 + γ/λn
.

• q ∈]1,+∞[: in this case, as | · |q is differentiable, the proximal point proxγ λn
q
|·/λn|

q(t) is the unique

solution α⋆ on R
+ of the non-linear equation

α− t+ γαp−1/λn = 0.

7.4.2 Experimental setup

We apply the scheme (7.4.3) to solve (7.4.1) in two applicative settings with nonlocal regularization on

(weighted) graphs. The first one pertains to denoising of a function defined on a 2D point cloud, and

the second one to signal denoising. In the first setting, the nodes of the graph are the points in the

cloud and uni is the value of point/vertex index i. For signal denoising, each graph node correspond

to a signal sample, and uni is the signal value at node/sample index i. We chose the nearest neighbour

graph with the standard weighting kernel e−|x−y| when |x − y| ≤ δ and 0 otherwise, where x and y

are the 2D spatial coordinates of the points for the point cloud2, and sample index for the signal case.
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Figure 7.1: Original point cloud with N = 2500 points.

Application to point cloud denoising The original point cloud used in our numerical experiments

is shown inFigure 7.1. It consists of N = 2500 points that do are not on a regular grid. The function

on this point cloud, denoted u0N , is piecewise-constant taking 5 values (5 clusters) in [5]. A noisy

observation gN (see Figure 7.2(a)) is then generated by adding a white Gaussian noise noise of standard

deviation 0.5 to u0N . Given the piecewise-constancy of u0N , we solved (7.4.1) with the natural choice

p = 1. The result is shown in Figure 7.2(b). Figure 7.2(c) displays the evolution of
∥
∥ukN − u⋆N

∥
∥
2

as a

function of the iteration counter k, which confirms the theoretical rate o(1/k) predicted above.

2For the 2D case, (x,y) are not to be confused with the "coordinates" (x, y) of the graphon on the continuum, though

there is a bijection from one to another.
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To illustrate our consistency results, u⋆ is needed while it is known in our case. Therefore, we argue

as follows. We consider the continuous extension of INu
⋆
N as a reference and compute

∥
∥u⋆n−INu

⋆
N

∥
∥
L2(Ω)

for varying n ≪ N , and the corresponding bound is expected to be dominated by that at n. Thus,

for each value of n ∈ [100, N/8], n nodes are drawn uniformly at random in [N ] and gn is generated,

which is a sampled version of gN at those nodes. This is replicated 20 times. For each replication,

we solve (7.4.1) with gn and the same regularization parameter λ, and we compute the mean across

the 20 replications of the squared-error
∥
∥Inu

⋆
n − INu

⋆
N

∥
∥2

L2(Ω)
. The result is depicted in Figure 7.2(d).

The gray-shaded area corresponds to one standard deviation of the error over the 20 replications. One

indeed observe that the average error decreases at a rate consistent with the O(n−1/2) predicted by

our results (see discussion after Theorem 7.2.1 with s = 1/2).
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Figure 7.2: Results for point cloud denoising with p = 1. (a) Noisy point cloud. (b) Recovered point

cloud by solving (7.4.1). (c) Primal convergence criterion
∥
∥ukn − u⋆n

∥
∥
2

as a function of the iteration

counter k. (d) Mean error
∥
∥Inu

⋆
n − INu

⋆
N

∥
∥2

L2(Ω)
across replications as a function of n.

Application to signal denoising In this experiment, we choose a piecewise-constant signal shown

in Figure 7.3(a) for N = 1000 together with its noisy version gN with additive white Gaussian noise

of standard deviation 0.05. Figure 7.3(b) depicts the denoised signal u⋆N by solving (7.4.1) with p = 1

and hand-tuned λ. Figure 7.3(c) also confirms the o(1/k) rate predicted above on
∥
∥ukN − u⋆N

∥
∥
2
.

We now illustrate the consistency bound result on a random sequence of graphs

{Gqn(n,K)}n∈[100,N/4] generated according to Definition 2.1.15 with qn = 1. For each value of n ∈

[100, N/4], n nodes are drawn uniformly at random in [N ], and gn is generated, which is a sampled

version of gN at those nodes. n2 independent Bernoulli variables λij each with parameter Knij are

also generated. This is replicated 20 times. For each replication, we solve (7.4.1) with gn and the same
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regularization parameter λ, and we compute the mean across the 20 replications of the squared-error
∥
∥Inu

⋆
n− INu

⋆
N

∥
∥2

L2(Ω)
. The result is reported in Figure 7.3(d). The gray-shaded area indicates one stan-

dard deviation of the error over the 20 replications. Again, the average error decreases in agreement

with the rate O
(
(log(n)/n)1/2

)
predicted by Theorem 7.3.2.
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Figure 7.3: Results for signal denoising with p = 1. (a) Noisy and original signal. (b) Denoised and

original signal foor N = 1000. (c) Primal convergence criterion
∥
∥ukn−u

⋆
n

∥
∥
2

as a function of the iteration

counter k. (d) Mean error
∥
∥Inu

⋆
n − INu

⋆
N

∥
∥2

L2(Ω)
as a function of n.
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Chapter 8

Conclusion and Perspectives

This manuscript provides new results on consistency of evolution and variational nonlocal p-Laplacian

problems on graphs along two main standpoints: general error bounds comparing the continuum

problems and their discrete approximations on graphs and global convergence rates Our results provide

a theoretical and insightful justification to the continuum limit for these nonlocal problems.

Take-away messages: several conclusions and take-away messages can be drawn from this work:

(i) our results reveal that without any extra regularity condition, starting from a bounded initial

data, the Neumann nonlocal p-Laplacian evolution problem is consistent.

(ii) Our global nonasymptotic convergence rates for the evolution problem reveal that the approxima-

tion error depends on the regularity of the initial data and the graphon, and the latter encodes

the geometry/structure of the underlying graphs. The more regular the initial data and the

graphon are, the faster the convergence rate. Especially, for random inhomogeneous graphs, we

exhibit different regimes for the convergence rate as a function of the problem parameters. In

particular, the convergence rate shows a transition phenomenon at p = 2.

(iii) For the variational problem (VPnloc), we established a global (sharp) error estimate controlling

the error between the unique minimizer of the continuum problem and that of the discrete one.

The consistency of (VPnloc) is settled without any regularity assumption, just by supposing that

the initial data is in L2(Ω) and the kernel K is bounded.

(iv) Under very mild conditions on K and g, typically belonging to Lipschitz functional spaces, precise

convergence rates were exhibited. These functional spaces allow to cover a large class of graphs

(through K) and initial data g, including functions of bounded variation.

Our research program will not stop here, and many open questions are yet to be answered sepa-

rately/commonly for both the evolution and variational problems.

8.1 The evolution problem

Other nonlocal operators: beyond the p-Laplacian The analysis developed in this thesis re-

volves mainly around the p-Laplacian operator. It would be interesting to study other nonlocal oper-

ators such as the (nonlocal) fractional Laplacian. i.e;

(−∆)s u(x) =
C(n, s)

2

∫

Rn

u(x)− u(x+ y)− u(x− y)
∣
∣y
∣
∣n+2s dy,

C(n, s) is a positive constant, s ∈]0, 1[.
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Other nonlocal evolution problems: beyond (Pnloc) It would be also very interesting to ex-

tend our results to analyze the consistency of other nonlocal evolution problems such as the nonlocal

Hamilton-Jacobi equation; see e.g., [12]. This is the subject of an ongoing work.

One can also think of studying consistency of numerical schemes beyond evolution problems. Typi-

cally, we think of the Dirichlet problem.

Other graph sequences Along the entire manuscript and particularly when dealing with networks

on convergent graph sequences, we restricted ourselves to bounded graphons (we supposed that K ∈

L∞(Ω2)) and we dealt with a particular graph structure, that is dense graphs (deterministic and

inhomogeneous random ones). However, practically many interesting graph models which arise in

applications do not have this density property. In fact, our analysis does not accomodate for these

graph models. The progress in this direction became possible with the theory of Lp-graphons used to

define graph limits for sparse graphs of unbounded degree [28]. The goal will be to extend and adapt

our arguments and results to this larger class of graphs, which includes directed and undirected, sparse

and dense, random and deterministic graphs.

The limiting cases p = 1 and p = +∞ Starting with the study of the well-posedness and going

through the study of the consistency of (Pnloc), excluding the values p = 1 and p = ∞ was crucial to

get our results. Indeed, two main causes stand behind this restriction assumption:

(i) For p = 1 and p = ∞, the spaces L1(Ω) and L∞(Ω) are not reflexive and thus don’t have the

Radon-Nikodym property. Due to this, one can not get the existence and uniqueness of a strong

solution to (Pnloc) for these values of p (see [7, Proposition A.35]). However, the authors of [7]

have already established the well-posedness (existence and uniqueness of a strong solution) of the

nonlocal total variation flow.i.e; (Pnloc) with p = 1, and the kernel K(x, y) = J(x− y), x, y ∈ Ω

by taking the limit as p ց 1 of the solutions of the Neumann Cauchy problem with p > 1 that

were studied in [7, Chapter 6]. To get the well-posedness of (Pnloc) (for p = 1) one has to go a

step further by adapting this result for the bivariate kernel K.

(ii) On the other hand, to get our estimate for the problem (Pnloc), Lemma 2.2.16 was fundamental.

However, a restrictive assumption was essential to get the desired result, that is to exclude the

value p = 1. Hence, the error estimates we got are no longer valid for p = 1. It would be

interesting to find a way to get around this difficulty and establish the consistency of (Pnloc).

For p = ∞, the definition of the operator ∆K
p becomes completely different, many challenges

arise in addition to well-posedness.

Consistency of the normalized p-Laplacian evolution problem In Chapter 5, we dealt with

the discrete in space Neumann evolution problem for the normalized p-Laplacian. We looked only at

its well-posedness. It then appears natural to study the continuum counterpart of (PNor,d
nloc ), its well-

posedness and consistency of the dicsretization (PNor,d
nloc ). In turn this will allow to study such problems

on networks on convergent graph sequences and establish the corresponding convergence rates.

8.2 The variational problem

Inverse problems Beyond (VPnloc), we can try to extend our results to linear inverse problems

where the data fidelity inEλ(u, g,K) is replaced by
∥
∥g − Au

∥
∥2

L2(Σ)
, and where A is a bounded linear

operator from L2(Ω) to L2(Σ).

Other nonlocal regularizations It would be interesting to study other nonlocal variational prob-

lems beyond the p-Laplacian. More precisely, it would be interesting to get deeper understanding of
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what are the essential properties of a nonlocal regularizer for our consistency results for instance to

hold.

Beyond quadratic fidelity Here we focused on the quadratic data fidelity given its importance in

practice for instance in imaging. It would be important to investigate what happens for other data

fidelities, including those encountered in machine learning applications.

Convergence rates for p > 2 Our consistency results and convergence rates were only established

for p ∈ [1, 2]. The extension beyond 2 faces a major obstacle materialized in bounding the term
∥
∥u⋆ − InPnu

⋆
∥
∥
Lp(Ω)

. This is an important challenge.

Other graph sequences In the same vein as for evolution problems (see above), it would be im-

portant to extend our consistency results to other graph sequence models.

Solution structure and stability/recovery guarantees Understanding the recovery guarantees

(structure of the solution, stability to noise, etc.) of nonlocal regularizers is much less understood than

those of local ones (e.g. total variation). This is a whole research program that we believe is important

to investigate.

– 119 –





List of Publications

In preparation

Y. Hafiene J.Fadili and A.Elmoataz, Nonlocal p-Laplacian Variational Problems on Graphs.

Preprints

Y. Hafiene J.Fadili C.Chesneau and A.Elmoataz, The Continuum Limit of the Nonlocal p-Laplacian

Evolution Problem on Random Inhomogeneous Graphs submitted to IMA Journal of Numerical Anal-

ysis; arXiv:1805.01754.

Journal Papers

Y. Hafiene J.Fadili and A.Elmoataz, Nonlocal p-Laplacian Evolution Problems Graphs, SIAM Journal

on Numerical Analysis, 56(2), 1064–1090, 2018.

Conference Proceedings

(1) Y. Hafiene J. Fadili and A. Elmoataz, Le p-Laplacien non-local sur graphes: du discret au continu

Colloque sur le Traitement du Signal et des Images (GRETSI) ,Juan Les Pins, 2017 (Oral).

(2) Y. Hafiene J. Fadili and A. Elmoataz, Nonlocal p-Laplacian Evolution Problems on Graphs Col-

loque ORASIS, Journées Francophones des Jeunes Chercheurs en Vision par Ordinateur,Colleville-

sur-Mer, 2017 (Poster).

– 121 –





List of Notations

General definitions

R: the set of real numbers

R+: positive real numbers

R: ]−∞,+∞[∪{+∞}, the extended real value

N: set of non-negative integers

N
∗: set of positive integers

R
n,Rm: finite dimensional real Euclidean spaces

Spaces related

H: real Hilbert space

X : Banach space

Γ0(H): the set of proper convex and lower semicontinuous functions on H

Lp(Ω): the Banach space of p-integrable functions on Ω, p ∈ [1,+∞]

C(0, T ;X ): the space of functions on X × [0, T ] which are continuous in the time variable

Sets related

ιS : indicator function of a set S

χS : charactetistic function of a set S

NS : normal cone of a set S

PS : projection operator onto S

int(S): interior of S

bd(S): boundary of S

S: closure of S

span(S): smallest linear subspace that contains S

Functions related

dom(F ): domain of a function F

∇F : gradient of F

proxγF : proximity operator of F with γ > 0

∂F : subdifferential of function F

supp(F ): support of a function F

Operators

Dom(A): domain of the operator A

R(A): range of the operator A

JA: resolvent of the operator A

I: identity operator on a space to be understood from the context

– 123 –



Norms
∥
∥ ·
∥
∥
Lp(Ω)

: the norm of functions on Lp(Ω)
∥
∥ ·
∥
∥
p
: the p-norm of a vector in R

n, p ∈ [1,+∞]
∥
∥ ·
∥
∥
p,n

: the normalized p-norm of a vector in R
n, p ∈ [1,+∞]
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