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Résumé

La cryptographie sur les réseaux est l’une des approches les plus compétitives pour protéger la con-
fidentialité, dans les applications actuelles et l’ère post-quantique. Le problème central qui sert de
fondement de complexité de la cryptographie sur réseaux est Learning with Errors (LWE). Il consiste à
résoudre un système d’équations bruité, linéaire et surdéterminé. Ce problème est au moins aussi diffi-
cile que les problèmes standards portant sur les réseaux, tels que le décodage à distance bornée (BDD
pour Bounded Distance Decoding) et le problème du vecteur le plus court unique (uSVP pour unique
Shortest Vector Problem). Tous ces problèmes sont conjecturés difficiles à résoudre, même avec un
ordinateur quantique de grande échelle. En particulier, le meilleur algorithme connu pour résoudre ces
problèmes, BKZ, est très coûteux.

Dans cette thèse, nous étudions les relations de difficulté entre BDD et uSVP, la difficulté quantique
de LWE et les performances pratiques de l’algorithme BKZ. Tout d’abord, nous donnons une relation
de difficulté plus étroite entre BDD et uSVP. Plus précisément, nous améliorons la réduction de BDD
à uSVP d’un facteur

√
2, comparément à celle de Lyubashevsky et Micciancio. Ensuite, Nous apportons

un nouvel élément à la conjecture que LWE est quantiquement difficile. Concrètement, nous considérons
une version relâchée de la version quantique du problème du coset dièdral et montrons une équivalence
computationnelle entre LWE et ce problème. Enfin, nous proposons un nouveau simulateur pour BKZ.
Dans ce dernier travail, nous proposons le premier simulateur probabiliste pour BKZ, qui permet de
prévoir le comportement pratique de BKZ très précisément.
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Abstract

Lattice-based cryptography is one of the most competitive candidates for protecting privacy, both
in current applications and post quantum period. The central problem that serves as the hardness
foundation of lattice-based cryptography is called the Learning with Errors (LWE). It asks to solve a
noisy equation system, which is linear and over-determined modulo an integer q. Usually, LWE is called
an average-case problem as all the coefficients in the equation system are randomly chosen modulo q.
The LWE problem is conjectured to be hard even with a large scale quantum computer. It is at least
as hard as standard problems defined in the lattices, such as Bounded Distance Decoding (BDD) and
unique Shortest Vector Problem (uSVP). Finally, the best known algorithm for solving these problems
is BKZ, which is very expensive.

In this thesis, we study the quantum hardness of LWE, the hardness relations between the underlying
problems BDD and uSVP, and the practical performance of the BKZ algorithm. First, we give a new
evidence of quantum hardness of LWE. Concretely, we consider a relaxed version of the quantum version
of dihedral coset problem and show an computational equivalence between LWE and this problem.
Second, we tighten the hardness relation between BDD and uSVP. More precisely, We improve the
reduction from BDD to uSVP by a factor

√
2, compared to the one by Lyubashevsky and Micciancio.

Third, we propose a new simulator for BKZ. In the last work, we propose the first probabilistic simulator
for BKZ, which can predict the practical behavior of BKZ very precisely.
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Résumé substantiel en Français

Contexte
a cryptographie est utilisée pour protéger l’intégrité et la confidentialité des messages, ainsi que pour
assurer l’authentification de leur source. La securité de la plupart des primitives cryptographiques
asymétriques actuellement déployées repose sur la difficuté présumée de problèmes algorithmiques de
théorie des nombres. Les deux premières applications de problèmes de théorie des nombres en cryp-
tographie sont l’échange de clés Diffie-Hellman [DH76] et le cryptosystème RSA dû à Rivest, Shamir et
Adleman [RSA78]. Les problèmes de théorie des nombres impliqués dans ces cryptosystèmes sont des
variantes de la factorisation des nombres entiers et des problèmes de logarithmes discrets.

La complexité conjecturée de ces problèmes de théorie des nombres ne tient pas si on considère
la puissance du calcul quantique. En effet, en 1996, Shor [Sho99] a fourni un algorithme quantique
efficace pour résoudre certains problèmes typiques de la théorie des nombres, tels que ceux mentionnés
ci-dessus. Par exemple, dans le cas de la factorisation des nombres entiers, l’algorithme de Shor permet
une résolution du problème en temps polynomial en n, la longueur binaire de l’entier à factoriser.

b1b2

p1

p2

0

Fig. 1: Un exemple de réseau bidimensionnel engendré par une base.

Contrairement à ces problèmes de théorie des nombres, à ce jour, il n’existe pas d’algorithme
classique ni quantique efficace pour résoudre un ensemble de problèmes portant sur les réseaux. Un
réseau Λ en dimension n est l’ensemble de toutes les combinaisons linéaires entières d’un ensemble de
vecteurs linéairement indépendants dans un espace euclidien. Cet ensemble est appelé une base du
réseau. Comme l’illustre la Figure 1, le réseau est composé des points régulièrement distribués (colorés
en bleu) engendrés par toutes les combinaisons linéaires entières de l’ensemble de vecteurs linéairement
indépendants {b1,b2}. Par exemple, les vecteurs p1 = b1 +b2 et p2 = b1−b2 sont dans le réseau. Un
réseau peut également être défini comme un sous-groupe discret de Rm (pour un certain m). L’aspect
plus ou moins discret du réseau peut être mesuré par la norme de tout vecteur non nul le plus court
(notée λ1).

Ensuite, nous donnons un bref aperçu des problèmes supposés difficiles qui sont sous-jacents à la
cryptographie reposant sur réseaux. Le problème principal sur les réseaux est le problème du vecteur
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le plus court (SVP pour Shortest Vector Problem), qui demande de trouver un vecteur non nul le plus
court dans le réseau, étant donné en entrée une base du réseau. Un autre problème étroitement lié
au problème SVP est le problème du vecteur le plus proche (CVP pour Closest Vector Problem), qui
demande de trouver un vecteur le plus proche d’un vecteur cible t ∈ Rn. SVP peut être vu comme une
variante de CVP, dans laquelle un vecteur le plus proche mais distinct de l’origine 0 est requis. Ces deux
problèmes sont NP-difficiles [Emd81, Ajt98], avec la restriction que la preuve de la NP-difficulté de SVP
repose sur une réduction en temps polynomial probabiliste. Dans l’analyse de sécurité des protocoles
cryptographiques, on s’intéresse également à la version approximative de SVP (désignée par SVPγ pour
des facteurs γ ≥ 1), dans laquelle un vecteur (non nul) vecteur relativement court de norme ≤ γ ·λ1 est
requis. Nous savons que SVPγ est NP-difficile pour tout facteur constant γ [Kho05, HR07]. Il n’y a pas
non plus d’algorithme efficace pour résoudre SVPγ , pour un γ polynomial en la dimension n du réseau
d’entrée. Le meilleur algorithme actuellement connu pour résoudre SVPγ avec γ polynomial en n, est
en temps exponentiel dans n [Sch87, SE94].

Il existe une riche famille de variantes de SVP et CVP, ainsi qu’une série de résultats sur leur
complexité. Entre autres, le problème unique-SVP (uSVP) et le problème de décodage à distance
bornée (BDD pour Bounded Distance Decoding) sont deux variantes avec promesse bien connues de SVP
et CVP. uSVPγ avec le paramètre γ ≥ 1 peut être vu comme une relaxation de SVP avec la restriction
que tout vecteur du réseau indépendant des deux vecteurs les plus courts devrait être plus long d’un
facteur ≥ γ. Ainsi, le vecteur le plus court est “unique” (au signe près) lorsque γ > 1. En 2001, Kumar
et Sivakumar [KS01] ont prouvé la NP-difficulté de uSVPγ avec γ ≤ 1 + 2−nc pour une constante c
sous une réduction randomisée. Ce résultat a été amélioré par la suite par Aggarwal et Dubey [AD16],
qui ont augmenté légèrement le facteur d’inapproximabilité à γ ≤ 1 + 1/poly(n), pour lequel Stephens-
Davidowitz [SD16b] a également fourni une preuve simplifiée. Dans le problème BDDα, il est promis que
le vecteur cible de l’instance se trouvera à une distance limitée du réseau au plus: α ·λ1. La complexité
de BDD a été initialement étudiée dans le contexte des codes linéaires de Vardy dans [Var97], et plus
tard dans le contexte des réseaux par Liu et al. dans [LLM06], où BDDα avec α = 1/

√
2 + c pour toute

constante c a été démontré NP-difficile. La relation entre ces deux variantes avec promesse est étudiée
par Lyubashevsky et Micciancio [LM09]. Ils montrent une réduction de BDD1/(2γ) à uSVPγ , ainsi
qu’une réduction inverse de uSVPγ à BDD1/γ . Comme on peut le voir, il existe un écart de facteur
2 entre ces deux réductions. Il existe d’autres variantes de SVP et CVP qui servent de fondement de
sécurité pour la cryptographie, telles que SIVPγ , GapSVPγ etc. Certaines relations entre elles sont
également connues [Ste15]. Pour les petits γ, ces problèmes ne sont qu’informellemant reliées à la
cryptographie sur réseaux. Nous ne savons pas comment construire de primitives cryptographiques
reposant sur la complexité conjecturée de ces problèmes avec un très petit γ, par exemple pour γ
constant.

Nous sommes maintenant prêts à donner un aperçu de la cryptographie à base de réseaux. En 1996,
Ajtai [Ajt96] a présenté une découverte révolutionnaire selon laquelle il existe une réduction du pire au
moyen cas pour les problèmes des réseaux. Concrètement, il a montré [Ajt96] que si certains problèmes
sur les réseaux sont difficiles à résoudre dans le pire cas, alors, il existe une fonction à sens unique (une
primitive cryptographique fondamentale). Plus tard, Micciancio et Regev [MR07] ont étendu ce travail
et ont réduit les problèmes de réseau dans les pire cas à un nouveau problème consistant à trouver une
solution courte et de type entier (SIS pour Short Integer Solution). Étant donné un système d’équations
sous-déterminé (A,xTA ≡ 0 mod q) avec une matrice uniforme A ∈ Zm×nq et un module q, Le problème
SIS consiste à trouver une solution x courte non nulle. Dans le prolongement de [Ajt96], le premier
système cryptographique à sécurité publique reposant sur des problèmes de réseaux dans le pire cas est
également proposé [AD97]. Il est connu sous le nom de cryptosystème Ajtai-Dwork. Concrètement, la
sécurité du cryptosystème Ajtai-Dwork repose sur la complexité de uSVPO(n8). Après cela, il y a eu
plusieurs améliorations [GGH97, GGH13, Reg03]. En particulier, Regev a fourni une nouvelle preuve de
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Fig. 2: Graphique des réductions entre le problème LWE (dans le cas moyen) et certains problèmes sur
les réseau (dans le pire cas) : BDD, uSVP et GapSVP.

sécurité pour le cryptosystème Ajtai-Dwork, dans lequel le problème sous-jacent devient uSVPO(n1.5),
tout en conservant essentiellement les mêmes tailles de clés et de chiffrés. Comme le problème uSVPγ
est conjecturé être plus difficile avec un plus petit écart entre les normes du vecteurs le plus court
et du deuxième vecteur le plus court lineairement independant avec le premier, le travail de Regev
améliore la sécurité du cryptosystème Ajtai-Dwork. Plus tard, en 2005, Regev [Reg05] a proposé un
autre problème de cas moyen, qui s’appelle Learning With Errors (LWE), et a également établi des
réductions de problèmes de réseaux dans le pire cas tels que GapSVPγ à LWE. Ici, nous donnons
une brève définition de LWE. Étant donné un système d’équations sur-déterminé avec un bruit de la
forme (A,As + e[mod q]) avec une matrice uniforme A ∈ Zm×nq , un vecteur uniforme s ∈ Znq , un
vecteur e ∈ Zm court Gaussian et un module q, Le problème LWE demande à trouver la solution s.
Nous pouvons également définir sa version décisionelle, dans laquelle on demande de distinguer le
système d’équations ci-dessus d’une paire aléatoire uniforme de Zm×nq ×Zmq . En outre, LWE peut être
interprété comme une instance de BDD (voir, par exemple, [MR09, Section 5.4]), où le vecteur cible t
et le réseau Λ sont choisis au hasard. BDD et GapSVP se réduisent mutuellement avec des pertes
importantes limitées dans les paramètres [LM09]. Dans l’ensemble, LWE est équivalent à BDD avec
la même dimension mais avec des pertes limitées sur le bruit. Notez que la réduction de Regev de
GapSVP à LWE a été en partie “déquantumisée” dans [Pei09, BLP+13], mais les réductions classiques
correspondantes impliquent des pertes en termes de dimension n ou du module q. Habituellement, les
primitives cryptographiques dont la sécurité a été prouvée sous la complexité conjecturée de SIS/LWE
sont appelées primitives cryptographiques sur les réseaux car leur sécurité repose également sur la
complexité conjecturée des problèmes de réseaux (dans le pire cas).

À partir de l’élégant cryptosystème élégant à clé publique de Regev [Reg05], nous pouvons voir la
simplicité d’utilisation de LWE pour concevoir des schémas cryptographiques. Dans le cas du chiffre-
ment à clé publique, supposons qu’Alice (possédant la clé publique de Bob) va envoyer un message
privé à Bob (possédant sa propre clé secrète). Dans la conception du schéma de Regev, le système
d’équations (A,b = As + e) sert de clé publique et il est impossible à distinguer de l’uniforme en
supposant la complexité conjecturée de la version décisionelle de LWE. Le secret s sert de clé secrète.
Pour envoyer un message, Alice construit d’abord une paire aléatoire

(a = rTA, b = 〈r,b〉),

où r est sélectionné avec une petite norme `2 dans un espace suffisamment grand pour que l’ensemble
des γ possibles soit exponentiellement plus grand que l’ensemble de la paire de sortie. Ensuite, Alice
ajoute le bit de message au bit de poids fort de la composante et envoie à Bob (a, z = b + µ · bq/2e).
Quand Bob reçoit le texte chiffré, avec son propre secret s, il peut récupérer une valeur approximative
de z − µ · bq/2e en calculant

〈a, s〉 = rTAs ≈ rTAs + rTe = 〈r,b〉 = b = z − µ · bq/2e,

dans laquelle l’égalité approximative provient des petites normes `2 du vecteur aléatoire r et du vecteur
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d’erreurs e. Cela explique également pourquoi le bit de message doit être stocké dans le bit de poids
fort. Bob peut alors extraire le message µ du bit de poids fort de z − 〈a, s〉. La simplicité algébrique
de LWE permet la conception de primitives avec des fonctionnalités avancées, telles que le chiffrement
totalement homomorphe [BV11], le chiffrement reposant sur les attributs pour tous les circuits [GVW13]
et le chiffrement fonctionnel (à clé unique) [GKP+13].

Actuellement, il n’y a pas d’algorithme classique efficace pour résoudre LWE, et LWE est conjecturé
difficile même dans le contexte des calculs quantiques. Il est pour cela l’un des candidats les plus
attrayants comme fondement de sécurité pour la cryptographie post-quantique [BBD08]. Cependant, on
en sait peu sur la complexité quantique de LWE, au-delà de l’absence de connaissances d’un algorithme
quantique efficace. Pour étayer d’avantage la conjecture selon laquelle LWE est extrêmement difficile,
une idée prometteuse consiste à prouver que le LWE est au moins aussi difficile qu’un problème difficile
qui a été bien étudié en calcul quantique.

Enfin, nous présentons brièvement l’état de l’art de la cryptanalyse de la cryptographie reposant sur
les réseaux. Actuellement, les meilleures attaques connues contre les schémas à base de réseaux néces-
sitent généralement de trouver des vecteurs/bases courts de réseaux fournis par des données accessibles
publiquement [APS15]. Pour établir de l’intuition à ce sujet, nous considérons d’abord la clé publique
(une instance de LWE) du cryptosystème de Regev et la voyons comme une instance (B, t) de BDD,
puis nous utilisons un algorithme efficace pour trouver un vecteur bB−1te proche de t. Cette dernière
étape est également connue sous le nom d’algorithme d’arrondi de Babai [Bab86]. Nous pouvons écrire
tout vecteur cible t ∈ Qn comme t = c + e, pour tout vecteur du réseau le plus proche c ∈ Λ(B) à t
et un vecteur de bruit e ∈ Qn. Étant donné le vecteur cible t, l’algorithme d’arrondi de Babai vise
à arrondir à 0 le vecteur de bruit e et à récupérer le vecteur le plus proche c de t. Cependant, la
capacité de l’algorithme d’arrondi de Babai dépend de la qualité de la base d’entrée et de la quantité
de bruit. Concrètement, plus la qualité de la base de saisie est bonne, plus un grand bruit e peut être
arrondi. Supposons d’abord que la base que nous avons est comme sur le côté gauche de la Figure 3:
nous ne pouvons récupérer que les vecteurs les plus proches des vecteurs cibles t restant dans les petites
boules. Par contre, supposons que nous manipulons la base et obtenons une autre base de vecteurs
avec des normes relativement plus petites comme sur le côté droit de la Figure 3: alors l’ensemble des
vecteurs de bruit pour lesquels l’arrondi de Babai réussit à arrondir correctement est bien plus grand
qu’avant. En particulier, à partir du vecteur cible t∗, nous pouvons récupérer le vecteur le plus proche
avec la bonne base mais pas la mauvaise base. Des algorithmes de réduction de bases de réseaux sont
utilisés pour réaliser cette tâche: transformer une mauvaise base en une bonne base. Concrètement,
la réduction du réseau vise à calculer une base de vecteurs relativement courts à partir d’une base
d’entrée arbitraire. Par conséquent, la compréhension du comportement pratique et des limites des
algorithmes de réduction de la base du réseau est importante pour définir les paramètres concrets des
cryptosystèmes reposant sur les réseaux.

En 1982, A. Lenstra, H. Lenstra et L. Lovász [LLL82] ont proposé le premier algorithme réduisant
la base d’un réseau avec une borne prouvée de la qualité de la base réduite. Plus tard, Schnorr [Sch87]
a donné une réduction de réseau par blocs plus forte, pour des applications telles que la cryptanalyse.
Il est également rendu plus pratique par Schnorr et Euchner [SE94], dont la variante est connue sous
le nom d’algorithme de réduction Block Korkine-Zolotarev (BKZ).

Par rapport à LLL, BKZ permet d’obtenir une réduction plus forte sur la base avec un temps
d’exécution accru. Le comportement théorique de BKZ dans le pire cas est bien étudié [HPS11, Neu17].
Malheureusement, ces limites dans le pire cas sont quantitativement très loin des données expérimen-
tales. De nombreux efforts ont été faits pour avoir une meilleure compréhension du comportement
de BKZ dans la pratique [Sch03, CN11]. Cependant, comme observé dans [CN11, AWHT16, YD17],
l’analyse et les simulations de BKZ diffèrent encore de manière significative de ce qui est observé dans
la pratique. Plus clairement, BKZ trouve des vecteurs plus courts que ceux prédits par l’analyse ou les
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Fig. 3: L’algorithme d’arrondi de Babai pour CVP sous différentes bases.

simulations. Cette imprécision peut conduire à une surestimation des évaluations de sécurité dans la
conception cryptographique.

Contributions
Dans cette thèse, nous nous concentrons sur le fondement de la complexité de la cryptographie à base
de réseaux réseaux. Premièrement, nous étudions deux problèmes de réseaux dans le pire cas, BDD
et uSVP, et établissons une réduction plus étroite entre eux. Deuxièmement, nous présentons une
équivalence de complexité entre LWE et une variante du problème de dièdre (conjecturé difficile sous
calculs quantiques). Enfin, nous donnons une analyse plus précise de l’algorithme de réduction BKZ.

Une réduction améliorée de BDD à uSVP
La relation entre BDD et uSVP a été initialement étudiée par Lyubashevsky et Micciancio dans [LM09].
Ils ont montré que BDD1/(2γ) se réduit à uSVPγ pour tout γ ≥ 1 et uSVPγ à BDD1/γ pour γ ≥ 1
polynomialement borné en la dimension du réseau.

Il y a donc encore un écart d’un facteur 2 entre ces deux réductions. À ce stade, nous pouvons con-
jecturer que BDD1/γ est équivalent à uSVPγ et essayer de décrire une réduction de BDD1/γ à uSVPγ ,
ou que BDD1/(2γ) est équivalent à uSVPγ et essayer de décrire une réduction de uSVPγ à BDD1/(2γ).
En fait, il y a plus de possibilités, par exemple, BDD1/(c·γ) pourrait être équivalent à uSVPγ pour une
constante c ∈ (1, 2). Il se pourrait aussi qu’ils ne soient pas équivalents, quelque soit c.

Notre contribution principale sur ce sujet est une amélioration de la réduction de BDD à uSVP
par un facteur

√
2. Tous les travaux antérieurs s’appuient sur la technique de plongement de Kan-

nan [Kan87, Section 6]. L’ingrédient principal de l’amélioration est l’utilisation de la “sparsification”
de réseau de Khot [Kho03], avant de recourir à l’intégration de Kannan, afin a’améliorer le paramètre
de uSVP. Il convient de mentionner que l’analyse de la réduction améliorée provient principalement
d’un résultat sur empilement de sphères [MG02]. Cette contribution correspond à la publication suiv-
ante.

[BSW16] Shi Bai, Damien Stehlé et Weiqiang Wen. Improved Reduction from the Bounded Distance
Decoding Problem to the Unique Shortest Vector Problem in Lattices. ICALP’16.

Une équivalence de complexité entre LWE et DCP extrapolé
Le premier lien entre les problèmes de réseaux et les calculs quantiques a été donné par Regev dans [Reg02].
Dans [Reg02, Reg04b], Regev a décrit une réduction de uSVP au problème du coset diédral (DCP pour
Dihedral Coset Problem). Comme uSVP est essentiellement équivalent à BDD [LM09] (à des petites
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pertes de paramètres près), cette réduction conduit également à une réduction de LWE à DCP. Notre
contribution principale dans ce travail est de définir une extension de DCP, que nous appelons EDCP,
telle que nous pouvons non seulement parvenir à fournir une réduction polynomiale quantique à partir
de LWE, mais aussi dans l’autre sens. Notre résultat implique qu’une solution polynomiale quantique
pour LWE pourrait ne pas nécessiter la pleine capacité de résolution de DCP, mais plutôt une solution
pour sa version relachée, EDCP, qui pourrait être plus facile à résoudre. Cette contribution correspond
à la publication suivante.

[BKSW18] Zvika Brakerski, Elena Kirshanova, Damien Stehlé et Weiqiang Wen. Learning With Errors
and Extrapolated Dihedral Cosets. PKC’18.

Une modélisation plus précise de BKZ
L’algorithme BKZ est central en cryptanalyse, en particulier pour la cryptographie reposant sur les
réseaux. Une compréhension précise de son comportement pratique en termes de temps d’exécution et
de qualité de sortie est nécessaire pour la sélection des paramètres dans la conception cryptographique.
Comme discuté ci-dessus, les limites prouvables dans la pire cas reflètent mal le comportement pratique
de l’algorithme BKZ. Le simulateur de Chen-Nguyen correspond mieux aux expériences pratiques, mais
surestime toujours la norme des premiers vecteurs dans la base de sortie.

Comme première contribution sur ce sujet, nous donnons plus de détails sur ce phénomène en
effectuant de nombreuses expériences. Une seconde contribution est une présentation d’un nouveau
simulateur de BKZ, qui utilise la distribution des vecteurs les plus courts des réseaux plutôt que
l’heuristique gaussienne utilisée auparavant. Ce nouveau simulateur BKZ peut modéliser le phénomène
«plus court que prévu» et prédire très précisément le comportement pratique de l’algorithme BKZ.
Nous introduisons également une variante de BKZ qui exploite le phénomène «plus court que prévu».
Pour le même coût attribué à l’algorithme SVP sous-jacent, la nouvelle variante de BKZ produit des
bases de meilleure qualité.

[BSW18] Shi Bai, Damien Stehlé et Weiqiang Wen. Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. À paraître dans les actes d’Asiacrypt’18.

Organisation de cette thèse
Dans le Chapitre 2, nous rappelons toutes les définitions nécessaires et les résultats antérieurs qui sont
utilisés tout au long de cette thèse. Ceci inclut les définitions et les outils de base relatifs aux réseaux,
les problèmes dans le pire cas et le cas moyen sur les réseaux, suivis d’une introduction élémentaire
au calcul quantique et aux problèmes quantiques (présumés difficiles) liés aux problèmes des réseaux.
Enfin, nous rappelons certaines notions amplement utilisées de la réduction de réseaux, en particulier
la réduction de BKZ et l’algorithme BKZ pour atteindre cette notion de réduction.

Dans le Chapitre 3, nous examinons d’abord la réduction de Lyubashevsky et Micciancio [LM09],
de BDD1/(2γ) à uSVPγ . Nous décrivons ensuite notre amélioration: une réduction de BDD1/(

√
2γ) à

uSVPγ . Nous expliquons comment nous obtenons notre résultat amélioré avec la technique de sparsi-
fication.

Dans le Chapitre 4, nous examinons d’abord la première réduction connue par Regev du problème
de réseau uSVP vers le problème quantique DCP, puis nous donnons notre nouveau résultat: une
réduction de LWE à l’extension de DCP, que nous appelons EDCP, ainsi qu’une réduction inverse.
Nous montrerons également la relation intrinsèque entre l’extension de DCP et la quantité de bruit
dans LWE.

Dans le Chapitre 5, nous rapportons d’abord les résultats des expériences que nous avons menées
sur BKZ pour mesurer le phénomène «plus courts que prévu». Nous proposons ensuite un nouveau
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simulateur pour BKZ, qui donne une estimation très précise du comportement pratique. Après avoir
bien modélisé et compris le phénomène «plus court que prévu», nous donnons une nouvelle variante de
BKZ, qui utilise ce phénomène et permet de calculer des bases de meilleure qualité.

Dans le Chapitre 6, nous concluons cette thèse et présentons des directions pour de futurs travaux.
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Chapter 1

Introduction

1.1 Background
Cryptography is used to protect the integrity and confidentiality of messages, as well as to ensure
the message source authentication. The hardness foundations of most currently deployed asymmet-
ric cryptographic primitives are number-theoretic problems that are presumed computationally hard.
The first two applications of number-theoretic problems in cryptography are the Diffie-Hellman key
exchange [DH76] and the RSA cryptosystem by Rivest, Shamir, and Adleman [RSA78]. The number-
theoretic problems involved in these cryptosystems are variants of the integer factorization and discrete
logarithm problems.

The conjectured hardness of these number-theoretic problems does not hold if we consider the power
of quantum computation. Indeed, in 1996, Shor [Sho99] gave an efficient quantum algorithm for solving
some typical number-theoretic problems, such as those mentioned above. Taking integer factorization
as an example, Shor’s algorithm gives a polynomial time solver with respect to n, the bitsize of the
integer.

b1b2

p1

p2

0

Fig. 1.1: An example of a two-dimensional lattice generated by a basis.

As opposed to these number-theoretic problems, there is no known efficient classical as well as
quantum algorithm for solving a set of problems on lattices. A (full-rank) lattice Λ in dimension n

is the set of all integer linear relations of a set of linearly independent vectors in a Euclidean space.
This set is called a basis of the lattice. As illustrated in Figure 1.1, the lattice is composed of the
regularly distributed points (colored in blue) generated by computing all integer combinations of the
set {b1,b2}. For example, the vectors p1 = b1 + b2 and p2 = b1 − b2 are in the lattice. A lattice
can also be defined as a discrete group of some Rm. The extent of discreteness can be measured by the
norm of any shortest non-zero vector (denoted by λ1) in the lattice.

Next, we give a brief overview of the hardness assumptions underlying lattice-based cryptography.
The main problem on lattices is the Shortest Vector Problem (SVP), which asks to find a shortest
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non-zero vector in the lattice, given a basis of the lattice as input. Another closely related problem is
the Closest Vector Problem (CVP), which asks to find a closest vector to a target vector t ∈ Rn. SVP
can be seen as a variant of CVP, in which a closest vector to the origin 0 other than itself is required.
Both of these problems are NP-hard [Emd81, Ajt98], with the caveat that the proof of NP-hardness
of SVP relies on a probabilistic polynomial time reduction. In the security analysis of cryptography,
we are also interested in the approximation version of SVP (denoted by SVPγ for some factor γ ≥ 1),
in which a relatively (non-zero) short vector with norm ≤ γ · λ1 is required. We know that SVPγ is
NP-hard to for any constant factor γ [Kho05, HR07]. There is also no efficient algorithm for solving
SVPγ , for a γ polynomial in the dimension n of the input lattice. The current best known algorithm
for solving SVPγ with γ polynomial in n, takes time exponential in n [Sch87, SE94].

There is a rich family of variants of SVP and CVP as well as a series of hardness results on them.
Among others, the unique SVP (uSVP) problem and Bounded Distance Decoding (BDD) problem are
two well-known promise variants of SVP and CVP. uSVPγ with parameter γ ≥ 1 can be seen as a
relaxation of SVP with a restriction that any lattice vector that is independent from the two shortest
vectors should be longer by a factor ≥ γ. Thus the shortest vector is “unique” (up to sign) when γ > 1.
In 2001, Kumar and Sivakumar [KS01] proved the NP-hardness of uSVPγ with γ ≤ 1 + 2−nc for
some constant c under a randomized reduction. This result was later improved by Aggarwal and
Dubey [AD16], who increased the inapproximability factor slightly to γ ≤ 1 + 1/poly(n), for which
Stephens-Davidowitz [SD16b] further gave a simplified proof. In the BDDα problem, the target vector
in the instance is promised to be within a bounded distance α · λ1 to the lattice. The hardness of
BDD was initially studied in the context of linear codes by Vardy in [Var97], and later in the context
of lattices by Liu et al. in [LLM06], where BDDα with α = 1/

√
2 + c for any constant c is proved

to be NP-hard. The relation between these two promise variants is studied by Lyubashevsky and
Micciancio [LM09]. They show a reduction from BDD1/(2γ) to uSVPγ , and also a converse reduction
from uSVPγ to BDD1/γ . As we can see, there is a factor 2 gap between these two reductions. There are
more variants of SVP and CVP that serve as the security foundation of cryptography, such as SIVPγ ,
GapSVPγ etc. Some relations among them are also known [Ste15]. For small γ, these problems are
only “related” to lattice-based cryptography. We do not know how to base cryptographic primitives on
the conjectured hardness of these problems with very small γ, e.g., γ is constant.

Now, we are ready to give an overview of lattice-based cryptography. In 1996, Ajtai [Ajt96] pre-
sented a ground-breaking discovery that a worst-case to average-case reduction exists for lattice prob-
lems. Concretely, it is shown [Ajt96] that if certain worst-case lattice problems are computationally
hard to solve, then an average-case one-way function (a fundamental cryptographic primitive) exists.
Later, Micciancio and Regev [MR07] extended this work and gave a reduction from worst-case lattice
problems to a new average-case Short Integer Solution (SIS) problem. The SIS problem, given a under-
determined equation system (A,xTA ≡ 0 mod q) with uniform A ∈ Zm×nq and a modulus q, consists
in finding a short non-zero solution x. As a follow-up of [Ajt96], the first public-key cryptosystem
with security relying on worst-case lattice problems is also proposed [AD97], which is known as Ajtai-
Dwork cryptosystem. Concretely, the security of Ajtai-Dwork cryptosystem is based on the hardness
of uSVPO(n8). After this, there were several improvements [GGH97, GGH13, Reg03]. In particular,
Regev gave a new security proof for the Ajtai–Dwork cryptosystem, in which the underlying problem
becomes uSVPO(n1.5), while maintaining essentially the same bit-size for key and ciphertext. As the
uSVPγ problem is supposed to be harder with a smaller gap on the norm of the shortest vector and the
second shortest vector, thus Regev’s work gives an improvement on the hardness of the Ajtai–Dwork
cryptosystem. Later, in 2005, Regev [Reg05] proposed another average-case problem, learning with
error (LWE), and also established reductions from worst-case lattice problems such as GapSVPγ to
it. Here, we only give a brief definition of LWE. The LWE problem, given a over-determined equa-
tion system with noise of form (A,As + e[mod q]) with uniform A ∈ Zm×nq , uniform s ∈ Znq , short
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LWE
BDD uSVP

GapSVP

[Reg05, Reg09] [LM09]

Fig. 1.2: Graph of reductions between known the (average-case) LWE problem and some (worst-case)
lattice problems: BDD, uSVP and GapSVP.

e ∈ Zm and a modulus q, asks to find out the unique solution s. Correspondingly, we can also define
its decision version, in which one is asked to distinguish the equation system above from a uniform
pair from Zm×nq ×Zmq . Further, LWE may be interpreted as an instance of the BDD (see, e.g., [MR09,
Section 5.4]), where both the target vector t and the lattice Λ are randomly chosen. Note that BDD
and GapSVP reduce to one another with limited parameter losses [LM09]. Overall, LWE is equivalent
to BDD with same dimension but with limited losses on the noise. Note that Regev’s reduction from
GapSVP to LWE was partly dequantized in [Pei09, BLP+13], but the corresponding classical reduc-
tions involve significant losses in terms of the dimension n or the modulus q. Usually, the cryptographic
primitives proved secure under the SIS/LWE assumption are referred to as lattice-based cryptographic
primitives as their security is also based on (worst-case) lattice assumptions.

From Regev’s elegant public-key cryptosystem [Reg05], we can see the simplicity of applying LWE to
design cryptographic schemes. In the scenario of public-key encryption, suppose that Alice (possessing
Bob’s public key) is going to send a private message to Bob (possessing its own secret key). In the
design of Regev’s scheme, the equation system (A,b = As + e) serves as the public key and it is
indistinguishable from uniform under the decision LWE assumption, and the unique secret s serves as
the secret key. To send a message, Alice first constructs a random pair

(a = rTA, b = 〈r,b〉),

where r is selected from a sufficiently large space with small `2 norm such that the space is exponentially
larger than the space of the output pair. Then Alice adds the message bit to the most significant bit of
the second component and send (a, z = b + µ · bq/2e) to Bob. Once Bob receives the ciphertext, with
his own secret s, he can recover an approximated value of z − µ · bq/2e by computing

〈a, s〉 = rTAs ≈ rTAs + rTe = 〈r,b〉 = b = z − µ · bq/2e,

in which the approximate equality comes from the small `2 norms of both random vector r and noise
vector e. This also explains why the message bit needs to be stored in the most significant bit. Then Bob
can extract the message µ from the most significant bit of z − 〈a, s〉. In fact, the algebraic simplicity
of LWE enables the design of primitives with advanced functionalities, such as fully homomorphic
encryption [BV11], attribute-based encryption for all circuits [GVW13] and (single key) functional
encryption [GKP+13].

Currently, there is no efficient classical algorithm for solving LWE, and LWE is conjectured hard
even in the context of quantum computations, making it one of the most appealing candidate security
foundations for post-quantum cryptography [BBD08]. However, little is known today on the quantum
hardness of LWE, beyond the absence of knowledge of an efficient quantum algorithm. To further back
the conjecture that LWE is quantumly hard, one promising idea is to prove that LWE is at least as
hard as a hard problem that is well studied in quantum computation.

Last, we briefly introduce the state-of-the-art of cryptanalysis on lattice-based cryptography. Cur-
rently, the best known attacks against lattice-based schemes typically consist in finding short vec-
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Fig. 1.3: Babai’s round-off algorithm for CVP under different bases.

tors/bases of lattices provided by publicly available data [APS15]. To build intuition about this, we
first consider the public key (as an LWE instance) of Regev’s cryptosystem and view it as a BDD
instance (B, t), then we use an efficient algorithm to find a close vector to t: bB−1te, which is also
known as Babai’s rounding-off algorithm [Bab86]. Notice that we can write any target vector t ∈ Qn

as t = c + e, for any closest lattice vector c ∈ Λ(B) to t and some noise vector e ∈ Qn. Given the
target vector t, Babai’s rounding-off algorithm aims to round off the noise vector e and recover the
closest vector c to t. However, the ability of Babai’s rounding-off algorithm depends on the quality of
the input basis and the amount of noise. Concretely, the better quality the input basis has, the larger
noise e this algorithm can manage to round off. Suppose first the basis we have is as on the left-hand
side of Figure 1.3: we can only recover the closest vector for the target vectors t staying in any of the
tiny shaded balls. Compared to this, assume we manipulate the basis and obtain another basis made of
vectors with relatively smaller norms as on the right-hand side of Figure 1.3: then the upper bound of
the noise vectors for which Babai’s rounding-off succeeds in rounding off is much larger than before. In
particular, from the target vector t∗, we can recover the closest vector with the good basis but not the
bad one. Lattice basis reduction algorithms are used to achieve such a task: transform a bad basis to
a good basis. Concretely, lattice reduction aims at computing a basis made of relatively short vectors
from an arbitrary input basis. Therefore, understanding the practical behavior and limits of lattice
basis reduction algorithms is important for setting parameters in lattice-based cryptography.

In 1982, A. Lenstra, H. Lenstra and L. Lovász [LLL82] proposed the first lattice basis reduction
algorithm with a provable worst-case bound of the quality of the reduced basis. Later, Schnorr [Sch87]
gave a stronger block-wise lattice reduction for applications such as cryptanalysis. It is also made more
practical by Schnorr and Euchner [SE94], whose variant is known as the Block Korkine-Zolotarev (BKZ)
reduction algorithm.

The BKZ algorithm achieves a stronger reduction on the basis at the expense of an increased run-
time. The theoretical behavior of BKZ in the worst case is well studied [HPS11, Neu17]. Unfortunately,
these worst-case bounds are quantitatively very far from experimental data. Many efforts have been
made to a better understand the behavior of BKZ in practice [Sch03, CN11]. However, as investigated
in [CN11, AWHT16, YD17], the analysis or simulations on BKZ still differ significantly with what
is observed in practice. Put plainly, BKZ finds shorter vectors than predicted by the analysis or
simulations. This inaccuracy may lead to overestimated security evaluations in cryptographic design.
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1.2 Our contributions
In this thesis, we focus on the hardness foundation of lattice-based cryptography. First, we will study
two worst-case lattice problems, BDD and uSVP, and establish a tighter reduction between them. Sec-
ond, we present a computational equivalence between LWE and a variant of (the presumably quantum
hard) dihedral cost problem. Last, we give a more precise security analysis on the concrete classical
hardness of lattice-based cryptography against the BKZ reduction algorithm.

1.2.1 An improved reduction from BDD to uSVP
The relationship between BDD and uSVP was initially studied by Lyubashevsky and Micciancio
in [LM09], who showed that BDD1/(2γ) reduces to uSVPγ for any γ ≥ 1 and uSVPγ to BDD1/γ
for γ ≥ 1 polynomially large in the dimension of the lattice.

Thus there is still a gap of a factor 2 between these two reductions. At this stage, we may conjecture
that BDD1/γ is computationally equivalent to uSVPγ and try to describe a reduction from BDD1/γ
to uSVPγ , or that BDD1/(2γ) is computationally equivalent to uSVPγ and try to describe a reduction
from uSVPγ to BDD1/(2γ). In fact, there are more possibilities, for example, BDD1/(c·γ) could be
equivalent to uSVPγ for some constant c ∈ (1, 2). It could also be that they are not equivalent for any
such c.

Our main contribution in this work is an improvement on the BDD to uSVP reduction by a fac-
tor
√

2. All of the prior works rely on Kannan’s embedding technique [Kan87, Section 6]. The main
ingredient to the improvement is the use of Khot’s lattice sparsification [Kho03] before resorting to
Kannan’s embedding, in order to boost the uSVP parameter. It is worth mentioning that the analysis
of the improved reduction mainly benefits from a result on sphere packing [MG02]. This contribution
corresponds to the following publication.

[BSW16] Shi Bai, Damien Stehlé and Weiqiang Wen. Improved Reduction from the Bounded Distance
Decoding Problem to the Unique Shortest Vector Problem in Lattices. ICALP’16.

1.2.2 A computational equivalence between LWE and extrapolated DCP
The first connection between lattice problems and quantum computations was given by Regev in [Reg02].
In [Reg02, Reg04b], Regev described a reduction from the unique Shortest Vector Problem (uSVP) to
the Dihedral Coset Problem (DCP). As uSVP is also essentially equivalent to BDD [LM09] (up to small
parameter losses), this reduction also leads to a reduction from LWE to DCP. Our main contribution
in this work is to define an extension of DCP, which we call EDCP, such that we can not only manage
to provide a quantum polynomial time reduction from LWE to it, but also in the other direction. Our
result implies that a quantum polynomail time solution for LWE might not require the full power of
solving DCP, but rather only a solution for its relaxed version, EDCP, which could be easier to solve.
This contribution corresponds to the following publication.

[BKSW18] Zvika Brakerski, Elena Kirshanova, Damien Stehlé and Weiqiang Wen. Learning With
Errors and Extrapolated Dihedral Cosets. PKC’18.

1.2.3 A finer modelling of BKZ: understanding the head concavity
The BKZ algorithm is central in cryptanalysis, in particular for lattice-based cryptography. A precise
understanding of its practical behavior in terms of run-time and output quality is necessary for parame-
ter selection in cryptographic design. As discussed above, the provable worst-case bounds poorly reflect
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the practical behavior of the BKZ algorithm. The Chen–Nguyen simulator fits better with practical
experiments, but still overestimates the norm of the first few vectors in the output basis.

As a first contribution on this topic, we give more insight on this shorter-than-expected phenomenon
by reporting many experiments. A second contribution is a presentation of a new BKZ simulator, which
makes use of the distribution of shortest lattice vectors rather than the Gaussian heuristic used before.
This new BKZ simulator can model the shorter-than-expected phenomenon and predict the practical
behavior of the BKZ algorithm very precisely. We also introduce a BKZ variant that exploits the
shorter-than-expected phenomenon. For the same cost assigned to the underlying SVP-solver, the new
BKZ variant produces bases of better quality. This work is accepted to the Asiacrypt’18 as follows.

[BSW18] Shi Bai, Damien Stehlé and Weiqiang Wen. Measuring, simulating and exploiting the head
concavity phenomenon in BKZ. To appear in Asiacrypt’18.

1.3 Organization of this thesis
In Chapter 2, we recall all necessary definitions and former results that are used throughout this thesis.
These include the basic definitions and tools related to lattices, worst-case problems and average-case
problems on lattices, followed by an elementary introduction to quantum computation as well as some
(presumably hard) quantum problems that would be connected to lattice problems. Finally, we recall
some widely used notions of lattice reduction, in particular, we present the BKZ reduction as well as
the BKZ algorithm for achieving this notion of reduction.

In Chapter 3, we first review the Lyubashevsky–Micciancio reduction [LM09] from BDD1/(2γ)
to uSVPγ . Then we describe our improvement: a reduction from BDD1/(

√
2γ) to uSVPγ . We ex-

plain how we obtain our improved result with the sparsification technique.
In Chapter 4, we first review the first known reduction by Regev from the lattice problem uSVP

to the quantum hard problem DCP, and then we give our new result: a reduction from LWE to the
extension of DCP, called EDCP, and also a converse reduction. We will also show the intrinsic relation
between the extension of DCP and the reducedness of noise rate in LWE.

In Chapter 5, we first report experiments that we run on BKZ to measure shorter-than-expected
phenomenon. Then we propose a new simulator for BKZ, which gives a very precise estimation on the
practical behavior. After the shorter-than-expected phenomenon is well modelled and understood, we
give a new variant of BKZ, which can further make use of this phenomenon and allows to compute
bases with better quality.

In Chapter 6, we conclude this thesis and present some directions for future works.
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Chapter 2

Preliminaries

In this chapter, we first give some basic definitions and results on lattices that will be used throughout
the thesis. These include the basic notations and properties of lattices, discrete Gaussian distributions
over lattices, and a lattice sparcification technique. Then we recall some worst-case lattice problems
such as the BDD and uSVP problems, which will be used in Chapter 3 and Chapter 4. Correspondingly,
we introduce the average-case analogue of BDD: the LWE problem. LWE is the security foundation
of Regev’s encryption scheme. To study the quantum hardness of LWE as well as Regev’s encryption
scheme, we give a simple introduction on quantum computations and the presumably hard dihedral
coset (quantum) problem, which is necessary for Chapter 4. Finally, for presentation in Chapter 5,
we recall some basic definitions related to lattice reduction and the BKZ algorithm, as well as prior
analyses and modelling of it. In particular, it can be used to analyze the concrete security of Regev’s
encryption scheme.

Contents
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1.2.3 A finer modelling of BKZ: understanding the head concavity . . . . . . . . . 5

1.3 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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CHAPTER 2. PRELIMINARIES

2.1 Lattices
We refer the reader to [MG02] for an introduction to the computational aspects of Euclidean lattices and
several lecture notes [Reg, Mic, Pei, Vai] for extensive background on lattices, especially in lattice-based
cryptography.

2.1.1 Definitions and properties
We first introduce the definition of lattices.

Definition 2.1 (Lattice). An n-dimensional lattice Λ ⊆ Qm (m ≥ n) is a discrete additive subgroup
of Qm. The lattice Λ is the set of all integral linear combinations of n linearly independent basis
vectors B = {b1, · · · ,bn} ⊆ Qm. In other words, we have

Λ(B) =

∑
i∈[n]

uibi : u ∈ Zn
 .

We call the matrix B a basis of the lattice Λ. We can have infinitely many different bases for a
lattice. They can be transferred from one to another by multiplying a unimodular matrix U ∈ GLn(Z),
where n is the dimension of the lattice. For example, suppose both B1 and B2 are bases of a same
lattice Λ, then we can always find a unimodular matrix U such that B2 = B1U.

b̃1

b̃2

b̂1 b̂2

0

Fig. 2.1: A lattice in R2 and two of its bases.

For any lattice, we have a unique basis in Hermite normal form, defined as follows.

Definition 2.2 (Hermite normal form). A matrix A ∈ Zn×k of full row rank for some integers n, k
such that n ≤ k, is in Hermite normal form if it has the form HNF(A) = (H|0 · · ·0), where H ∈ Zn×n

is a square matrix such that

1. hi,j = 0 for i < j;

2. 0 ≤ hi,j < hi,j for i > j.

Here, we recall the uniqueness of the basis of a lattice in Hermite normal form.

Lemma 2.1 ([Sch86, Theorem 4.2]). Let A and Â for some integers n, k such that n ≤ k, with Hermite
normal forms (B|0 · · ·0) and (B̂|0 · · ·0), respectively. Then Λ(A) = Λ(Â) if and only if B = B̂.

8



CHAPTER 2. PRELIMINARIES

Further, we also recall the result that any generating set of a lattice can be transformed to a
(full-rank) basis of the basis by computing the Hermite normal form.

Lemma 2.2 ([Sch86, Corollary 4.3b]). For any matrix A ∈ Zn×k of full row rank for some integers n, k
such that n ≤ k, there is a unimodular matrix U such that HNF(A) = AU is the Hermite normal form
of A.

According to Lemma 2.2, for any full row rank matrix A ∈ Zn×k for some integers n, k such that n ≤
k, we can compute its Hermite normal form HNF(A) = (B|0 · · ·0) with square matrix B ∈ Zn×n, such
that Λ(A) = Λ(B). Thus, from any generating set {ai}i≤k, we can obtain a basis B of the lattice Λ(A)
by computing its Hermite normal form.

As stated in the next lemma, the Hermite normal form of any matrix of dimension n can be computed
in time polynomial in n.

Lemma 2.3 ([Sch86, Corollary 5.3a]). For any matrix A ∈ Zn×k of full row rank for some in-
tegers n, k such that n ≤ k, we can find a unimodular matrix U such that HNF(A) = AU, in
time poly(nk log det(A)).

Intuitively, a lattice can be viewed as different grids under different bases, this can be captured by
the corresponding parallelepipeds of the bases.

Definition 2.3 (Basis parallelepiped). For an n-dimensional lattice Λ associated with a basis B, the
parallelepiped of lattice L with respect to B is P(B) = {Bx : 0 ≤ xi < 1}.

Suppose that we shift the parallelepiped by points of the lattice, then each shifted parallelepiped
contains exactly one lattice point, e.g., the original parallelepiped contains the origin 0. Furthermore,
all shifted parallelepipeds (with shift points in the lattice) form a partition of the space Span(B),
where B is a basis of the lattice.

All the bases of a same lattice share a same determinant. This gives us a first invariant of the
lattice, defined as followed.

Definition 2.4 (Determinant). For an n-dimensional lattice Λ and a basis B, the determinant of Λ
is det(Λ) = det(B) =

√
det(BBT).

We can see that the determinant is invariant under different choices of bases as follows. Assume B2 =
B1U for some unimodular matrix U, we have√

det(BT
2 B2) =

√
det((B1U)TB1U) =

√
det(BT

1 B1)det(U)2 =
√

det(BT
1 B1).

To evaluate the quality of different bases, both the root Hermite factor and the Gram–Schmidt
orthogonalization of the bases are important tools.

Definition 2.5 (Root Hermite factor). Given a basis B ∈ Rm×n of an n-dimensional lattice L, the
root Hermite factor of B is defined as

δ(B) =
(
‖b1‖/det(L)1/n

)1/n
.

A small root Hermite factor means a high quality for a reduced basis. There is an important
quantity called Hermite constant (named after Charles Hermite), which determines how small the first
minimum (respectively, the root Hermite factor) can be given the dimension of the lattice.
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Definition 2.6 (Hermite Constant). The n-dimensional Hermite constant γn is defined as

max
Λ⊆Rn

λ1(Λ)2

(det(Λ))2/n ,

where Λ is n-dimensional lattice.

Only a few γn’s for some small n are known, but we know that γn ≤ 1 + n/4 for all n (see [Mar02,
Remark 2.7.5]).

For i ≤ n, we let πi denote the orthogonal projection onto the linear subspace (b1, · · · ,bi−1)⊥.
For i < j ≤ n, we let B[i,j] denote the local block (πi(bi), · · · , πi(bj)), and Λ[i,j] denote the lattice
generated by B[i,j]. It is helpful to consider these projected sub-lattices for reducing a problem in
high-dimension to another one in small dimensions. Now we are ready to define the Gram–Schmidt
orthogonalization.

Definition 2.7 (Gram–Schmidt orthogonalization, GSO). Given B = (b1, · · · ,bn) a matrix with
linearly independent column vectors in Rm, the corresponding GSO is the matrix B∗ = (b∗1, · · · ,b∗n)
where b∗i is defined as πi(bi).

To compute the GSO basis vectors, we can first set b∗1 = b1, and then compute b∗i from i = 2 to n
as follows:

b∗i = bi −
i−1∑
j=1

µi,jb∗j , where µi,j =
〈bi,b∗j 〉
〈b∗j ,b∗j 〉

.

We can view the GSO as a QR decomposition of the original basis B: B = QR, where Q =
(b∗1/‖b∗1‖,b∗2/‖b∗2‖, · · · ,b∗n/‖b∗n‖) is an orthogonal matrix, and

R =


‖b∗1‖ µ2,1‖b∗1‖ · · · µn,1‖b∗1‖

0 ‖b∗2‖ · · · µn,2‖b∗1‖
... . . . ...
0 · · · 0 ‖b∗n‖


is an upper triangular matrix with positive diagonal coefficients. Thus the GSO can be seen as a
representation of the original basis B in another form R with respect to an orthogonal basis Q. The GSO
of a basis shares the same determinant, as we can also write B = B∗R̂, where

R̂ =


1 µ2,1 · · · µn,1

0 1 · · · µn,2
... . . . ...
0 · · · 0 1


with all 1’s on the diagonal.

We also introduce a useful lower bound on the first minimum.

Lemma 2.4. Given any basis B of an n-dimensional lattice Λ, and its GSO B∗, we have

λ1(Λ(B)) ≥ min
i∈[n]
‖b∗i ‖ > 0.

Proof. It suffices to show that for any lattice vector u = Bx with some non-zero integer vector x ∈ Zn,
we have that ‖Bx‖ ≥ min ‖b∗i ‖ holds. Let j denotes the largest index with xj 6= 0. The we compute
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the projection from u to the j-th Gram–Schmidt vector, and obtain

|〈u,b∗j 〉| = |
j∑
i

xi〈bi,b∗j 〉| = |xj | · 〈b∗j ,b∗j 〉 = |xj | · ‖b∗j‖,

where we used that 〈bi,b∗j 〉 = 0 for i < j and 〈bj ,b∗j 〉 = 〈b∗j ,b∗j 〉. As |〈u,b∗j 〉| ≤ ‖u‖ · ‖b∗j‖, thus we
have

‖u‖ ≥ |xj | · ‖b∗j‖ ≥ ‖b∗j‖ ≥ min
i∈[n]
‖b∗i ‖.

Next, we recall the definition of the dual of a lattice.

Definition 2.8 (Dual lattice). For an n-dimensional lattice Λ, we let Λ† = {y ∈ Rn : ∀x ∈ Λ, 〈x,y〉 ∈
Z} denote the dual of the lattice Λ.

Further, we let D = (d1, · · · ,dn) denote the dual basis of a basis B = (b1, · · · ,bn). It is defined by
BTD = In, where In denotes the identity matrix of dimension n. We have a strong connection between
the mimima of the primal lattice and its dual lattice.

Definition 2.9 (Successive minima). For any lattice Λ, the i-th minimum λi(Λ) is the radius of the
smallest ball with center the origin and containing i linearly independent lattice vectors:

λi(Λ) = inf{r : dim(Span(Λ ∩ B(0, r))) ≥ i}.

In particular, we let λ1(Λ) (respectively, λ∞1 (Λ)) denote the `2-norm (respectively, `∞-norm) of a
shortest non-zero vector of Λ.

If the first minimum of the primal lattice becomes smaller, the last minimum of its dual lattice is
likely to become larger. This relation can be quantified as follows.

Lemma 2.5 ([Ban93, Theorem 2.1]). For any n-dimensional lattice Λ, we have 1 ≤ λ1(Λ)·λn(Λ?) ≤ n.

Next, we present two important results on the first minimum of lattices, one is rigorous, another
one is heuristic.

Distribution of the first minimum of a random lattice. If we consider random lattices, there is
a rigorous result on the distribution of first minimum. We use Γn = {Λ ∈ Rn|vol(Λ) = 1} to denote the
set of all full-rank lattices of rank n with unit volume. In [Che09], Chen gives the following statement
on the distribution of the shortest vector in a random lattice as a direct corollary of [Söd11, Theorem 1].

Corollary 2.1 ([Che09, Corollary 3.1.4]). For a lattice Λ ∈ Γn, the distribution of vn ·λ1(Λ)n converges
in distribution to Expo[1/2] as n→∞.

This is a key ingredient used in Chapter 5 for building a more precise simulator for the BKZ
algorithm.

For an n-dimensional random lattice Λ, if we consider λ1(Λ) as a random variable Y = X1/n ·GH(Λ),
where X is a random variable distributed as an Expo[1/2] as n → ∞, then the expected value of λ1

as variable X is
E(λ1(Λ)) =

(
21/n · Γ(1/n)

n

)
· 1
v

1/n
n

· det(Λ)1/n.

Gaussian heuristic. Given an n-dimensional lattice Λ with volume vol(Λ), the Gaussian heuristic
predicts that the number of lattice points in a measurable subset S of Rn of volume vol(S) is approx-
imately equal to vol(S)/vol(Λ). Assume that Gaussian heuristic is true when vol(S) ≈ vol(Λ). Then
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we can select S as an n-ball with volume equal to vol(Λ). In this case, the radius of S can be expected
to be an approximation of λ1(Λ), which is denoted by

GH(Λ) = v−1/n
n · vol(Λ)1//n.

Futher, Minkowski’s first theorem states that λ1(Λ) ≤ 2 · v−1/n
n · vol(Λ)1/n, which is larger than GH(Λ)

by a factor of 2.

2.1.2 Gaussian distributions over lattices
In the following, we recall some important properties of discrete Gaussian distributions, in particular
over lattices. We use them extensively in Chapter 4.

Definition 2.10 (Discrete Gaussian over lattices). For c ∈ Rn, r > 0 and lattice Λ, the discrete
Gaussian distribution over Λ, with center parameter c and standard deviation parameter r is defined
as:

DΛ,r,c(x) = ρr,c(x)
ρr,c(Λ) ,∀x ∈ Λ,

where ρr(x) = exp(−π‖x‖2/r2).

If c = 0, we omit the 0 subscript.
For simplicity of analysis in Chapter 4, we need to use the following statement called Poisson

Summation Formula. Here, we recall a special form of it, in which the Gaussian function is considered.

Lemma 2.6 (Poisson summation formula). For any n-dimensional lattice Λ and vector u ∈ Rn, it
holds that

ρr(Λ + u) = det(Λ?) · rn ·
∑

x∈Λ?
e2πi〈x,u〉ρ1/r(x).

In general, it says that the sum of evaluation of an appropriate function on the primal lattice, is
equal to the sum of the evaluation of the Fourier transform of the function on the dual lattice, up to a
factor related to the determinant of the lattice.

In the following, we introduce a tail bound for the discrete Gaussian distribution over the integer
lattice Z.

Lemma 2.7 (Adapted from [Ban93, Lemma 1.5(i)]). For any r > 0, we have ρr(Z\[−
√
κr,
√
κr]) <

2−Ω(κ) · ρr(Z) for parameter κ growing to infinity.

Proof. On one hand, from the Poisson summation formula (Lemma 2.6) for the lattice Z, we have
for r ≥ 1

ρ2r(Z) = det(Z) · 2r ·
∑
y∈Z

ρ1/(2r)(y) ≤ 2r ·
∑
y∈Z

ρ1/r(y) = 2ρr(Z),

where for the inequality, we used the fact that ρ1/(2r) ≤ ρ1/(r).
On the other hand, for any B ≥ 0, we have

ρ2r(Z) > ρ2r(Z \ [−B,B]) =
∑

y∈Z,|y|>B

e
− πy2

(2r)2

=
∑

y∈Z,|y|>B

e
3
4
πy2

(2r)2 e−
πy2

r2 ≥ e
3
4
πB2
(2r)2 ρr(Z \ [−B,B]).

Combining the two inequalities for ρ2r and setting B =
√
κr, we obtain

ρr(Z \ [−
√
κr,
√
κr]) < e

− 3
4
π(
√
κr)2

(2r)2 ρ2r(Z) ≤ 2e− 3πκ
16 ρr(Z) = 2−Ω(κ)ρr(Z).
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From Lemma 2.7, we can see that the tail of the discrete Gaussian distribution over the integer lattice
has only negligible proportion compared to the whole sum. More generally, the tail of the Gaussian
distribution over any shifted lattice also has only negligible proportion compared to the whole sum.

Lemma 2.8 ([Ban93, Lemma 1.5(ii)]). For any r > 0, n-dimensional lattice Λ and u ∈ Rn, it holds
that

ρr(Λ + u\B(0,
√
nr)) < 2−Ω(n)ρr(Λ).

2.1.3 Lattice sparsification
In the following, we introduce a tool named lattice sparsification, which was introduced by Khot [Kho03]
and later used in hardness proofs of lattice problems [SD16b, ASD18]. The sparsification technique
is also the main ingredient that we use to achieve a tighter reduction between BDD and uSVP in
Chapter 3.

Lemma 2.9 ([SD16a, Corollary 2.16]). For any prime p, collection of vectors v1, · · · ,vN ∈ Znp \ {0},
and x /∈ {vi}i≤N , we have

1
p
− N

p2 −
N

pn−1 ≤ Pr
z,u←↩U(Znq )

[
∀i, 〈z,vi + u〉 6= 0 mod p

〈z,x + u〉 = 0 mod p

]
≤ 1

p
+ 1
pn
.

The upper bound in Lemma 2.9 is not used in Chapter 3, but we keep it to show that the difference
between the upper and lower bounds is small, and thus that the lower bound is almost tight. Here, we
give a brief idea of how the lower bound is obtained. We can first define the following N + 1 sets:

A = {z′ ∈ Znp | 〈z′,x + c〉 ≡ 0 mod p}

and
Bi = {z′ ∈ Znp | 〈z′,vi + c〉 6≡ 0 mod p}, ∀i ∈ [N ].

Then the success probability can be roughly computed as

|A\
⋃
iBi|

|Znp |
≥
|A| −

∑
i∈[N ] |A ∩Bi|
pn

.

This gives us 1
p −

N
p2 , and the last term N

pn−1 is due to the possible linear relations between x + c
and {vi + c}i∈[N ].

Lemma 2.9 also leads to the definition of the following sub-lattice

Λp,z =
{

x | 〈B−1x, z〉 = 0 mod p
}
,

in which only the vectors of Λ(B) with coordinates orthogonal (mod p) to z will be kept. To have an
intuition of the sparsification result above, we include Figure 2.2. The lattice Λp,z (on the right-hand
side) is a sublattice of Λ (on the left-hand side), defined by p = 5, z = (1, 2). In particular, the lattice
points (1, 2) and (3, 1) are in the sparsified lattice Λp,z because these lattice points are orthogonal to z
modulus p.

Further, we can take the modulus p = 2N , in which case, we can eliminate polynomially many
lattice points, with non-negligible probability. In fact, the limitation of the above sparsification to
efficiently remove only polynomially many lattice vectors is due to keeping one specific lattice vector.
This limitation can be circumvented in other situations. For example, suppose there are two disjoint
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sets: Sgood and Sbad, each with super-polynomially many lattice vectors. If we only require to keep
any one from set Sgood and remove all in set Sbad, and #Sgood is significantly larger than #Sbad, then
we can still succeed with non-negligible probability. This situation is considered by Aggarwal and
Stephens-Davidowitz [ASD18] in their proof of exponential time lower bound for solving SVP under
the gap-exponential time hypothesis. The idea is similar to our brief proof of Lemma 2.9 above. In this
case, we can construct the following #Sgood+ #Sbad many sets: A = {z′ ∈ ZNp | 〈z′,xi+ c〉 ≡ 0 mod p}
and Bj = {z′ ∈ ZNp | 〈z′,vj + c〉 6≡ 0 mod p} for i ∈ [#Sgood] and j ∈ [#Sbad]. Then the success
probability can be computed as:

|
⋃
iAi\

⋃
j Bj |

|Znp |
≥
|
⋃
iAi| −

∑
i∈[#Sgood],j∈[#Sbad] |Ai ∩Bj |

pn
.

This is non-negligible when #Sgood is asymptotically larger than #Sbad.

0

p = 5, z = (1,2)

(1, 2)

(3, 1)

0

Fig. 2.2: An example of sparsification with p = 5, z = (1, 2).

The lemma below explains that we can efficiently compute a basis of such a sparsified sub-lattice.

Lemma 2.10. There exists a polynomial-time algorithm which, given as inputs a basis B ∈ Qn×n of
an n-dimensional lattice Λ, an integer p and a vector z ∈ Znp , outputs a basis Bp,z of the lattice Λp,z =
{x ∈ Λ | 〈z,B−1x〉 = 0 mod p}.

Proof. According to the definition of the lattice Λp,z, we have

〈z,y〉 = 0 mod p,

where y = B−1x and x ∈ Λp,z. We first compute a basis S of all solutions y of equation 〈z,y〉 = 0
over Zn. We compute the column Hermite normal form of [S|pIn] ∈ Zn×2n; and obtain the nonzero
columns S′ ∈ Zn×n. The columns of S′ generate the lattice orthogonal to z (mod p). In the end, we
compute Bp,z = BS′, which is a basis for the lattice Λp,z.

As stated in Lemma 2.9, we can construct a sub-lattice such that polynomially many specific lattice
vectors can be removed with non-negligible probability. The first question to ask is until how far away,
given any center, there are only polynomially many lattice vectors.

The following result in the book by Micciancio and Goldwasser [MG02] considers this question. In
fact, the statement in their result is stronger than our statement in Lemma 2.11. In [MG02, Theo-
rem 5.2], it is proved that the maximum number of points at distance at least ` from each other that
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can be placed in a sphere of radius `/
√

2 is 2n. By taking the lattice minimum as a lower bound on
the distance of every two points, we obtain the statement in Lemma 2.11.

Lemma 2.11 ([MG02, Theorem 5.2]). For any n-dimensional lattice Λ and any vector t ∈ Qn, we
have #Λ ∩ B(t, λ1(Λ)/

√
2) ≤ 2n.

For the sake of completeness, we give the full proof of [MG02, Theorem 5.2]. The original proof
goes a bit too fast, and some arguments were lacking. We will explained this on the way.

Proof. It proceeds by induction. It is assumed that the statement is true for some dimension n, and
then is proved for dimension n + 1. For dimension n + 1, we consider N points x1, · · · ,xN in Qn+1

such that ‖xi − xj‖ ≥ ` and ‖xi‖ ≤ `/
√

2 for all i, j ∈ [N ]. Note that for all i 6= j, we have

〈xi,xj〉 = 1
2
(
‖xi‖2 + ‖xj‖2 − ‖xi − xj‖2

)
≤ 1

2

(
`2

2 + `2

2 − `
2
)

= 0.

Take xN as the north pole. The idea is to adjust the N points to the poles or on the equator of
an (n+ 1)-dimensional sphere of radius `/

√
2. Now we define the set of vectors

xi =
{
〈xN ,xN 〉xi − 〈xi,xN 〉xN , if 〈xN ,xN 〉xi 6= 〈xi,xN 〉xN
xi, otherwise

and let x′′i =
√

2x′i/‖x′i‖. Note that ‖x′′i ‖2 = ` holds for all i (i.e., the vector x′′i is on the surface).
Further, we have either x′′i = ±x′′N (i.e., the vector x′′i is a pole) or 〈x′′i ,x′′N 〉 = 0 (i.e., x′′i is on the
equator).

Finally, we prove that ‖x′′i − x′′j ‖2 ≥ 4 for all i 6= j. If x′′i = ±x′′N or x′′j = ±x′′N , it is obviously
satisfied. Assume that both x′′i and x′′j are not equal to ±x′′N , we have

‖x′′i − x′′j ‖ = ‖x′′i ‖2 + ‖x′′j ‖2 − 2〈x′′i ,x′′j 〉

= `+ `− ` · 〈xi,xj〉〈xN ,xN 〉
2 − 〈xi,xN 〉〈xj ,xN 〉〈xN ,xN 〉
‖x′i‖ · x′j

≥ 2`,

because 〈xi,xj〉, 〈xi,xN 〉, 〈xj ,xN 〉 ≤ 0 and 〈xN ,xN 〉 > 0.
As a result, we have exactly one point in the south pole and the north pole respectively. Then we

proceed by induction on the points that are on the n-dimensional equator: there are at most 2n of
these. Thus, after adjustment, we have at most 2n+ 2 = 2(n+ 1) points to be placed in Qn+1 1.

In the following, we supplement the proof of Lemma 2.11 by proving the one-to-one correspondence
between points before and after adjustment. In order to present the orthogonalization underlying the
adjustment more naturally, we also modify the maps used in the proof of [MG02, Theorem 5.2], as
follows:

f(xi) =

 xi − 〈xi,xN 〉‖xN‖2 xN , if 〈xi,xN 〉 6= ±‖xi‖‖xN‖
xi, otherwise

and
g(x′i) =

√
2

‖x′i‖
x′i

1This is not sufficient for the statement in Lemma 2.11. We also need to prove that N (the number of starting
points xi’s) is not bigger than 2(n + 1), or, in other words, that any two distinct points of the N initial points will not
be adjusted to the same point of the (n+ 1)-dimensional sphere .
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for all i ∈ [N ]. We let x′i denote f(xi) and let x′′i denote g(x′i). The map g(f(xi)) = x′′i is a bijection
as all the points xi are far away from each other, according to the assumption. We prove this missing
statement here.

Proof. First, we recall that 〈xi,xj〉 ≤ 0 for any i 6= j from last proof above. We will use that claim
several times in the proof.

We show that for any i 6= j, if x′i and x′j are colinear, then 〈x′i,x′j〉 ≤ 0. Thus, even after applying
the second map, the relation between the xi’s and the x′′i ’s is one-to-one. We consider three cases.

Assume first that 〈xi,xN 〉 = ±‖xi‖‖xN‖ and 〈xj ,xN 〉 = ±‖xj‖‖xN‖. In this case, we have x′i = xi
and x′j = xj . As we have 〈xi,xj〉 ≤ 0, thus x′i and x′j are colinear but with 〈x′i,x′j〉 ≤ 0.

Assume further that 〈xi,xN 〉 6= ±‖xi‖‖xN‖ and 〈xj ,xN 〉 = ±‖xj‖‖xN‖. In this case, we have 〈x′i,xN 〉 =
0 and 〈x′j ,xN 〉 = ±‖xj‖‖xN‖ 6= 0. Thus, we obtain that x′i is not colinear with x′j .

For the rest of the proof, we assume that 〈xi,xN 〉 6= ±‖xi‖‖xN‖ and 〈xj ,xN 〉 6= ±‖xj‖‖xN‖. We
assume by contradiction that x′i and x′j are colinear and 〈x′i,x′j〉 > 0. It is equivalent to assume that
there exists t > 0 such that

x′i = xi −
〈xi,xN 〉
‖xN‖2

xN = t ·
(

xj −
〈xj ,xN 〉
‖xN‖2

xN
)

= t · x′j . (2.1)

Write xj = xi + (1/t) · v for some vector v and use it to substitute xj in Equation (2.1). Without
loss of generality, we may assume that 〈v,xN 〉 ≤ 0 (if it is not the case, then we exchange xi and xj).
By substitution in Equation (2.1), we obtain

v = (1− t) ·
(

xi −
〈xi,xN 〉
‖xN‖2

xN
)

+ 〈v,xN 〉
‖xN‖2

xN .

We have

〈xi,xj〉 =
〈

xi,xi + 1− t
t
·
(

xi −
〈xi,xN 〉
‖xN‖2

xN
)

+ 1
t
· 〈v,xN 〉
‖xN‖2

xN
〉

= ‖xi‖2 + 1− t
t
·
(
‖xi‖2 −

〈xi,xN 〉2

‖xN‖2

)
+ 1
t
· 〈v,xN 〉〈xi,xN 〉

‖xN‖2

= 1
t
‖xi‖2 −

1− t
t
· 〈xi,xN 〉

2

‖xN‖2
+ 1
t

〈v,xN 〉〈xi,xN 〉
‖xN‖2

≥ 〈xi,xN 〉2

‖xN‖2
+ 1
t

〈v,xN 〉〈xi,xN 〉
‖xN‖2

≥ 0.

This leads to a contradiction as we have 〈xi,xj〉 ≤ 0.

2.2 Worst-case lattice problems
In this section, we introduce some well-known worst-case lattice problems. They serve as the hardness
foundations of lattice-based cryptography. In particular, the two central problems SVP and CVP, as
well as some of their variants will be recalled. Finally, we also give some results in approximating
the first minimum and distance from any target vector to lattice. They are sufficient for presenting
our work in Chapter 3. We refer the reader to [Ste15] for more details on known relations between
lattice problems, [Emd81, Ajt98, Mic01a, Mic12] for more details on the hardness of SVP and CVP,
and [MV10b, MV10c, ADRSD15, AKS01, HS07, GNR10] for more details on the algorithms for solv-
ing SVP and CVP.
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2.2.1 Definitions and relations
Now we introduce the two most well-known problems in lattices: SVP and CVP, as well as their
well-known variants.

Definition 2.11 (Shortest Vector Problem, SVP). Given as input a lattice basis B, the goal is to find
a vector s ∈ Λ(B) of norm λ1(Λ(B)).

We also introduce its approximation version, which is closely related to the security foundation of
lattice-based cryptography.

Definition 2.12 (SVPγ). Given as input a lattice basis B and a factor γ, the goal is to find a non-zero
vector s ∈ Λ(B) such that s ≤ γ · λ1(Λ(B)).

We also have a decision (gap) version of SVPγ .

Definition 2.13 (GapSVPn,γ). Given as input an n-dimensional lattice associated with basis B and
a factor γ, for d > 0, the goal is to distinguish the following two cases:

1. Yes instance: λ1(Λ(B)) < d;

2. No instance: λ1(Λ(B)) > γ · d.

Here we briefly review the two main practical algorithms for solving SVP (or SVPγ): the sieve algo-
rithm and the enumeration algorithm. Note that there are algorithms with better cost bounds [MV10b,
MV10c, ADRSD15], but they are less practical compared to the two algorithms below.

Sieve algorithm. The sieve algorithm was first introduced by Ajtai et al. [AKS01]. The idea is to
first sample a lot of lattice vectors in Λ ∩ Bn(r) for some initial radius r. We can assume r = 2n/2 · Λ
according to Lemma 2.15. Once we have exponentially many such vectors, we can prove that there is
at least a pair of vectors with their addition falling into Λ ∩ Bn(r/c) for some constant c. Then by
repeating this process polynomially many times, we can successfully find some short vectors with norm
close to the first minimum. The polynomial number of iterations contribute to the total solving time
by a factor poly(n). In total, the algorithm runs in time exponential in n.

Enumeration algorithm. First appeared in the 1980s [Kan83, FP83], the enumeration algorithm is
the most practical algorithm for solving SVP. The main idea is to search for the optimal solution within
a given range. Suppose we aim to find a shortest vector with norm bounded by r in an n-dimensional
lattice Λ, the strategy of the enumeration is to find all short vectors with norm ≤ r (as potential
projections of some shortest vectors) in projected lattice πi(Λ) for i from n down to 1. This process
can be viewed as a search on a tree: the i-th level is all short vectors in Λ[i,n]; by going to the (i−1)-th
level, we add multiples of b∗i−1 to short vectors found in th i-th level, and we keep only short resulting
vector within given norm. We continue to search until we reach the first level, where we find a shortest
non-zero vector. In practice, we use the depth first strategy when we search through the tree. Thus the
enumeration algorithm is space efficient. It was noticed by Hanrot and Stehlé [HS07] that the number
of nodes in level i under the Gaussian heuristic, is

Ni = 1
2 ·

Vn−i+1(r)
vol(Λ[i,n])

.

When the searching radius r is estimated by Gaussian heuristic, and Geometry Series Assumption (refer
to Subsection 2.5) is assumed, the number of nodes in level bn/2c is super-exponential in n. In fact, it
was shown by Gama et al [GNR10] that the number of nodes in level bn/2c is significantly larger than
in other levels.
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Overall, the sieve algorithm is asymptotically faster than the enumeration algorithm. However,
because of the constants hidden in the exponents, there is a crossover point between the curves of
complexity of solving time of these two algorithms. For example, the enumeration algorithm seems
better than the sieve algorithm for solving SVP with practical dimensions, e.g., less than 200. Further-
more, Alkim et al [ADPS16] state that the sieve will become more efficient than enumeration when the
dimension is ≥ 250. More recently, Ducas [Duc18] shown that we can save Θ(n/ logn) dimensions with
the sieve algorithm for solving SVP on n-dimensional lattices.

Definition 2.14 (Closest Vector Problem, CVP). Given as input a lattice basis B and a vector t, the
goal is to find a vector v ∈ Λ(B) closest to t.

Correspondingly, we also have a decision (gap) version of CVPγ .

Definition 2.15 (GapCVPn,γ). Given as input an n-dimensional lattice associated with basis B, a
target vector t and a factor γ, for d > 0, the goal is to distinguish the following two cases:

1. Yes instance: dist(t,Λ(B)) < d;

2. No instance: dist(t,Λ(B)) > γ · d.

There is an efficient reduction from SVP to CVP [GMSS99]. However, in the converse reduction
from CVP to SVP from [Mic01a], the dimension explodes from n to nc for some constant c > 1 and
the reduction is probabilistic.

Now, we introduce two promise variants, whose instances are a specific subset of instances of SVP
and CVP. They are closely related to the underlying security of lattice-based cryptographic primi-
tives [Reg09, LM09].

Definition 2.16 (unique SVPγ , uSVPγ). Let γ ≥ 1. Given as input a lattice basis B such that λ2(B) ≥
γ · λ1(B), the goal is to find a vector s ∈ Λ(B) of norm λ1(Λ(B)). SVP corresponds to γ = 1.

uSVP is a promise variant of SVP in the sense that the second minimum is guaranteed to be much
larger than the first minimum. Said differently, any vector that is not parallel to the two shortest vectors
of norms λ1, has norm much larger than λ1. Thus any approximate shortest vector within this gap
should be the shortest vector itself or multiple of it. In the literature (in [LM09], for example), uSVP
is sometimes be defined with a strict lower bound on λ2(B). We allow equality (as in [LWXZ14]), as it
is more convenient for our presentation. Note that Lemma 2.12 below implies that these two variants
are computationally equivalent.

λ 1
λ
2 =

γ · λ
1

Gap

s1

s2

0

Fig. 2.3: An example of a uSVP instance.
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Definition 2.17 (Bounded Distance Decoding, BDDα). Let α > 0. Given as inputs a lattice basis B
and a vector t such that dist(t,Λ(B)) ≤ α · λ1(B), the goal is to find a lattice vector v ∈ Λ(B) closest
to t.

As opposed to CVP (in which case the target vector can be as far away from the lattice as possible),
the BDD problem promises that the target vector is within a bounded distance from the lattice. Note
that in some works, the range of α is restricted to (0, 1/2). This is to guarantee that there is exactly
one element of Λ in the ball of radius α · λ1(Λ) centered on t. The problem is well-defined even for
large α, and in this thesis we actually consider α ≥ 1/2.

α · λ1

cλ 1 t

s

0

Fig. 2.4: An example of BDD instance.

In the next lemma, it is stated that BDDα is equivalently hard for any parameter α′ that is within
a factor (1− 1/n)c of α, for any constant c.

Lemma 2.12 ([LM09, Corollary 2]). For any α > 0, any constant c > 0, there is a polynomial-time
reduction from BDDα to BDDα(1−1/n)c .

In [LM09], Lyubashevsky and Micciancio also establish reductions between BDD and uSVP in both
directions. We recall them as follows.

Lemma 2.13 ([LM09, Theorem 1]). For any γ ≥ 1, there is a polynomial-time reduction from BDD1/(2γ)
to uSVPγ .

Lemma 2.14 ([LM09, Theorem 2]). For any polynomially bounded γ, there is a polynomial-time
reduction from uSVPγ to BDD1/γ .

In the forward reduction, we can use a uSVPγ solver to solve the BDD1/(2γ) problem. However,
in the backward reduction, to solve uSVPγ problem, a BDD1/γ solver is needed instead of BDD1/(2γ)
solver. Thus if these two problems are computationally equivalent to each other under some parameters,
then there is still a factor 2 to be improved. In Chapter 3, we will discuss in detail how we decrease
this non-tightness gap to

√
2. The currently best known algorithms for solving SVP and CVP take

exponential time in the dimension n of the lattice. In the following, we introduce an efficient partition
algorithm that, given a lattice basis (respectively, a basis and a target vector), outputs a polynomial
set, which contains an estimation to the first minimum of the lattice (respectively, distance from the
target vector to the lattice) within a small factor. We stress that this efficient partition algorithm does
not solve any of GapSVPγ and GapCVPγ for any γ ≥ 1 and dimension n. We only know that an
precise estimation exists in a polynomially large set, but without knowing which one. This efficient
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partition algorithm will be used in the context of some specific reductions between lattice problems.
Here, for example, we give a brief description of the partition algorithm for outputting a set containing
a precise estimation of first minimum. Given a lattice associated with some basis, we can first efficiently
reduce the basis, to some extent (as will be discussed in Section 2.5.2). With the reduced basis, we can
find a short vector with norm within an exponential factor of the first minimum. Then we can divide
the exponential large range into polynomially many sufficiently small intervals, such that one of these
intervals gives a precise estimate within small (inverse polynomial) factor. More details are provided
below.

Given as input an n-dimensional lattice basis B ∈ Qn×n, it is possible to find a non-zero vector that
has norm at most 2n/2 · λ1(Λ(B)) in time polynomial in n and also the bit-sizes of the entries of B, by
using the LLL algorithm [LLL82]. Further, by using the Babai round-off algorithm [Bab86] with inputs
an n-dimensional lattice basis B ∈ Qn×n and a target vector t ∈ Qn, one obtains an estimation of the
distance between t and Λ(B) within a factor 2n/2 in time polynomial in n and also the bit-sizes of the
entries of B and t.

Lemma 2.15 ([LLL82, Proposition 1.6]). There exists a polynomial-time algorithm that, given as input
an n-dimensional lattice basis B ∈ Qn×n, outputs ` ∈ λ1(Λ) · [1, 2n/2).

This is actually discussed further later in this chapter.

Lemma 2.16 ([Bab86, Theorem 3.1]). There exists a polynomial-time algorithm that, given as input
an n-dimensional lattice basis B ∈ Qn×n and a target vector t ∈ Qn, outputs d ∈ dist(t,Λ(B))·[1, 2n/2).

According to Lemma 2.15 (resp. Lemma 2.16), we can obtain an approximation to first minimum
(resp. distance from any target vector to lattice) within an exponential factor. For example, we can
obtain ` ∈ λ1(Λ(B)) · [1, 2n/2) (resp. d ∈ dist(t,Λ(B)) · [1, 2n/2)). Then we can partition the inter-
val [1, 2n/2) into polynomially many intervals of the form x · [1, 1 + ε) for well-chosen rational x’s (see
Algorithms 1-2).

Algorithm 1 Partition algorithm for exponentially approximated first minimum

Input: An integer ˜̀∈ λ1(Λ(B)) · [1, 2n/2) for some basis B ∈ Qn×n.
Output: A set S containing an estimated value in λ1(Λ(B)) · [1, 1 + ε), of size dlog1+ε 2 · n/2e.
1. Divide the interval ( ˜̀

2n/2 ,˜̀] into polynomially many intervals ( ˜̀
2n/2(1+ 1

ε )i ,
˜̀

2n/2(1+ 1
ε )i+1 ] for i ∈ [k],

where k is the smallest integer satisfying 2n/2 ≤ (1 + ε)k.
2. Output the set S of the upper bounds of all the k intervals above.

Algorithm 2 Partition algorithm for exponentially approximated distance

Input: An integer d̃ ∈ dist(t,Λ(B)) · [1, 2n/2) for some target t ∈ Qn and basis B ∈ Qn×n.
Output: A set S containing an estimated value in dist(t,Λ(B)) · [1, 1 + ε), of size dlog1+ε 2 · n/2e.
1. Divide the interval ( d̃

2n/2 ,d̃] into polynomially many intervals ( d̃
2n/2(1+ 1

ε )i−1 , d̃
2n/2(1+ 1

ε )i ] for i ∈ [k],
where k is the smallest integer satisfying 2n/2 ≤ (1 + ε)k.

2. Output the set S of the upper bounds of all the k intervals above.

In Chapter 3, we would consider the case ε = 1/(n− 1) for partitioning the exponentially approxi-
mated distance from any target vector to lattice. In this case, the size of the set S is polynomially large
in dimension n. Thus we can run the reduction (from BDD to uSVP) this polynomial time with each
value in S. As a result, we have that, in one of the reductions, the estimated distance d0 ∈ d · [1, 1 + ε),
where d is the exact distance from the target vector to the lattice.
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2.3 Average-case lattice problems
In this section, we first give the definition of the LWE problem, followed by some important properties
of the involved lattices if we view LWE as a BDD variant. These will be used to build the reduction
from LWE to some presumably hard quantum problems in Chapter 4. For completeness, we also give
a full description of Regev’s encryption scheme [Reg09] as well as a brief proof for its correctness and
security based on the LWE assumption. We refer the reader to [Reg09, Pei09, BLP+13] for more details
on the hardness of LWE, and [ACF+15, APS15] for more details on the algorithm for solving LWE.

2.3.1 Definitions and properties
Now we introduce the LWE problem in two versions: search and decision.

Definition 2.18 (Search Learning with Error, Search LWE). The input of the search LWEmn,q,χ with
dimension n ≥ 1, modulus q ≥ 2 and distribution χ over Z, consists of m samples of the form (a, b) ∈
Znq × Zq, with a←↩ Znq , b = 〈a, s〉+ e and e←↩ χ, where s←↩ Znq is fixed.

A
,

b = A
s
+ e

Fig. 2.5: An illustration of the LWE samples.

Definition 2.19 (Decision LWE). The decision LWEmn,q,χ with dimension n ≥ 1, modulus q ≥ 2 and
distribution χ over Z, asks to distinguish between m ≥ n many LWE samples and random samples of
the form (a, b) ∈ Znq × Zq, with a←↩ Znq , b←↩ Zq.

We let LWEmn,q,α (resp. dLWEmn,q,α) denote search (resp. decision) LWE problem with m samples of
dimension n, modulus q and error distributed as DZ,αq.

Regev proved that the LWE problem is at least as hard as some lattice problems over arbitrary
lattices. In particular, arbitrary lattices contain those lattices for which the problems are hardest to
solve.

Theorem 2.1 ([Reg09]). For α ∈ (0, 1) and q ≥ 2 such that αq > 2
√
n, there is a probabilistic

quantum polynomial-time reduction from GapSVPn,O(n/α) to LWEmn,q,α, in which m is polynomially
bounded in n.

This reduction is not a classical reduction, some quantum computation is also applied during the
reduction. Later in [BLP+13], a dequantized version was proposed, as follows.

Theorem 2.2 (Adapted from [BLP+13, Theorem 2.16,Theorem 4.1,Corollary 3.2]). For α ∈ (0, 1)
and q ≥ 2 such that αq ≥

√
n, there is a probabilistic polynomial-time reduction from GapSVP√n,γ

to LWEmn,q,α, in which m is polynomially bounded in n and γ ≥
√
n√

10α·
√

logn
.

As we can see, there is
√
n factor loss in the dimension via the reduction. In particular, to solve the

worst case problem GapSVP in dimension
√
n, via this reduction, we need a solver for solving LWE in

dimension n. With our new results in Chapter 4, an alternative worst-to-average case reduction can
also be established with dimension preserving, but with slightly worse loss compared to Regev’s [Reg09]
in approximation parameter. We refer the reader to Chapter 4 for more details.

The q-ary lattices is a specific family of lattices, which is of particular importance in lattice-based
cryptography. They are defined as follows.
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Definition 2.20 (q-ary lattices). An n-dimensional q-ary lattice is a lattice Λ ⊆ Zn such that qZn ⊆
Λ ⊆ Zm.

Thus, in a q-ary lattice, it is sufficient to look at Λ mod q. Because all the shifts of Λ mod q by qZn
form a complete partition of Λ. For A ∈ Zm×nq , we define the q-ary lattice Λq(A) = {Ax mod q : x ∈
Znq }. This specific q-ary lattice is closely related to the LWE problem. In particular, the LWE problem
can be viewed as a BDD instance in this q-ary lattice Λq(A), where A is the first component of LWE
sample, and the second component serves as the target vector of the BDD instance. Once we find
the closest vector c = As to target vector b, the secret vector s can be simply recovered by Gaussian
elimination assuming the matrix A is full rank. For completeness, we recall that for a matrix A
randomly chosen from Zm×nq , the matrix A is full rank for a sufficiently large m with overwhelming
probability [BLP+13, Claim 2.13].

The following lemmata are well-known lower-bounds on the minimum of q-ary lattices.

Lemma 2.17. Given a matrix A ∈ Zm×nq uniformly chosen for some positive integers m, n and prime q
such that m ≥ n, then we have λ∞1 (Λq(A)) ≥ q(m−n)/m/2 with probability ≥ 1− 2−m.

Proof. Suppose B = q(m−n)/m/2, we let āi denote the i-th row vector of matrix A, then we have

Pr
A∈Zm×nq

[∃x : Ax = b ∧ 0 < ‖b‖∞ < B] ≤
∑

x∈Znq

∑
b∈[0,B−1]m

Pr
A∈Zm×nq

[Ax = b]

=
∑

x∈Znq

∑
b∈[0,B−1]m

b6=0

∏
i∈[1,m]

Pr
āi∈Znq

[〈āi,x〉 = bi]

=
∑

x∈Znq

∑
b∈[0,B−1]m

b6=0

1
qm

=
∑

x∈Znq

(
B

q

)m
= 2−m.

Lemma 2.18. Given a matrix A ∈ Zm×nq uniformly chosen for some positive integers m, n and prime q
such that m ≥ n, then we have λ1(Λq(A)) ≥ min{q,

√
mq(m−n)/m

2
√

2πe } with probability ≥ 1− 2−m.

Proof. It suffices to prove λ1(Λq(A)) ≥ B when B =
√
mq(m−n)/m/(2

√
2πe) < q (we use this assump-

tion in Equation (2.2) below), as we have a trivial upper bound q on λ1(Λq(A)). In this case, we
have

Pr
A∈Zm×nq

[∃x : Ax = b ∧ 0 < ‖b‖ ≤ B] ≤
∑

x∈Znq

∑
b∈Zm

0<‖b‖≤B

Pr
A∈Zm×nq

[Ax = b]

=
∑

x∈Znq

∑
b∈Zm

0<‖b‖≤B

∏
i∈[1,m]

Pr
ai∈Znq

[〈ai,x〉 = bi]

≤
∑

x∈Znq

1√
πm
·
( 2πe
m

)m
2 ·Bm

qm
(2.2)

≤ 2−m.

22



CHAPTER 2. PRELIMINARIES

2.3.2 Regev’s cryptosystem
In the following, we review Regev’s public-key cryptosystem. Before this, we should recall the Leftover
Hash Lemma (LHL) [HILL99] for a particular case. In this case, for m,n, q > 1, the function fA(r) =
rTA is treated as a universal hash for A ∈ Zm×nq and r ∈ {0, 1}m.

Definition 2.21 (Universal hash). A family of function H = {h : S1 → S2} is called a universal hash
family if for any x, y ∈ S1 uniformly chosen such that x 6= y, we have

Pr
h←↩H

[h(x) 6= h(y)] ≤ 1
#S2

.

We also recall the statistical distance between two probability distributions P and Q over some
set S as follows.

∆(P,Q) = 1
2
∑
x∈S
|P (x)−Q(x)|.

A small statistical distance between two probability distributions implies that these two distributions
are indistinguishable.

Lemma 2.19. Let m,n, q ≥ 1 be integers such that m ≥ 4n log q and q prime, and let A←↩ U(Zm×nq )
and r ←↩ U({0, 1}m). Then the distribution of the pair (A, rTA) is within statistical distance ≤ 2−n
from the uniform distribution on Zm×nq × Znq .

In 2005, Regev [Reg05, Reg09] proposed an elegant public-key cryptosystem, whose security can be
directly based on the presumably hardness of the LWE problem. For the sake of completeness, we first
recall the definition of public-key encryption (PKE) and the notion of security against chosen-plaintext
attacks.

Definition 2.22 (Public Key Encryption, PKE). Given λ a security parameter, a public key encryption
scheme is a tuple of three probabilistic polynomial-time algorithms (KeyGen, Enc, Dec) defined as
follows.

• KeyGen(1λ) 7→ (PK,SK). The key generation algorithm, with input security parameter λ,
generates the public key and its associated secret key.

• Enc(PK,M) 7→ C. The encryption algorithm, with input a public key PK and a message M ∈
{0, 1}, outputs a ciphertext C.

• Dec(SK,C) 7→ {M,⊥}. The decryption algorithm, with input a secret key SK and a cipher-
text C, outputs either the message M or the symbol ⊥ if the decryption fails.

ExpIND-CPA(A, b, λ):
(PK,SK)← KeyGen(1λ)
(M0,M1)← A(PK)
C∗ ← Enc(PK,Mb)
b′ ← A(C∗)
Return

Fig. 2.6: Experiment for IND-CPA security.

The first requirement on PKE is correctness, which means that the message should be properly
recovered from any well-formed ciphertext. Concretely, for any (PK,SK)← KeyGen(1λ) with λ large
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enough, and any message M ∈ {0, 1}, we have that Dec(SK,Enc(PK,M)) = M holds with over-
whelming probability over the randomness used in the encryption algorithm Enc. Next, we introduce
the notion of security against chosen-plaintext attacks.

Definition 2.23 (Indistinguishability against Chosen-Plaintext Attack, IND-CPA). For a PKE scheme
(KeyGen,Enc,Dec), the security against chosen-plaintext attack with adversary A is defined as the
experiment in Figure 2.6. The advantage of A is

AdvIND−CPA(A, λ) =
∣∣∣∣ Pr
b←↩{0,1}

[
ExpIND−CPA(A, λ, b) = b

]
− 1

2

∣∣∣∣ .
The PKE scheme is secure if this advantage is negligible in the security parameter λ for any probabilistic
polynomial-time adversary.

Algorithm 3 Regev’s public key encryption scheme
Let n,m, q ≥ 1 be integers such that m ≥ 4n log q and q prime, let α < 1/(4m) be a positive real
number and let λ as the security parameter.
KeyGen(1λ):

• Generate public parameters: (n,m, q, α)
• Sample A←↩ U(Zm×nq ), s←↩ U(Znq ), and e←↩ DZm,αq

• Compute b = As + e
• Set PK := (A,b), SK := s.

Enc(PK,M ∈ {0, 1}):
• Sample r←↩ U({0, 1}m)
• Compute C = (uT, v) = (rTA, rTb + bq/2c · µ) ∈ Znq × Zq.

Dec(SK, C = (uT, v)):
• Compute z = v − uTs mod q
• Output 0 if z is closer to 0 than to bq/2c, otherwise output 1.

Correctness of the scheme. Here, we show that the honestly encrypted message can be decrypted
correctly. In the encryption phase, one first selects a random subset of rows of matrix (A|b) (in
the public key) and computes their summation. The first n components of the resulted vector (as
vector u) is kept unchanged, and the message M is hidden by adding to the last component (thus
obtaining the component v). In the decryption phase, with input secret key s, one computes z =
v − uTs = rTe + bq/2c · µ. To make sure that the message can be perfectly decrypted, it suffices to
show that ‖rTe‖ ≤ q/4. Thanks to the choices of random vector r and noise vector e, we have ‖e‖ ≤√
mαq with probability exponentially close to 1 according to Lemma 2.7, and ‖r‖ ≤

√
m. Thus we

have ‖rTe‖ ≤
√
mαq ·

√
m ≤ q/4, as required.

Security of the scheme. Regev’s scheme is IND-CPA secure under the decision LWE assumption.
We refer the reader to [Reg09] for a full proof. The principle idea is to give a reduction from the
security of the scheme to the hardness of decision LWE. Concretely, one needs to prove that if there
exists an adversary who can distinguish the ciphertext of 0 and 1 in polynomial-time with non-negligible
probability, then the adversary can be used to solve the decision LWE problem in polynomial-time with
non-negligible probability.

Here, we give a brief idea of the proof. First, we assume that there exists a probabilistic polynomial-
time adversary that given public key and ciphertext of message M , has non-negligible advantage in
distinguishing the message M between 0 and 1. Now, we change the LWE samples (A,b = As + e)
in the public key to be a uniform pair from Zm×nq × Zmq . Then the pair (A|b, rT(A|b)) is statistically
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indistinguishable from a uniform pair from Zm×(n+1)
q × Zn+1

q , due to the leftover hash lemma (see
Lemma 2.19). In this case, any message M (either 0 or 1) added to the last component rTb will be
statistically indistinguishable for any adversary. Recall that the only difference between the starting case
and this case is that the public key is LWE sample and uniform sample. As a result, the adversary can
be used to distinguish the LWE samples and uniform samples in polynomial-time with non-negligible
probability, thus invalidate the decision LWE assumption. In the concrete reduction, given a pair (A,b)
as an instance of the decision LWE problem, we are asked to distinguish it between LWE samples and
uniform samples. We use it as public key to encrypt a message M ←↩ {0, 1}, and send it to the
adversary A. If the adversary A guesses correctly what M is, then we say the instance is formed of
the LWE samples, otherwise we say it is formed of uniform samples. The larger advantage the adversary
has in distinguishing the message, the larger advantage we have to solve the decision LWE problem.

2.4 Quantum computations and the dihedral coset problem
In this section, we recall some necessary notations and concepts of quantum computations, for our study
on quantum hardness of lattice-based cryptography. We also introduce the quantum versions of the
Gaussian distribution and the Fourier transform, which are core tools used in Chapter 4. Finally, we
introduce the dihedral coset problem and recall known results about it. We refer the reader to [NC00]
for more details on quantum computations, and [Reg02, Kup05, Reg04c, Kup13] for more details on
the hardness of the dihedral coset problem.

2.4.1 Definitions and tools
In quantum computations, data is stored as quantum bits (called qubits) in quantum registers. In
general, a state of n qubits is written as

|φ〉 =
∑

x∈{0,1}n
ax |x〉 (2.3)

where ax ∈ C such that
∑

x∈{0,1}n |ax|2 = 1. The same state |φ〉 can be represented differently, e.g., as
follows:

|φ〉 =
∑
x′∈S

a′x′ |x′〉 ,

for any finite set S that can be mapped (by some function g) to a set of independent vectors in the
Hermitian space C#S . We call the set {|g(x′)〉}x′∈S a basis of the state. For example, the basis of
the state φ1 = (1/

√
2)(|0〉 + |1〉) can be (b1,b2), where b1 = (1, 0)T and b1 = (0, 1)T. Typically, we

let |x〉 |y〉 (or |x, y〉) denote the tensor product |x〉 ⊗ |y〉 of the two states |x〉 and |y〉. To measure the
difference between two quantum states, we recall the trace distance.

Definition 2.24 (Trace distance). Given two quantum states of n qubits |φ1〉 and |φ2〉, their trace
distance is defined as

D(|φ1〉 , |φ2〉) = 1
2Tr

(√
(|φ1〉 − |φ2〉)†(|φ1〉 − |φ2〉)

)
.

The trace distance is known to be the maximum distinguishing advantage between two states using
quantum measurements. We have

D(|φ1〉 , |φ2〉) =
√

1− |〈φ1|φ2〉|2 ≤ ‖ |φ1〉 − |φ2〉 ‖,

where the first equality is given in [NC00, Chapter 8] and ‖ |φ1〉 − |φ2〉 ‖ is called the `2-distance, and
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is defined as follows.

Definition 2.25 (`2-distance between two quantum states). Given two quantum states of n qubits |φ1〉 =∑
x∈S ax |x〉 and |φ2〉 =

∑
x∈S bx |x〉, their `2-distance is defined as

‖ |φ1〉 − |φ2〉 ‖ =
√∑

x∈S
|ax − bx|2.

For simplicity, in this thesis, we always compute `2-distance for evaluating the difference of two
states, as small `2-distance implies small trace distance.

In quantum computations, the allowed operations consist of two forms: unitary operations and
measurements. For the first case, the unitary operations can be represented by unitary operators U ∈
C#S×#S satisfying UUT = UTU = I. In particular, a unitary operator for a single qubit is a unitary

matrix U ∈ C2×2. For example, suppose we apply a unitary operation U =
(

0 1
1 0

)
on a single qubit

state φ1 = (1/2) |0〉 + (
√

3/2) |1〉, the resulting state will be φ2 = (
√

3/2) |0〉 + (1/2) |1〉. If we view
the input and output states as vectors a1 = (1/2,

√
3/2) and a2 = (

√
3/2, 1/2) respectively, then we

have a2 = Ua1.
Analogously to the classical computations that are done with an electrical circuit containing wires

and logic gates, the quantum computations are carried out with a quantum circuit containing wires
and elementary quantum gates. In classical computations, we have an important theoretical result
that any function on bits can be computed from the composition of (two-bits input) NAND gate:
(x, y) 7→ ¬(a ∧ b), for any two bits a, b ∈ {0, 1}. Sometimes, we also call a set of gates that can
implement the circuit for computing any functions on bits as a universal set of gates. In quantum
computations, we have a similar result that any unitary operation can be approximated to arbitrary
accuracy using the following four elementary gates (represented with unitary operators, see [NC00,
Section 4.5]):

1. (1-qubit input) Hadamard gate: 1√
2

(
1 1
1 −1

)
;

2. (1-qubit input) phase shift gate:
(

1 0
1 eiφ

)
;

3. (1-qubit input) π/8 gate:
(

1 0
1 eiπ/4

)
;

4. (2-qubits input) CNOT gate:


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

We assume that all of these gates can be evaluated in constant time. In this thesis, we focus on
this specific universal set of gates. But we note that there are many other universal sets [BDEJ95].
A unitary operator U is considered to be efficient, if it can be built upon polynomially many (with
respect to the size of the inputs) gates from the set of universal gates given above.

In classical computations, we are also allowed to apply an irreversible gates to data: x 7→ f(x) for a
possibly non-injective function f . It is also well-known that all the classical circuits can be transformed
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into corresponding quantum circuits with similar functionalities with the following map [Ben73] (also
refer to Figure 2.7): ∑

x∈S
ax |x, y〉 7→

∑
x∈S

ax |x, y ⊕ f(x)〉 .

f

|y〉

|x〉

|y ⊕ f(x)〉

|x〉

Fig. 2.7: Quantum circuit for evaluating a function f with input |x〉.

The second operation is measurement. We first define a function ĝ that maps x ∈ {0, 1}n to basis
vector b̂i ∈ {0, 1}2

n , where b̂i is the i-th column of the identity matrix I2n with i =
∑
j≤n xj · 2n−j .

Then we can transform the basis of State 2.3 from {0, 1}n to {b̂}i≤2n with b̂i defined as above. A mea-
surement M on State 2.3 under the basis {bi}i≤2n can be represented by the set {Mi = |bi〉 〈bi|}i≤2n ,
where |x1〉 〈x2| denotes the outer product of |x1〉 and |x2〉. Each of the possibilities x is observed with
probability 〈bi|M†iMi |bi〉 with i =

∑
j≤n xj2n−j , which, in this case, is |ax|2, where 〈x1|x2〉 denotes

the inner product of |x1〉 and |x2〉. Given a general measurement M under a basis (that is not neces-
sary orthogonal), the set {Ei = M†iMi} is known as the positive operator valued measures (POVM)
(see [NC00, Chapter 2] for more details). We are also allowed to make a partial measurement. Suppose
State 2.3 can be rewritten as |φ1〉⊗|φ2〉 (with basis of |φ1〉 orthogonal to the one of |φ2〉), then a partial
measurement means a measurement independently on |φ1〉 or |φ2〉 in its corresponding basis.

Now, we can recall the first tool that we need: the quantum Fourier transform. Here we consider a
special case of it, which acts on elements in Znq .

Definition 2.26 (Quantum Fourier Transform). Let G = Znq be the group of integer vectors modulo q in
dimension n with addition operation. The quantum Fourier transform (QFT) is a unitary operation Fnq
defined as follows:

Fnq : |x〉 7→ 1
qn/2

∑
y∈Znq

ω〈x,y〉q |y〉 ,

where ωq = e
2πi
q .

Note that the evaluation time of quantum Fourier transform is O(log2(|G|)) [NC00, Section 5.1]. In
the special case above, the complexity of quantum Fourier transform is O(n2 log2 q).

We now introduce the second tool that we need: the quantum analogue of the Gaussian distribution.
In quantum computations, we can also build a quantum register with amplitude of each possibility
distributed as a Gaussian distribution over each possible value. The following lemma is originally due
to Grover and Rudolph [GR02] and was adapted to the Gaussian distribution in [Reg09].

Lemma 2.20 (Adapted from [Reg09, Lemma 3.12]). Given a parameter κ and an integer r, there exists
an efficient quantum algorithm that outputs a state that is within `2-distance 2−Ω(κ) of the normalized
state corresponding to ∑

x∈Z
ρr(x) |x〉 .

Proof. Given as input a real number r, we use the technique introduced by Grover and Rudolph [GR02]
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to create the normalized state corresponding to:∑
x∈Z∩[−

√
κr,
√
κr]

ρr(x) |x〉 .

According to Lemma 2.7, the above state is within `2-distance of 2−Ω(κ) from the normalized state
corresponding to: ∑

x∈Z
ρr(x) |x〉 .

The last tool we need to recall is the quantum rejection sampling due to Ozols et al. [ORR13].

Lemma 2.21 ([ORR13, Section 4]). There is a quantum circuit, which given as input

n∑
k=1

πk |k〉 |ηk〉 ,

for some probability πk, outputs
1
‖p‖

n∑
k=1

pk |k〉 |ηk〉 .

for some pk ≤ πk, with probability ‖p‖2 =
∑n
k=1 p

2
k in time poly(logn).

2.4.2 Dihedral coset problem
The first connection between lattice problems and quantum computations was given by Regev [Reg02].
Concretely, Regev gives a reduction from uSVP to DCP, which has been conjectured quantum hard
over the last two decades (see, e.g., [GSVV01, Reg02, FIM+03, HRTS00, RB98]).

Definition 2.27 (Dihedral coset problem, DCP). The input of the DCP`N with modulus N consists
of ` states. Each state is of the form (normalization is omitted)

|0〉 |x〉 + |1〉 |(x+ s) mod N〉 ,

stored on 1 + dlog2Ne qubits, where x ∈ ZN is arbitrary and s ∈ ZN is fixed throughout all the states.
The task is to output the secret s.

0 1 2 3 4 5 6 7 8 9 10 11 12 13x =

b = 0

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13x =

b = 0

1

Fig. 2.8: An illustration of DCP samples with modulus N = 14.

For an intuitive illustration of the input samples of DCP, we refer the reader to Figure 2.8. Each
pair of boxes with same color represents the pair of two possibilities in an input quantum superposi-
tion (refer to the left-hand side). In particular, on the right-hand side, the three samples are (up to
normalization) |0〉 |0〉 + |1〉 |2〉 (colored by red), |0〉 |5〉 + |1〉 |7〉 (colored by black) and |0〉 |9〉 + |1〉 |11〉
(colored by blue). In this example, one is asked to find out the difference between the values in the
second register, which is the secret s = 2.
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Note that Regev in [Reg02] defines the Dihedral Coset problem slightly differently. Namely, he
introduces a failure parameter f(κ), and with probability ≤ 1/(logN(κ)f(κ)), we have a state of the
form |b〉 |x〉 for arbitrary b ∈ {0, 1}n and x ∈ ZN . Such a state does not contain any information on s.
Our definition takes 0 for the failure parameter. Conversely, Definition 2.27 is Regev’s definition is
with a bounded number of input states and failure parameter 0. It is also noticed in [EH99] that in an
information theoretic sense, it suffices to use ` = O(logN) many samples for uniquely determining the
secret s.

There is a closely related classic problem named hidden shift problem (HSP), which can be reduced
to DCP. HSP is defined as follows.

Definition 2.28 (hidden shift problem, HSP). The input of HSPN with modulus N consists of oracle
access to an injective function f satisfying

f(0, x) = f(1, x+ s)

for any x ∈ ZN and a fixed arbitrary secret s ∈ ZN . The task is to output the secret s.

Here we give a simple algorithm with oracle access to a HSP function f , outputting DCP states.
We first prepare a quantum superposition over two registers with same amplitude over all pair (b, x)
of b ∈ {0, 1} and x ∈ ZN . Such a state can be created efficiently using a technique by Grover and
Rudolph [GR02], if the underlying distribution is integrable. This is true in this case, as we can
integrate uniform distribution over any subset of {0, 1}×ZN as

∑b2
b=b1

∑x2
x=x1

1/(2N) for some b1 ≤ b2
from {0, 1} and x1 ≤ x2 from ZN within good precision. Then we apply the function f on this pair
and store the output in the third register. We obtain (normalization is omitted):∑

b∈{0,1}

∑
x∈ZN

|b, x, f(b, x)〉 .

Then a measurement on the third register gives us (normalization is omitted):

|0〉 |x〉 + |1〉 |(x+ s) mod N〉

for some uniform x ∈ ZN . This gives us a valid input state for DCP.
The best algorithm known so far for solving DCP with polynomially many (with respect to logN)

input states is full exponential in logN (e.g., via reducing to subset sum problem [Reg02]). However,
there is a trade-off between number of input states and solving time for DCP. In [Kup05], a sub-
exponential time algorithm is given to solve DCP with sub-exponentially many input states. This, with
the above discussion, also leads to a sub-exponential time solving algorithm for HSP.

For completeness, we briefly review the main idea of Kuperberg’s algorithm for solving DCP. In
particular, the first step of the algorithm is also used in our work in Chapter 4.

First, a quantum Fourier transform is applied on the second register of the DCP sample, which
gives (normalization is omitted):

(|0〉+ ωxsN |1〉) |x〉 . (2.4)

Then we make a measurement on the second register, and obtain (normalization is omitted):

|0〉+ ωx̂sN |1〉 ,

for some measured x̂ ∈ {0, · · · , N − 1}. Our target is |0〉 + (−1)s |1〉. For simplicity, we always let n
denote the bit length of the modulus N , and k =

√
n− 1. Suppose we are given sub-exponentially

(e.g., ≥ 2k) many state as in (2.4), then by pigeonhole principle, we have at least one pair of state
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|0〉 + ωx̂1s
N |1〉 and |0〉 + ωx̂2s

N |1〉 with x̂1 and x̂2 that agree on the least k bits. Then a tensor product
between them gives us

|0, 0〉+ ωx̂1s
N |1, 0〉+ ωx̂2s

N |0, 1〉+ ω
(x̂1+x̂2)s
N |1, 1〉 .

Now we apply a CNOT gate (that can be viewed as a special case of circuit in Figure 2.7 with f : x→ x

the identity function) on them and measurement on the second register. With probability 1/2, we
measure ’odd’ and obtain (normalization is omitted):

|0〉+ ω(x̂1−x̂2)s |1〉 = |0〉+ ωx̂
′s |1〉 .

In this case, we obtain a new state which we say in the second level, as x̂′ has 0’s for the least k bits.
Once we have enough states in the second level, we can continue to move to the next level, until we get
the targetted state in the (k + 1)-th level.

To conclude, with state |0〉 + (−1)s |1〉, we can apply the quantum Fourier transform (acting on
group Z2), which gives us (up to normalization) (1 + (−1)s) |0〉+

(
1 + (−1)s+1) |1〉. Thus a measurement

on this state tells us the least significant bit of s: if 0 is measured, then s is even, otherwise s is odd.
Then we can iteratively recover all the bits of s from the least significant bit to the most significant
bit. Now suppose we already got the least significant bit of s, denoted as s1. Then we can repeat the
above procedure except in the last level, our targetted state becomes

|0〉+ ωs4 |1〉 = |0〉+ is |1〉 .

When we obtain this state, we apply a phase shift gate with the following unitary operator

R− 2πs1
4

=
(

1 0
0 e−

2πs1
4 i

)
=
(

1 0
0 ωs1

4

)
,

and we obtain
|0〉+ (−1)bs/2c |1〉 ,

with which we can obtain the second least significant bit of s. With this strategy, we can iteratively
recover the whole s.

Overall, this algorithm runs in time 2O(
√

logN). As we can observe, Kuperberg’s algorithm also
takes 2O(

√
logN) quantum space and 2O(

√
logN) samples. In [Reg04c], Regev gives an alternative for

solving DCP with polynomial quantum space, with running time 2O(
√

logN log logN) and 2O(
√

logN log logN)

samples. Later, Kuperberg [Kup13] shows that, with polynomial quantum space, it is enough to
solve DCP in time 2O(

√
logN), with 2O(

√
logN) sample. Further, by considering a general number of

samples ` in Kuperberg’s improved algorithm [Kup13], there is an algorithm for solving DCP with `
(at least poly(logN)) samples in time 2O(log `+logN/ log `).

For completeness, we give a brief description of the algorithm and a heuristic analysis on the
complexity. The heuristic analysis can be made rigorous, we refer the reader to [Kup13] for more
details.

The first step is exactly the same as the first step in the first Kuperberg’s algorithm [Kup05]
discussed above, suppose we have prepared `-many (up to normalization):

|0〉+ ωxsN |1〉 ,

for some classically known x ←↩ {0, · · · , N − 1}. Our target is still |0〉 + (−1)s |1〉. The overall idea is
similar to the algorithm above, from each level to the next level, more bits of the multiplicative factor
of the secret in the exponent of the phase will become 0’s. The difference is that in this algorithm, the
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number of levels is more flexible to be poly(log `) according to the number of input samples. In the
following, we let `′ = `/(n − 1) and k̂ = (n − 1)/k, where k is the bit length of `′. Then, we tensor k̂
states above {|0〉+ ωxisN |1〉}i≤2n, tensor them together, and obtain (up to normalization):∑

a∈{0,1}̂k

ω
〈a,x〉·s
N |a〉 =

∑
a∈{0,1}̂k

ωxa·s
N |a〉 ,

where xa = 〈a,x〉. Then we can apply a function f that maps {0, 1}k̂ to {0, · · · , 2k̂ − 1} to the register
of state above, and obtain (up to normalization):∑

â∈{0,··· ,2̂k−1}

ω
x
â
·s

N |â〉

where we let x
â
denote xa correspondingly. This will serve as the state in the first level.

Because each state above consume ≤ n input states, we have at least `′ = `/n many such states.
Next, we tensor two states:

∑
â1∈{0,··· ,2̂k−1}

ω
x
â1
·s

N |â1〉 and
∑
â2∈{0,··· ,2̂k−1}

ω
x
â2
·s

N |â2〉 in the first level
together, and obtain (up to normalization):∑

â∈{0,··· ,2̂k−1}2

ω
〈̂a,̂x〉·s
N |â〉 ,

where â = (â1, â2) and x̂â = (x
â1
, x
â2

).
As we know the x

â
∈ {0, · · · , N − 1} for all â ∈ {0, · · · , 2k̂− 1} classically, then we can take value â

from the first register and compute 〈â, x̂â〉 mod 2k̂, store it in the second register, and obtain (up to
normalization): ∑

â∈{0,··· ,2̂k−1}2

ω
〈̂a,̂x

â
〉·s

N |â〉
∣∣∣〈â, x̂â〉 mod 2k̂

〉
.

And a measurement on the second register gives us (up to normalization):

∑
â∈{0,··· ,2̂k−1}2

〈̂a,̂x
â
〉≡b mod 2̂k

ω
〈̂a,̂x

â
〉·s

N |â〉 |b〉 .

for some measured value b. By omitting the global phase ωb·s, we obtain (up to normalization):

∑
â∈{0,··· ,2̂k−1}2

〈̂a,̂x
â
〉≡b mod 2̂k

ω
(〈̂a,̂x

â
〉−b)·s

N |â〉 |b〉 =
∑

â∈{0,··· ,2̂k−1}2

〈̂a,̂x
â
〉≡b mod 2̂k

ω
x̂

a
·s

N |â〉 |b〉 , (2.5)

where x̂a = 〈â, x̂â〉 − b.
Then we compute all solutions â to the equation system 〈â, x̂〉 ≡ b mod 2k̂ classically with costO(2k̂)

(that can be done in a brute-force way). We let S denote the set of all the solutions. Heuristically, we
have #S ≈ 22k̂/2k̂ = 2k̂ many solutions for any b (see [Kup13] for a rigorous proof of a slightly modified
variant). Without loss of generality, we assume #S = 2k̂. As we know all the solution classically, we
can apply a bijective map h that maps S to {0, · · · , 2k̂− 1} to the first register of State (2.5) (omitting

31



CHAPTER 2. PRELIMINARIES

the second classically known register), and obtain (up to normalization):

∑
a∈{0,··· ,2̂k−1}

ω
xa·s
N |a〉 ,

where xa = x̂a for h(â) = a. This state will serve as the state in the second level. And we can observe
that xa has 0’s in the k̂ = n/k least significant bits.

We can repeat this process until we obtain the state |0〉 + (−1)s |1〉 in the (k + 1)-th level. As for
generating one states in the next level, we only need two states in current level. Thus to get a state in
the (k+ 1)-th level, we only need 2k states that is exactly equal to `′ = `/n states that are prepared in
the first level. The remaining process for recovering the whole s is the same as the former algorithm. To
conclude, the complexity of the algorithm is 2O(log `+logN/ log `), where 2O(log `) is the time for reading
in the input samples, and 2O(logN/ log `) is the time for solving the equation systems classically in the
algorithm.

There is an extension of HSP, which gives a trade-off for solving time. Instead of giving only queries
values from {0, 1} for the first input of function f , the generalized HSP (gHSP) [CvD07] assumes oracle
access to a more structured function f . It is defined as follows.

Definition 2.29 (generalized HSP, gHSP). The input of the gHSPM,N with parameters an integer M
and modulus N consists of oracle access to a function f satisfying

f(b, x) = f(b+ 1, x+ s)

for any b ∈ {0, · · · ,M − 1} and x ∈ ZN and a fixed arbitrary secret s ∈ ZN . The task is to output the
secret s.

In [CvD07], Childs and van Dam use the “pretty good measurement” to solve gHSPM,N efficiently
in polynomial-time in logN for any M = N ε with constant ε. In other words, the proposed algorithm
can efficiently solve gHSP when the query extension factor M = 2O(logN) is exponentially large. In
Chapter 4, we show how to decrease the query extension factor to 2O(

√
logN), while maintaining an

efficient solving algorithm.

2.5 Lattice reduction
In this section, we recall some well-known definitions of lattice reductions. Among them, the BKZ
reduction is one of the most important tools for security analysis in lattice-based cryptography. This
is because the corresponding BKZ algorithm (for achieving the BKZ reduction) by Schnorr and Euch-
ner [SE94], is the best known algorithm for cryptanalysis of lattice-based cryptography in practice. We
refer the reader to [NV09, MV10a, HPS11] for more details on lattice reduction and to [CN11, Che09,
AWHT16, YD17] for more details on the analysis on the BKZ algorithm. This section is mainly linked
to Chapter 5.

2.5.1 Size reduction
First, we define the size-reduction conditions. If we again view the GSO procedure as a QR decomposion,
then the size-reduction conditions can be seen as a requirement on the upper triangular matrix.

Definition 2.30 (Size-reduction). A matrix B ∈ Rm×n is called size-reduced, if it satisfies:

|µi,j | ≤
1
2 , 1 ≤ j < i ≤ n,
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where µi,j = 〈bi,b∗j 〉/〈b∗j ,b∗j 〉.

If b∗j = 0, we let µi,j = 0 for any i ≥ j.
We also recall an algorithm for achieving the size reduction condition as shown in Algorithm 4.

Algorithm 4 Size-reduction algorithm
Require: A basis B = {b1, · · · ,bn}.
Ensure: A size-reduced basis of Λ(B).
1: Compute the GSO basis b∗1, · · · ,b∗n
2: for i = 2 to n do
3: for j = i− 1 down to 1 do
4: bi ← bi − dµi,jcbj
5: for k = 1 to j do
6: µi,k ← µi,k − dµi,jcµj,k
7: end for
8: end for
9: end for

The size-reduction condition should be understood more clearly if we consider the GSO (or QR-
decomposition). Suppose that we start from any basis B = QR with an orthogonal matrix Q and an
upper triangular matrix

R =



. . . ... · · ·
... · · ·

‖b∗i ‖ · · · µij‖b∗i ‖ · · ·
. . . ... · · ·

‖b∗j‖ · · ·
. . .


.

In particular, to achieve the size-reduction condition for a specific µji with i < j, it suffices to
construct a unimodular matrix Uij and apply it on R as follows

R ·Uij=



. . .
... · · ·

... · · ·
‖b∗i ‖ · · · µji‖b∗i ‖ · · ·

. . .
... · · ·
‖b∗j‖ · · ·

. . .


·



. . .

1 −bµjie
. . .

1
. . .


=



. . .
... · · ·

... · · ·
‖b∗i ‖ · · · µ̂ji‖b∗i ‖ · · ·

. . .
... · · ·
‖b∗i ‖ · · ·

. . .


,

where we have |µ̂ji| ≤ 1/2. This step is exactly corresponding to Line 4 of Algorithm 4. Notice that
such an operation R · Uij for some i < j may also change the values µik for k < i. Thus we can
proceed to apply these specific unimodular matrices Uij to R from bottom (i = j) to up (i = 1) (see
Algorithm 4 for a full procedure).

Given a basis B = QR, the product
∏
i ‖b∗i ‖ of the diagonal components of R is fixed and equal to

the determinant of the lattice associated with the basis B. Intuitively, to obtain a good basis, we aim
to make the ‖b∗i ‖’s have limited decrease.

2.5.2 LLL reduction
We now recall LLL-reduction, which can be reached in polynomial-time (see [LLL82]).

Definition 2.31 (LLL-reduction). For δ ∈ (1/4, 1), a matrix B ∈ Rm×n is called LLLδ reduced, if it
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is size-reduced and satisfies the Lovász condition:

δ‖b∗i ‖2 ≤ ‖µi+1,ib∗i + b∗i+1‖2

for 1 ≤ i < n.

For an LLL-reduced basis B, the Lovász condition implies

‖b∗i ‖ ≤ α
1
2 ‖b∗i+1‖

for any 1 ≤ i < n, where α = (δ− 1/4)−1. Thus, an upper bound on ‖b∗1‖ (which is equal to ‖b1‖) can
be derived as:

‖b∗n‖2 ≥ α · ‖b∗n−1‖2 ≥ · · · ≥ αn−1‖b∗1‖2 = αn−1‖b1‖2.

Further, we also have
‖b∗1‖ ≤ α−(i−1)/2‖b∗i ‖ ≤ α−(n−1)/2‖b∗i ‖, (2.6)

for any i > 1. Thus, we have

‖b1‖ ≤ α−(n−1)/2 min
i∈[n]
‖b∗i ‖ ≤ α−(n−1)/2 · λ1(Λ(B)).

As a result, the LLL-reduction helps to approximate the shortest vector by a factor
(
δ − 1

4
)−(n−1)/2.

Take δ = 3/4, we have α = 2, thus this factor is 2(n−1)/2 (as in Lemma 2.15). On the other hand, by
taking the product of Equation (2.6) for all i ∈ [n], we have

‖b1‖n ≤
∏
i∈[n]

α
i−1

2 ‖b∗i ‖ = α
n(n−1)

4 det(B).

Equivalently, we have
‖b1‖ ≤ α(n−1)/4det(B)1/n.

Thus the root Hermite factor of an LLL-reduced basis can be bounded by 2(n−1)/4 when we take δ = 3/4.
Further, the LLL-reduction condition can be achieved efficiently in polynomial-time by the LLL-

reduction algorithm proposed by Lenstra et al [LLL82].

Algorithm 5 LLL-reduction algorithm
Require: A basis B = {b1, · · · ,bn} and parameter δ.
Ensure: A δ-LLL-reduced basis of Λ(B).
1: Size-reduce(B).
2: Swap:
3: if ∃i such that ‖µi+1,ib∗i + b∗i+1‖2 < δ‖b∗i ‖ then
4: swap(bi,bi+1)
5: goto Step 1
6: end if

More generally, whenever we want to call the LLL algorithm with input a generating set of lattice
(instead of a basis), we always assume that the generating set is pre-processed by computing its Hermite
normal form. Then we take the non-zero columns of the resulting matrix in Hermite normal form, as
the basis vectors of the lattice, and call the LLL algorithm with this basis. As in Algorithm 5, the LLL-
reduction conditions will be satisfied once the algorithm terminates. The following lemma states that
Algorithm 5 terminates in time polynomial in max{n,maxi∈[n] log ‖bi‖}.

Lemma 2.22. Given a basis B ∈ Zn×n of an n-dimensional lattice Λ, Algorithm 5 terminates in time
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polynomial in K = max{n,maxi∈[n] log ‖bi‖}

We refer the reader to [LLL82] for a full proof. The main idea is to associate to the basis a quantity
(sometimes called ’potential’). It can be shown that this quantity is decreased by at least a constant
factor after each Swap operation and unchanged through Size-reduction. Thus by showing the initial
quantity is bounded properly, the number of iterations of Swap operation can also be bounded. The
running time of each iteration can be shown to be polynomial in K = max{n, log ‖bi‖} (see [LLL82]).
In the following, we show that the number of iterations is polynomial in K. First, the ’potential’ of a
basis B of an n-dimensional lattice is

PB =
n∏
i=1
‖b∗i ‖n−i+1 =

n∏
i=1
‖b∗1‖ · · · ‖b∗i ‖ =

n∏
i=1

PB,i,

where PB,i = det(Λi) with Λi is the lattice associated with the basis (b1, · · · ,bi).
According to this definition, we observe that PB can be bounded by (maxi∈[n] ‖bi‖)n(n+1)/2. Notice

that PB does not change during the Size-reduction step, as all b∗i ’s are kept unchanged. During the
Swap step, suppose that bi and bi+1 are swapped for some i. Then the Gram–Schmidt vectors will
only be changed at indices i and i+ 1. We let b̂∗i and b̂∗i+1 denote the updated Gram–Schmidt vectors
at these two places. A Swap takes place if the Lovász condition is not satisfied, thus we have

‖b̂∗i ‖ = ‖µi+1,ib∗i + b∗i+1‖ <
√
δ‖b∗i ‖,

where the first equation holds because b∗i+1 = b̂∗i − µi+1,ib∗i .
As a result, the quantity PB,i decreases by at least a factor

√
δ (for a constant δ ∈ (1/4, 1)).

Note that PB,j for j 6= i does not change. Thus, overall, the quantity PB also decreases by a con-
stant factor

√
δ. First, since B is an integer basis, if PB is positive, then we must have PB =∏n

i=1 det(Λ(b1, · · · ,bi)) ≥ 1, where the second inequality follows from the definition of the deter-
minant of the lattice and the fact that the basis B is integral. Consequently, as we also have PB ≤
maxi∈[n] ‖bi‖n(n+1)/2, the number of Swap operations made is at most O(n2 log maxi∈[n] ‖bi‖), which
gives us the result.

Note that in the analysis of the run-time of the LLL algorithm, we require the input basis B ∈ Zn×n.
Thus before any application of the LLL algorithm on basis B′ ∈ Qn×n, we will first scale it to be an
integer basis by multiplying some (properly chosen) integer K. Then we can run the LLL reduction on
it and scale the LLL-reduced basis back by dividing K.

2.5.3 HKZ reduction
The Hermite-Korkine-Zolotarev (HKZ) reduction is more promising for approaching the successive
minima, even though an HKZ-reduced basis does not necessarily reach them.

Definition 2.32 (HKZ-reduction). A matrix B ∈ Rm×n is called HKZ-reduced, if it is size-reduced
and satisfies:

‖b∗i ‖ = λ1(Λ[i,n])

for all i ∈ {1, · · · , n}.

Here, we recall a result on the relation between the norms of HKZ-reduced basis vectors and the
successive minima of the lattice.

Lemma 2.23 ([LLS90, Theorem 2.1]). Let B = (b1, · · · ,bn) be an HKZ-reduced basis of a lattice Λ.
We have 4

i+ 3λi(Λ)2 ≤ ‖bi‖2 ≤
i+ 3

4 λi(Λ)2
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for all i ∈ [n].

For an n-dimensional HKZ-reduced basis, we can also quantify the relations among its Gram–
Schmidt norms ‖b∗i ‖’s in the worst case as follows.

Lemma 2.24. For any HKZ-reduced basis B = QR of an n-dimensional lattice, we have, for all i < n,

‖b∗i ‖ ≤
√
γn−i+1 ·

 n∏
j=i
‖b∗j‖

 1
n−i+1

. (2.7)

This worst-case result is obtained by considering the Minkowski’s first theorem. If we only consider
the equalities in the inequalities above, when we fix ‖b∗n‖, all the remaining ‖b∗i ‖’s are also fixed.
Equation (2.7) can be rewritten as

xi ≤
1
2 log γn−i+1 + 1

n− i+ 1

n∑
j=i

xj

for all i < n, where xi = log ‖b∗i ‖. The xi’s are also known as the worst-case HKZ profile.
To obtain an HKZ-reduced basis, one is required to find a shortest vector in each projected lattice,

with dimension from 1 to n. As we have already discussed in Section 2.2, the current known best SVP
solvers take time exponential in dimension n, which becomes very costly when n grows. In the following,
we recall the HKZ-reduction algorithm.

Algorithm 6 HKZ-reduction algorithm
Require: A basis B = {b1, · · · ,bn}.
Ensure: A HKZ-reduced basis of Λ(B).
1: for k = 1 to n− 1 do
2: Find any b such that ‖πk(b)‖ = λ1(Λ[k,n])
3: B← LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bn)
4: Size-reduce(B)
5: end for

Note that in Step 3 of Algorithm 6, the LLL-reduction is used to remove the linear dependency
between b and {bk, · · · ,bn} (in this case, the input is a generating set instead of a basis). Further,
the inserted vector b will not be exchanged with any of {b1, · · · ,bk−1} because the Lovász condition
is always satisfied.

2.5.4 BKZ reduction
Later, Schnorr [Sch87] gave a block-wise lattice reduction for trade-off between the LLL-reduction
and HKZ-reduction. It was also made more practical by Schnorr and Euchner [SE91, SE94], whose
variant is known as the Block Korkine-Zolotarev (BKZ) reduction algorithm.

Definition 2.33 (BKZ-reduction). A matrix B ∈ Rm×n is called BKZβ reduced for block size β ≥ 2,
if it is size-reduced and satisfies:

‖b∗i ‖ ≤ λ1(Λ[i,min(i+β−1,n)])

for all i ∈ {1, · · · , n− 1}.

The BKZ reduction condition can be seen as a run-time/quality trade-off between LLL-reduction
and HKZ-reduction. Each πi(bi) is promised to be a shortest non-zero vector in a projected lat-
tice Λ[i,i+β−1] with some fixed dimension β except for the last indices. Intuitively, the larger block-size
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we choose, the lower the achieved SVP approximation factor, but the higher the run-time. Schnorr
and Euchner [SE91, SE94] showed that the BKZ reduction achieves an SVP approximation factor ≤
γ

(n−1)/(β−1)
β with block-size β, but they can not establish a good bound on the run-time for achiev-

ing BKZ-reduction. Since then, a sequence of works focused on studying this strong lattice reduction
(see, e.g., [SE91, SE94, GHGKN06, Sch, GN08b, GN08a, HPS11, Neu17]). Next, we will first review
the (practical) BKZ reduction algorithm [SE91, SE94] and discuss some good bounds [HPS11, Neu17]
on run-time for (almost) achieving BKZ-reduction later.

The BKZ algorithm. The Schnorr-Euchner BKZ algorithm [SE94] takes as inputs a block-size β and
a basis B = {b1, · · · ,bn} of a lattice Λ, and outputs a basis which is ‘close’ to being BKZβ-reduced (up
to numerical inaccuracies, as the underlying Gram–Schmidt orthogonalization is computed in floating-
point arithmetic, and up to the progress parameter δ < 1). BKZ starts by LLL-reducing the input
basis, then calls an SVP-solver on consecutive local blocks B[k,min(k+β−1,n)] for k = 1, · · · , n−1. This is
called a BKZ tour. After each execution of the SVP-solver, if we have λ1(Λ[k,min(k+β−1,n)]) < δ · ‖b∗k‖,
then BKZ updates the block B[k,min(k+β−1,n)] by inserting the vector found by the SVP-solver between
indices k − 1 and k, and LLL-reducing the block from the first index to the last index of current block
(in this case, the input is a generating set instead of a basis). Otherwise, we LLL-reduce the block from
first index to the last index of current block directly, without any insertion. The procedure terminates
when no change occurs at all during a tour. We refer to Algorithm 7 for a complete description of
the BKZ algorithm. For practical reasons, there are diverse BKZ variants.

• Early-abort. The BKZ reduction aborts when a selected number of tours are completed or when
a desired output quality has been reached [HPS11].

• SVP-solver. BKZ could be run with any SVP solver; in practice for typical block sizes, the fastest
one is lattice enumeration [Kan83, FP83]; the latter can be significantly accelerated with tree
pruning [SE94] and even further with extreme pruning [GNR10]. In the case of enumeration with
pruning, the SVP solver is not guaranteed to return a shortest non-zero vector in its input lattice.
Furthermore, one can set the enumeration radius to either ‖b∗i ‖ or the Gaussian heuristic estimate
of λ1 (or whichever is smaller). In the experiments of this thesis, we use the enumeration radius
0.99 · ‖b∗i ‖, which is the default choice in the implementation of BKZ in fplll [dt16] open-source
library.

• Pre-processing and post-processing. Pre-processing is performed before the call to the SVP solver.
In the pre-processing step, some strategies (e.g., BKZ with relatively small block size) are chosen
to further improve the local basis before calling the SVP solver. Post-processing is executed
after the call to the SVP-solver, e.g., running LLL on indices 1 to min(k + β − 1, n), in order to
propagate the progress made at index k.
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Algorithm 7 The Schnorr and Euchner BKZ algorithm
Require: A basis B = {b1, · · · ,bn}, a block size β ≥ 2 and a constant δ < 1.
Ensure: A BKZβ-reduced basis of Λ(B).
1: repeat
2: for k = 1 to n− 1 do
3: Find any b such that ‖πk(b)‖ = λ1

(
Λ[k,min(k+β−1,n)]

)
4: if δ · ‖b∗k‖ > ‖b‖ then
5: B←LLL-reduce

(
b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)

)
.

6: else
7: B←LLL-reduce

(
b1, · · · ,bmin(k+β,n)

)
.

8: end if
9: end for
10: until no change occurs.

It is clear that whenever the BKZ algorithm stops, the reduced basis will satisfy the BKZ-reduction
condition. However, there is no good bound on the run-time of the BKZ algorithm. In [HPS11], instead
of analyzing the original BKZ algorithm, Hanrot et al consider a slightly modified variant, which is
recalled in Algorithm 8.

Algorithm 8 The BKZ′ algorithm
Require: A basis B = {b1, · · · ,bn}, a block size β ≥ 2.
Ensure: A BKZ′β-reduced basis of Λ(B).
1: repeat
2: for k = 1 to n− β + 1 do
3: Modify (bk, · · · ,bk+β−1) so that B[k,k+β−1] is HKZ-reduced
4: Size-reduce(B)
5: end for
6: until no change occurs or termination is requested.

Hanrot et al gave a worst-case analysis on the BKZ′ algorithm, and showed that the root Hermite fac-
tor ≤ 2γ

n−1
2(β−1) + 3

2
β can be achieved with poly(n,maxi∈[n] log ‖bi‖) calls to the HKZ-reduction algorithm

on β-dimensional lattices. Thus the total cost is poly(n,maxi∈[n] log ‖bi‖) · CHKZ(β), where CHKZ(β)
is the cost of HKZ-reduction on β-dimensional lattice. Further, by using [Lov86, Page 25], there is an
algorithm that can achieve an SVP approximation factor ≤ 4γ

n−1
β−1 +3
β with same cost up to polynomial

factor. This is asymptotically similar to the one given by [SE91, SE94] of a BKZ-reduced basis, but
only requires a limited number (poly(n,max log ‖bi‖)) of calls to the HKZ-reduction algorithm.

In the original BKZ algorithm, SVP solver together with an LLL-reduction is used for updating the
basis. The major modification compared to the original BKZ algorithm is that an HKZ-reduction is
used for updating each local block instead, thus we do not need to use an additional LLL-reduction for
updating. With this modification, Hanrot et al give a (rigorous) analysis of BKZ′, by first analyzing
the following heuristic sandpile model.

Assumption 1 (Heuristic sandpile model assumption). We assume for any HKZ-reduced basis B, we
have

xi = 1
2 log γβ−i+1 + 1

β − i+ 1

β∑
j=i

xj (2.8)

with xi = log ‖b∗i ‖ for all i ≤ β.

For completeness, we give a brief idea of the worst-case analysis of the BKZ′ algorithm.
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We recall that the BKZ′ algorithm proceeds by running HKZβ-reduction on n − β + 1 successive
blocks B[k,k+β−1] for k ≤ n−β+ 1, and then repeat it until no change occurs. We start by considering
the effect of the first HKZβ-reduction on block B[1,β]. To update the {xi}i≤β such that it satisfies the
heuristic sandpile model assumption, we can follow the framework of sandpile [MV10a] as follows.

Note that in the following, we analyze the effect of an HKZβ reduction by the effect of β many SVP
on lattices with dimension from n to 1 (see Algorithm 6 for more details). First, corresponding to
the effect of the first SVP call (on a β-dimensional lattice), the x1 is assumed to be replaced by
a new value x̂1 = log γβ/2 +

∑β
i=1 xi (no matter it becomes smaller or not). Next, after the first

replacement, we also have an updated Gram–Schmidt log-norms {x′i}2≤i≤β with indices from 2 to β. As
the determinant of the block is preserved, we must have

∑β
i=2 x

′
i =

∑β
i=2 xi+(x1− x̂1). Next, regarding

the effect of the second SVP (on a (β − 1)-dimensional lattice), we assume that the Gram–Schmidt
log-norms x′2 will be replaced by x̂2 = log γβ−1/2 +

∑β
i=2 x

′
i relying on the updated Gram–Schmidt

log-norms {x′i}2≤i≤β . By repeating this process, we obtain new Gram–Schmidt log-norms {x̂i}i≤β of
the first block that exactly satisfies the heuristic sandpile model assumption.

We can continue to consider the effect of the remaining HKZβ-reductions until there is no update
needed. The effect of the HKZ-reductions until BKZ′ stops, can be viewed as an evolution of x. We
let one step of evolution of x correspond to the effect of one tour of BKZ′. It is shown in [HPS11] that
the vector x converges in a polynomial number of steps. In other words, after a polynomial number of
steps, the updated x can be very close to a fixed-point x. We refer the reader to [HPS11] for a proof
of the existence of such a fixed-point and also the fast convergence of the evolution of x toward it.

Note that in the analysis above, only the update of the first Gram–Schmidt log-norm of each local
block (except the last block) is useful. Because in the analysis, the update of each block, will only
depend on the determinant of current block instead of the concrete values of the Gram–Schmidt log-
norms. For example, we again let x denote the starting Gram–Schmidt log-norms, and {x′i}i≤β denote
the new Gram–Schmidt log-norms (e.g., satisfying Equations 2.8) after the effect of HKZβ-reduction
on the first block. Then the update of the second block will only be determined by (the logarithm of
its determinant)

∑β+1
i=1 xi − x′1.

Thus we can focus on the update of the first value of each local block (except the last block). In fact,
if we update the first value by the Gaussian heuristic, we could instead analyze the practical behavior
of the BKZ′ algorithm. This is known as the Chen–Nguyen simulator [CN11], which we will discuss
later in this section.

Now, we summarize the bounds on run-times and SVP approximation factors for LLL-reduction, BKZ-
reduction and HKZ-reduction, in Figure 2.9.

Reducedness

Reduction:

Approximation:

Run-time: poly(n,maxi∈[n](log ‖bi‖))

LLL

2O(n)

2O(n)

HKZ

1

poly(n,maxi∈[n](log ‖bi‖))·2O(β)

BKZβ

2O(n log β
β )

Fig. 2.9: Comparison of run-time and SVP approximation factor between LLL-reduction, BKZ-
reduction and HKZ-reduction.

As we have already seen above, there are well-known bounds of the worst-case behavior of BKZ-
reduction. However, these worst-case results poorly reflect the practical behavior of the BKZ algo-
rithm [GN08b]. Besides rigorous results, specific heuristic assumptions were also proposed for es-
timating the behavior of the BKZ algorithm in practice. In [Sch03], Schnorr first introduced the
Geometric Series Assumption (GSA), which states that, for typical input bases, the Gram–Schmidt
norms {‖b∗i ‖, i ∈ [n]} of a BKZ-reduced basis behave as a geometric series: there exists a constant r > 1
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such that ‖b∗i ‖/‖b∗i−1‖ ≈ r for all i < n. Among others, this implies that HF(B) ≈ r(n−1)/2. It
was argued in [CN11] (see also [Che09, Chapter 4]) that for β small compared to n, one should
have r ≈ ( β

2πe (πβ)
1
β )

1
β−1 . The latter value is derived by relying on the Gaussian heuristic to esti-

mate the first minimum of projected sublattices. It was experimentally observed that the GSA is
a good first approximation to the practical behavior of BKZ. As shown in Figure 2.10, the plot of
Gram–Schmidt log-norms is close to be a line. Further, the larger the block-size is used, the higher
quality the basis will be (with more balanced Gram–Schmidt norms), and a line with smaller slope.
In this experiment, we consider the knapsack-type lattice bases generated by the Darmstadt lattice
challenge generator 2. We generate the basis of a 100-dimensional lattice, and run the BKZ algorithm
with block-sizes β ∈ {4, 8, 16, 35}. For a comparison with LLL, we also run the LLL algorithm on the
generated basis. We conduct the experiment 100 times using input lattices generated with seed from
the set {0, · · · , 99}. We record the final scaled Gram–Schmidt log-norms (such that the summation is
0) and plot the averaged values over 100 outputs.

0 20 40 60 80 100
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Index i
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∗ i
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LLL
BKZ4

BKZ8

BKZ16

BKZ35

Fig. 2.10: LLL and BKZ outputs for various block-sizes.

The Chen–Nguyen simulator. In [CN11], Chen and Nguyen proposed a simulator to capture the
practical behavior of BKZ with relatively large block size (e.g., β ≥ 45). As we have discussed before, the
Chen–Nguyen simulator can be seen as revised version of heuristic sandpile model, while the application
of the heuristic sandpile model assumption is replaced by the Gaussian heuristic assumption. The goal
was to estimate the practical behavior of BKZ for hard-to-solve instances. Overall, the simulation
proceeds closely to BKZ. Firstly, at the beginning of each BKZ tour, a boolean flag τ is initialized
to true. To update each local block, the simulator first (deterministically) compute the Gaussian
heuristic value GH(B[k,min(k+β−1,n)]) as an estimation of the first miminum, by looking at the Gram–
Schmidt norms of the current local block (except for small blocks in the end). This is corresponding to
Line 8 of Algorithm 9, we recall that vd denotes the volume of d-dimensional unit ball. The computed
value is then used to update the current local block, if it is smaller than the current ‖b∗k‖ (as written

2https://www.latticechallenge.org/svp-challenge/
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in Lines 10–11). Else, the local block is kept unchanged. To update, the first Gram–Schmidt norm is
replaced by the selected value, and the boolean flag τ is flipped once such an update occurs (as written
in Line 12). Then all the remaining Gram–Schmidt norms, of indices k′ ∈ [k+1, n−45] are updated one
by one to GH(B[k′,min(k′+β−1,n)]), independently of whether the current ‖b∗k‖ is already small enough
or not (as written in Line 15). At the end of each tour, there is an additional update of the tail block of
length 45 (as written in Lines 19–21). The Gram–Schmidt norms in this tail block are simulated with
the experimental Gram–Schmidt norms of HKZ-reduced bases of 45-dimensional unit-volume random
lattices. The experimental Gram–Schmidt norms are prepared in Lines 1–2 of Algorithm 9. This
length of 45 was chosen because the minimum of blocks of dimension > 45 within BKZ follows the
Gaussian heuristic quite well (as observed with the extensive experiments of [CN11]). This special
treatment on the tail block also makes the simulator more precise for capturing the practical behavior
of BKZ compared to the Gaussian heuristic.

Algorithm 9 The Chen–Nguyen BKZ simulator
Require: The Gram–Schmidt log-norms {`i = log ‖b∗i ‖}i≤n and an integer N ≥ 1.
Ensure: A prediction of the Gram–Schmidt log-norms {̂̀i = log ‖b∗i ‖}i≤n after N tours of BKZ.
1: for i = 1 to 45 do ri ← E[log ‖b∗k‖ : B HKZ-reduced basis of Λ← Γ45]
2: end for
3: for j = 1 to N do
4: τ ← true
5: for k = 1 to n− 45 do
6: d← min(β, n− k + 1); e← k + d− 1
7: log vol(Λ[k,e])←

∑e
i=1 `i −

∑k−1
i=1

̂̀
i

8: g ←
(
log vol(Λ[k,e] − log vd

)
/d

9: if τ = true then
10: if g < `k then
11: ̂̀

k ← g
12: τ ← false
13: end if
14: else
15: ̂̀

k ← g
16: end if
17: end for
18: log vol(Λ[k,e])←

∑n
i=1 `i −

∑n−45
i=1

̂̀
i

19: for k′ = n− 44 to n do
20: ̂̀

k′ ←
log vol(Λ[k,e])

45 + rk′+45−n
21: end for
22: {`1, · · · , `n} ← {̂̀1, · · · , ̂̀n}
23: end for

The Aono et al random points model. Aono et al [AWHT16] propose a BKZ variant, in which
they use a relaxation on the SVP step within each local block. Instead of requiring a shortest vector,
Aono et al only assume to find a short vector within a radius α ·GH(B[i:j]) for some α ≥ 1. For analysis,
they assume that the found vector is random in the ball with this radius. This leads to an estimate
of β

β+1 ·α ·GH(B[i:j]) for the norm of the found vector (corresponding to the case K = 1 in Lemma 2.25
below).

Lemma 2.25 ([AWHT16, Lemma 1]). Let x1, · · · ,xK be K points uniformly sampled from the n-
dimensional unit ball. Then, the expected value of the shortest norm of these points is

E
[

min
i∈[K]

‖xi‖
]

= K ·Beta(K, n+ 1
n

) := K ·
∫ 1

0
t1/n(1− t)K−1dt.
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Aono et al adapt the Chen–Nguyen simulator accordingly, where the Gaussian heuristic model is
replaced by the random points model above for estimating the norm of vector found by the (modi-
fied) SVP solver.
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Chapter 3

An improved reduction from BDD
to uSVP

In this chapter, we first review the reduction [LM09] from BDD1/(2γ) to uSVPγ due to Lyubashevsky
and Micciancio, as well as their analysis. To better understand the limitations of this reduction, we also
give an improved reduction for all non-integral γ’s, which is known as folklore [Mic15, BG15]. Then
we discuss the difficulties we meet when using the same uSVP solver to solve a (possibly) harder BDD
instance. Finally, we give our improved reduction from BDD1/(

√
2γ) to uSVPγ for any γ ≥ 1 and its

formal analysis.
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Section 3.1. Introduction

3.1 Introduction
In cryptography, BDD is closely related to the Learning With Errors problem (LWE) [Reg09], which
serves as a security foundation for numerous cryptographic primitives. When the number of requested
LWE samples is bounded (which is most often the case in cryptographic constructions), LWE may
be viewed as a variant of BDD in which the offset from t to Λ is Gaussian (like in the decoding
context), and Λ is a randomly sampled lattice. In communications theory, BDD models the task of
decoding in the context of continuous channels with white Gaussian noise [Bud75]. The information
to be transmitted is stored in a lattice vector, and the receiver should recover this vector from a noisy
version thereof. The knowledge of the signal-to-noise ratio implies a bound on the distance from the
noisy vector to the lattice. Decoding a white Gaussian noise channel can be seen as a version of BDD
in which the distance to the lattice follows a prescribed distribution.

A common approach to solve BDD is via Kannan’s embedding technique [Kan87, Se. 6]. The prin-
ciple is to map the offset between t and a closest lattice vector to t, to a shortest non-zero vector
in an (n + 1)-dimensional lattice. Lattice reduction [LLL82, Sch87] and short lattice vector enumer-
ation [Kan83, FP83] may then be used to find shortest non-zero vectors in the (n + 1)-dimensional
lattice. Formally, Kannan’s embedding technique is a reduction from BDD to a variant of the Short-
est Vector Problem (SVP) in which the pair of shortest non-zero vectors in the lattice under scope
are known to be much shorter than any other lattice vector not parallel to them. For a lattice Λ,
we define the second minimum λ2(Λ) as the minimal radius of a zero-centered ball that contains two
or more linearly independent vectors from Λ. The unique Shortest Vector Problem (uSVPγ) of pa-
rameter γ ≥ 1 consists in finding a shortest non-zero vector in a lattice Λ described by an input
basis B = (bi)i, under the promise that λ2(Λ) ≥ γ · λ1(Λ). This reduction was analyzed by Lyuba-
shevsky and Micciancio in [LM09], who showed that BDD1/(2γ) reduces to uSVPγ for any γ ≥ 1. Later,
Liu et al. [LWXZ14] refined the analysis of Lyubashevsky and Micciancio and proved that BDD1/γ1

reduces to uSVPγ with γ1 =
√

3/(4− γ2)γ + 1, for any γ ∈ (1, 1.9318). It is folklore [Mic15, BG15]
that the analysis can be tightened even more, resulting in a proof that BDD1/γ1 reduces to uSVPγ
with γ1 = (2γ2 + 2bγcbγ + 1c)/(2bγc + 1), for any γ ≥ 1. Note that in the case of γ = 1 (and in fact
all integral γ), all three results are identical: BDD1/2 reduces to uSVP1.

3.2 Our contributions
We clarify the limitations in the Lyubashevsky-Micciancio reduction and then give a probabilistic
polynomial-time improved reduction from BDD1/(

√
2γ) to uSVPγ , for any γ ≥ 1. As clearly visible in

Figure 3.1, this reduction supersedes all prior results with respect to the BDD problem parameter. In
particular, we reduce BDD1/

√
2 to uSVP1. Our improvement comes with one weakness: the reduction

is probabilistic. Like prior reductions, the dimension of the uSVP instance is only one more than the
dimension of the BDD instance. The main ingredient to the improvement is the use of Khot’s lattice
sparsification [Kho03, Kho05] before resorting to Kannan’s embedding, in order to boost the uSVP
parameter.

3.2.1 Technical overview
We illustrate our improvement with the case of BDD1/2. Given the BDD1/2 instance (B, t), Kannan’s
embedding consists in constructing the following uSVP1 instance:

B′ =
(

B t
0 d

)
∈ Qn+1,
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Fig. 3.1: Comparison between prior reductions from BDDα to uSVPγ , and ours.

with d = dist(t,Λ) ≤ λ1(Λ)/2, where Λ is the lattice spanned by B (in fact, the reduction does not
know d, but this is a mere technical problem which can be handled easily, as explained in Section 2.2).
If c denotes a closest vector to t in Λ then it may be proved that the vector s′ = ((c − t)T,−d)T is
a shortest non-zero vector of lattice Λ′ of basis B′. Now, let s denote a shortest non-zero vector in Λ
and assume that t is exactly halfway between c and c + s. Then both s′ and s′ + (sT, 0)T in Λ′ have
norm

√
2 · d but are linearly independent. This shows that we can have λ2(L′) = λ1(L′) and obtain a

uSVPγ instance with γ = 1. This is a limitation of Kannan’s embedding and hence of its analyzes.
We modify the reduction to increase the ratio λ2(L′)/λ1(L′). To achieve this, we use lattice sparsifi-

cation on Λ. It provides a full-rank sublattice Λsparse ⊆ Λ that still contains a closest vector c ∈ Λ to t,
but no other close-by vector. We consider the vectors of Λ whose coordinates with respect to a basis B
satisfy a linear equation modulo some prime integer p: Λsparse = Λp,z = {b ∈ Λ : 〈z,B−1b〉 = 0 mod p},
for some vector z ∈ Znp . This technique was first introduced by Khot in [Kho03, Kho05]. To guarantee
that vectors in Λ remain in the sparsified set with probability close to 1/p, a uniform coset of Λp,z
(modulo Λ) was considered in [DK13, DRS14]. Technically, we use the formulation from [SD16a] of the
latter variant.

The aim of sparsification in our context is to keep a closest vector c ∈ Λ to t, and remove as many
nearby vectors of Λ as possible. After sparsification, vector c remains in the sparse lattice (with non-
negligible probability), and all other remaining vectors are much further away from t. For BDD1/2,
a simple example of sparsification is shown in Figure 3.2: there are two points simultaneously closest
to the target point; then sparsification is used to remove one of the closest points (either is fine); in
the sparse lattice, the closest vector is much closer than any other lattice vector. In Figure 3.2, after
sparsification, all the lattice vectors labelled with filled dots are kept, e.g., vector c + w, and other
vectors labelled with hollow dots are removed, e.g., vector c + s + w.

The probability of keeping a vector of Λ in the sparsified set is essentially 1/p. As we want the
probability of keeping c to be non-negligible, we are hence restricted to taking p ≤ poly(n). As a result,
we cannot remove more than polynomially many close-by vectors, because each one individually is
removed with probability ≈ 1−1/p (a precise statement is given in Lemma 2.9). To assess the limitation
of our reduction, we are hence interested in the largest value of α such that for any lattice Λ and any
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Fig. 3.2: An example of sparsification for BDD1/2 (here w ∈ Λp,z/Λ).

vector t, there are at most poly(n) vectors within distance α·λ1(Λ) from t. The quantity α·λ1(Λ) can be
viewed as the worst-case list-decoding radius. Interestingly, this problem was studied by Ajtai [Ajt98]
and Micciancio [Mic01b] in the context of proving hardness of SVP. Proofs of the following two
statements may be found in [MG02, Chap. 5]:

• For any lattice Λ and vector t, there are ≤ 2n vectors of Λ within distance λ1(Λ)/
√

2 from t.

• For any α > 1/
√

2, there exists ε > 0 such that for any sufficiently large n we can find an n-
dimensional lattice Λ and a vector t such that there are ≥ 2nε vectors of Λ within distance
α · λ1(Λ) from t.

The overall reduction consists in first sparsifying Λ to Λp,z and shifting t (as we use a coset of Λp,z),
and then resorting to Kannan’s embedding. To increase the ratio λ2(L′)/λ1(L′), we decrease the
bottom-right entry in B′ from d to k · d for some k < 1. Geometrically, this has the effect of limiting
the contribution of the extra dimension. This idea was already used in [LWXZ14], but we decrease k
even further, to 1/poly(n). An additional difficulty, related to this decrease of k, is that short vectors
in Λ′ may be obtained by using multiples of t. Let m ≥ 2 and d ∈ Λ closest to m · t. Then,
vector ((d −m · t)T,mkd)T may be very short (if very unlucky, it has norm mkd). We remove such
annoying vectors with sparsification.

3.3 The Lyubashevsky-Micciancio reduction and its limitation
First, we recall the reduction and its original proof. Then we give a slight improvement over it by
considering a tighter analysis.

We now explain the Lyubashevsky-Micciancio reduction and its analysis. Thanks to Corollary 2.12,
it suffices to reduce BDD(1−1/n)/(2γ) to uSVPγ . Let (B, t) be a BDD(1−1/n)/(2γ) instance. Let ` =
λ1(Λ(B)) and d = dist(t,Λ(B)) ≤ `(1 − 1/n)/(2γ). We can assume that we have a value d0 ∈
[d, d/(1− 1/n2)) as explained in Section 2.2.

The lattice basis for the SVP instance is constructed as

B′ =
(

B t
0 d0

)
∈ Qn+1.

Any vector in this lattice can be written as b′ = ((b −m · t)T,−md0)T with b ∈ Λ(B) and m ∈ Z.
We claim that any shortest non-zero vector s′ has the form ((c−m · t)T,−md0)T with c ∈ Λ(B) and
m = ±1, where ‖c−m · t‖ = d (i.e., vector m · c is a closest vector to t in Λ(B)).

We give lower bounds on the norm of any vector b′ = ((b −m · t)T,−md0)T that is not parallel
to ((c− t)T,−d0)T. The bounds depend on the value of m.
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Case 1: m = 0. In this case, we must have b 6= 0. We have

‖b′‖2 = ‖b‖2 ≥ `2 ≥ 4γ2d2

(1− 1/n)2 ≥ 4γ2d2
0 ≥ (

√
2γ)2(d2 + d2

0).

Case 2: 1 ≤ m ≤ 2γ. We have, by the triangle inequality:

‖b−m · t‖ ≥
∣∣∣ ‖b−m · c‖ −m ‖c− t‖

∣∣∣ =
∣∣∣ ‖b−m · c‖ −md∣∣∣ = ‖b−m · c‖ −md.

As b′ is not parallel to ((c − t)T,−d0)T, we have ‖b−m · c‖ ≥ ` ≥ (2γd)/(1 − 1/n) ≥ md, hence
justifying the last equality. Therefore:

‖b′‖2 ≥
(

2γd
1− 1/n −md

)2
+m2d2

0 ≥ 2
(

γd

1− 1/n −md
)2

+ 2γ2d2

(1− 1/n)2 ≥ γ
2(d2 + d2

0).

We used the fact that d0 ∈ [d, d/(1− 1/n2)) and the non-negativity of (γd/(1− 1/n)−md)2.

Case 3: m > 2γ. We have

‖b′‖2 ≥ m2d2
0 ≥ 4γ2d2

0 ≥ (
√

2γ)2(d2 + d2
0).

As a result, we obtain a uSVP instance B′ with gap λ2(Λ(B′))/λ1(Λ(B′)) ≥ min(
√

2γ, γ) = γ.
Once the uSVP solver outputs s′ = ((s′1)T, s′2)T, we have a vector c = s′1 ± t such that ‖c± t‖ = d.

In fact, the fixed embedded height (d0) as the (approximated) distance from target vector t to the
lattice makes an artificial restriction on the reduction, such that we can not achieve the optimal result.
We show that the same reduction with relaxed embedded height can achieve a tighter result.

Theorem 3.1. There is a polynomial-time reduction from BDD1/γ1 to uSVPγ , where γ1 = 2γ2+2bγcbγ+1c
2bγc+1

for γ ≥ 1.

Proof. We prove here that for 1 ≤ γ < 2, there is a polynomial reduction from BDD1/γ1 to uSVPγ ,
where γ1 = 2(γ2 + 2)/3. The extension to γ ≥ 2 can be obtained using a similar method.

Given (B, t) an instance of BDD1/γ1 , we have d = dist(t,Λ(B)) ≤ λ1(Λ(B))/γ1. We assume for the
moment that we know the exact value d. We consider the embedded lattice

B′ =
(

B t
0 kd

)
.

Notice we have a factor k in front of the embedded height. Introducing such a scaling coefficient k
was already proposed in [LWXZ14], to improve the Lyubashevsky-Micciancio reduction and obtain
the result stated in [LWXZ14, Thm. 2]. The value used in [LWXZ14] was k = γ/

√
4− γ2 < 1 (for

1 < γ < 1.9318). Here we have a similar k that will be determined later.
Any vector in this lattice can be written as b′ = ((b−m · t)T,−mkd)T with b ∈ Λ(B) and m ∈ Z.

Similar to the analysis done for the Lyubashevsky-Micciancio reduction, we can claim that any shortest
non-zero vector s′ has the form ((c−m ·t)T,−mkd)T with c ∈ Λ(B) and m = ±1, where ‖c−m ·t‖ = d

(i.e., vector m · c is a closest vector to t in Λ(B)).
We give lower bounds on the norm of any vector b′ = ((b −m · t)T,−mkd)T that is not parallel

to ((c− t)T,−kd)T. The bounds depend on the value of m.
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Case 1: If m ≤ bγ1c, we have

‖b−m · t‖ ≥
∣∣∣ ‖b−m · c‖ −m ‖c− t‖

∣∣∣ =
∣∣∣ ‖b−m · c‖ −md∣∣∣ = ‖b−m · c‖ −md.

Because b′ is not parallel to ((c − t)T,−kd)T, we have ‖b−m · c‖ ≥ λ1(Λ(B)) ≥ γ1d ≥ md, hence
justifying the last equality. In this case, we obtain ‖b−m · t‖ ≥ γ1d−md. As ‖b′‖2 ≥ (γ1d−md)2 +
m2k2d2, to obtain the result in this case, it suffices that:

(γ1 −m)2 +m2k2 ≥ (γ
√

1 + k2)2.

As m ≤ bγ1c, it is sufficient to consider m ∈ {0, 1, 2, 3} and γ ∈ (1, 2).

• If m = 0, the above inequality is equivalent to k2 ≤ γ2
1−γ

2

γ2 ;

• If m = 1, the above inequality is equivalent to k2 ≤ (γ1−1)2−γ2

γ2−1 ;

• If m = 2, the above inequality is equivalent to k2 ≥ γ2−(γ1−2)2

22−γ2 ;

• If m = 3, the above inequality is equivalent to k2 ≥ γ2−(γ1−3)2

32−γ2 .

First, it suffices to derive the smallest γ1 = 2(γ2 + 2)/3 with equalities in the middle two cases: m = 1
and m = 2. Then, we can combine γ1 = 2(γ2 + 2)/3 with any one of the middle two cases to determine
the value k =

√
(4γ2 − 1)/9. Note that for general γ, it is sufficient to considerm = bγc andm = bγ+1c

when we want to determine the relation between γ1 and γ, and also the value of k.

Case 2: If m > bγ1c, we have

‖b′‖2 ≥ m2k2d2 ≥ γ2
1k

2d2.

By taking k and γ1 as above, we obtain that the latter is bounded from below by (γ
√

1 + k2d)2.

We can extend the above result to larger γ, with γ1 as in the theorem statement 1. The exact value
of d may be unknown, but we could modify the proof with an approximated value of d = dist(t,Λ(B))
using a guess d0 ∈ [d, d/(1 − 1/n)). We use the reduction with the approximated value d0. The
reduction and its analysis above provide a reduction from BDD(1−1/n)c/γ1 to uSVPγ for some constant
c. Further, combined with Lemma 2.12, we obtain the claimed reduction from BDD1/γ1 to uSVPγ .

3.4 Improved reduction from BDD to uSVP
In this section, we modify the Lyubashevsky-Micciancio reduction such that we can circumvent the
limitations and obtain the following improvement.

Theorem 3.2. For γ ≥ 1, there is a probabilistic polynomial-time reduction from BDD1/(
√

2γ) to
uSVPγ .

To simplify our presentation for one moment, we will assume a polynomially large γ. We will go
back to any γ ≥ 1 a bit later. We can see that the main barrier of the Lyubashevsky-Micciancio
reduction is in Case 2 of their original proof. in particular, when m = γ, we may have a vector with
norm exactly γλ1(Λ(B′)). The vector mt may get closer and closer to the lattice Λ(B) as m increases.
For example, when m = γ, we may have m · t ∈ Λ(B), which results in ‖b − m · t‖ = 0 for some

1To obtain the value of k for general γ, one can combine the above formula with k2 ≤ (γ1−1)2−γ2

γ2−a2 for γ ∈ (a, a+ 1).
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b ∈ Λ(B). To address this issue, we attempt to maintain a large distance between m · t and Λ(B) even
when m becomes large. This forces us to remove some superfluous lattice points that are close to m · t.

Notice that to apply the sparsification result stated in Lemma 2.9, we still need that the coordinates
of all these lattice vectors within a same ball with radius λ1/

√
2 are different from each other modulo

a properly chosen integer p. In fact, we give a stronger result that for any two lattice vectors in Λ with
distance smaller than p ·λ1(Λ) where p is an integer, the coordinate vectors of these two lattice vectors
differ modulo p.

Lemma 3.1. For any basis B, any integer p and any pair of lattice vectors b 6= b̂ with ‖b − b̂‖ <
p · λ1(Λ(B)), we have that B−1b 6= B−1b̂ mod p.

Proof. For an arbitrary lattice vector a, we let ã denote its coordinate vector under the basis B, i.e.,
ã = B−1a. Assume by contradiction that x̃ = ṽ mod p. Equivalently, we have x− v ∈ p · Λ(B).

Combined with x 6= v, we have ‖x−v‖ ≥ p·λ1(Λ), which is in contradiction with ‖x−v‖ < p·λ1(Λ).
As a result, we have x̃ 6= ṽ mod p.

We can now construct a random sub-lattice with basis Bp,z defined by some prime p and vector z ∈
Znq generated by the algorithm of Lemma 2.10, such that with non-negligible probability polynomially
many superfluous lattice points that are close to m · t are removed. Further, thanks to Lemma 2.11, we
can make sure that all superfluous lattice points in B(m · t, λ1(Λ(Bp,z))/

√
2) except m ·c ∈ Λ(Bp,z) are

removed for all m ≤ γ. This gives an improvement of Case 2 in the Lyubashevsky-Micciancio analysis.
However, this does not directly give a

√
2 factor improvement. We also replace the value d0 by kd0

with a small k. This is similar to prior improvements (both [LWXZ14] and the folklore [Mic15, BG15]
presented above) Here, we reduce k even more, to k = 1/n. This relaxation of k already allows us to
achieve the limit of the reduction, and decreasing k further does not give us further improvement. As
a consequence, it does not suffice to consider only the first γ balls B(m · t, λ1(Λ(B))/

√
2). We need to

argue that there is no lattice vector except (possibly) m · c inside B(m · t, λ1(Λ(B))/
√

2), even for m’s
that are polynomially larger than γ.

Now we have a brief idea of how to circumvent the limitations. Let us first describe the improved
reduction and then the formal proof. Thanks to Lemma 2.12, it suffices to reduce BDD(1−1/n)/(

√
2γ) to

uSVPγ .

Algorithm 1. The BDD(1−1/n)/(
√

2γ) to uSVPγ reduction.

Input: a basis B = {bi}i∈[n] of an n-dimensional lattice Λ ⊆ Qn, and a target point t ∈ Qn.
Output: a lattice vector c such that ‖c− t‖ = dist(t,Λ).
0. Guess d0 ∈ [d, d/(1− 1/n)) and `0 ∈ [`, `/(1− 1/n)), where d = dist(t,Λ) and ` = λ1(Λ)

(see Section 2.2).
1. Compute p the smallest prime greater than 16n4 + 2n.

Sample z,u uniformly and independently in Znp .
Compute w = Bū ∈ Λ, such that ū = u mod p and ‖t + w‖ ≥ (n+ 1)`0/

√
2.

Use the algorithm of Lemma 2.10 to compute a basis Bp,z of Λp,z = {b ∈ Λ : 〈z,B−1b〉 =
0 mod p}.

2. Define

B′ =

(
Bp,z t + w

0 d0/n

)
.

3. Run the uSVPγ solver on input B′. Let s′ = ((s′1)T, s′2)T be its output. Output s′1 + t.

It may be checked that the above algorithm runs in polynomial time. The rest of the section is
devoted to proving its correctness.
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In this reduction, we are given a BDD(1−1/n)/(
√

2γ) instance (B, t). Let c ∈ Λ be a closest vector to t.
In order to construct a uSVP instance, our strategy is to use lattice sparsification to keep only one closest
vector c+w closest to t+w for some lattice shift w (the shift vector w comes from Lemma 2.9). As the
sparsification results in a lattice, we not only keep c+w, but also them·(c+w)’s for allm. To make sure
that any vector b′ = ((b +m · t)T,md0)T that is not parallel to ((c− t)T,−d0)T has norm larger than
λ1(Λ)/

√
2, we require that all other vectors inside the balls with centers {m · (t + w)}m and radiuses√

λ2
1(Λ)/2−m2d2

0/n
2 are regarded as superfluous vectors and removed through sparsification. The

term m2d2
0/n

2 is contributed by the embedded dimension. It suffices to consider 2γn many balls (i.e.,
m ≤ 2γn). As when m > 2γn, the term contributed by embedded dimension is larger than λ1(Λ)/

√
2.

For the first balls (i.e., m small), we have m · (c + w) ∈ B(m · (t + w),
√
λ2

1(Λ)/2−m2d2
0/n

2). We can
keep exactly one vector inside every ball with sparsification over these balls. However, for larger m, all
lattice vectors m · (c + w) may fall out of their corresponding balls, but may end up in another relevant
ball: vector m1 · (c + w) may belong to B(m2 · (t + w),

√
λ2

1(Λ)/2−m2
2d

2
0/n

2) for some m1 6= m2.
As a consequence, there can be more than one lattice vector inside a ball, which may result in no gap
between the first two minima of the uSVP oracle input lattice. In order to avoid this, we make every
two balls far away from each other by choosing w such that t + w is long.

Notice that all the arguments above only go through with a polynomially large γ. So far, we still
have not explained how we sparsify all 2γn balls when γ grows faster than polynomially in n. Indeed,
in Lemma 2.9, it is only promised that polynomially many lattice points can be sparsified with non-
negligible probability. To handle this, one can observe that the lattice points in nearby balls are not
independent: if x is a lattice point in a ball, and x + c is a lattice point in the next ball, then if c stays
and x goes, x+c goes. To handle this, intuitively, we can simultaneously glue all the superfluous lattice
points in many balls with points in one specific ball. By doing this repeatedly, it will be eventually
sufficient to consider only polynomiallly many such specific balls. This idea that allows to handle large
γ is due to Noah Stephens-Davidowitz. In the next lemma, we present our main result, which allows to
efficiently sparsify all superfluous lattice vectors (for any γ ≥ 1), but at the same time keep the closest
point to the (shifted) target vector.

Lemma 3.2. Consider a basis B of an n-dimensional lattice Λ, a vector c ∈ Λ and a vector t ∈ Rn

such that ‖c− t‖ = d ≤ (1− 1/n) · λ1(Λ)/(
√

2γ) for some γ ≥ 1. Let p ≥ (2n+ 1)/
√

2 be a prime. For
any z ∈ Znp , we have

Pr
u,z←↩Znp

 c + w ∈ Λp,z ∩ B(t + w, γ · d)
Z · (c + w) ⊇ Λp,z ∩ ∪

m≤2γn
B(m · (t + w),

√
γ2d2 −m2d2

0/n
2)

 ≥ 1
p
− N

p2 −
N

pn−1 ,

where w ∈ Λ is arbitrary such that B−1w = u mod p, d0 ∈ [d, d/(1− 1/n)) and the number of points
N = #Λ ∩ ∪m∈SB(m · (t + w), λ1(Λ)/

√
2) for S =

{
1 + (m− 1) ·max(bγ/(4n2)c, 1)

}
m∈[8n3+1].

Further, if w is chosen such that ‖t + w‖ > γ(n+ 1)d, we have, for all m ∈ [2γn],

m · (c + w) 6∈
⋃

m′ 6=m,m′∈[2γn]

B (m′ · (t + w), γ · d) .

Proof. Let {xm,i}i∈[Nm] denote the set of lattice pionts in Λ in the ball B(m·(t+w),
√
γ2d2 −m2d2

0/n
2),

where Nm denotes the number of lattice vectors in the ball B(m · (t + w),
√
γ2d2 −m2d2

0/n
2) with any

w ∈ Λ(B).
Intuitively, we first divide all balls (that need to be sparsified) into many disjoint sets (each consists

of a sequence of successive balls). We show that once we sparsify each representative ball in all sets,
all balls should be sparsifid at the same time. Concretely, we show that for each lattice vector xm,i
close to m · (t + w), we have that xm,i − (m −m′) · (c + w) is relatively close to m′ · (t + w). Thus
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assuming the closest vector c + w to t + w is kept in the sparsified lattice Λp,z for some modulus p and
vector z ←↩ Znq , once relatively close lattice points to m′ · (t + w) are removed, all lattice points close
to m · (t + w) will also be removed for free, for any close m > m′.

Formally, for m ≥ m′ ≥ 2, m−m′ ≤ γ/(4n2) and i ∈ [Nm], we have

‖xm,i − (m−m′) · (c + w)−m′ · (t + w)‖2 = ‖xm,i −m · (t + w)‖2 + (m−m′)2‖c− t‖2

−2(m−m′)〈xm,i −m · (t + w), c− t〉
≤ γ2d2 −m2d2

0/n
2 + (m−m′)2d2 + 2(m−m′)γd2

≤ γ2d2 −m2d2
0/n

2 + γ2d2/(16n2) + γ2d2/(2n2)
< γ2(d2 + d2

0/n
2)−m2d2

0/n
2

< λ1(L)2/2.

Now we can first separate the γn many coefficients m into 8n3 sets, each with max(bγ/(4n2)−1c, 1)
many successive coefficients. Note that we need to assume none of thesem’s is a multiple of p. Thus once
it is not for some index m, we shift all the following indices m’s to be m+1’s such that all the successive
indices within a same set have difference not bigger than bγ/(4n2)c. Thus, if we take out one ball with
index m every other max(bγ/(4n2)c, 1) − 1 coefficients, there are 2γn/max(bγ/(4n2)c, 1) ≤ 8n3 + 1
many balls that needed to be sparsified when n is large enough. This is how S was designed.

Thus, to sparsify all 2γn balls, it turns out to be sufficient to sparsify #S many balls with index
i ∈ S. According to Lemma 2.11, there are at most 4γn2 many points in Λ(B) needed to be removed
for the first case, while there are 2n · (8n3 + 1) = 16n4 + 2n many points for the second case.

The sparsification of these superfluous points proceeds as follows. For i ∈ S, we define {vm,i}i∈[Ñm] =
(Λ ∩ B(m · t, γ · d)) \ {m · c}, where Ñm = #Λ ∩ B(m · t, γ · d) \ {m · c}. For any v ∈ Λ, we use ṽ to
denote the coordinate of v under the basis B. We claim that, with probability ≥ 1/p−N/p2−N/pn−1,
the vector z is orthogonal (modulo p) to c̃, and at the same time not orthogonal to any ṽm,i for m ∈ S
and i ∈ [Ñm].

We have, for all m ∈ S and i ∈ [Ñi],

‖m · c− vm,i‖ ≤ m · ‖c− t‖+ ‖m · t− vm,i‖ ≤ (2n+ 1)(γd) = n+ 1√
2
· λ1(Λ).

By choice of p, this is smaller than p · λ1(Λ). Thanks to Lemma 3.1, we have m · c̃ 6= ṽm,i mod p.
Moreover, as p is prime and m 6≡ 0 mod p, we have c̃ 6= 1

m · ṽm,i mod p.
Now we apply Lemma 2.9 with c̃ and

{ 1
m · ṽm,i

}
m∈S,i∈[Ñm]. We have

Pr
z,u←↩U(Znp )

[
∀m, i : 〈z, 1

m · ṽm,i + u〉 6= 0 mod p
〈z, c̃ + u〉 = 0 mod p

]
≥ 1

p
− N

p2 −
N

pn−1 .

As p is prime and sufficiently large, the inequality 〈z, 1
m · ṽm,i + u〉 6= 0 mod p is equivalent to

〈z, ṽm,i +m · u〉 6= 0 mod p. Therefore

Pr
z,u←↩U(Znp )

[
∀m, i : 〈z, ṽm,i +m · u〉 6= 0 mod p

〈z, c̃ + u〉 = 0 mod p

]
≥ 1

p
− N

p2 −
N

pn−1 .

This proves the first claim of the lemma.
Let i 6= j ≤ γn. Then, by the triangle inequality and the assumption on w, we have:

‖i · (c + w)− j · (t + w)‖ ≥ |j − i| · ‖t + w‖ − i‖c− t‖ > γ(n+ 1)d− (γn)d = γd.
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This completes the proof of the lemma.

As we have p > 2N (thanks to Lemma 2.11), with non-negligible probability, none of the vectors of
Λ belonging to the γn balls is in the sparser lattice Λp,z, except possibly those in {i · (c + w)}i∈[γn]. In
the rest of the reduction analysis, we assume that we are in this situation and do not repeatedly state
that this occurs with non-negligible probability.

t

λ1(L(B))/
√
2

c

w
c+w

t+w

2(c+w)

2(t+w)

Fig. 3.3: Sparsification process for a BDD1/(2
√

2) instance.

As an illustration of Lemma 3.2, we include Figure 3.3 and Figure 3.4. First, we use the case of
γ = 1 (Figure 3.3) to illustrate the case of small γ, in which there is only one ball in each set of balls.
There are several plain balls with radius λ1(Λ)/

√
2, centered in t, t + w and 2(t + w). The dashed

balls illustrate the distance between i · (c + w) and i · (t + w) for all i ∈ [γn]. We can see that c + w
(within the dashed ball) is inside the plain ball, and 2 · (c + w) (within the dashed ball) is outside of its
corresponding plain ball. In this case, we will sparsify all the lattice points except multiples of c + w
within all 2γn balls with radius λ1(Λ)/

√
2. This is also sufficient for the reduction.

In contrast with the case of small γ, we are considering a ball chain with decreasing radius in each
set of balls for large γ. We will use the case of γ = 2 (Figure 3.4) to explain this case, in which there
are three balls in one set. We have superfluous lattice vectors p2, p3 in the second and third balls
respectively, which implies a superfluous point p1 in the first ball by shifting with multiple of c + w
in the converse direction. Thus by sparsifying the first ball, we simultaneously sparsify the second and
the third one. Note in particular that in the case of γ = 2, the vector 0 is not closest to the target
vector, but belongs to the plain ball with center t. Thus we have a valid uSVP instance, and vector 0
should be removed via sparsification. As it is kept in any sparsified lattice, this is impossible to achieve.
This illustrates why center t is shifted to a new point t + w (then the shift w of 0 may be removed via
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t c0

λ1(Λ(B))/
√

2

t + w
c + w

2(t + w)

2(c + w)

3(t + w) 3(c + w)

p2

p3

-(c
+
w)

p1

-(c
+
w)

Fig. 3.4: Sparsification process for a BDD1/
√

2 instance.

sparsification). In both figures, the red crosses denote the points that are removed from the lattice via
sparsification.

In Step 2 of the reduction, we construct a basis B′ of an (n+1)-dimensional lattice Λ′ by using Kan-
nan’s embedding technique. In Step 3, we call the uSVPγ oracle with input basis B′. The correctness
of the reduction is provided by Lemmata 3.3, 3.4 and 3.5.

Any vector in lattice Λ′ can be written as b′ = ((b + m(t + w))T,md0/n)T with b ∈ Λp,z and
m ∈ Z. We claim that the vector s′ = (((c+w)−(t+w))T,−d0/n)T = ((c−t)T,−d0/n)T is a shortest
non-zero vector in Λ′ and also that λ2(Λ′)/λ1(Λ′) = γ(1 + Ω(1/n)). Thus ±s′ will be output by the
uSVPγ oracle. We can then obtain the vector c = (c + w)− (t + w) + t ∈ Λ. In the following, we give
lower bounds for the norm of b′ = ((b +m(t + w))T,md0/n)T not parallel to s′, which depend on the
value of m. Without loss of generality, we restrict ourselves to m ≥ 0.

The following lemma is analogous to the ‘m = 0 case’ of the Lyubashevsky-Micciancio reduc-
tion [LM09]. Note that the lower bound in the statement is essentially 2γ2.

Lemma 3.3. If m = 0 and b′ 6= 0, then ‖b′‖2/‖s′‖2 ≥ 2γ2/(1 + 1/n2).

Proof. As m = 0 and b′ 6= 0, we must have b 6= 0. As a result, we have

‖b′‖2 = ‖b‖2 ≥ λ2
1(Λ) ≥ 2γ2d2

(1− 1
n )2 ≥ 2γ2d2

0.

Thus, in this case, we have the gap

‖b′‖2

‖s′‖2 ≥
2γ2d2

0

d2 + d2
0
n2

≥ 2γ2

1 + 1
n2

.
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The second lemma bounds the gap for small m’s. It is where our improvement over prior reductions
stems from. Note that the lower bound in the statement is essentially γ2.

Lemma 3.4. If m ≤ 2γn and b′ is linearly independent with s′, then ‖b′‖/‖s′‖ > γ.

Proof. By Lemma 3.2, we have

c + w ∈ Λp,z
⋂ ⋃

m≤2γn
B

(
i · (t + w),

√
λ2

1(Λ)
2 − m2d2

0
n2

)
⊆ Z · (c + w).

Thus, as b 6∈ Z · (c + w) (by assumption), we have

‖b′‖2 = ‖b−m · (t + w)‖2 + m2d2
0

n2 >
λ1(Λ)2

2 .

Thus, in this case, we have the gap
‖b′‖2

‖s′‖2 >
λ1(Λ)2

2
λ1(Λ)2

2γ2

= γ2.

The third lemma bounds the gap for larger m’s. This corresponds to the ‘large m case’ of the
Lyubashevsky-Micciancio reduction. As in the previous case, the lower bound in the statement is
essentially 4γ2.

Lemma 3.5. If m > 2γn, then ‖b′‖2/‖s′‖2 ≥ 4γ2/(1 + 1/(n− 1)2).

Proof. For any b ∈ Λ, we have ‖b′‖2 ≥ m2d2
0/n

2. Thus, in this case, we have the gap

‖b′‖2

‖s′‖2 ≥
m2d2

0
n2

d2 + d2
0/n

2 ≥
m2d2

n2

d2 +
(

d
n(1− 1

n )

)2 = m2

n2 + n2

(n−1)2

.

The gap is an increasing function in m and hence it suffices to consider the m = 2γn.

Now, we can complete the proof of Theorem 3.2. Thanks to Lemmata 3.3, 3.4 and 3.5, the uSVP
gap satisfies, for large enough n

λ2(Λ′)
λ1(Λ′) > γ.

Thus the uSVP oracle returns a vectors, from which we can compute the solution to the initial BDD
instance. We include Figure 3.5 to geometrically illustrate the overall reduction. For convenience, we
take the embedding height as −d0/n in the figure. We use filled dots to label points of 2-dimensional
lattice Λ, and hollow dots to label points of 3-dimensional lattice Λ′ that are not in Λ (recall that Λ ⊆
Λ′). With Kannan’s embedding technique, the offset between the vectors of Λ (e.g., c + w) and the
shifted target t+w are mapped to Λ′ (e.g., ((c−t)T,−d0/n)T). Thanks to sparsification, all the points
of Λ′ belonging to the drawn cylinder (of height |2γnd0/n|) are multiples of the shortest non-zero vector
s′ = ((c− t)T,−d0/n)T, e.g., ±((c− t)T,−d0/n)T and ±(2(c− t)T,−2d0/n)T. All other points in Λ′
that are linearly independent from s′ lie outside of the cylinder, e.g., ((a1 − (t + w))T,−d0/n)T and
((a2 − (t + w))T,−2d0/n)T. This cylinder forces the second minimum λ2(Λ′) to be large, and, more
concretely, larger than γλ1(Λ′). This corresponds to Lemma 3.4 (Lemma 3.3 handles the points of Λ
and Lemma 3.5 handles the points of Λ′ whose z-component is large).
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Fig. 3.5: Geometric illustration of the reduction.
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Chapter 4

A computational equivalence
between LWE and an extrapolated
variant of DCP

In this chapter, we first review Regev’s reduction [Reg02] from the lattice problem uSVP to the pre-
sumed hard quantum problem dihedral coset problem (DCP). Then we extend this work and give a
reduction from the learning with errors (LWE) problem to an extrapolated version of the DCP problem
(called EDCP). We further show that a converse reduction from EDCP to LWE also exists, which
gives the claimed computational equivalence (up to small noise amplification). Correspondingly, we
also show that the decision versions of these two problems are equivalent to each other.
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Section 4.1. Introduction

4.1 Introduction
Since its introduction by Regev [Reg05, Reg09], LWE has served as a security foundation for numerous
cryptographic primitives (see, e.g., an overview in [Pei16]). The cryptographic attractiveness of LWE
stems from two particularly desirable properties. First, its algebraic simplicity enables the design of
primitives with advanced functionalities, such as fully homomorphic encryption [BV11], attribute-based
encryption for all circuits [GVW13] and (single key) functional encryption [GKP+13]. Second, LWE is
conjectured hard even in the context of quantum computations, making it one of the most appealing
candidate security foundations for post-quantum cryptography [BBD08]. Current quantum algorithms
for LWE do not outperform classical ones, but it is not clear whether this is inherent (for example, it
is likely that LWE is computationally easier than the Dihedral Coset Problem under polynomial-time
reductions, see below). In this work, we characterize the quantum hardness of LWE under polynomial-
time reductions and show that it is computationally equivalent (up to small parameter losses) to a
quantum problem closely related to the aforementioned Dihedral Coset Problem.

LWE, Lattices and the Dihedral Coset Problem. LWE is tightly connected to worst-case approx-
imation problems over Euclidean lattices. In particular, LWE is an (average-case) instance of the BDD
(refer to Section 2.3), but is also known to be quantumly as hard as worst-case BDD (with some small
losses in parameters) [Reg09]. Regev [Reg02, Reg04b] showed that uSVP, and therefore also BDD and
LWE, are no harder to solve than the quantumly-defined DCP. Still, it is quite possible that DCP is in
fact much harder to solve than LWE. The best known algorithm for DCP, due to Kuperberg [Kup05],
runs in time 2O(log `+logN/ log `), where ` is the number of DCP samples (see Section 2.4 for more details).
This does not improve upon classical methods for solving LWE [ACF+15, APS15]. Other variants of
the problem were explored in [EH99, FIM+14], and of particular relevance to this work is a “vector”
variant of the problem where ZN is replaced with Znq . These problems have difficulty similar to DCP
with N = qn, with respect to current best known solving algorithm. Finally, Regev showed that
DCP can be solved given efficient algorithms for the subset-sum problem (which is classically defined),
however in a regime of parameters that appears harder to solve than LWE itself.
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1
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0 1 2 3 4 5 6 7 8 9 10 11 12 13x =

b = 0

1

Fig. 4.1: An illustration of one-dimensional U-EDCP with number of possibilities 2, 4 and 6, and
modulus 14.

Extrapolated DCP. The focus of this chapter is a generalization of DCP: rather than considering
registers containing |0, xk〉 + |1, xk + s〉, we allow (1) the xi’s and s to be n-dimensional vectors, and
(2) non-uniform distribution, for amplitudes. We name this problem Extrapolated DCP (EDCP) as its
input registers have more extrapolated states. To be more precise, EDCP`n,N,f , with parameters three
integers n,N, ` and a function f : Z 7→ C with

∑
j∈Z j · |f(j)|2 < +∞, consists in recovering s ∈ ZnN

from the following ` states over Z× ZnN : 1√∑
j∈Z |f(j)|2

·
∑
j∈Z

f(j) |j,xk + j · s〉


k≤`

,
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where the xk’s are arbitrary in ZnN .1 Note that DCP is the special case of EDCP for n = 1 and f being
the indicator function of {0, 1}.

In [CvD07], Childs and van Dam consider a special case of EDCP where f is the indicator function
of {0, . . . ,M − 1} for some integer M , which we will refer to as uniform EDCP (or, U-EDCP`n,N,M ).
As illustrated in Figure 4.1, from left to right, we have U-EDCP defined with number of possibilities 2,
4 and 6 respectively. In the case of M = 2, U-EDCP corresponds to DCP. A superposition of all labels
of squares with a same color corresponds to a U-EDCP sample. In particular, a randomly selected set
of sample registers of the U-EDCP3

1,14,6 (on the right) can be (up to normalization)

1. |0〉 |0〉+ |1〉 |2〉+ |2〉 |4〉+ |3〉 |6〉+ |4〉 |8〉+ |5〉 |10〉 (in red color);

2. |0〉 |5〉+ |1〉 |7〉+ |2〉 |9〉+ |3〉 |11〉+ |4〉 |13〉+ |5〉 |1〉 (in black color);

3. |0〉 |9〉+ |1〉 |11〉+ |2〉 |13〉+ |3〉 |1〉+ |4〉 |3〉+ |5〉 |5〉 (in blue color).

Once we measure on any of these input states, each possibility (as label of some square) will be observed
with equal probability, e.g., |1〉 |2〉 will be observed with probability 1/6 if we measure the first input
state.

4.2 Our contributions
We show that up to polynomial losses in parameters, U-EDCP is computational equivalent to LWE.
We thus provide a formulation of the hardness assumption underlying lattice-based cryptography in
terms of the (generalized) Dihedral Coset Problem.

Theorem 4.1 (Informal). There exists a reduction from LWEn,q,α to U-EDCP`n,N,M under quan-
tum polynomial-time, with N = q, ` = poly(n log q) and M = poly(n log q)

α . Conversely, there ex-
ists a polynomial-time reduction from U-EDCP to LWE with the same parameter relationships, up
to poly(n log q) factors.

Our proof crucially relies on a special case of EDCP where f is a Gaussian weight function with
standard deviation parameter r. We call this problem Gaussian EDCP (G-EDCP). We show that
G-EDCP and U-EDCP are equivalent up to small parameter losses.

EDCP is analogous to LWE in many aspects. The decision version of LWE (dLWE) asks to distin-
guish between LWE samples and random samples of the form (a, b) ∈ Znq ×Zq where both components
are chosen uniformly at random. Similarly, we also consider the decision version of EDCP, denoted by
dEDCP. In dEDCPn,N,f , we are asked to distinguish between an EDCP state and a state of the form

|j〉 |x mod N〉 ,

where j is distributed according to the function |f |2, and x ∈ ZnN is uniformly chosen. EDCP enjoys
a reduction between its search and decision variants via LWE. As shown in Figure 4.3, we can first
reduce search EDCP to search LWE, the latter one can then be reduced to decision LWE. Finally, we
can reduce decision LWE to decision EDCP (as a corollary of the reduction from search LWE to search
EDCP).

Related work. In [CvD07], Childs and van Dam show that U-EDCP`1,N,M reduces to the problem
of finding all the solutions b ∈ {0, . . . ,M − 1}k to the equation 〈b,x〉 = w mod N , where x and w

are given and uniformly random modulo N . They interpret this as an integer linear program and
use lattice reduction, within Lenstra’s algorithm [Len83], to solve it. This leads to a polynomial-time

1Note that the assumption on f implies, via Markov’s inequality, that one may restrict the sum to a finite index set
and obtain a superposition which remains within negligible `2-distance from the countable superposition above.
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algorithm for U-EDCP`1,N,M when M = bN1/kc and ` ≥ k, for any k ≥ 3. Interestingly, finding
small solutions to the equation 〈b,x〉 = w mod N is a special case of the Inhomogeneous Small Integer
Solution problem [GPV08] (ISIS), which consists in finding a small-norm x such that Bx = w mod q,
with B ∈ Zn×mq and w ∈ Znq uniform (where q, n,m are integer parameters). A reduction from the
homogeneous SIS (i.e., with w = 0 and x 6= 0) to LWE was provided in [SSTX09]. It does not seem
possible to derive from it a reduction from EDCP to LWE via the Childs and van Dam variant of
ISIS, most notably because the reduction from [SSTX09] does not provide a way to compute all ISIS
solutions within a box {0, 1, . . . ,M − 1}k.

Shifts:

2

Times: [Re02]: 2n
2
√
n

This work: poly(n)
2Ω(n)

[CvD07]: poly(n)

Fig. 4.2: A comparison between our solver (via our LWE to EDCP reduction and solving LWE by the
LLL algorithm) and the Childs and van Dam’s solver for solving EDCP.

It is not hard to see that, at least so long as M is polynomial, a solution to DCP implies a solution
to EDCP`1,N,M . Without loss of generality, we consider U-EDCP1,N,M , and briefly show that any
sample of U-EDCP1,N,M with M is polynomial in logN , can be efficiently transformed to a DCPN
sample. Suppose we are given (up to normalization)

∑
j∈[M ] |j〉 |x+ j · s〉. We compute the absolute

value of the first register and store it in a new register:
∑
j∈[M ] |j〉 |x+ j · s〉 ||j|〉. Then we measure the

third register and we observe |j| = 1 with non-negligible probability. In the case of |j| = 1, our state
becomes: |−1〉 |x− s〉+ |1〉 |x+ s〉. Then we apply a function h that maps −1 to 0 and maps 1 to 1 on
the first register (one can check that it is reversible) and replace x− s by a new x̂, and obtain the DCP
sample: |0〉 |x̂〉+ |1〉 |x̂+ ŝ〉 with ŝ = 2s. Once ŝ = 2s is solved, we output any of two possibilities of s
with equal probability, which is then the solution to U-EDCP1,N,M with 1/2 probability. Therefore our
result implies [Reg02] as a special case.

On the other extreme, our result also subsumes [CvD07] since the LLL algorithm [LLL82] can be
used to solve LWEn,q,α in polynomial time when 1/α and q are 2Θ(n), which implies a polynomial-time
algorithm for EDCP for M = 2Θ(

√
n logN), significantly improving Childs and van Dam’s M = 2εn logN

for any constant ε ∈ (0, 1].
Finally, we observe that the LWE to U-EDCP reduction (and the uSVP to DCP reduction [Reg04b])

can be adapted to a uSVP to U-EDCP reduction, as explained below. Combining this adaptation with
the reduction from U-EDCP to LWE (via G-EDCP) provides a novel quantum reduction from worst-
case lattice problems to LWE. However, it does not seem to have advantages compared to [Reg09].

4.2.1 Technical overview
As mentioned above, the hardness of LWE is essentially invariant so long as n log q is preserved, and
therefore we restrict our attention in this overview to the one-dimensional setting. A crucial ingredient
in our reduction is a weighted version of EDCP, denoted by G-EDCP and quantified by a Gaussian
weight function fr(j) =ρr(j) = exp(−πj2/r2), for some standard deviation parameter r. We refer to
this problem as Gaussian EDCP (G-EDCP).

Reducing G-EDCP to LWE. Given a G-EDCP state as input, our reduction efficiently transforms
it into a classical LWE sample with constant success probability. Thus, making only one query to the
LWE oracle, we are able to solve G-EDCP. More precisely, the reduction input consists of a normalized
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Fig. 4.3: Graph of reductions between the LWE problem (search version on middle-left, decision version
on lower-left), the Extrapolated Dihedral Coset problems (search version on middle-left, decision version
on lower-left), chosen worst-case lattice problems (upper-left), and DCP (upper-right). Parameters α
are given up to poly(n)-factors, where n is the dimension of the LWE problem. The same n stands for
the lattice-dimension considered in problems of the upper-left corner. The subset-sum problem stated
in the upper-right corner is of density ≈ 1 (in particular, the expected number of solutions is constant).
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state corresponding to
∑
j∈ZN ρr(j) |j〉 |x+ j · s mod N〉, for some integers r � N . One can think of N

as the LWE modulus and of N/r as the standard deviation parameter of the LWE error.
Our first step is to apply a quantum Fourier transform over ZN to the second register. This gives

us a quantum superposition of the form:∑
a∈ZN

∑
j∈ZN

ω
a·(x+j·s)
N · ρr(j) |j〉 |a〉 .

where ωN = exp(2iπ/N). We then measure the second register and obtain a value â ∈ ZN . This leaves
us with the state: ∑

j∈ZN

ωj ·̂a·sN · ρr(j) |j〉 |â〉 .

Note that â is uniformly random over ZN , which at the end serves as the first component of LWE sample.
The exponent of relative phase in current state has a form similar to the second component of LWE
sample but without noise. Now we can benefit from the first register, which stores a superposition
corresponding to a Gaussian distribution over ZN with standard deviation r. Applying a second
quantum Fourier transform over ZN to the first register gives us a quantum superposition of the form:∑

b∈ZN

∑
j∈ZN

ω
j·(̂a·s+b)
N · ρr(j) |b〉 .

Now the second component of the LWE sample â · s + b is stored in the phase (up to a factor j).
Omitting the exponentially small Gaussian tail, we assume the summation for j is taken over the
integers. An application of the Poisson summation formula transfers â · s + b into a shift of the
Gaussian distribution defined over Z. In other words, the received state is exponentially close to the
superposition: ∑

e∈ZN

ρ1/r

( e
N

)
|−â · s+ e〉 .

Once we measure the state above, we obtain a value −â · s + e, where e ←↩ DZ,N/r. Together with
already known â, this gives us an LWE sample:

(−â,−â · s+ e) .

In case the input state is of the form |j〉 |x mod N〉, where j is distributed according to the func-
tion ρ2

r, and x ∈ ZN is uniformly chosen (the decision case), the reduction outlined above outputs a
uniform random pair (a, b) from ZN × ZN . This gives a reduction from decision G-EDCP to decision
LWE.

Reducing LWE to G-EDCP. Our reduction from LWE to G-EDCP follows the general design of
Regev’s reduction from uSVP to DCP [Reg04b], with several twists that enable simplifications and im-
provements. We note that this reduction is folklore,2 although we could not find it described explicitly.

First, the use of LWE rather than uSVP allows us to avoid Regev’s initial sub-reduction from uSVP
to BDD, as LWE is a randomized variant of BDD. Indeed, if we consider m samples (ai,ai · s + ei)
from LWEn,q,α, then we have a BDD instance for the lattice Λ = AZnq + qZm and the target vector t =
b + e ∈ Zm with b ∈ Λ satisfying b = As mod q.

As Regev’s, our reduction proceeds by subdividing the ambient space Rm with a coarse grid, setting
the cell width between ‖e‖ and λ1(Λ). We map each point y ∈ Rm to a cell φ(y). By choice of the cell
width, we have φ(c1) 6= φ(c2) for any c1 6= c2 in Λ. Also for any c ∈ Rm, the vectors c and c + e are
most likely mapped to the same cell, as e is short. This intuition fails if a border between two cells falls

2 https://groups.google.com/d/msg/cryptanalytic-algorithms/uhr6gGrVkIk/XxEv4uvEBwAJ
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close to c (see the grid intersects the left-most disk in Figure 4.4). This (rare but non-negligibly so)
event is the source of the limitation on the number ` of DCP/EDCP states produced by the reduction.
The space subdivision by a grid is illustrated in Figure 4.4.

d

d

r

Fig. 4.4: A visualization of the space subdivision. Each radially shaded disk has width r, the upper
bound of the error ‖e‖. Each cell has width d, chosen to be between ‖e‖ and λ1(L)/

√
m. Note that

the grid intersects the left-most disk, potentially leading to an error in the reduction.

Regev’s reduction and ours differ in the way the grid is used to create the DCP/EDCP states.
Let us first briefly recall the core of Regev’s reduction. Let B = (b1, . . . ,bm) be a basis of Λ and
subtract an appropriate combination of the bi’s from t to get t′ so that the coordinates x′ of the closest
vector b′ ∈ Λ to t′with respect to the bi’s are ≤ 2m (this may be achieved using LLL [LLL82] and
Babai’s nearest plane algorithm [Bab86]). The first step is the creation of a superposition∑

x∈Zm
‖x‖∞≤22m

(|0,x, φ(Bx)〉+ |1,x, φ(Bx− t′)〉) =

|0〉
∑

x∈Zm
‖x‖∞≤22m

|x, φ(Bx)〉+ |1〉
∑

x∈Zm
‖x+x′‖∞≤22m

|x + x′, φ(Bx− e)〉 ,

where the equality holds by a change of variable. By measuring the last register, with overwhelming
probability this collapses to |0〉 |xk〉+ |1〉 |xk + x′〉, which corresponds to an m-dimensional DCP input
state with modulus 2O(m). The whole process can be repeated multiple times using the same input
vector t, and results in different xk’s but a common x′. Each iteration may fail because of an ill-placed
cell delimitation, or if xk + x′ has a coordinate whose magnitude is larger than 22m. This leads to
a bounded number of correct DCP input states. Finally, m-dimensional DCP can be reduced to 1-
dimensional DCP, with a significant modulus increase: the resulting modulus N is 2O(m2) (see [Reg02,
Section 3.1]).

Instead of using a superposition based on the coordinates with respect to a basis, we exploit the
special form of Λ = aZq + qZm (w.l.o.g., we consider 1-dimensional LWE [BLP+13]). We start with
the following superposition:∑

x∈Zq

|0, x, φ(ax)〉+ |1, x, φ(ax− t)〉= |0〉
∑
x∈Zq

|x, φ(ax)〉+ |1〉
∑
x∈Zq

|x+ s, φ(ax− e)〉 .

We then measure the last register (classically known and omitted) and hopefully obtain a superposi-
tion |0〉 |x〉+ |1〉 |x+ s〉. This approach has several notable advantages. First, by using a grid over the
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torus Rm/qRm, the only source of failure is the position of the cell delimitation (coordinates cannot
spill over, they wrap around). Second, we directly end up with a DCP state, not a vectorial variant
thereof. Third, and most importantly, the DCP modulus N is only q and not 2O(m2). Note that m
should be set as Ω(log q) for s to be uniquely determined by the LWE samples. This improvement
results in a much tighter reduction.

The improvement stems from the use of a small modulus q rather than large integer coordinates.
It is possible to obtain such a small DCP modulus while starting from BDD (rather than LWE), by
modifying Regev’s reduction as follows. One may first reduce BDD to a variant thereof that asks to
find the coordinates of the BDD solution modulo a small modulus q rather than over the integers. Such
a reduction is presented in [Reg09, Lemma 3.5]. One may then reduce this BDD variant to DCP as
we proceed for LWE. Note that this transformation makes the BDD to DCP reduction from [Reg04b]
iterative: the DCP oracle is called several times, and the input of an oracle call depends on the output
of the previous oracle calls. This is akin to the phenomenon described in the open questions paragraph
from [BLP+13].

A further difference between our reduction and the one from [Reg04b] is that we consider larger
multiples of s in the input superposition to obtain a state of the form

∑
j ρr(j) |j〉 |x+ js〉, with r ≈ 1/α

(up to polynomial factors). This does not lead to any extra complication, but leads us to G-EDCP
rather than DCP, which we crucially need to allow for a converse reduction. We conjecture that
G-EDCP is strictly easier than DCP.

As Regev [Reg04a], we can also improve the resulting deviation parameter r of G-EDCP by a factor
of
√
m using balls rather than cube. We consider intersections of balls drawn around a · s and its

noisy shifts. The radius R of each ball is set to be the largest value such that the balls arising from
different s (and their shifts) do not intersect. We are interested in the intersection area the balls drawn
around ±s,±2s, etc. Following Regev [Reg04a], this area is large enough to guarantee that once we
measure, we hit a point from the intersection of all the balls (see grey areas in Figure 4.5).

λ1(Λq(a))

d

R

Fig. 4.5: A visualization of the balls’ intersections. The lattice points (black dots) are of distance at
least the first minimum of the lattice Λq(a) = aZq + qZ to each other. The distance between the two
furthest shifts ‖je‖ (red dots) has an upper bound, denoted by d. Each ball has a radius R chosen to be
(approximately) λ1(Λq(a))/2. Note that once the shaded grey area is measured, the reduction succeeds
in outputting a G-EDCP sample. For the reduction to work with a constant success probability, the
shaded area has to have a large enough proportion compared to the volume of the balls.

The same algorithm provides a reduction from dLWE to dG-EDCP. Given a random sample (a,b) ∈
Zmq ×Zmq , it suffices to show that all the balls centered at as+ jb for s ∈ Zq and j ∈ Z, do not intersect
with each other. All the points considered above form the lattice (a|b)Zq + qZ, We argue analogously
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using the upper bound on the minima of this lattice. As a result, the superposition collapses exactly
to one of the balls, which gives a random sample of dG-EDCP.

EDCP`κ
1.5

n,q,
√
κr EDCP`n,q,r EDCP `/κ

n,q,r

EDCP `
n,q,r

DCP`/(κ
2r)

q

DCP`/(κ
2 log r)

q

LWEm
n,q,α<1/(rm`qn/m)
n,q,α<1/(r

√
m`qn/m)

LWE`1,q,α>1/r

Theorems 4.2, 4.3

Theorem 4.4

Lemma 4.2 Lemma 4.1 Lemma 4.3

Lemma 4.3

Lemma 4.4

Fig. 4.6: Graph of reductions between the extrapolated Dihedral Coset Problem instantiated with uni-
form distribution over {0, 1, . . . , r − 1} (the first and the third problems from the left) and `-sample
Gaussian EDCP with parameter r (the middle problem). We assume all the parameters n (the dimen-
sion), q (the modulus) and r are functions of a common parameter κ. The most relevant choice of such
a relation one can keep in mind is when n, `, q and r are poly(κ). One can trace the losses in the param-
eters (with respect to the number of samples ` and to r) when we move from one problem to another.
Note that some reductions may be performed in several ways. For example, using the self-reducibility
property of EDCP (Lemma 4.3), we can bypass Gaussian EDCP and have a more sample-efficient
reduction from EDCP with large r to an EDCP with smaller r. Similarly, Gaussian EDCP can be
reduced to DCP either directly (Lemma 4.4) or via uniform EDCP.
The two central reductions that show equivalence between the LWE and EDCP problems are on the
vertical line. As for EDCP, the LWE parameters n, q, and α are functions of κ. We present two
reductions from LWE to EDCP, the stronger one gives a tighter result for the error-parameter by a
factor of

√
m.

4.3 Definitions of EDCP and its variants
We first formally define the EDCP problems as an extension of DCP. Then we show the relations
between different variants of it. Analogously to LWE, EDCP has two versions: search and decision.

Definition 4.1 (Search Extrapolated Dihedral Coset Problem). Given a parameter κ, the input to the
search Extrapolated Dihedral Coset Problem (EDCP`n,N,D) with dimension n, modulus N and a discrete
distribution D, consists of ` input states of the form (normalization is omitted)∑

j∈supp(D)

D(j) |j〉 |(x + j · s) mod N〉 , (4.1)

where x ∈ ZnN is arbitrary, s ∈ ZnN is fixed for all ` states and all parameters n, N and ` are functions
of κ. The task is to output the secret s.

Definition 4.2 (Decision Extrapolated Dihedral Coset Problem). Given a parameter κ, the decision
Extrapolated Dihedral Coset Problem (dEDCP`n,N,D) with modulus N and a discrete distribution D, asks
to distinguish between ` many EDCP samples and ` many random samples of the form

|jk〉 |xk〉 , (4.2)
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where jk ←↩ D2, xk ∈ ZnN is uniformly chosen for 1 ≤ k ≤ ` and all parameters n, N and ` are
functions of κ. The task is to distinguish the two cases.

Different choices of D give rise to different instantiations of EDCP. In our case, the two interesting
ones are:

1. when D is the uniform distribution over {0, · · · ,M − 1} for some M ≥ 2, we let U-EDCP`n,N,M
denote this instantiation of EDCP;

2. when D is the discrete Gaussian distribution DZ,r, we let G-EDCP`n,N,r denote this instantiation
of EDCP.

The former, named the generalized hidden shift problem, was already considered in [CvD07]. The latter
is central in our reductions. Correspondingly, we denote the decision version of G-EDCP by dG-EDCP.

4.4 Reductions between EDCP variants
In this section, we show that the EDCP problem enjoys several interesting properties: (1) Gaussian-
EDCP (G-EDCP`

′

n,N,r) and uniform-EDCP (U-EDCP`n,N,M ) are equivalent, up to small parameter
losses; (2) EDCP enjoys a self-reduction property. The main ingredient in both proofs is quantum
rejection sampling [ORR13] (see Lemma 2.21).

Lemma 4.1 (G-EDCP ≤ U-EDCP). Let N,n and ` be integers greater than 1, r > 0 a real number,
and let M = c · r for some constant c such that M is an integer. Then there is a probabilistic reduction
with run-time polynomial in κ, from G-EDCP`n,N,r to U-EDCPO(`/κ)

n,N,M .

Proof. We are given as input G-EDCP`n,N,r states:∑
j∈Z

ρr(j) |j〉 |(xk + j · s) mod N〉


k≤`

.

Our aim is to find s, given access to a U-EDCPO(`/κ)
n,N,cr oracle for some constant c.

For each G-EDCPn,N,r sample, we proceed as follows. We let sign(x) to denote the sign of x, its
output is either 1 (for ‘ + ’) or 0 (for ‘− ’). For completeness, we let sign(0) = 1. We first compute the
sign of the first register and store it in a new register:∑

j∈Z
ρr(j) |j〉 |(x + j · s) mod N〉 |sign(j)〉 .

Second, we measure the third register. If the observed value is 0, we discard the state. Note that
we observe 1 with probability at least 1/2, independently over all k’s. From states with the observed
value 1, we obtain (up to normalization):∑

j∈Z
j≥0

ρr(j) |j〉 |(x + j · s) mod N〉 .

Using quantum rejection sampling (see Lemma 2.21), we can transform a G-EDCPN,`,r state into
a U-EDCPn,N,M state of the form ∑

j∈[0,M−1]

|j〉 |(x + j · s) mod N〉
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with probability Ω(Mρ2
r(c · r)/r) = Ω(1).

We repeat the procedure above until we obtain O(`/κ) many U-EDCPn,N,M states, which happens
with probability ≥ 1− 2−Ω(κ). We call the U-EDCPO(`/κ)

n,N,M oracle to recover the secret s as the solution
for the input G-EDCP`n,N,r instance.

Lemma 4.2 (U-EDCP ≤ G-EDCP). Let N , M , n and ` be integers greater than 1, r > 1 a real
number, such that M =

√
κ · r = poly(κ) is an integer. Then there is a probabilistic reduction with

run-time polynomial in κ, from U-EDCP`n,N,M to G-EDCPO(`/κ1.5)
n,N,r .

Proof. We are given as input U-EDCP`n,N,M states: ∑
j∈[0,M−1]

|j〉 |(x + j · s) mod N〉


k≤`

.

Our aim is to find s, given access to a G-EDCPO(`/κ1.5)
n,N,r oracle where r = M/

√
κ.

For each U-EDCPn,N,M state, we proceed as follows. First, we symmetrize the uniform distribution
by applying the function f(x) = x− b(M − 1)/2c to the first register:∑

j∈[0,M−1]

|j − b(M − 1)/2c〉|(x + j · s) mod N〉 =
∑

j′∈
[
−bM−1

2 c,dM−1
2 e
]|j′〉 |(x′ + j′ · s) mod N〉 ,

where j′ = j − b(M − 1)/2c, x′ = x + d(M − 1)/2e · s.
Using rejection sampling (Lemma 2.21), we transform each U-EDCPn,N,dM−1

2 e state into a G-EDCPn,N,r
state with probability Ω(r/M) = Ω(1/

√
κ):∑

j′∈
[
−bM−1

2 c,dM−1
2 e
]ρr(j′) |j′〉 |(x′ + j′ · s) mod N〉 .

According to Lemma 2.7, the latter is within an `2-distance of 2−Ω(κ) away from the state∑
j′∈Z

ρr(j′) |j′〉 |(x′ + j′ · s) mod N〉 .

We repeat the procedure above until we obtain O(`/κ1.5) many G-EDCPn,N,r states, which happens
with probability ≥ 1− 2−Ω(κ). Then we can use the G-EDCPO(`/κ1.5)

n,N,r oracle to recover the secret s as
the solution to U-EDCP`n,N,M .

Next, we show a self-reducibility property for EDCP.

Lemma 4.3 (EDCP self-reduction). Let N,n, and ` be integers greater than 1, r1 and r2 be such
that r1 > r2 and r1/r2 = O(κc) for any constant c. Then there is a probabilistic reduction with run-time
polynomial in κ, from G-EDCP`n,N,r1

(resp. U-EDCP`n,N,r1
) to G-EDCPO(`/κc+1)

n,N,r2
(resp. U-EDCPO(`/κc+1)

n,N,r2
).

Proof. We are given as input G-EDCP`n,N,r1
states:∑

j∈Z
ρr1(j) |j〉 |(xk + j · s) mod N〉


k≤`

.

Our aim is to find s, given access to a G-EDCPO(`/κc+1)
n,N,r2

oracle.
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For each G-EDCPn,N,r1 sample, we proceed as follows. Using Lemma 2.21, we can transform a
G-EDCPN,`,r1 state into a G-EDCPN,`,r2 state, with probability Ω(1/κc):∑

j∈Z
ρr2(j) |j〉 |(xk + j · s) mod N〉 .

We repeat the procedure above for all given samples. With probability at least 1− 2−Ω(κ), we
obtain O(`/κc+1) many G-EDCPn,N,r2 states. Then we can use the G-EDCPO(`/κc+1)

n,N,r2
oracle to recover

the secret s as the solution for the G-EDCP`n,N,r1
instance.

The same arguments apply to the uniform EDCP: from U-EDCPN,`,r1 to U-EDCPN,O(`/κc+1),r2 .
In this case, via quantum rejection sampling, we transform a wide uniform distribution into a narrower
uniform distribution.

In the following, we give a reduction from Gaussian-EDCP to DCP. Thus uniform-EDCP can
also be reduced to DCP in two ways: either via self-reduction, or via Gaussian-EDCP as the next
lemma shows. This result is especially interesting when the parameter r (or M for the uniform-EDCP)
is super-polynomially large, as in this case, Lemma 4.3 cannot be applied. The lemma below works
with 1-dimensional EDCP. This is without loss of generality as we can combine our main result
(the computational equivalence of LWE and EDCP up to small parameter losses) with the result of
Brakerski et al. [BLP+13] (the computational equivalence of LWEn,q,α and LWE1,qn,α up to small
parameter losses).

Lemma 4.4 (Gaussian-EDCP to DCP). Let N and ` be arbitrary integers. Then there is a probabilistic
reduction with run-time polynomial in κ, from G-EDCP`1,N,r to DCPO(`/(log r·κ2))

N if r ≥ 3 logN , and
from G-EDCP`1,N,r to DCPO(`/(r·κ))

N otherwise.

Proof. We are given as input G-EDCP`1,N,r states:∑
j∈Z

ρr(j) |j〉 |(xk + j · s) mod N〉


k≤`

.

We show how to find s if we are given access to a DCPO(`/(r·κ))
N oracle for r < 3 logN , and a

DCPO(`/(log r·κ2))
N oracle otherwise.

• Case r ≥ 3 logN .
According to Lemma 4.1, we can transform `many G-EDCP1,N,r states into `/κmany U-EDCP1,N,M ′

states with M ′ = 2c · r + 1 for some constant c losing a factor of κ samples. Assume we obtain `/κ

many U-EDCP1,N,M ′ samples. For each such state, we symmetrize the interval [0,M ′] as in the proof
of Lemma 4.2. Then we receive a uniform distribution over [−M,M ] forM = (M ′−1)/2. We compute
the absolute value of the first register and store it in a new register:∑

j∈[−M,M ]

|j〉 |(x̂k + j · s) mod N〉 ||j|〉 , (4.3)

where x̂k = xk −M · s. We measure the third register and denote the observed value by vk.
We make use of two well-known facts from number theory. For proofs, the reader may consult [Sho05,

Chapter 5]. First, there exist more thanM/ logM primes that are smaller thanM . Second, the integer
N has at most 2 logN/ log logN prime factors. Thus there are at least M/ logM − 2 logN/ log logN
numbers smaller than M that are co-prime with all prime factors of N .

From the above, with probability Ω(1/ logM) = Ω(1/ log r), the observed value vk is non-zero
and co-prime with N . If this is not the case, we discard the state. Otherwise, we obtain (up to
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normalization):
|−vk〉 |(x̂k − vk · s) mod N〉+ |vk〉 |(x̂k + vk · s) mod N〉 .

We multiply the value in the second register by v−1
k mod N :

|−vk〉 |(x′k − s) mod N〉+ |vk〉 |(x′k + s) mod N〉 ,

where x′k = x̂k · v−1
k .

Let x̄k = x′k − s mod N and s̄ = 2 · s mod N . Rewrite the above state as:

|−vk〉 |x̄k〉+ |vk〉 |(x̄k + s̄) mod N〉 .

As we know vk classically, we uncompute the first register and obtain a DCP state:

|0〉 |x̄k〉+ |1〉 |(x̄k + s̄) mod N〉 . (4.4)

We repeat the above procedure until we obtain O(`/(log r · κ2)) many DCPN states with probabil-
ity ≥ 1− 2−Ω(κ).

• Case that r < 3 logN .
The first steps are identical to the proof for the case r ≥ 3 logN : Compute the absolute value of

the first register to get a state as in (4.3) and measure the third register. Denote the observed value
by vk. Now we keep only those states, for which vk = 1 was observed. Otherwise, we do not use the
state. In case vk = 1, we can easily transform the result to the state given in (4.4) analogously to the
proof for r ≥ 3 logN .

Now we show that vk = 1 occurs with probability Ω(1/r) independently over all k’s. Indeed,

Pr[vk = 1] = ρr(1)2 + ρr(−1)2∑
j∈Z ρr(j)2 ≥ 2 · ρr(1)2∫

R ρr(x)2dx+ 1 =
2 · exp(− 2π

r2 )
r√
2 + 1 = Ω

(1
r

)
.

We repeat the above procedure until we obtain O(`/(r · κ)) many DCPN states, which happens with
probability ≥ 1− 2−Ω(κ).

In both cases considered in this lemma, we can use the DCPO(`/(r·κ))
N oracle and get the secret s̄.

There are at most 2 possible values s such that s̄ = 2s mod N : if there are 2 possibilities, we uniformly
choose either, which decreases the success probability by at most a factor of 2.

4.5 Reduction from LWE to EDCP
In this section, we reduce LWEmn,q,α to G-EDCP`n,q,r, where r ≈ 1/α up to a factor of poly(n log q).
Analogously to Regev’s reductions from uSVP to DCP, we present two versions of the reduction from
LWE to G-EDCP. The second one is tighter with respect to the parameter losses. At the end of the
section we show that using the same algorithm, one can reduce the decision version of LWE to the
decision version of EDCP (see Definition 4.2).

4.5.1 First reduction: using cubes
The main result of this section is the following theorem.

Theorem 4.2 (LWE ≤ EDCP). Let (n, q, α) be LWE parameters and (n, q, r) be EDCP parameters.
Assume m ≥ n log q = Ω(κ). There exists a probabilistic quantum reduction, with run-time polynomial
in κ, from LWEmn,q,α to G-EDCP`n,q,r, where r < 1/(32mκα`qn/m).
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The main step of our reduction is to partition the ambient space Rm with an appropriately chosen
grid (cubes). This is analogous to Regev’s reduction from uSVP to DCP [Reg02]. Lemma 4.5 shows
how we choose the width of the cell in our grid. Figure 4.4 gives a 2-dimensional example of such a
grid.

Lemma 4.5. For a constant c ≥ 8, a matrix A ∈ Zm×nq with integers q, n, m = n log q, and k ≥ m,
we consider a function

g : (x1, · · · , xm)→ (bx1/z − w1 mod q̄c, · · · , bxm/z − wm mod q̄c),

where z = q/c and z ∈ [1/c, 1/2]·λ∞1 (Λq(A)), w1, . . . , wm are uniformly chosen from [0, 1), and q̄ = q/z.
Then for any x ∈ Znq , we have the following.

• For any u = Ax + e1,v = Ax + e2 where ‖e1‖∞, ‖e2‖∞ ≤ λ∞1 (Λq(A))/(2ck), with probability
(1− 1/k)m, over the randomness of w1, · · · , wm, we have g(u) = g(v).

• For any u = Ax + e1,v = Ax̂ + e2, where ‖e1‖∞, ‖e2‖∞ ≤ λ∞1 (Λq(A))/(2ck) and x 6= x̂ ∈ Znq ,
we have g(u) 6= g(v).

Proof. • Proof of the first claim.
Write u = Ax + e1 mod q and v = Ax + e2 mod q for some x ∈ Znq and ‖e1‖∞, ‖e2‖∞ ≤

λ∞1 (Λq(A))/(2ck).
Let diff denote the event that g(u) 6= g(v), and, for all i ≤ m, let diffi denote the event that

the ith coordinates of g(u) and g(v) differ. Since we choose w1, . . . , wm independently and uniformly
from [0, 1), we can consider each of m dimensions separately and view each e1,i/z +wi and e2,i/z +wi
as random 1-dimensional real points inside an interval of length 1. We have

Pr
wi

[diffi] = |e1,i − e2,i|
z

≤ z/k

z
= 1
k
,

where the inequality follows from the lower-bound on z. This implies

Pr
w

[no diff] =
∏
i≤m

(
1− Pr

wi
[diffi]

)
≥
(

1− 1
k

)m
.

• Proof of the second claim.
Write u = Ax + e1 mod q and v = Ax̂ + e2 mod q for x 6= x̂ ∈ Znq and ‖e1‖∞, ‖e2‖∞ ≤

λ∞1 (Λq(A))/(2ck). Then we have

g(u) =
⌊1
z
· (Ax) + 1

z
· e1 + w mod q̄

⌋
,

g(v) =
⌊1
z
· (Ax̂) + 1

z
· e2 + w mod q̄

⌋
.

Now we show that g(u) and g(v) differ in at least 1 coordinate. This is the case if the arguments of
the floor function differ by 1 in at least one coordinate, i.e., ‖ 1

zA · (x− x̂) + 1
z (e1 − e2) mod q̄‖∞ ≥ 1.

Assume that the contrary holds. Note that due to our choice of ei and q̄, ‖ 1
z (e1 − e2) mod q̄‖∞ is

either at most 1/k or at least q̄ − 1/k. We thus have ‖ 1
zA(x − x̂) mod q̄‖∞ < 1 + 1/k or ‖ 1

zA(x −
x̂) mod q̄‖∞ > q̄ − 1 + 1/k. Due to the bounds on z and c, the former case is equivalent to

‖A(x− x̂) mod q‖∞ < z + z/k ≤ λ∞1 (Λq(A))
(

1
2 + 1

2k

)
≤ λ∞1 (Λq(A)).

Hence, we have just found a non-zero vector in the lattice Λq(A) shorter than the minimum of the
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|0〉 Grover
Rudolf

Uf Uf
UEDCP

|0〉 QFTZnq

|0〉
Ug

|0〉

|0〉 g(a · s− je0)

(4.5) (4.6) (4.7) (4.8) (4.9)

Fig. 4.7: Quantum circuit for our reduction from LWE to EDCP. The input registers are assumed to
have the required number of qubits. The gate Uf is defined as Uf |j〉 |s〉 |0〉 7→ |j〉 |s〉 |As− jb mod q〉.
The gate Ug is the realization of the function g described in Lemma 4.5, i.e. Ug |x〉 |0〉 7→
|x〉 |bx/z −w mod q̄c〉 for appropriately chosen z,w, q̄.

lattice. In the latter case, when ‖ 1
zA · (x− x̂) mod q̄‖∞ > q̄−1/k+1, we obtain the same contradiction

by noticing that Λq̄ contains q̄-ary vectors.

According to Lemma 2.17, we have that λ∞1 (Λq(A)) ≥ q(m−n)/m/2 holds with probability 1− 2−m,
where the matrix A ∈ Zm×nq is uniformly sampled. Thus in this case, we have that z ∈ [1/c, 1/2] ·
λ∞1 (Λq(A)) holds with probability 1− 2−m, where z = q/c for some constant c ≥ 8.

Proof of Theorem 4.2. Assume we are given an LWEmn,q,α instance (A,b0) with b0 = A ·s0 +e0 mod q.
Our aim is to find s0 given access to a G-EDCP`n,q,r oracle.

We first prepare a necessary number of registers in the state |0〉 and transform them to the state of
the form (normalization omitted) ∑

s∈Znq

|0〉 |s〉 |0〉 . (4.5)

We use Lemma 2.20 to obtain a state within `2-distance of 2−Ω(κ) from∑
s∈Znq

(∑
j∈Z

ρr(j) |j〉
)
|s〉 |0〉 . (4.6)

According to Lemma 2.7, the state above is within `2-distance of 2−Ω(κ) from3

∑
s∈Znq

j∈Z∩[−
√
κ·r,
√
κ·r]

ρr(j) |j〉 |s〉 |0〉 .

We evaluate the function f(j, s) 7→ As− j · b mod q and store the result in the third register. The
next equality follows from a change of variable on s∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s〉 |As− j ·As0 − je0〉 =
∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + js0〉 |As− je0〉 . (4.7)

For x ∈ Zmq , we define

g(x) = (b(x1/z − w1) mod q̄c, . . . , b(xm/z − wm) mod q̄c),
3Here we cut the tail of the Gaussian distribution on the first register. Otherwise, a measurement that follows leads to

a state mixed with noisy vectors from different lattice points with large (unbounded) noise. However, it has `2-distance
exponentially close to the state we consider in the current algorithm.
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where w1, · · · , wm are chosen uniformly from [0,1), z = q/c for some constant c ≥ 8 and q̄ = q/z = c.
We evaluate the function g on the third register and store the result on a new register. We obtain∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + j · s0〉 |As− j · e0〉 |g(As− j · e0)〉 . (4.8)

We measure the fourth register and do not consider it further. According to Lemma 2.7, we
have that ‖e0‖∞ ≤

√
καq holds with probability ≥ 1 − 2−Ω(m) = 1 − 2−Ω(κ). Recall that r <

1/(32m`καqn/m) ≤ 1/(4ckκαqn/m) for c = 8 and k = m`. Therefore, we have ‖
√
κr · e0‖∞ ≤

λ∞1 (Λq(A))/(2ck). Note that we also have that z ∈ [1/c, 1/2] · λ∞1 (Λq(A)) holds with probabil-
ity 2−m = 2−Ω(κ). Then by Lemma 4.5, we obtain∑

j∈Z∩[−
√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + j · s0〉 |As− j · e0〉

for some s ∈ Znq , with probability (1− 1/k)m over the randomness of A and w1, · · · , wm.
Finally, we evaluate the function (j, s,b) 7→ b−As+j ·b0 on the first three registers, which gives 0.

Discarding this 0-register, the state is of the form∑
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + j · s0〉 .

According to Lemma 2.7, the above state is within `2-distance of 2−Ω(κ) from∑
j∈Z

ρr(j) |j〉 |s + j · s0〉 . (4.9)

We repeat the above procedure ` times, and with probability (1− 1
k )m`, we obtain `many G-EDCP`n,q,r

states ∑
j∈Z

ρr(j) |j〉 |xk + j · s0〉


k≤`

,

where xk ∈ Znq .
Now we can call the G-EDCP`n,q,r oracle with the above states as input and obtain s0 as output of

the oracle.

4.5.2 An improved reduction: using balls
Here we give an improved reduction from LWE to EDCP. Following an idea of Regev (see [Reg02,
Section 3.3]), instead of partitioning the ambient space Zm by cubes, we consider intersections of balls
drawn around the points As and its shifts. Note that, with this reduction, we improve the upper-bound
on r, essentially by factor of

√
m.

Theorem 4.3 (LWE ≤ EDCP). Let (n, q, α) be LWE parameters and (n, q, r) be EDCP parameters.
Assume that m = Ω(κ). There exists a quantum reduction, with run-time polynomial in κ, from
LWEmn,q,α to G-EDCP`n,q,r, where r < 1/(6

√
2πe
√
mκ`αqn/m).

We first give an intuitive idea of how the reduction works and then we give the full proof.
Given an LWE instance (A,b = As0 + e0) ∈ Zm×nq × Zmq , for each s ∈ Znq , we consider (in a

superposition over all such s) a lattice point As together with its small shifts of As− je0, where the j’s
are drawn from a small interval symmetric around 0. So far, this is exactly what we did in the first
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(cube-based) reduction. Note that we receive a configuration of points in Zmq as depicted in Figure 4.5.
Also, contrary to Regev’s reduction, where there is only one shift (i.e., the DCP case), our extrapolated
version considers poly(κ) shifts (as we are interested in EDCP).

Let us fix some As together with its shifts. Draw a ball around each shift of a maximal radius R
such that there is no intersection between the shifts coming from different lattice points, i.e., there is
no j, j′ such that B(As − je0, R) ∩ B(As′ − j′e0, R) 6= ∅ for any two s, s′ such that s 6= s′. To satisfy
this condition, we can take R almost as large as the first minimum of the lattice Λq(A) (again, see
Figure 4.5). With such an R, due to the fact that the shifts are small, the intersection of the balls drawn
around the shifts is sufficiently large (see Lemma 4.6 below). Hence, once we measure the register that
‘stores’ our balls, the resulting state collapses (with large enough probability) to a superposition of
some As for one s and all its shifts. Informally, the higher this probability, the tighter the parameters
achieved by the reduction.

We need two lemmata to establish a proof of Theorem 4.3. The first lemma, due to Regev
(see [Reg02, Corollary 3.9]) shows how large the intersection of two shifted balls is. Note that we
work with a discretized ball 1

LZ
n ∩Bn(0, R) such that we are able to encode it as a quantum superpo-

sition. The main difference between Regev’s lemma and the one we present below is that we consider
intersections of the balls taken mod q.

Lemma 4.6 (Adapted from [Reg02, Corollary 3.9]). Let L = 2n and consider the scaled integer
grid 1

LZ
n. For any R ≥ 1, let B̄n(0, R) = Bn(0, R) + d̄ for some vector d̄ such that R/poly(n) ≤ ‖d̄‖ ≤

R. Then, for an integer q > 2R+ d̄ we have

| 1LZ
n ∩ Bn(0, R) ∩ B̄n(0, R) mod q|
| 1LZn ∩ Bn(0, R) mod q|

≥ 1−O(
√
n‖d̄/R‖).

According to Lemma 2.18, we have that λ1(Λq(A)) ≥
√
mq(m−n)/m/(2

√
2πe) holds with probabil-

ity 1− 2−m, where the matrix A ∈ Zm×nq is uniformly sampled and
√
mq(m−n)/m/(2

√
2πe) ≤ q. Thus

in this case, if the radius R =
√
mq(m−n)/m/(6

√
2πe) = Θ(

√
mq(m−n)/m), we have R ≤ λ1(Λq(A))/3.

This setup of parameters radius R and first minimum λ1(Λq(A)) will be considered in the proof of
Theorem 4.3.

The following technical lemma is again due to Regev [Reg02]. It shows that while we cannot create
a quantum state that perfectly corresponds to a uniform superposition of x ∈ 1

LZ
n ∩ Bn(0, R) (i.e., a

ball), we can have a good approximation to this state. This fact will only increase the running time of
the reduction by a factor of poly(κ).

Lemma 4.7 ([Reg02, Lemma 3.11]). For any 1 ≤ R ≤ 2poly(n), let∑
x∈ 1

LZn∩Bn(0,R)

|x〉

be the uniform superposition (up to normalization) on grid points inside a ball of radius R around the
origin, with L = 2n. Then, for any c > 0, a state |η̃〉 whose trace distance from |η〉 is at most 1/nc can
be efficiently computed.

Now we are ready to give the proof of Theorem 4.3.

Proof of Theorem 4.3. Assume we are given an LWEn,q,α instance (A,b0) ∈ Zm×nq × Zmq , with b0 =
As0 + e0 mod q. Our aim is to find s0 given access to a G-EDCP`n,q,r oracle.

We first prepare a necessary number of registers in the state |0〉 and transform it to the state of the
form (normalization omitted) ∑

s∈Znq

|0〉 |s〉 |0〉 .
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We use Lemma 2.20 to obtain a state within `2-distance of 2−Ω(κ) from∑
s∈Znq

(∑
j∈Z

ρr(j) |j〉
)
|s〉 |0〉 .

According to Lemma 2.7, the state above is within `2-distance of 2−Ω(κ) from∑
s∈Znq

j∈Z∩[−
√
κ·r,
√
κ·r]

ρr(j) |j〉 |s〉 |0〉 .

We evaluate the function f(j, s) 7→ As − j · b mod q and store the result in the third register. A
change of variable on s yields∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s〉 |As− jAs0 − je0〉 =
∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + js0〉 |As− je0〉 .

We take another register |0〉 and set L = 2m as a discretization parameter and R = Θ(
√
mq(m−n)/m).

As the LWE problem is well defined with m samples, it suffices to have
√
mq(m−n)/m/(3

√
2πe) ≤ q.

Note that we also have that R ≤ λ1(Λq(A))/3 holds with probability 2−m = 2−Ω(κ). Using Lemma 4.7,
we prepare a state which is at most 1/nc away from |η〉 =

∑
x∈ 1

LZm∩Bm(0,R) |x〉 for any constant c > 0.
We set c such that it satisfies (1− 1/nc) > (1− 1/κ) to have the success probability claimed at the end
of the reduction. We pretend we work with the state |η〉, which we tensor with our current state, and
obtain ∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

∑
x∈ 1

LZm∩Bm(0,R)

ρr(j) |j〉 |s + j · s0〉 |A · s− j · e0〉 |x〉 .

We apply the function g(x,y) = (x,x + y mod q) on the third and fourth registers (note that the
mod q operation is done over rational numbers). The state becomes a superposition over the balls of
radius R centered at all lattice points As and their shifts defined by j. Formally, we obtain∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

∑
x∈ 1

LZm∩Bn(0,R)

ρr(j) |j〉 |s + j · s0〉 |As− j · e0〉 |As− j · e0 + x mod q〉 .

We measure the fourth register and discard it, as now we know it classically. Using Lemma 2.8 on
lattice Zm and shift 0, we have ‖e0‖ ≤

√
mαq with probability ≥ 1 − 2−Ω(m) = 1 − 2−Ω(κ). Recall

that r ≤ 1/(
√
mκ`αqn/m) (up to constants). Therefore, we have ‖

√
κr · e0‖ ≤ q(m−n)/m/`.

We use Lemma 4.6 with d̄ = q(m−n)/m/` and radius R = Θ(
√
mq(m−n)/m). Note that due to the

large minimal distance of Λq(A), the balls emerging from two different lattice points (or their shifts)
do no intersect. Hence, the measurement yields∑

j∈Z∩[−
√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + j · s0〉 |As− j · e0〉

for some s ∈ Znq , with probability O(1− 1/`) taken over the uniform distribution defined on Bm(0, R).
Finally, we evaluate the function (j, s,b) 7→ b−As + j · b0 on the first three registers. Discarding

the last register, the state is of the form∑
j∈Z∩[−

√
κ·r,
√
κ·r]

ρr(j) |j〉 |s + j · s0〉 .
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According to Lemma 2.7, the latter is within `2-distance of 2−Ω(κ) from∑
j∈Z

ρr(j) |j〉 |s + j · s0〉 .

We repeat the above procedure ` times, and with non-negligible probability (1− 1/`)`, we obtain `
many G-EDCPn,q,r states ∑

j∈Z
ρr(j) |j〉 |xk + j · s0〉


k≤`

,

where xk ∈ Znq .
Now we can call the G-EDCPmn,q,r oracle with the above states as input and obtain s0 as the output

of the oracle.

4.5.3 Reduction from dLWE to dEDCP
As a corollary to the above theorem, we show that decision LWE can be reduced to decision EDCP.
In fact, to establish the reduction, we use the same algorithm as for Theorem 4.3 (a weaker reduction
given in Theorem 4.2 will work as well). Recall that in the proof, starting from an EDCP sample,
we obtain an LWE sample with non-negligible probability. Corollary 4.1 below shows that in case we
are given a tuple (A,b) drawn uniformly at random from Zm×nq × Zmq , the procedure described in the
proof of Theorem 4.3 outputs a state of the form |j〉 |x〉, a uniform counterpart to EDCP in the sense
of Definition 4.2.

Corollary 4.1 (dLWE ≤ dEDCP). Let (n, q, α) be valid dLWE parameters and (n, q, r) be valid dEDCP
parameters. Assume that m = Ω(κ). There exists a quantum reduction, with run-time polynomial in κ,
from LWEmn,q,α to G-EDCP`n,q,r, where r < 1/(6

√
2πe
√
mκ`αq(n+1)/m).

Proof of Corollary 4.1. We are given m many samples from Zm×nq × Zmq either of the form

(A,As0 + e0),

or of the form
(A,b),

where A ∈ Zm×nq is uniformly chosen, s0 ∈ Znq is fixed, e0 ∈ DZm,αq and b ∈ Zmq is uniformly chosen
and independent from A. Our aim is to distinguish between the above two cases given access to
a dG-EDCP`n,q,r oracle.

We follow the procedure of the reduction algorithm used in the proof of Theorem 4.3 except that now
we set R = Θ(

√
mq(m−n−1)/m). As the LWE problem is well-defined with m = Θ(n) many samples, we

can guarantee (for an appropriate choice of constants) that
√
mq(m−n)/m/(3

√
2πe) ≤ q. Thus, we also

have R ≤ λ1(Λq(A|b))/3, where the inequality holds with probability 2−m = 2−Ω(κ) (see Lemma 2.18).
We run the algorithm described in the proof of Theorem 4.3 until we obtain a state of the form∑

s∈Znq
j∈Z∩[−

√
κ·r,
√
κ·r]

∑
x∈ 1

LZm∩Bm(0,R)

ρr(j) |j〉 |s〉 |As− j · b〉 |As− j · b + x〉 .

Wemeasure the fourth register and ignore it from now on. Due to the bound on r, we have q ≥ 2
√
κr.

Thus all the balls created with centers over the lattice points As and their shifts As−jb, do not intersect
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with each other. Therefore, with probability 1−O(1/`), we obtain

|jk〉 |sk〉 |Ask − jk · b〉

for some jk ∈ Z distributed as D2
Z,r and some uniform sk ∈ Znq .

Finally, we evaluate the function (j, s,b) 7→ b−As + j ·b0 on the first three registers. This zeroizes
the last register, which we can safely discard. Now the state is of the form

|jk〉 |sk〉 ,

where jk ←↩ D2
Z,r and sk ∈ Znq is uniformly chosen.

We repeat the above procedure ` times, and with probability (1 − O(1/`))`, we obtain ` many
random samples of the form

{|jk〉 |sk〉}k≤` ,

where sk is chosen uniformly at random from Znq . This is exactly a uniform input to dEDCP with
respect to of Definition 4.2.

4.6 Reduction from EDCP to LWE
In this section, we reduce G-EDCP`n,N,r to LWE`n,N,α, where r ≈ 1/α up to a factor of poly(n logN).

QFTZN

∑
e∈Zq

ρ 1
r

(
e
q

)
|〈a′k, s0〉+ e〉

QFTZn
N

ak∑
j∈Z

ρr(j) |j〉 |xk + j · s0〉

(4.10) (4.12)

Fig. 4.8: Reduction from G-EDCP to LWE.

Theorem 4.4 (EDCP ≤ LWE). Let (n,N, r) be valid EDCP parameters and (n,N, α) with r = Ω(
√
κ)

be valid LWE parameters. Assume that ` = Ω(κ). There exists a quantum reduction, with run-time
polynomial in κ, from G-EDCP`n,N,r to LWE`n,N,α, where α = 1/r.

Proof. Assume we are given ` many EDCPn,N,r samples∑
j∈Z

ρr(j) |j〉 |xk + j · s0 mod N〉


k∈[`]

.

Our aim is to find s0, given access to an LWE`n,N,α oracle.
For each input state, the quantum Fourier transform over ZnN is applied to the second register,

which yields (without loss of generality, consider the kth sample)∑
a∈Zn

N

∑
j∈Z

ω
〈a,(xk+j·s0)〉
N · ρr(j) |j〉 |a〉 . (4.10)

Then we measure the second register and let ak denote the observed value. Note that statistically
each element of ZnN is measured with probability 1/Nn and that the samples of ak for different k’s are
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independent. Omitting the global phase of each state, we obtain∑
j∈Z

ω
〈ak,(j·s0)〉
N · ρr(j) |j〉 |ak〉 . (4.11)

We omit the second register as we know each ak classically. Since N ≥
√
κr, from Lemma 2.7, it follows

that the resulting state is within `2-distance of 2−Ω(κ) from the state (note the change in the range
for j) ∑

j∈ZN

ω
j·〈ak,s0〉
N · ρr(j) |j〉 . (4.12)

For each such state, the quantum Fourier transform over ZN yields∑
b∈ZN

∑
j∈ZN

ω
j·(〈ak,s0〉+b)
N · ρr(j) |b〉 . (4.13)

Once again we use Lemma 2.7 to argue that the state above is within `2-distance of 2−Ω(κ) from the
state ∑

b∈ZN

∑
j∈Z

ω
j·(〈ak,s0〉+b)
N · ρr(j) |b〉 .

Using the Poisson summation formula (Lemma 2.6) and changing the summation variable to e =
N · j + 〈ak, s0〉+ b, the above state can be rewritten as

∑
b∈ZN

∑
j∈Z

ρ1/r

(
j + 〈ak, s0〉+ b

N

)
|b〉 =

∑
e∈Z

ρ1/r

( e
N

)
|〈a′k, s0〉+ e mod N〉

where a′k = −ak mod N . Since r = Ω(
√
κ), we can apply Lemma 2.7 to the above state (for a scaled

Z-lattice), and instead of the above state, consider the state that is within a 2−Ω(κ) `2-distance from
it, namely: ∑

e∈ZN

ρ1/r

( e
N

)
|〈a′k, s0〉+ e〉 . (4.14)

Once we measure the state above, we obtain an LWE sample

(a′k, 〈a′k, s0〉+ ek) ,

where ek ←↩ DZ,N/r.
Now we can call the LWEn,N,α oracle for α = 1/r with the above states as input and obtain s0 as

output of the oracle.

4.6.1 Reduction from dEDCP to dLWE
Similar to the previous section where as a corollary we show that dLWE can be reduced to dEDCP, we
complete this section by a reverse reduction, from dEDCP to dLWE. Again, we use exactly the same
reduction algorithm as for the search versions (see Figure 4.8). Thus it remains to show that we can
obtain a uniform random sample (a, b) ∈ ZnN × ZN given as input a state of the form |j〉 |x mod N〉.

Corollary 4.2 (dEDCP ≤ dLWE). Let (n,N, r) be valid dG-EDCP parameters and (n,N, α) be valid
dLWE parameters. Assume that ` = Ω(κ). There exists a quantum reduction, with run-time polynomial
in κ, from dG-EDCP`n,N,r to dLWE`n,N,α, where α = 1/r.
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Proof. Assume we are given ` many samples of EDCPn,N,r either of the form∑
j∈Z

ρr(j) |j〉 |xk + j · s0〉 mod N


k∈[`]

or of the form
{|jk〉 |xk mod N〉}k∈[`] ,

where jk ←↩ D2
Z,r and xk ∈ ZnN is uniform. Our aim is to distinguish between the above two forms

given access to a dLWEn,N,α oracle.
As explained above, we assume that uniform samples of EDCP are given. For each input state,

after the quantum Fourier transform over ZnN on the second register, we obtain∑
a∈Zn

N

ω
〈xk,a〉
N |jk〉 |a〉 .

Then we measure the second register and let ak denote the observed value. Note that each element
of ZnN is measured with probability 1/Nn and that the samples of ak for different k’s are independent.
Up to a global phase, we have

|jk〉 |ak〉 .

We omit the second register which is known to us. According to Lemma 2.7, with probability 1−2−Ω(κ),
the value stored in the first register is in the range [−bN/2c, dN/2e − 1]. Applying the QFT over ZN
to the first register, we obtain ∑

b∈ZN

ωjk·bN |b〉 .

Once we measure the state above and let bk denote the observed value. Note that each element
of ZN is measured with probability 1/N and that the samples of ak for different k’s are independent.
We obtain a sample

(ak, bk) ,

where (ak, bk) are uniformly random over ZnN × ZN .
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Chapter 5

A finer modelling of BKZ:
understanding the head concavity

In this chapter, we first report experiments that we run on the BKZ algorithm to measure the folklore
shorter-than-expected phenomenon in many aspects. Then we propose a new simulator for modelling
the behavior of BKZ that is more precise than the prior ones. In this modified simulator, the main new
ingredient is the use of randomness to simulate the distribution of the minimum of random lattices.
Further, we provide a new BKZ variant that exploits the shorter-than-expected phenomenon, which
allows to compute a basis with even better quality.
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5.1 Introduction
The BKZ lattice reduction algorithm, proposed by Schnorr and Euchner [SE94], is the most practi-
cal algorithm for solving lattice problems, thus also for cryptanalysis of lattice-based cryptography.
However, there is a large performance gap between existing theoretical bounds and experimental re-
sults. In [HPS11] (see also [Neu17]), it was shown that in the worst case, BKZβ (with early termination)
achieves a Hermite factor of βO(n/β) within a polynomial number of calls to the SVP solver, for β = o(n)
and n growing to infinity. It was also shown in [HS08] that there exist bases with such Hermite factors
(up to a constant factor in the exponent) which are left unchanged when given as inputs to BKZβ .
Unfortunately, these worst-case bounds are quantitatively very far from experimental data. The Geo-
metric Series Assumption (GSA), introduced by Schnorr [Sch03], was experimentally observed to be a
good first approximation to the practical behavior of BKZ. It states that the ratio between two con-
secutive Gram–Schmidt norms is almost equal to some constant r. Among others, this implies that
a Hermite factor of r(n−1)/2. It was argued in [CN11] (see also [Che09, Chapter 4]) that for β small
compared to n, one should have r ≈ ( β

2πe (πβ)
1
β )

1
β−1 . The latter value is derived by relying on the

Gaussian heuristic to estimate the smallest non-zero norm in a β-dimensional lattice.
Nevertheless, the GSA does not provide an exact fit: for β & 30, the typical BKZ output basis

has its first few Gram–Schmidt norms and its last ≈ β Gram–Schmidt norms violate this assumption.
These first and last Gram–Schmidt norms are respectively called the head and the tail, the rest being
the body. In [CN11], Chen and Nguyen refined the sandpile model from [HPS11] and provided a BKZ
simulator based on the Gaussian heuristic (with a modification for the tail, see Section 2.5.4). Their
BKZ simulator captures the body and tail behaviors of the Gram–Schmidt norms very precisely [CN11,
YD17]. However, as investigated in [CN11, AWHT16, YD17], the Chen–Nguyen simulator fails to
capture the head phenomenon: the head almost follows the GSA in the simulations, whereas, in the
experiments, the logarithmic Gram–Schmidt norms form a concave curve (instead of a line). Put plainly,
BKZ finds shorter vectors than predicted by the Chen–Nguyen simulator. Refer to Figures 5.1–5.2 for
an example, we run BKZ with block-size 45 on 100-dimensional lattices (generated by the Darmstadt
lattice challenge generator) and record the Gram-Schmidt norms of the reduced bases after 2000 tours
(each data is averaged over 100 trials). As we can see, the first few Gram–Schmidt norms of the
BKZ reduced basis are less than the ones estimated by the Chen–Nugyen simulator for BKZ. This
inaccuracy may lead to overestimated security evaluations in cryptographic design. Understanding the
head concavity phenomenon was put forward as an important open problem in [YD17], for assessing
the bit-security of concrete lattice-based cryptosystems.
Contributions. Our first main contribution is the design of a more accurate BKZ simulator, relying
on a probabilistic version of the Gaussian heuristic. More precisely, we take into account the fact
that the norm of a shortest non-zero vector of a random lattice is not a fixed quantity driven by
the Gaussian heuristic, but a random variable. Concretely, we use a distribution derived from the
result on the distribution of short vectors in random lattices by Södergren [Söd11]. We compare our
probabilistic simulator and experimental BKZ with large block-sizes, and observe that our simulator
provides accurate predictions of the head region, while maintaining a good approximation on both
body and tail regions. If we focus on the head region, the new simulator is always more precise than
the Chen–Nguyen simulator, and similarly accurate for body and tail. Therefore, the Hermite factors
estimated by the new simulator are more accurate and fit the experimental results more precisely. This
is established through extensive experiments designed to measure the head concavity phenomenon. Such
understanding also allows to efficiently assess how it scales for larger block-sizes: when β increases, the
head phenomenon decreases, i.e., the GSA is followed more closely.

Our second main contribution is an algorithmic exploitation of the fact that BKZ performs better
than the GSA for its first output vectors. We propose a new variant of BKZ, pressed-BKZ, that aims to
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exploit the head phenomenon everywhere in the graph of Gram–Schmidt norms. To do so, we proceed
iteratively: we run BKZ between indices 1 and n, then we freeze the first basis vector and run BKZ
between indices 2 and n (i.e., on the appropriately projected basis), then we freeze the first two basis
vectors and run BKZ between 3 and n, etc. The bonus of being at the start of the basis is exploited
at every position. The output basis tightly follows the GSA in the head and body regions. The gain
is that the Gram–Schmidt slope is better than with the original BKZ. Overall, for the same block-size
as in BKZ, pressed-BKZ produces lattice bases of improved quality. We adapt our BKZ simulator to
pressed-BKZ, and again, the simulation is quite accurate, giving further confidence that our simulation
correctly captures the head phenomenon.

0 20 40 60 80 100

−1.0

−0.5

0.0

0.5

1.0

Index i

lo
g
∥ ∥ b∗ i∥ ∥

Experimental log ‖b∗i ‖
Chen–Nguyen simulator
GSA

Fig. 5.1: Gram–Schmidt log-norms for BKZ45 at tour 2, 000.

Another way to exploit the head phenomenon was suggested in [AWHT16]. As the first Gram–
Schmidt norms decrease less fast than the others, this means the first BKZ blocks are more reduced,
and hence solving the corresponding SVP instances is easier. In [AWHT16], Aono et al. proposed using
a larger block-size in the head region than in the rest of the basis. The purpose is to make the head
region even better, without increasing the overall cost significantly. We combine this “adaptive block-
size” strategy with the pressed-BKZ algorithm. This variant allows us to accelerate the convergence of
pressed-BKZ towards its typical output quality.

Finally, we demonstrate the usefulness of the BKZ variant by testing it on the SVP-120 instance of
the Darmstadt lattice challenge.1 We also compare the quality of pressed-BKZ60 with that of BKZβ
for various block-sizes β.
Impact. For concrete lattice-based cryptosystems with parameters set using the Chen–Nguyen sim-
ulator (or the corresponding GSA ratio), the head phenomenon is a potential security risk: as BKZ
performs better than taken into account while setting parameters, the parameters were potentially set
too low for the bit-security targets. Our simulator, which accurately predicts the head phenomenon,

1https://www.latticechallenge.org/svp-challenge/
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Fig. 5.2: Same as Figure 5.1, but zoomed in.

suggests that the head phenomenon vanishes when the block-size becomes large. We conjecture this is
because the distribution of the first minimum in random lattices has a standard deviation that decreases
to 0 relatively quickly when the lattice dimension increases (this lattice dimension corresponds to the
BKZ block-size β). Quantitatively, the phenomenon has almost fully disappeared for β ≈ 200. It is also
less important when n is much larger than β. Concrete figures are provided at the end of Section 5.3.4.

The lattice-based submissions to the NIST post-quantum standardization process2 use conservative
security estimates. In particular, they rely on lower bounds for the cost of solving SVP in dimension β,
which are significantly below what can currently be achieved in practice (we refer to [ACD+] for
concrete figures). Note that this seems unrelated to the head phenomenon. As a result, the BKZ
block-sizes needed to break the scheme are often in the hundreds, a range of block-sizes for which the
head phenomenon has already vanished. The NIST candidates most impacted are those that were more
aggressive in setting their parameters, though the impact remains limited even for them.

Oppositely, for block-sizes that can be handled in practice (e.g., β . 100), the head concavity phe-
nomenon is non-negligible, and can be exploited. Our work can then help make concrete cryptanalysis
more accurate. By allowing one to solve SVP in larger dimensions β using pressed-BKZβ′ with β′ < β

as a pre-processing, our work should allow one to perform BKZ in larger block-sizes β. It is well-known
that for small block-sizes (say β . 35), BKZβ benefits from the fact that the Gaussian heuristic is over-
conservative for the BKZβ projected sublattices (see [CN11], for example). This phenomenon vanishes
when the block-size becomes higher. But then BKZβ benefits from the head concavity phenomenon.
As a result, extrapolating concrete experiments in such block-sizes to draw conclusions in much larger
block-sizes seems to amount to wild guessing. On the other hand, we have a better simulation of the
head phenomenon for BKZ with practical block-sizes. By exploiting the head phenomenon, we can
hope to reach higher block-sizes, for which such small block-size effects do not occur anymore. In this
smoother regime, extrapolating experiments should become sounder.

2https://csrc.nist.gov/Projects/Post-Quantum-Cryptography

81

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography


Section 5.1. Introduction

Related works. The first simulator for predicting the Gram–Schmidt norms of a BKZ-reduced basis
was proposed by Chen and Nguyen in [CN11]. It relies on the assumption that each SVP-solver in the
projected local block finds a lattice vector whose norm exactly matches its Gaussian heuristic estimate
for that local block, except for a few blocks at the end of the basis. It is a good first approximation,
but remains inaccurate in two ways. First, it does not capture the head concavity phenomenon (which
is reported nevertheless in the experiments of [CN11]). Second, it does not take into account that
in practice it is preferable to use heuristic SVP-solvers which may miss the optimal solutions. The
main such heuristic SVP-solver is pruned enumeration, introduced in [SE94] and refined and improved
in [GNR10]. It consists in pruning the enumeration tree by keeping only the nodes that are most likely
to lead to interesting leaves. As a result, only a subset of lattice points are enumerated within the
required radius, and the optimal solution may be missed. Extreme pruning [GNR10] goes even further:
it decreases the probability of finding a shortest non-zero vector to lower the time/probability ratio,
and runs the process several times to boost the success probability. Each time, the lattice basis is
re-randomized and reduced with a lower block-size to prepare for the enumeration.

In [AWHT16], Aono et al. described the so-called progressive-BKZ. The main new ingredient is that
the latter tries to avoid the re-randomization/pre-processing overheads by using a single enumeration
in any SVP call. For this, the authors increase the search radius in the enumeration, aiming to find a
short vector but not necessarily a shortest one by pruning the enumeration tree. This search radius is
adaptively derived from the current basis quality. Since the authors are not in the regime of finding a
shortest non-zero vector, to estimate the success probability, the authors model lattice points of norm
below the search radius as random points in the ball of that radius (see [AWHT16, Lemma 1]). This
pruned enumeration with increased search radius heuristically produces a non-zero vector in lattice Λ
of norm β

β+1 · α · GH(Λ) for some α ≥ 1, using their random point model (also refer to Section 2.5).
For α = 1, we obtain an expectation for the first minimum that is lower than the Gaussian heuristic.
Aono et al. also adapted the Chen–Nguyen simulator by modifying the expected norm found by the
SVP-solver using the random points model rather than the Gaussian heuristic value. Note that the
updated simulator takes some probabilistic phenomenon into account but remains deterministic. In
particular, it does not capture the head concavity phenomenon. Finally, as mentioned earlier, Aono et
al. also experimentally observed the head concavity phenomenon, and proposed to exploit it by using
BKZ with larger block-size on the first few blocks.

Yu and Ducas [YD17] ran extensive experiments to assess the practical behavior of BKZ. They have
two main experimental observations. First, the distribution of differences vi := log ‖b∗i ‖ − log ‖b∗i+1‖
between two consecutive Gram–Schmidt log-norms, varies as a function of the index i when i belongs to
the head and tail regions (and it does not in the body region). Second, the covariance between vi and
vi+2 is 0 for all i, but vi and vi+1 are negatively correlated: in the head and tail regions, their covariance
depends on both i and the block-size β, but in the body region only the block-size β contributes to
their covariance. These observations quantify the head concavity phenomenon more precisely.
Software. Our BKZ experiments were run using the fplll [dt16] (version 5.2.0) and fpylll [dt17]
(version 0.4.0dev) open-source libraries. The efficiency of these libraries for large block-sizes β ≥ 50 was
essential for obtaining useful statistics. Our simulator, coded in Python, and the BKZ variants, coded
in C++ are all freely available online: https://github.com/BKZsimulator under the GNU Lesser
General Public License (either version 2.1 of the License or any later version).

As mentioned earlier, we report experiments on pressed-BKZ with an adaptive block-size strategy,
for the SVP-120 challenge. We expect our BKZ improvements to be useful in larger dimensions as well
(e.g., SVP-150), if given sufficient computational resources. We want to stress that our primary goal
is to model, predict and exploit the head concavity phenomenon, the SVP-120 experiment being an
illustration of its relevance.
Auxiliary supporting material. To make our results reproducible and to report experimental
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observations in more details, we provide codes (as mentioned above), experimental raw data and video
files online: perso.ens-lyon.fr/weiqiang.wen/thesis.html.

5.2 Measuring the head concavity

In this section, we describe in detail the concavity phenomenon in the leading Gram–Schmidt log-
norms. In particular, we report experiments on the quality of bases output by BKZβ and on the
evolution of Gram–Schmidt norms during the execution of the algorithm.

In our experiments, we consider the knapsack-type lattice bases generated by the Darmstadt lattice
challenge generator. In dimension n, the generator selects a prime p of bitsize 10 · n and sets the first
basis vector as (p, 0, · · · , 0). For i > 1, the i-th basis vector starts with a uniformly chosen integer
modulo p, and all other entries are 0 except the i-th entry which is 1. When using the generator file,
the seed is from the set {0, · · · , k − 1}, where k is total number of samples in the experiment, which
enables reproducibility. We always run LLL reduction before a BKZ reduction. We use the default
LLL in fplll of parameter δ = 0.99.

5.2.1 BKZ output quality
In our first set of experiments, we measure the output quality of the BKZ algorithm. We consider
the final reduced basis, for increasing block sizes β. We let BKZ run until it fully stops and use a
full enumeration as SVP-solver (without pruning), to avoid side-effects. We then measure the Gram–
Schmidt log-norms {log ‖b∗i ‖}i≤n of the reduced basis B. In particular, when BKZ completes, the
vector b∗i is a shortest non-zero vector of the lattice Λ[i,i+min(i+β−1,n)] (up to the 0.99 factor), for
every i (see Section 2.5.4).

As we use BKZ until exhaustion with full enumeration, the experiments are quite lengthy. We
restricted them to dimension n = 100, with selected block sizes β ranging from 4 to 40. For each choice
of β, we conduct the experiment 100 times using input lattices generated with different seeds. For
each experiment, we normalize the log ‖b∗i ‖’s of the reduced basis by substracting one hundredth of the
logarithmic determinants of its input lattice, such that the summation of the new logarithmic Gram–
Schmidt norms is normalized to be 0. This step helps eliminate the small differences of determinants
of all generated lattices. We then average log ‖b∗i ‖ for each i over the 100 samples.

We plotted the results for the various block sizes in Figures 5.3–5.8. The x-axis corresponds to
the basis vector at index i and the y-axis is the Gram–Schmidt log-norm. Each figure contains several
graphs: the red dots are the (averaged) experimental log ‖b∗i ‖’s; the brown dots are obtained by
applying the upper bound in Minkowski’s first theorem to each one of the experimentally obtained
local blocks B[i,i+min(i+β−1,n)] of the output basis; the purple dots are the values obtained by replacing
the upper bound in Minkowski’s first theorem by the Gaussian heuristic GH(Λ[i,i+min(i+β−1,n)]), and
the blue dots are the expected λ1(Λ[i,i+min(i+β−1,n)]) (see Subsection 2.1.1).

The experiments highlight that the Gaussian heuristic and expected value of first minimum are not
very accurate for predicting the output of the BKZ algorithm (and neither is Minkowski’s first theorem,
but that is less surprising). For small block sizes, the experimental Gram–Schmidt log-norms are above
the Gaussian heuristic values. Notice this even appears to happen for the tail blocks for large β. When
the block size increases, the Gaussian heuristic and first minimum expectation get closer to each other
(except in the tail region), but still do not accurately predict the genuine BKZ output. In particular,
the experimental Gram–Schmidt log-norms are concave in the head region (the other curves are also
somewhat concave, but less so, as they are smoothed versions of the experimental curve). This is the
phenomenon we refer to as head concavity. It starts being quite noticeable with β ≈ 30.
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Fig. 5.3: Output of BKZ4.
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Fig. 5.4: Output of BKZ8.
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Fig. 5.5: Output of BKZ16.
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Fig. 5.6: Output of BKZ20.
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Fig. 5.7: Output of BKZ30.
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Fig. 5.8: Output of BKZ40.
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5.2.2 Enumeration costs in local blocks
The enumeration cost for SVP in each local block is also an interesting quantity for evaluating the
extent of the head concavity of a BKZ-reduced basis. It is also the cost for checking that the basis is
indeed BKZβ-reduced. As explained in [HS07], under the Gaussian heuristic, the full enumeration cost
(as number of nodes, denoted by “# nodes”) of a d-dimensional lattice using enumeration radius ‖b∗1‖
can be estimated by

d∑
k=1

1
2 ·

Vk(‖b∗1‖)∏d
i=d−k+1 ‖b∗i ‖

. (5.1)

We take the (averaged) BKZ40 pre-processed basis from the previous subsection and compute the local
SVP costs of SVP40, SVP50 and SVP60 on the BKZ40-pre-processed basis. In Figure 5.9, we plot the
logarithm of the quantity above for each local block for SVP40, SVP50 and SVP60. It can be seen that
the local SVP costs in the first few blocks are cheaper. The enumeration costs keep increasing until the
last β − 1 blocks. These last blocks are of smaller dimensions, explaining why their enumeration costs
become lower. As cheaper enumeration reflects stronger reducedness, the curve in Figure 5.9 reflects a
concavity of the log ‖b∗i ‖’s in the head.
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Fig. 5.9: Estimated enumeration costs (of each local block) for BKZ40, BKZ50 and BKZ60 on a BKZ40
reduced basis.

5.2.3 Evolution of the Gram–Schmidt norms during the execution
The previous experiments suggest that the Gaussian heuristic may be inaccurate for a BKZ-reduced
basis in the head region. In this subsection, we further investigate the evolution of the accuracy of the
Gaussian heuristic for each local block Λ[i,min(i+β,n)] during the running of the BKZ algorithm. We
focus on the evolution of the BKZ40 experiments from Subsection 5.2.1. After each BKZ tour, we record
{b∗i }i∈[n] for each experiment. Again we use a full enumeration as SVP-solver (without pruning), to
avoid side-effects and wait until BKZ completes.
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In Figure 5.10, we plot the Gram–Schmidt log-norms after each tour (for the first 1000 tours, plus
those of the initial LLL-reduced input). For each BKZ40 experiment, we normalize the log-norms
after each tour as in Subsection 5.2.1. Furthermore, we take the average of the log-norms for the 100
experiments (one individual graph would be less smooth). Finally, we plot the log-norms for the first
1000 tours (one BKZ instance completes before 1000 tours; and after this one completes, for a given
tour number, we take the average over the BKZ experiments that are running for more than 1000
tours). The dots corresponding to the earlier tours are colored in blue, and those corresponding to the
later tours are colored in red (the color changes gradually).

Fig. 5.10: Evolution of the Gram–Schmidt log-norms during BKZ40’s execution.

The plot shows the evolution of the log-norms across tours. However, it does not clearly highlight
the evolution of the relation between the ‖b∗i ‖’s and the Gaussian heuristic values. Hence we further
compute the quantities

‖b∗i ‖
GH(Λ[i,min(i+β,n)])

for i ≤ n.

Note that this should be expected to be close to 1 for a random lattice, under the Gaussian heuristic.
For each tour, for all indices i, we record all the (averaged) quantities at i’s across the 100 experiments.
We plot a line for each tour and hence Figure 5.11 contains 1001 lines. In Figure 5.11, the x-axis
corresponds to the index i; the y-axis corresponds to the quantities above. Note that for each i, there
are 1001 dots vertically, corresponding to the number of BKZ tours plus the initial LLL-reduced input.

As observed in prior works, BKZ distorts the distribution of the projected lattices: the first projected
sublattices are denser (the minimum is smaller) and the last projected sublattices are sparser. This can
be seen from Figure 5.11 since the red points are significantly lower than 1 in the first indices. Further,
this distortion occurs often very quickly during the execution of BKZ, sometimes within a few tours.

5.2.4 Evolution of root Hermite factor of the basis
We now consider the asymptote of the root Hermite factor of the basis being BKZ-reduced, as the
number of BKZ tours increases. A similar experiment was done in [HPS11]. We compare the experi-
mental behavior to the Chen–Nguyen simulator. We fix the block size at β = 45 and run BKZβ on 100
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Fig. 5.11: Evolution of the ‖b∗i ‖/GH’s during BKZ40’s execution.

random instances. After each tour, we record the average root Hermite factor. In Figure 5.23 (we also
duplicate it here for convenience, as Figure 5.12), we plot the averaged root Hermite factors over all
experiments. The root Hermite factor δ is computed as:

δ = (‖b∗1‖/ (det Λ)1/n)1/n.

It can be seen that the evolution of the root Hermite factor does not match with its prediction by the
Chen–Nguyen simulator. Indeed, the root Hermite factor obtained with the Chen–Nguyen simulator
does not further improve after the first few tours; while it keeps improving in the actual experiments.
It should also be noted that in the first few tours, the root Hermite factors in the actual experiments
are worse than those of the Chen–Nguyen simulation. This might be due to the fact that the SVP
solver is not exact in practical experiments (also the local SVP computation is aborted after a number
of trials). In particular, the SVP solver on lattice Λ may stop when it finds a short vector, e.g., with
norm within 1.05 ·GH(Λ). As the number of tours increases, the root Hermite factors in experiments
are smaller than those obtained by the Chen–Nguyen simulator.

5.2.5 BKZ with pruning
All of the previous experiments used BKZ without pruning to avoid side-effects on the quality. The
purpose of this subsection is to show that using extreme pruning within the enumeration indeed affects
the behavior of BKZ to some extent (this was also observed in [YD17]). Nevertheless, the head concavity
phenomenon remains visible even in pruned-enumeration BKZ. Again we run the BKZ experiments until
they fully complete (i.e., no early-abort).

We consider two experiments. First, we run BKZ40 with pruned enumeration and compare it with
standard BKZ40.We used the default pruning strategy of fplll. We note that there is no known
canonically best way to prune, and the experimental results may vary a little across different pruning
strategies.We see by comparing Figure 5.13 (with pruned enumeration) with Figure 5.8 (without) that
the extent of the head concavity phenomenon is less than without pruned enumeration. In the second
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Fig. 5.12: Evolution of Root Hermite factors during the execution of BKZ45.
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Fig. 5.13: Output Gram–Schmidt log-norms for BKZ40 with pruning.
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experiment, we run BKZ with pruned enumeration with larger block size, which is also more relevant
for cryptanalysis. In particular, we run BKZ60 with pruned enumeration and then plot the evolution
of the corresponding ‖b∗i ‖/GH’s (for the first 500 tours). This is to be compared with Figure 5.11. We
can conclude that the head concavity phenomenon still exists for practical versions of BKZ with larger
block sizes.

Fig. 5.14: Evolution of the ‖b∗i ‖/GH’s during the execution of BKZ60 with pruning.

5.3 A refined BKZ simulator

In this section, we describe a refined BKZ simulator, and report on experiments indicating that the
simulation is quite accurate, in particular in capturing the head concavity phenomenon.

5.3.1 The refined simulator
Our probabilistic BKZ simulator aims to provide a more accurate simulation of the experimental behav-
ior of the BKZ algorithm. Our simulator has similar structure as the Chen–Nguyen simulator (refer to
Subsection 2.5.4), in particular, we also consider the Gram–Schmidt log-norms. We assume the reader
is familiar with the Chen-Nguyen simulator, and, below, we comment on the differences.

The main difference is the emulation of the probabilistic nature of the minimum in random lattices.
Theorem 2.1 provides the distribution of the minimum of a uniform unit-volume lattice. The new BKZ
simulator, given as Algorithm 10, is probabilistic. It takes this distribution into consideration when
updating each local block. In more detail, suppose that we are updating the local block Λ[k,e] = Λ(B[k,e])
for some k ≤ n − 45 and e = min(k + β − 1, n) with dimension d = min(β, n − k + 1). Let us assume
this is a random lattice. By Theorem 2.1, we have that λ1(Λ[k,e]) is distributed as

λ1(Λ[k,e]) =
(
X · vol(Λ[k,e])

vd

)1/d

,
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where X is sampled with distribution Expo[1/2]. Recall that vd is the volume of n-dimensional unit
ball. Now we can take the logarithm to obtain

log λ1(Λ[k,e]) =
logX + log vol(Λ[k,e])− log vd

d
.

This explains Line 14 in Algorithm 10. At Line 15, the simulator checks whether a value sampled
as above, e.g., log ‖b∗k‖, is smaller than the current log ‖b∗k‖. If it is indeed smaller, then the value
of log ‖b∗k‖ is updated. Else the former one is kept. This corresponds to the main step in the BKZ
algorithm (Line 4–7): once the found vector (in the SVP call) is shorter than current b∗i in current
local block, then the found vector will be used to replace bi, thus b∗i is updated. Otherwise the found
vector will be discarded, and the simulation assumes that b∗i is not changed during the LLL-reduction.

A further difference with the Chen–Nguyen simulator is the way we handle the remaining Gram–
Schmidt log-norms in the current local block in case log ‖b∗k‖ has been updated. In the Chen–Nguyen
simulator, after updating the first Gram–Schmidt log-norms log ‖b∗k‖ in the current local block, all the
remaining log-norms log ‖b∗i ‖ for i > k will be updated by using the Gaussian heuristic directly without
further checking whether the estimated value gives an improvement or not (refer to Algorithm 9). In our
simulator, we consider a refined update of the remaining log ‖b∗i ‖’s of the block. Concretely, we update
all the remaining indices in the current local block by increasing them by a common amount chosen
so that the volume of current block is preserved (it compensates for the decrease of log ‖b∗k‖). There
is one further subtlety in the actual update applied by the simulator. For the second Gram–Schmidt
log-norm of the block, it sets ̂̀k+1 ← `k + log(

√
1− 1/d) rather than increasing it by the same amount

as for the d−2 remaining log-norms. Here the quantity
√

1− 1/d is used to simulate the updated norm
of b∗k after removing its projection on the new inserted vector (the found shortest vector of current
local block). This twist also follows in experiments: the updated second Gram–Schmidt norm is almost
always a bit smaller than the old first Gram–Schmidt norm of the block. Such a strategy also makes
the simulator more flexible. In the new simulator, it is not necessary to update all the remaining blocks
with the value estimated by the Gaussian heuristic once we have an update: the simulator makes an
update only when needed, i.e., when an improving Gram–Schmidt norm is sampled.

We also use two sets of boolean values {t(i)0 }i≤n and {t(i)1 }i≤n, which are used to record if there is
a change of log ‖b∗i ‖ in the last and the current tours, respectively. If we know there was no change
at all in current local block during the last tour, we simply skip the current block and go to the next
one. Correspondingly, in the real procedure of BKZ, it means that the found shortest vector in current
block in this tour will be the same as the one in current block in the previous tour. As it was not used
to make an update during the previous tour, so will it not be used in the current tour.

As the Chen–Nguyen simulator is deterministic, it terminates relatively fast, within a few hundreds
of tours typically. Oppositely, our probabilistic simulator may perform far more tours and continue
making further (though smaller and smaller) Gram–Schmidt progress. Another difference between the
behaviors of the simulators comes from the fact that the expectation of a given sample (corresponding
to g in line 14 of Algorithm 10) for updating each local block in our simulator is slightly larger than
the one used in the Chen–Nguyen simulator that uses the Gaussian heuristic (but they become closer to
each other as the block size increases). As a result, the sampled value for the first minimum of a local
block can be slightly larger than in the Chen–Nguyen simulator. However (and more importantly),
the chosen value can also be smaller than the Gaussian heuristic, and in fact smaller than the current
value even if that one is already quite small. This is exactly what makes the Gram–Schmidt log-norms
progress further in the simulations and make the simulations closer to the practical behavior of BKZ.
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Algorithm 10 The probabilistic BKZ simulator
Require: The Gram–Schmidt log-norms {`i = log ‖b∗i ‖}i≤n and an integer N ≥ 1.
Ensure: A prediction of the Gram–Schmidt log-norms after N tours of BKZ.
1: for i = 1 to 45 do ri ← E[log ‖b∗k‖ : B HKZ-reduced basis of Λ← Γ45]
2: end for
3: t(i)0 ← true,∀i ≤ n
4: for j = 1 to N do
5: t

(i)
1 ← false,∀i ≤ n

6: for k = 1 to n− 45 do
7: d← min(β, n− k + 1); e← k + d
8: τ ← false
9: for k′ = k to e do τ ← τ‖t(k

′)
0

10: end for
11: log vol(Λ[k,e])←

∑e−1
i=1 `i −

∑k−1
i=1

̂̀
i

12: if τ = true then
13: X ←↩ Expo[1/2]
14: g ← (logX + log vol(Λ[k,e])− log vd)/d
15: if g < `k then
16: ̂̀

k = g
17: ̂̀

k+1 ← `k + log(
√

1− 1/d)
18: γ ← (`k + `k+1)− (̂̀k + ̂̀k+1)
19: for k′ = k + 2 to e do
20: ̂̀

k′ ← `k′ + γ/(d− 2)
21: t

(k′)
1 ← true

22: end for
23: τ ← false
24: end if
25: end if
26: {`k, · · · , `e−1} ← {̂̀k, · · · , ̂̀e−1}
27: end for
28: log vol(Λ[k,e])←

∑n
i=1 `i −

∑n−45
i=1

̂̀
i

29: for k′ = n− 44 to n do
30: ̂̀

k′ ←
log vol(Λ[k,e])

45 + rk′+45−n

31: t
(k′)
1 ← true

32: end for
33: {`1, · · · , `n} ← {̂̀1, · · · , ̂̀n}
34: {t(1)

0 , · · · , t(n)
0 } ← {t

(1)
1 , · · · , t(n)

1 }
35: end for
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5.3.2 Heuristic justification
We now give a heuristic explanation as to why the probabilistic simulator (and BKZ) keeps making
progress even after some significant amount of time. Every time it considers a block, it keeps trying to
find a shorter vector than the current first vector of the block, thanks to fresh random sampling. Let
X ←↩ Expo(1/2) and Y = X1/n. Assume for simplicity that there is only one block (i.e., n = β) and
that the lattice Λ has been scaled so that the volume of the lattice is 1, which implies that λ1(Λ) has
the same distribution as Y . The CDF of Y is

F (y) = 1− e−y
n/2.

Let Ymin,K be the minimum among K independent Yi’s. Its CDF and PDF are

Fmin,K(y) = 1− e−Ky
n/2 and fmin,K(y) = Knyn−1e−Ky

n/2/2,

respectively. We can hence compute the expected value

E(YK,min) = (2/K)1/n · Γ(1 + 1/n) = E(λ1(Λ))/K1/n.

One sees that the expectancy keeps decreasing, although much more slowly as K increases. Notice that
K here can be regarded as proportional to the number of blocks treated in our probabilistic simulator.
We conjecture that BKZ is enjoying a similar phenomenon.

This simple model does not work for explaining BKZ with a single block (because for a single
block, once the SVP instance has been solved, it cannot be improved further). In the more interesting
case where β < n, the fact there are many intertwined blocks helps as an improvement for one block
‘refreshes’ the neighbouring blocks, which then have a chance to be improved. In this case, however,
this simple model does not capture the impact of one block on the neighbouring blocks, nor the fact that
the SVP instances across blocks are not statistically independent (in particular, the blocks overlap).

5.3.3 Quality of the new simulator
In this subsection, we describe experiments aiming at assessing the accuracy of our probabilistic BKZ
simulator. We measure the quality of our simulator by comparing with the practical BKZ and the
Chen-Nguyen simulator using two quantities: the Gram–Schmidt log-norms after certain tours and the
root Hermite factors. We then describe some limitations of our simulator.
(a) Graph of Gram–Schmidt log-norms. In practice, the full sequence of Gram–Schmidt log-
norms is important for evaluating the quality of a basis. For example, if we extrapolate the log-norms
by a straight line, the slope of the line can be used to indicate whether the basis is of good quality or
not. For this reason, we are interested in how accurately the simulator predicts the evolution of the
full sequence of Gram–Schmidt log-norms during the BKZ execution. We consider the following two
experiments:

(1) The input lattices are SVP-100 instances and we use BKZ45 without pruned enumeration during
up to 2, 000 tours. Note that for this experiment, the setup is the same as the one used in
Subsection 5.2.4.

(2) The input lattices are SVP-150 instances and we use BKZ60 with pruned enumeration up to
20, 000 tours.

We record the full log-norm sequences at the end of selected tours. As shown in Figures 5.15–5.22, after
a few tours, both the new BKZ simulator and the Chen–Nguyen simulator approach the experimental
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behavior of BKZ. As the number of BKZ tours increases, both the experimental BKZ and the proba-
bilistic BKZ simulator evolve, and the corresponding log-norms eventually become concave in the head
region. However, the Chen–Nguyen simulator stops making progress after a few tours. By comparison,
the new simulator fits the experimental results quite accurately in both situations.
(b) Root Hermite factor. In Subsection 5.2.4, we have seen that the asymptotes (for a large number
of tours) of the root Hermite factors obtained with the genuine BKZ algorithm and the Chen–Nguyen
simulator diverge. Here in Figures 5.23 and 5.24, we investigate the behavior of the root Hermite
factor obtained with the new probabilistic simulator, when the number of tours increases. One can
observe that, after a few tours, the probabilistic simulator predicts the experimental data more closely.
One can also observe that, in the very first several tours, neither the Chen–Nguyen simulator nor the
probabilistic simulator is very accurate. In the case of pruned enumeration, the experimental root
Hermite factors drop faster than the simulators; while with non-pruned enumeration, the root Hermite
factors in experiments evolve more slowly. This may be due to the algorithmic and implementation
complications brought by the pre-processing, the SVP solver, pruning and post-processing.
(c) Limitations of the new simulator. The probabilistic simulator does not fully match with the
experimental behavior of BKZ in the first few tours. In particular, the progress of the real Gram–
Schmidt log-norms with BKZ with non-pruned enumeration is slower than the simulator’s (refer to
Figure 5.23). One potential reason is the local SVP solver only attempts to find a vector smaller than
‖b∗i ‖. On the other hand, it may be observed that the progress of the real Gram–Schmidt log-norms is
a bit faster than the simulated log-norms in the very first BKZ tours, for BKZ with pruned enumeration
(refer to Figure 5.24). One potential reason could be that the pruned enumeration uses extensive pre-
processing in a local block (which is not captured by the simulator), and this helps to lower the root
Hermite factor in the beginning of the execution. However, as soon as the number of tours increases,
the probabilistic phenomenon seems to weigh more and the new simulator becomes accurate.
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Fig. 5.15: Gram–Schmidt log-norms for BKZ45 at tour 50.
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Fig. 5.16: Same as Figuer 5.15, but zoomed in.
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Fig. 5.17: Gram–Schmidt log-norms for BKZ45 at tour 2, 000.
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Fig. 5.18: Same as Figure 5.17, but zoomed in.
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Fig. 5.19: Gram–Schmidt log-norms for BKZ60 at tour 50.
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Fig. 5.20: Same as Figure 5.19, but zoomed in.
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Fig. 5.21: Gram–Schmidt log-norms for BKZ60 at tour 20, 000.
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Fig. 5.22: Same as Figure 5.21, but zoomed in.
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Fig. 5.23: Evolution of the root Hermite factor during the execution of BKZ45 (no pruned enumeration)
on SVP-100.
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Fig. 5.24: Evolution of the root Hermite factor during the execution of BKZ60 (with pruned enumera-
tion) on SVP-150.
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Fig. 5.25: Comparison of Gram–Schmidt log-norms obtained by the simulators and BKZ60 (no pre-
processing) on SVP-150, after 4,000 tours.
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Next, we verify if the pre-processing indeed helps make the experimental root Hermite factor decrease
faster than the corresponding quality in the simulator. To verify the impact of pre-processing in pruned
enumeration, we run BKZ60 (with pruned enumeration) without pre-processing on SVP150 instances.
We plot the root Hermite factor of of the basis after each tours (up to 100 tours). Each data is taken
averaged over 100 results. As shown in Figure 5.25, the BKZ variant without pre-processing makes
progress no faster than the simulator. This suggests that pre-processing indeed accelerates the progress
made by BKZ. On the other hand, we can also observe that without pre-processing, the root Hermite
factor decrease more slowly than the corresponding quality in the simulator. One possible reason for
this could be that the vector found by extreme pruning in each local block is slightly longer than the
minimum of the local lattice.

In conclusion, it seems quite difficult to use the simulator to estimate the precise evolution of Gram–
Schmidt log-norms for the first few tours due to the following two reasons: (1) it is unclear how much
improvement is provided by the pre-processing; (2) we do not have a precise understanding on the
distribution of norms of vectors output by the enumeration (ideally, with pruning). On the other hand,
after the first few tours, the simulator seems to be more accurate when estimating the Hermite factors,
which is important for cryptographic applications.

5.3.4 Predicting the root Hermite factor for large block sizes
As our proposed simulator predicts real BKZ quite well for the range of block sizes for which such
experiments can be run, we expect that our simulator keeps this accuracy for larger block sizes. This is
in particular relevant in cryptanalysis and for security analyses of concrete lattice-based cryptosystems.
Indeed, many of the existing security analyses rely on the root Hermite factor predicted by the Chen–
Nguyen simulator (see [ACD+] and the references therein), which, as we have seen, is an over-estimate.
We thus run the simulators for large block sizes and large dimensions, to assess how the discrepancy
scales.

In this experiment, we consider two cases:

(1) the dimension n is much larger than the block-size β.

(2) the dimension n is a small constant times larger than the block-size β.

Case (1) is a scenario often considered to assess the quality of BKZ-type algorithms (see, e.g., [CN11]).
On the other hand, in practice, we are also interested in Case (2) where the dimension/block-size ratio
is small. This is a typical situation for the lattice-based NIST candidates (see [ACD+]). Concretely, in
the first case, we run our simulator of BKZ with block-size β ∈ [50, 250] on 1000-dimensional lattices
and our simulator on BKZ with block-size β ∈ [260, 300] in 2000-dimensional lattices, both with 20,000
tours. In the second case, we run the same experiment as above except with a fixed ratio of 3 between
dimension and block-size. Each data point is averaged over 10 samples. We plot the root Hermite
factor computed as δ = e

(‖b∗1‖−(
∑

i∈[n]
‖b∗i ‖)/n‖)/n, where ‖b∗i ‖’s are the final simulated Gram–Schmidt

norms output by our simulator.
As can be seen in Figures 5.26–5.27, for large block sizes, the discrepancy vanishes: both simulators

converge to the same root Hermite factors. This may be explained by considering the distribution of
the minimum of a uniform unit-volume lattice, used in the probabilistic simulator. The expectation
is 21/β · Γ(1 + 1/β), which converges to 1, the Gaussian heuristic value (when β grows to infinity).
Further, as we have seen in Subsection 2.1.1, the variance of the selected value is 22/β ·

(
Γ (1 + 2/β)−

(Γ (1 + 1/β))2) · v−2/β
β , which decreases to 0 as O(1/β2), making the distribution “more concentrated”

and lowering the chance of being “lucky” in finding unexpectedly short vectors in local lattices.
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Fig. 5.26: Root Hermite factor for selected β ∈ {50, 60, · · · , 300}. Here the dimension is 1000 for β ∈
[50, 250] and 2000 for β ∈ [260, 300].
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Fig. 5.27: Root Hermite factor for selected β ∈ {50, 60, · · · , 300}. Here the dimension is 3 · β.
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5.4 Pressing the concavity
In this section, we propose a new BKZ variant. For practical purposes, we further twist this new
algorithm with several different strategies. We also quantify the quality of the obtained lattice bases.

5.4.1 Pressed-BKZ
Below, we first describe the new BKZ variant, pressed-BKZ, and then explain why it provides an
improvement. Pressed-BKZ is described as Algorithm 11.

Algorithm 11 The pressed-BKZ algorithm
Require: A basis B = {b1, · · · ,bn}, a block-size β ≥ 2 and a constant δ < 1.
Ensure: A basis of Λ(B).
1: for s = 1 to n− β + 1 do // progressive starting point
2: Re-randomize the projected lattice Λ[s,n].
3: repeat
4: for k = s to n− 1 do
5: Find b such that ‖πk(b)‖ = λ1(Λ[k,min(k+β−1,n)])
6: if δ · ‖b∗k‖ > ‖b‖ then
7: LLL-reduce(b1, · · · ,bk−1,b,bk, · · · ,bmin(k+β,n)).
8: else
9: LLL-reduce(b1, · · · ,bmin(k+β,n)).
10: end if
11: end for
12: until no change occurs (or other condition).
13: end for

The pressed-BKZ algorithm runs standard BKZ on block Λ[s,n] with an incrementally increased
starting index s ∈ [1, n − β + 1]. In particular, in the case of s = 1, pressed-BKZ executes standard
BKZ. Note that in line 12, “no change occurs” means that no local block was updated during the
last tour (from k = s to k = n − 1). The difference between pressed-BKZ and standard BKZ starts
with s > 1. At that stage, it does not run BKZ on the full lattice basis anymore. Instead, it freezes the
first s−1 lattice vectors {bi}i∈[1,s−1] and re-randomizes the projected lattice Λ[s,n], then runs standard
BKZ on the projected lattice. Note that the re-randomization is necessary, otherwise, after the BKZ
reduction on Λ[1,n], no improvement will happen in BKZ reduction on Λ[2,n] in the second iteration and
neither will it in the following iterations. In particular, in the second iteration, the re-randomization
helps to re-randomize the basis vectors of the projected lattice Λ[2,n], thus gives a chance of generating
a denser leading block of Λ[2,n] via BKZ reduction. The re-randomization on the projected lattice
is done via transforming the basis of the projected lattice with a unimodular matrix. Here, we use
the unimodular matrix generated in fplll library (within the rerandomize_block function of the
BKZReduction class).

The design rationale is as follows. Suppose BKZ creates a head concavity for the Gram–Schmidt
log-norms. Then the first iteration with s = 1 will help to lower log ‖b∗1‖. The iteration with s = 2 will
preserve log ‖b∗1‖ and help to lower log ‖b∗2‖, etc. This explains the name of the algorithm.

5.4.2 On the behavior of pressed-BKZ
The goal of pressed-BKZ is to further improve the quality of bases obtained by the original BKZ
algorithm without a block-size increase. In order to illustrate the idea, we run standard BKZ60 on
120-dimensional random lattices (generated in the same way as mentioned at the start of Section 4)
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with 500 tours (i.e., with early-abort) first, and then run pressed-BKZ with the same number of tours
in each iteration with start index s = 2. Each data point is averaged over 100 samples. As shown in
Figure 5.28, pressed-BKZ successfully presses the “head concavity” that was produced by the standard
BKZ algorithm.

0 20 40 60 80 100 120
−1.5

−1

−0.5

0

0.5

1

Index i

lo
g
∥ ∥ b∗ i∥ ∥

BKZ60
pressed-BKZ60

Fig. 5.28: Full sequences of Gram–Schmidt log-norms of bases returned by BKZ60 and pressed-BKZ60.

From the experiment above, we can already see that pressed-BKZ produces a basis with better
quality, as its corresponding Gram–Schmidt log-norms achieve a smaller slope. Next, we try to assess
by how much pressed-BKZ improves standard BKZ in this respect. We first adapt the simulator for
BKZ from Section 5.3 in the direct way to simulate pressed-BKZ. Before we go further, we check the
accuracy of our simulator when simulating the behavior of pressed-BKZ by running the same experiment
above, but with the simulator. As shown in Figure 5.29, our simulator produces a result that is close
to the one experimentally obtained with pressed-BKZ.

Now that we have an accurate simulator for pressed-BKZ, we can proceed to check the behavior of
pressed-BKZ further. For this, we run our simulator of pressed-BKZ for block-sizes between 50 and 300,
with many tours. We again consider two cases:

(1) the dimension n is much larger than the block-size β.

(2) the dimension n is a small constant times larger than the block-size β.

In the first case, we simulate pressed-BKZ with block-size β ∈ [50, 250] on 1,000-dimensional lattices
with 5,000 tours for each iteration, and pressed-BKZ with block-size β ∈ [260, 300] on 2,000-dimensional
lattices with 10,000 tours. Each data is averaged over 10 samples. In the second case, we run the same
experiment as above except with the dimension/block-size ratio set to 3. Further, we recall the data
produced by the Chen–Nguyen simulator, for the sake of a comparison. Note that we can also adapt
the Chen–Nguyen simulator for pressed-BKZ, which however, gives the same result as the simulation
for standard BKZ. Here, we use the slope to evaluate the quality of a reduced basis. To compute a
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Fig. 5.29: Full sequences of Gram–Schmidt log-norms of bases returned by BKZ60, pressed-BKZ60 and
simulated pressed-BKZ60.

slope, we extrapolate the Gram–Schmidt log-norms with a line and take its slope. Concretely, we call
the tracer in fpylll. As we can see in Figure 5.30, there is a significant difference between our simulator
for pressed-BKZ and the Chen–Nguyen simulator (for standard BKZ).

As can be seen in Figure 5.31, when the dimension is relatively close to the block-size, our simulator
for pressed-BKZ outputs the Gram–Schmidt log-norms with slope more significantly slower than the
one output by the Chen–Nguyen simulator. In particular, for small block-size β = 50, our simulator for
pressed-BKZ can produce Gram–Schmidt log-norms with slope almost equal to the one produced by
the Chen–Nguyen simulator for standard BKZ with block-size 85. Thus we earn almost 35 dimensions
while only relying on an SVP solver in dimension 50. The difference becomes very small when the
block-size considered is larger than 200.

5.4.3 Pressed-BKZ with variable block-size
Pressed-BKZ helps improving the quality of the basis such that its Gram–Schmidt log-norms approx-
imate a line. However, the concavity phenomenon still exists within each iteration in pressed-BKZ.
In particular, in the BKZβ reduction on each projected sub-lattice Λ[s,n] for s ∈ [1, · · · , n − β + 1]
of n-dimensional lattice, we can still observe the head concavity phenomenon after a few tours of the
BKZ algorithm. As a result, the costs of solving the SVP instances corresponding to the leading blocks
become less than those corresponding to the blocks in the middle. We refer to Subsection 5.2.2 for
the correspondence between quality of basis and enumeration cost for SVP. Here, we use the method
from [AWHT16], in which (adaptively) larger block-sizes are used for the leading blocks, so that the
enumeration cost matches the costs in the middle blocks as mentioned above. Concretely, for the case
of BKZβ on the projected (n − s + 1)-dimensional sub-lattice, we always take the specific block Λ[k,e]
in the middle with k = bn/2c − bβ/2c + bs/2c + 1 and e = bn/2c + bβ/2c + bs/2c as the standard of
SVP cost for comparison. Then, when the estimated SVP cost in any leading block is smaller than the
cost in this middle block, we incrementally increase the block-size of current leading block until the
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Fig. 5.30: Comparison between our simulator for pressed-BKZ and the Chen–Nguyen simulator for
standard BKZ for selected β ∈ {50, 60, · · · , 300}. Here the dimension is 1000 for β ∈ [50, 250] and 2000
for β ∈ [260, 300].
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Fig. 5.31: Comparison between our simulator for pressed-BKZ and the Chen–Nguyen simulator for
standard BKZ for selected β ∈ {50, 60, · · · , 300}. Here the dimension is 3 · β.

106



Section 5.4. Pressing the concavity

SVP cost on it matches the cost in the middle block. Correspondingly, we only consider the variable
strategy for those leading blocks, with starting index not exceeding k (the starting index of the selected
middle block).
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Fig. 5.32: Comparison of root Hermite factors of simulated BKZ with and without variable block-size.
The simulation is performed with our new simulator up to 40 tours.

We observe that with the same number of tours, pressed-BKZ with variable block-size can produce
a basis with better quality. In each iteration, with variable block-size strategy, if the standard BKZ
reduction can decrease the first Gram–Schmidt norm of the projected lattice Λ[k,n] a bit more for k
from 1 to n− β+ 1, compared to standard BKZ without such strategy. Then overall, the improvement
in each iteration will eventually contribute to the final pressed-BKZ reduced basis (with variable block-
size strategy). Thus it suffices to try the standard BKZ with variable block-size and observe whether
this gives a better root Hermite factor compared to the standard BKZ. As our simulator gives a precise
estimation on the performance of BKZ, to verify this, we run our simulator of standard BKZ with
and without this variable block-size strategy, with a fixed block-size β = 60 (in the case of variable
block-size, this is the block-size of the middle and trailing blocks except the 60 last blocks). We plot
the average root Hermite factor (over 100 samples) after each tour. As shown in Figure 5.33, BKZ
with variable block-size improves the root Hermite factor slightly faster. Our simulator can be readily
adapted to this BKZ variant with variable block-size.

However, we notice that after sufficiently many tours, this difference vanishes and the simulated
log-norms become closer (as can be seen in Figure 5.33, the difference is ≈ 0.0001). We may conclude
that the variable block-size strategy helps improving the root Hermite factor faster. However, it does
not give a significant improvement on the root Hermite factor for higher number of tours.
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Fig. 5.33: Comparison of root Hermite factors of simulated BKZ with and without variable block-size.
The simulation is performed with our new simulator up to 2,000 tours.

Next, we run experiments to check whether the variable block-size strategy indeed helps decreasing
the root Hermite factor faster. We run standard BKZ60 with and without variable block-size on SVP-
120 challenge. We plot the average root Hermite factor (over 100 samples) after each tour. As can be
seen in Figure 5.35, the convergence of root Hermite factor of basis output by the standard BKZ60 with
variable block-size is slightly faster than the one output by BKZ60 without such strategy.

5.4.4 Solving SVP-120 with pressed-BKZ
In this subsection, we use pressed-BKZ for the pre-processing to solve an SVP-120 challenge, to demon-
strate its practicability. We are interested in the quality of pressed-BKZ reduced bases which can be
reflected by the total enumeration cost, i.e., the sum the pre-processing and enumeration costs, di-
vided by the success probability. In the experiment, we consider an SVP challenge of dimension 120
(generated using the Darmstadt lattice challenge generator) and pre-process it using pressed-BKZ60

with the adaptive block-size strategy described in the previous subsection. The pre-processing took a
total 5× 105 seconds on an Intel Xeon processor of 2.67GHz (the enumeration speed is 2× 107 nodes
per second and hence the run-time corresponds to an enumeration tree of 1× 1013 nodes).

Comparison with standard BKZ.

We first investigate the quality of the pressed-BKZ60-reduced basis in terms of BKZ-reducedness. The
aim is to find the block-sizes β (and the number of tours) for which the output of standard BKZβ would
be of similar quality. This suggests that the bases produced by pressed-BKZ60 and standard BKZβ
have similar full enumeration cost.
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Fig. 5.34: Comparison of root Hermite factors of standard BKZ60 with and without variable block-size
within 40 tours.
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Fig. 5.35: Comparison of root Hermite factors of standard BKZ60 with and without variable block-size
within 2,000 tours.
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We have to determine some criterion for the quality of bases. Essentially, one wants to compare
the pruned enumeration cost of the pressed-BKZ60-reduced basis with the pruned enumeration cost of
the standard BKZβ-reduced basis. As a first approximation, we compute the full enumeration cost of
BKZβ-reduced basis (right after each BKZ tour) and stop as soon as it is close to the full enumeration
cost for the pressed-BKZ-reduced basis. This also gives us roughly the number of tours needed for BKZ
with the corresponding block-size to achieve a similar quality as our basis reduced by pressed-BKZ60. A
better approach, which we did not implement, would be to invoke the pruning optimizer right after each
local SVP to estimate the enumeration cost and stop as soon as it is close to the pruned enumeration
cost for the pressed-BKZ reduced basis.

Instead of doing the actual BKZβ experiment for all candidate blocksizes, we first use simulation
to find the most competitive blocksizes. As investigated in Section 5.3, the probabilistic simulator
seems quite precise after the first few tours: if the number of tours involved in the simulation is tiny,
we conduct true BKZ experiments for confirmation. After we have determined the most appropriate
blocksizes β, we conduct true BKZ experiments for these blocksizes to double-check their quality and
running-time (as opposed to simulation).

To start with, we have to determine some suitable searching range for the block-size β. As we
already saw, in the case where the dimension is not much larger than the block-size, the quality of a
basis reduced by pressed-BKZ60 can be quite superior to that obtained by using BKZβ for β > 60.
Thus we try several larger blocksizes starting for β = 70, 75, 80, 85, 90. For each blocksize β, the Gram–
Schmidt norms of standard BKZβ are simulated by the probabilistic simulator. We start with the
LLL-reduced basis of the SVP-120 input and average over the 100 simulations for each β. We set a
maximum of 50, 000 tours in the simulator but break as soon as (if possible) the full enumeration cost
is smaller than the full enumeration cost of our reduced pressed-BKZ60.

For blocksizes 70 and 75, the full enumeration cost cannot beat the full enumeration cost of pressed-
BKZ60 reduced basis within the limit of 50, 000 tours and therefore terminates. For other blocksizes,
after the simulator terminates, we compute the (average) minimum number of tours needed. They
are listed in the legend of Figure 5.36. In Figure 5.36, we also plot the Gram–Schmidt log-norms of
the pressed-BKZ60-reduced basis along with the average simulated Gram–Schmidt log-norms of the
output bases of standard BKZβ (for the relevant numbers of tours). One can observe that, at the
point of termination, the simulated Gram–Schmidt log-norms have comparable shape as the pressed-
BKZ60 reduced basis. We confirm this by examining their full enumeration cost in Table 5.1. The full
enumeration cost is tabulated for each (averaged) simulated basis. As a conclusion, it can be seen that
the most competitive blocksizes are 85 and 90: the number of tours involved for blocksizes 70, 75, 80
are too large.
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Fig. 5.37: Gram–Schmidt log-norms of experimental pressed-BKZ60 and BKZ90 (28 tours).
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Fig. 5.36: Gram–Schmidt log-norms of simulated pressed-BKZ60 and simulated BKZβ .

So far, we have only judged the quality of the preprocessed basis using simulation. It should be noted
that the probabilistic simulator may not to be accurate when the number of tours involved are tiny
(see Subsection 5.3.3). This is the case for blocksizes 85 and 90. Therefore, instead of simulation, we
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conduct actual BKZ85 and BKZ90 experiments with the LLL-reduced basis as input: we used a parallel
implementation of the BKZ algorithm implemented in fpylll and ran BKZ90 on the LLL-reduced basis
with 280 cores. The local SVP solver attempts to find a vector smaller than 1.05 times the Gaussian
heuristic of the local block. It is also “greedy” in the sense that if too many trials have been attempted
without a success it moves to the next block. Therefore, the number of tours in experiments could be
larger than simulation (but each local SVP takes less time).

Tab. 5.1: Estimated enumeration cost to solve the SVP-120 instance. The row “Full of Sim.” records
the full enumeration cost (in terms of number of nodes) based on the simulated preprocessed basis.
The row “Full of Exp.” records the full enumeration cost on BKZ85 and BKZ90-reduced bases (from
experiments) after 100 tours and 28 tours respectively. The row “Prune of Exp.” records the cost for
pruned enumeration for Pressed-BKZ60 and BKZ90 reduced basis (from experiments): it includes the
costs of all trial enumerations and the cost of preprocessing before each trial enumeration (but excludes
the initial preprocessing cost).

Pressed-BKZ60 BKZ70 BKZ75 BKZ80 BKZ85 BKZ90

Full of Sim. n/a 6.83× 1027 3.21× 1027 1.17× 1027 1.15× 1027 0.83× 1027

Full of Exp. 1.21× 1027 n/a n/a n/a 2.64× 1027 1.35× 1027

Prune of Exp. 5.9× 1013 n/a n/a n/a n/a 6.3× 1013

In the experiments, we aborted the BKZ90 execution right after the full enumeration cost of the
current basis is similar to (if possible) that of the pressed-BKZ60-reduced basis. Then we used the
previous BKZ tour (where the full enumeration cost was slightly larger than that of the pressed-
BKZ60-reduced basis). BKZ90 took 28 tours to reach a similar full enumeration cost and the overall
running-time was 5× 106 seconds (the number of cores is taken into account). In Figure 5.37, we plot
the Gram–Schmidt log-norms of this BKZ90-reduced basis and compare it with pressed-BKZ60. This
confirms that their qualities are analogous. For BKZ85, we aborted the computation after 100 tours as
the the overall running-time was already 8× 106 seconds. Note that both are already much larger than
the cost we spent on the pressed-BKZ60 preprocessing, of 5×105 seconds. The full enumeration cost of
BKZ90 and BKZ85-reduced bases is computed in Table 5.1. Note that the experiments for BKZ90 (and
BKZ85) took much more tours to achieve the same quality (if possible) compared to simulation. This
might be due to the facts that our implementation is greedy as mentioned above and does not always
solve the local SVP problem.

So far, we have only used the full enumeration cost to measure the quality. We confirm this
using a pruner to estimate the enumeration cost (for Pressed-BKZ60 and BKZ90-reduced bases). A
pruner optimizes the pruning coefficients to minimize the overall running-time of preprocessing plus
enumeration divided by the success probability. The general strategy in extreme pruning [CN11] is to
preprocess the basis using BKZ and then run the enumeration with a certain success probability p. If the
enumeration fails, it rerandomizes the basis and then conducts the preprocessing and enumeration again.
The expected number of repetitions to succeed in the enumeration is ≈ 1/p. It remains to determine
the preprocessing time before each enumeration. It should be noted if the first enumeration fails, one
usually runs a mild re-randomization before the next preprocessing, thus the next preprocessing time
will be smaller than the first preprocessing time, since it still benefits from the BKZ reduction in last
preprocessing.

We determine the preprocessing time with the following experiment. For the BKZ90-reduced basis,
after re-randomization, the full enumeration cost increases from 1.35 × 1027 to 1.56 × 1027. We re-
preprocess the randomized basis using BKZ80 until the full enumeration cost decreases to around 1.35×

112



Section 5.4. Pressing the concavity

1027. Here we just used BKZ80 for simplicity (there could be other strategies). The re-preprocessing
took 1.7× 105 seconds (i.e., 3.4× 1012 nodes). We use this preprocessing cost (the preprocessing before
each trial enumeration except the initial preprocessing) as input to the pruner (for both Pressed-
BKZ60 and BKZ90-reduced bases). The total pruned enumeration cost estimate in fpylll, tabulated
in Table 5.1, confirms that Pressed-BKZ60 and BKZ90-reduced bases indeed have similar quality as they
all admit similar total pruned enumeration costs. In general, the pruner seems to be quite precise in
practice (hence so are the estimates in Table 5.1). Thus it suffices to compare the initial preprocessing
cost between Pressed-BKZ60 and BKZ90: pressed-BKZ60 (5× 105 seconds) took less time compared to
BKZ90 (28 tours in 5× 106 seconds).

In this subsection, we have only considered a straightforward strategy, BKZ plus enumeration, for
solving the SVP-120 instance. In the following we will further compare with progressive-BKZ[AWHT16].

Comparison with progressive-BKZ.

The main idea of progressive-BKZ is to proprocess the basis using BKZ with progressively increased
block-sizes and use local enumeration with high success probability to avoid the overheads brought in by
the pre-processing. Furthermore, a progressive block-size strategy (optimized based on their adaptation
of the Chen-Nguyen simulator for their progressive-BKZ algorithm) was used for pre-processing before
a final enumeration. In particular, [AWHT16, Table 4] gives the cost of solving SVP challenges using
their block-size strategy: this table is to be understood as the cost of an idealized algorithm and is hence
optimistic compared to current algorithms. We re-investigate the estimates in that table by combining
the progressive-BKZ method with our pressed-BKZ algorithm.

Given the pressed-BKZ60 reduced basis, we use the progressive-BKZ method in the bkz2_sweet_spot3

branch in fplll. Note that it implements a variant of progressive-BKZ: the progressive strategy differs
from that of [AWHT16] but it suffices for our comparison. It should be noted that our pressed-BKZ60

reduced basis is already quite reduced so we start progressive-BKZ with block-size ≈ 75 to avoid a
superfluous re-computation. We used 80 cores for the computation on the pressed-BKZ60 reduced ba-
sis. We spent 5.78 core days (5× 105 seconds) on the initial pressed-BKZ60 and 1.21 core days for the
progressive-BKZ to complete the SVP instance. In total, we completed the computation in a total of
6.99 core days (with enumeration speed of ≈ 2 × 107 nodes per second), faster than the 14.94 lower
bound (with enumeration speed of 6× 107 nodes per second) in [AWHT16, Table 4].

For further comparison, we also ran the same experiment using an LLL-reduced basis instead of
pressed-BKZ60 reduced basis in the beginning. The overall running-time was 8.75 core days. This
implies that bkz2_sweet_spot is faster than the estimates in [AWHT16]. Compared to this LLL-based
experiment, the pressed-BKZ60-reduced basis helps to reduce the overall running-time by about 20%.

It should be noted that we only provide one such strategy that lowers the estimates in [AWHT16,
Table 4] and demonstrate the usefulness of the pressed-BKZ algorithm. It is quite possible that this
is far from an optimal strategy, which could combine variants of progressive preprocessing, extreme
pruning and adaptive choices based on simulation. For instance, it may be better to also use pressed-
BKZ inside progressive-BKZ (recursively for any preprocessing) to better maintain the shape of the
pressed-BKZ preprocessed basis. Also, we only conducted two SVP-120 experiments, which is not
statistically significant. We leave the question of how to optimize the strategy based on the existing
approaches open for future work.

3https://github.com/fplll/fpylll/tree/bkz2_sweet_spot
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Chapter 6

Conclusion and open problems

In this chapter, we will give a brief conclusion of this thesis. Further, some open problems that are
related to the works in this thesis will also be presented.

6.1 Conclusion
In this thesis, we have studied some aspects of the security foundations of lattice-based cryptography.
In particular, we studied two well-known worst-case lattice problems, BDD and uSVP and put forward
an improved reduction from one to another. We also showed an equivalence between one of the most
important hardness assumptions in lattice-based cryptography, LWE, and a presumed hard quantum
problem, DCP. Last, we studied the practical behavior of the BKZ algorithm.

First, we gave a reduction from BDD1/(
√

2γ) to uSVPγ . This improved the state of the art by a
factor

√
2. As a result, to solve the same BDD problems, we can use a (possibly) easier uSVP oracle.

The main ingredient used in this improved reduction is lattice sparsification. With this technique, we
can efficiently sparsify polynomially many lattice points around the target vector before we resort to
Kannan’s embedding. In particular for γ = 1, this allows us to improve the prior reduction from BDD1

to uSVP1 to a reduction from BDD1/(
√

2) to uSVP1. We further found that such an improvement can
be adapted for any γ > 1. Together with the backward reduction from uSVPγ to BDD1/γ [LM09], the
gap between the reductions between these two problems becomes

√
2.

Second, we showed a computational equivalence between LWE and EDCP up to small parameters
losses. The latter one, as an extrapolated version of DCP, is presumed hard under quantum compu-
tations. The extent of extrapolation varies with the LWE noise rate. By considering different extents
of extrapolation, our result generalizes Regev’s proof [Reg02] that if DCP is in quantum polynomial
time, then so is LWE. Our result can also be seen as a new evidence of the quantum hardness of LWE,
as a probabilistic polynomial time solver for LWE can be transferred into a quanum polynomial time
solver for EDCP, which has been studied under quantum computation [Kup05, Reg04c, Kup13]. Last,
we also give a computational equivalence between dLWE and dEDCP. Together with the search to
decision reduction for LWE [MM11], there is also a search to decision reduction for EDCP. As a result,
to solve LWE under quantum computations, one might not need to solve DCP, but its relaxed version,
EDCP, which could be easier.

Finally, we proposed a better simulator of the BKZ algorithm, which can precisely predict the
behavior of BKZ for practical block-sizes. As the provable worst-case bounds poorly reflect the practical
behavior of BKZ, cryptanalysts rely instead on the heuristic Chen–Nguyen simulator. It fits better
with practical experiments, but not entirely. In particular, the first few Gram–Schmidt norms in
the experiments are smaller than the ones predicted by the Chen–Nguyen simulator, which is of strong
significance in cryptanalysis. Our simulator improves the Chen–Nguyen simulator in the aspect that we
can also predict the leading Gram–Schmidt norms accurately. As we have a better understanding of the
head phenomenon with our simulation for practical block-sizes, we can hope to accurately predict BKZ
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for larger block-sizes. This strengthens the security estimates of lattice-based cryptography [ACD+]. We
also gave a BKZ variant, named pressed-BKZ, which can exploit the head phenomenon and reduce the
basis further. Our (non-optimized) experiments show that our pressed-BKZ is better than prior works
for solving SVP challenge in dimension 120 (generated by the Darmstadt lattice challenge generator1).
We could expect that it also helps improving the SVP solvers for lattices in larger dimensions.

6.2 Open problems
In this section, we present some open problems for future works.

Open problem 1. Can we further improve the relation between BDD and uSVP?
The decoding radius λ1(Λ)/

√
2 seems to be a limitation of our reduction based on the sparsification

technique. Thus we would consider an improvement from the following two aspects.
First, we conjecture that computational equivalence holds between BDD1/(

√
2γ) and uSVPγ . We

already know that BDD1/(
√

2γ) reduces to uSVPγ . For the opposite direction, there is a reduction
from uSVPγ to BDD1/γ given by Lyubashevsky and Micciancio [LM09]. To obtain the conjectured
equivalence, we would need a reduction from uSVPγ to BDD1/(

√
2γ).

Second, it is interesting to look after a reduction from BDD with larger decoding radius (1/
√

2 +
ε) · λ1(Λ) for some constant ε > 0. For instance, if we allow to sparsify more than polynomially many
lattice vectors, can we reduce it to uSVP>1? Such a reduction would need a superpolynomial number
of repetitions to succeed with non-negligible probability. As the BDD1/

√
2+ε is known to be NP-

hard [LM09], for which the current known best algorithm takes full exponential time to solve, we
would get insight from it, if only the number of points that need to be removed grows asymptotically
slower than exponentially. However, we are not aware of a tight upper bound (2O(n) is an upper
bound, but we do not know if it can be reached) on the maximum number of lattice points within
distance (1/

√
2 + ε) · λ1(Λ) of a given target vector.

Open problem 2. Is there an alternative reduction from EDCP to LWE?
In [CvD07], Childs and van Dam obtain a state of the form∑

a∈ZN

∑
j∈{0,...,M−1}`
〈j,y〉=a mod N

ωa·sN |j〉 .

for some uniform y ∈ Z`N . Note the uniform distribution of weights for j. To recover s, the authors
use the Pretty Good Measurement technique from [HW94] as was done in [BCvD05, BCvD06] for
similar problems. Implementing this general technique to this particular setup requires the construction
of a POVM with operators corresponding to superpositions of all the j’s in {0, . . . ,M − 1}` such
that 〈j,y〉 = a mod N . As we already discussed in Chapter 4, a unitary operator that realizes such
a POVM in [CvD07], uses a lattice-reduction technique as its main subroutine and, hence, works
efficiently only for large values of M .

The question we did not address is the interpretation of the POVM technique (and, possibly, a
different reduction to LWE) for Gaussian-weighted superpositions. It might be simpler to obtain
Gaussian j’s rather than uniform j’s from a cube, and hence it is possible that such a technique may
lead to an improved reduction to LWE.

Open problem 3. Can we trade samples number ` for extrapolation bound M for EDCPN,`,M?
We showed that LWE and U-EDCP are computationally equivalent up to small parameter losses,

when the number of U-EDCP states ` is polynomial. In these reductions, the U-EDCP bound M is
1https://www.latticechallenge.org/svp-challenge/
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within a polynomial factor of the LWE noise rate 1/α. When more states are available, U-EDCP is
likely to become easier. For instance, with M = 2, the best known algorithms when ` is polynomially
bounded are exponential. Oppositely, Kuperberg’s algorithm [Kup05] runs in time 2Õ(

√
logN) when ` =

2Õ(
√

logN). This suggests that there may be a U-EDCP self-reduction allowing to trade ` for M : Is it
possible to reduce EDCPN,`,M to EDCPN,`′,M ′ with `′ ≤ `, while allowing for M ′ ≥M? In particular,
can we reduce DCP to EDCP, which will eventually give a reduction from DCP to LWE together with
our reduction from EDCP to LWE?

Open problem 4. Can we exploit pressed-BKZ to improve concrete solvers for SVP challenges in
larger dimensions?

In this thesis, by using pressed-BKZ60 for pre-processing, we can solve the SVP challenges in
dimension 120 faster. However, the dimension of lattices we consider, 120, is significantly less than
the current record, which is 150-dimensional. Can we use pressed-BKZ to improve current SVP solvers
for current records or even larger dimensions? Note that we only consider the SVP solvers based on
enumeration. In such cases, pre-processing with pressed-BKZ60 seems insufficient. We would need to
run pressed-BKZβ with larger block-size β for pre-processing instead. However, it would also consume
much more time. One idea to decrease the pre-processing cost would be, for each SVPβ call on some
block, to pre-process this block with pressed-BKZβ′ with smaller β′, e.g., 30. For the ease of analysis, it
would be interesting to have precise simulations on the practical behavior of (pressed-)BKZ with small
block-sizes (< 45).
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