Photostructuration de matériaux nanocomposites à propriétés magnéto-optiques : vers la réalisation de composants pour l'optique intégrée

par Clémentine Bidaud

Thèse de doctorat en Chimie-physique

Sous la direction de Dominique Berling et de Emilie Gamet.

Soutenue le 14-11-2018

à Mulhouse , dans le cadre de École doctorale Physique et chimie-physique (Strasbourg ; 1994-....) , en partenariat avec Institut de Science des Matériaux de Mulhouse (laboratoire) et de Institut de Science des Matériaux de Mulhouse (laboratoire) .


  • Résumé

    L’objectif principal de ce travail de thèse est de formuler un matériau nanocomposite doté de propriétés magnéto-optiques (MO) et photostructurable pour, in fine, réaliser des dispositifs optiques non-réciproques pouvant être intégrés au sein de puces optiques. Le matériau nanocomposite MO est obtenu en dispersant des nanoparticules magnétiques (NP) de ferrite de cobalt dans une matrice sol-gel d’alcoxydes de silicium et de titane. Les NP confèrent au matériau ses propriétés MO. La formulation du matériau est photostructurable en UV profond (193, 266 nm) sans ajout de photoamorceur et se comporte comme une photo-résine négative. La formulation est flexible en termes de ratio molaire Si/Ti et de dopage en NP pouvant atteindre 20 %vol. La photochimie du matériau en films minces a été étudiée par ellipsométrie spectroscopique, FTIR et spectroscopie UV-visible. Les techniques de photolithographies UV interférométriques et par masques binaires ont permis de réaliser des réseaux périodiques de lignes bien définis et couvrant une large gamme de périodes, de 500 nm à 100 µm. Les propriétés optiques et MO (rotation Faraday) du matériau ont été étudiées. En couches minces, l’indice de réfraction peut être modulé entre 1,4 et 1,7 selon la composition du matériau. Il a été établi que l’ensemble des NP introduites dans le matériau contribuent à la rotation Faraday. Des dispositifs microstructurés ont été réalisés en espace libre et en configuration guidée en se basant sur les dimensionnements opto-géométriques déterminés par des simulations optiques et MO. Leurs caractérisations démontrent l’intérêt de ce matériau et son caractère prometteur pour réaliser des dispositifs intégrés.

  • Titre traduit

    Photostructuration of nanocomposite materials with magneto-optical properties : towards realization of integrated devices in optical chips


  • Résumé

    The main objective of this PhD work is to formulate a nanocomposite material with magneto-optical (MO) properties which is also photostructurable, in order to ultimately create non-reciprocal optical devices that can be integrated into optical chips. The nanocomposite MO material is obtained by homogenously dispersing magnetic nanoparticles (NP) of cobalt ferrite in a sol-gel matrix based on silicon and titanium alkoxides. NP confer the material its MO properties. The material is photostructurable with deep UV wavelengths (193, 266 nm) without any addition of photoinitiator and behaves like a negative photoresist. The formulation is versatile in terms of Si/Ti molar ratio and NP doping, up to 20 %vol. The photochemistry of this material as thin films has been studied by spectroscopic ellipsometry, FTIR and UV-visible spectroscopy. UV photolithography techniques using interferometry setups and binary masks have achieved well-defined periodic lines patterns over a wide range of periods, from 500 nm to 100 microns. The optical and MO (Faraday rotation) properties of the material were studied. In thin layers, the refractive index can be modulated between 1.4 and 1.7 depending on the Si/Ti material stoichiometry and its NP doping. It has been established that all the NP introduced in the material contribute to the Faraday rotation. Micro-structured devices in free space and in guided configuration have been realized using the opto-geometrical features determined using optical and MO simulations. Their characterizations demonstrate the high interest of this material and clearly show its promising character to realize integrated devices.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Autre version

Cette thèse a donné lieu à une publication en 2018 par Université de Haute Alsace [diffusion/distribution] à Mulhouse

Photostructuration de matériaux nanocomposites à propriétés magnéto-optiques : vers la réalisation de composants pour l'optique intégrée


Consulter en bibliothèque

Cette thèse a donné lieu à une publication en 2018 par Université de Haute Alsace [diffusion/distribution] à Mulhouse

Informations

  • Sous le titre : Photostructuration de matériaux nanocomposites à propriétés magnéto-optiques : vers la réalisation de composants pour l'optique intégrée
  • Détails : 1 vol. (186-xxvii p.)
La version de soutenance de cette thèse existe aussi sous forme papier.

Où se trouve cette thèse\u00a0?

Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.