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Chapter 1

Introduction

“I never travel without my diary.
One should always have
something sensational to read in
the train.”

Oscar Wilde

Hereby I present my work of the last few years. My research project started with my intership of master’s
degree directed by Éric Duchêne and Aline Parreau from University of Lyon 1. During this intership
I worked with Clément Charpentier (University Lyon 2) and Brice Effantin (University Lyon 1) on the
graph coloring game. At the end, I obtained an ANR funding for a doctoral position. This project is
called Games and Graphs and is managed by Éric Duchêne, it aims to study some game combinatorial
problems by using graph theory tools.

Along these years I had the opportunity to work on different combinatorial problems.
One of the main problems I worked on is the coloring game. In collaboration with Clément Charpentier
and Brice Effantin, we worked on the graph coloring game where two parties face each other with different
goals. Given a fixed set of colors, Alice and Bob alternate turns to properly color vertices of a graph:
Alice wins if at the end the graph is properly colored and Bob wins otherwise. We studied this game on
edge-wise decomposable graphs and improved some known results on planar graphs.
As well, with Paul Dorbec (my co-advisor, from University of Bordeaux), Éric Sopena (University of
Bordeaux) and Elżbieta Sidorowicz (from University of Zielona Gora) we studied a slighty more general
problem: the graph marking game. Here Alice and Bob alternate turns to mark unmarked vertices. When
a vertex is marked a score is given to it that depends, only, on the number of marked neighbors it has.
Alice wants to minimize the maximum score obtained along the game and Bob wants to maximize it.
We focused on the difference of strategies when we modify the graph: if Alice has a strategy ensuring
a maximum score of s on G, what is the score she can ensure on f(G), f being a graph operator? We
bounded above and below the score of f(G) for the operators of minors: vertex deletion, edge deletion
and edge contraction. As well, we looked at the union of graphs and cartesian products.

In 2016, I obtained a doctoral mobility scholarship: I went to Turku for 5 months to work with Tero
Laihonen and Ville Junnila on identifying and locating codes on graphs. An identifying code C is a subset
of vertices of a graph G such that the set of neighbors of v in C is non-empty and different from the one
of u, for any two vertices u, v. The codes with minimal cardinality are called optimal. This codes allow
to locate faults on networks of processors. During my stay in Finland we focused on these codes (and
two other variants) on circulant graphs which have the particularity of being regular and embeddable on
infinite grids. These properties allowed us to conclude on the optimal codes on some particular families
of circulant graphs, moreover, these bounds are reached for infinitely many such circulant graphs.

I also had the chance of working on heap games, in collaboration with Urban Larsson (Technion - Israel
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6 CHAPTER 1. INTRODUCTION

Institute of Technology), Antoine Dailly (doctoral student at University of Lyon 1) and Éric Duchêne.
We focused on pure breaking games. In the litterature taking games and taking and breaking games have
been largely studied. In the first category subtraction games and allbut games are included (finite or not)
and in the second category there are octal games and hexadecimal games among others. In these games
two players, Alice and Bob, alternate turns to take some tokens from a heap of tokens and then divide
it into multiple non-empty heaps (this division step is only allowed in taking and breaking games). Pure
breaking games are such that no taking is allowed: given a list of integers {�1, . . . , �k}, two players, Alice
and Bob, alternate turns to divide a heap of tokens in �i + 1, 1 ≤ i ≤ k, non-empty heaps. We introduce
these games and give the winning strategies for some particular lists of integers. As well, we explicit also
a test to compute the best strategies for some other lists.

My work can be summed up as the study of two party combinatorial problems. In the first case Alice
faces an uncollaborative partner, Bob, in the coloring and marking games. For the identifying codes,
captors face faults on processors networks. In the last case two players face each other on the exact same
playground: they have the same tools and play; the smartest wins.
In what follows I give some definitions to attack these problems separately. Then I describe my work
starting from pure graph theory (identifying codes) to pure combinatorial games (pure breaking games)
passing through combinatorial games on graphs (coloring and marking games). Keep in mind that graph
theory is used all along since it is an important tool to study combinatorial games.

1.1 Definitions

In the following N denotes the set of positive integers; �a, b�, denotes the set of integers between a and b
both included; if f : X → Y is a function and S ⊂ X, then f |S : S → Y is the function restricted to the
set S, and Im(f) is the set of images of X by f .

1.1.1 Graph theory

Definition 1.1 (Graph) A graph G is an ordered pair (V,E), the set V is the set of vertices and E ⊂ V 2

is the set of edges.
The edges denote links between vertices: for e ∈ E, there are u, v ∈ V such that e = uv.

Said like that graphs seem to be obscure objets, when in fact, the abstract of the definition makes it a
powerful tool: they can model a lot of different situations. For instance, the friendship between people:
vertices are persons and there is an edge between two people if they are friends; or bus lines: each stop is
a vertex and there is an edge between two stops if there is a bus going through these stops.

For instance a very interesting and known problem is the three house-services problem.
The three house-services problem: assume you have three houses h1, h2 and h3 and you want to link
them to the main services provided by the city: gaz s1, electricity s2 and water s3 but you dont want the
links to cross.
If you allow the links to meet, we obtain a graph with set of vertices {h1, h2, h3, s1, s2, s3} and set of edges
{h1s1, h1s2, h1s3, h2s1, h2s2, h2s3, h3s1, h3s2, h3s3}: there is an edge between each service and each house.
The graph obtained is shown in Figure 1.1.1. We will see later if there is a solution where the links cannot
cross.

Definition 1.2 Let G be a graph of vertex set V and edge set E.

• Neighbors:
Let u, v ∈ V . Vertices u and v are neighbors if uv ∈ E or vu ∈ E. As well we say u and v are
adjacent.
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h1 h2 h3

s1 s2 s3

Figure 1.1.1: Example of the graph of the three house-services problem where edges can cross.

• (Open) Neighborhood:
Let v ∈ V . The open neighborhood of v, N(v) is the set of neighbors of v.

• Closed Neighborhood:
Let v ∈ V , the closed neighborhood of v, N [v] is N(v) ∪ {v}.

• Degree:
Let v ∈ V , the degree, d(v), of v is |N(v)|, the number of neighbors of v.

• Maximum degree:
The maximum degree of G, Δ(G) is max{d(v) | v ∈ V }.

For instance in Figure 1.1.2, N(0) = {1, 3, 4, 7} and N(3) = {0, 1, 2, 4}, and Δ(G) = 4.
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3

4

5

6

7

Figure 1.1.2: Example of a graph of maximum degree Δ(G) = 4, obtained for the vertices 0 and 3.

Now, assume a graph G represents friendship between a group of persons and person u wants to get in
touch with person v. If v ∈ N [u] then u knows person v, but if not, u has to go through friends of friends
to reach v. . . Or, assume the graph represents bus lines: how to go from point u to point v?

Definition 1.3 (Paths) Let k be a positive integer and G a graph of vertex set {v0, . . . , vk−1}. The graph
G is a path if its edge set is {vivi+1 | 0 ≤ i < k − 1}.
The length of the path v0 . . . vk−1 is k − 1: the number of edges in the path.
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Definition 1.4 (Subgraph) Let G(V,E), V ′ ⊂ V and E′ ⊂ E such that if uv ∈ E′, then u and v are in
V ′. The graph H of vertex set V ′ and edge set E′ is a subgraph of G, denoted by H ⊂ G.
Moreover, if for all u, v ∈ V ′ such that if uv ∈ E then uv is also in E′, then H is an induced subgraph of
G.

In a graph G(V,E) there is a path between vertices u and v if there is a set of vertices in V , v0, . . . , vk−1

such that u = v0, v = vk−1 and for all i < k, vi ∈ N(vi+1).
For instance in Figure 1.1.1 there is the path of length 5 as a subgraph: s1h1s2h2s3h3 and in Figure 1.1.2
there is a path of length 7 from 6 to 7.
We can talk about the distance between two vertices:

Definition 1.5 (Distance) Let G(V,E) be a graph and u, v ∈ V . The distance between u and v, d(u, v),
is the length of a shortest path between u and v. If there is no such path, then d(u, v) = +∞.

If G is such that for all u, v ∈ V , there is a path between u and v, G is said to be connected:

Definition 1.6 (Connected graph) Let G(V,E) be a graph. The graph G is connected if for all u, v ∈
V , d(u, v) < +∞.

Now, assume G is the path on k+1 vertices: V = {v0, . . . , vk} and we add the edge vkv0: the path closes.

Definition 1.7 (Cycles) Let k be an integer and G a graph of vertex set {v0, . . . , vk−1}. The graph G is
a cycle if its edge set is {viv(i+1) mod k | 0 ≤ i ≤ k − 1}.
The length of the cycle is k.

Remark that cycles have length at least 3.

Definition 1.8 (Class or Family of graphs) A class or family of graphs is a collection of infinitely
many graphs.

Usually classes of graphs are defined by some property, like for instance being connected or not having
cycles of length 3.

Definition 1.9 (Forests) Let G(V,E) be a graph. The graph G is a forest if G has no cycles.
Moreover, if G is connected, it is called a tree.

Examples of trees are given in Figure 1.1.3. Here a vertex is chosen to be up and all their neighbors are
drawn downward. The up most vertex is then called the root.

Definition 1.10 (Tree terminology) Let T (V,E) be a tree.

• Root:
Let r be a vertex of V . The vertex can be designated as a root of T , which becomes rooted.

• Depth:
If T is rooted at r, the depth of the tree is the length of the longest path starting at r. The depth of
a vertex v is the length of the unique path between r and v.

• Fathers and Children:
If T is rooted at r, the neighbors of r are its children, r is their father. For any other vertex v, its
neighbor of lower depth is its father and the other neighbors are its children.

Remark that normally fathers are called parents in the literature, here the use of father is justified in
Section 3.4.

We have seen classes with forbidden subgraphs, another example are the empty graphs where edges are
forbidden:
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Figure 1.1.3: Example of two trees rooted at vertex 1 and 2 respectively.

Definition 1.11 (Empty graphs, stable sets) Let G be a graph on n vertices.

• The graph G is the empty graph if for all vi, vj ∈ V , vivj /∈ E.

• A set of vertices {v0, . . . , vk} of V is a stable set of G if for all i, j vivj /∈ E.

Definition 1.12 (Complementary graph) Let G(V,E) be a graph. The complementary graph of G,
G is the graph of vertex set V and edge set {vivj | vivj /∈ E}.

The complementary of an empty graph is called a complete graph.

Definition 1.13 (Complete graphs, cliques) Let n,m be two positive integers.

• The complete graph on n vertices, Kn is the graph of vertex set {v0, . . . , vn−1} and of edge set
{vivj | 0 ≤ i, j ≤ n− 1, i �= j}.
If in a graph G a set of vertices {v0, . . . , vk} induces a complete graph we talk about a clique of size
k + 1.

• The complete bipartite graph Kn,m on n + m vertices is the graph of vertex set {u0, . . . un−1} ∪
{v0, . . . , vm−1} and edge set {uivj | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ m− 1}.

Examples of these graphs are shown in Figure 1.1.4.
In particular empty and complete graphs have something in common: all their vertices have the exact
same degree. Graph with this particular feature are regular :

Definition 1.14 Let G(V,E) be a graph and r be a positive integer. The graph G is r-regular is for all
v ∈ V , d(v) = r, meaning that all vertices have exactly r neighbors.

Examples of regular graphs are given in Figure 1.1.5.
Other important class are planar graphs :

Definition 1.15 (Planar graphs) A graph is planar if it can be embedded in the plane without edges
crossing.
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v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 1.1.4: Example of a clique on 7 vertices and of a bipartite clique on 9 + 10 vertices.
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Figure 1.1.5: Example of regular graphs on 10 vertices of degree 4 and 6 respectively.

Take the three house-services problem again: is there a solution to link the services to the houses planary?

In fact planar graphs can also be defined by forbidding some particulars graphs. Here the restriction is
not on subgraphs but with minor graphs.

Definition 1.16 (Minor graphs) Let G(V,E) be a graph.

• Let v ∈ V , the graph G − {v} is the graph obtained from G by deletion of v and all the edges of v:
G− {v}(V \ {v}, E \ {vu | u ∈ V }).

• Let e ∈ E, the graph G\{e} is the graph obtained from G by deletion of the edge e: G\{e}(V,E\{e}).

• Let e ∈ E, the graph G/{e} is the graph obtained from G by the contraction of the edge e, meaning
that if u and v are endpoints of e, these two vertices become one, w, that is neighbor to all the
neighbors of u and all the neighbors of v.

Graphs obtained from G by these operations are called minors of G.

Theorem 1.17 [69] Planar graphs are exactly the (K3,3,K5)-minor-free graphs, meaning that for all graph
P , P is planar if and only if minors of P do not contain K3,3 nor K5 as subgraphs.

In particular, K3,3 is not a planar graph and the three house-services problem does not have a feasible
solution embeddable in the plane.

Minors are not easy to see as we need to modify the graph to obtain them (namely because of the edge
contraction), an easier-to-see substructure tool is tree-decomposition.

Definition 1.18 (tree-decomposition) Let G(V,E) be a graph and a and d two integers.
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• The graph G is a-tree-decomposable if there are E1, . . . , Ea subsets of E such that for all i, j, Ei∩Ej =
∅, ∪1≤i≤aEi = E and the graphs Gi(V,Ei) are all trees. The minimum integer a such that G is a-
tree-decomposable is the arboricity of G.

• The graph G is (a,d)-decomposable if the edges can be partitioned into a disjoint forests E1, . . . , Ea

and a graph D(V,E \ {E1 ∪ · · · ∪ Ea}) of maximum degree d.
If the graph of maximum degree is also a forest it is a F (a,d)-decomposition.

In Chapter 3 a generalization of these two last decompositions can be found.

Graphs are decomposable into disjoint forests. There are also other tools to decompose graphs into others
graphs by doing some operations:

Definition 1.19 (Operations) Let G(VG, EG) and H(VH , EH) be two graphs.

• Union:
The union U of G and H, denoted by U = G∪H, is the graph of vertex set VG ∪ VH and of edge set
EG ∪ EH .

• Cartesian product:
The cartesian product, C of G and H denoted by C = G�H is the graph of vertex set {(u, v) | u ∈
VG, v ∈ VH} and edge set {(u, v)(w, t) | u = w and vt ∈ EH or v = t and uw ∈ EG}. In other words,
for each vertex of G there is a copy of H and for each vertex of H there is a copy of G and for each
copy the adjacencies are kept.

• Join:
The join graph of G and H denoted by J = G ∨H is G ∪H, in other words, is an union of G and
H with all the possible edges between G and H.

Remark the complement of a graph is also an operation on graphs. Examples of all of these operations
can be found in Figures 1.1.6 to 1.1.8.
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Figure 1.1.6: Example of a graph on 10 vertices and its complementary graph.

In what follows we consider also directed graphs or digraphs where edges have a given direction. This
notion of direction is often shown with arrows on the edges.

Definition 1.20 (Directed graph) Let V = {v0, . . . , vn−1} be a set of vertices and
−→
E = {−−→vivj | 0 ≤

i, j ≤ n− 1} a set of arcs, or directed edges. Then
−→
G(V,

−→
E ) is a directed graph.

And the concept of neighborhood changes as follows:

Definition 1.21 (Neighborhood and degrees) Let
−→
G(V,

−→
E ) be a digraph and let v ∈ V .

• Inneighbors:
The inneighbors of v, denoted by N−(v) are {u | −→uv ∈ −→

E }. The indegree of v, denoted d−(v) is
|N−(v)|.
A vertex v such that d−(v) = 0 is called a source.
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Figure 1.1.7: Example of the union of the clique on 5 vertices and a cycle of length 4.
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Figure 1.1.8: Example of a cartesian product of the cycle of length 5 and the cycle of length 3 (Left) and an example
of a join between the same graphs (Right).

• outneighbors:
The outneighbors of v, denoted by N+(v) are {u | −→vu ∈ −→

E }. The outdegree of v, denoted d+(v) is
|N+(v)|.
A vertex v such that d+(v) = 0 is called a sink.

• Maximum degree:
The maximum degree of G, denoted by Δ(G) is max{d+(v) + d−(v) | v ∈ V }

As well there are directed paths and cycles:

Definition 1.22 (Directed paths and cycles) Let v0, . . . , vk−2 and vk−1 be k vertices.

• Directed path:
The directed path of length k is the graph of vertex set {v0, . . . , vk−1} and arc set {−−−→vivi+1 | 0 ≤ i <
k − 1}.
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• Directed cycle:
The directed cycle of length k is the graph of vertex set {v0, . . . , vk−1} and arc set {−−−−−−−−−→viv(i+1) mod k |
0 ≤ i ≤ k − 1}.

Specific orientations on the edges define tournaments:

Definition 1.23 (Tournaments) Let V = {v0, . . . , vn−1} be a set of n vertices. Let
−→
E be a set of arcs

such that for i, j ∈ �0, n− 1�, i �= j we have: −−→vivj ∈
−→
E or −−→vjvi ∈

−→
E . Then G(V,

−→
E ) is a tournament.

A transitive tournament is such that for all vi, vj , vk, if −−→vivj ∈
−→
E and −−→vjvk ∈ −→

E then −−→vivk ∈ −→
E .

In other words, a tournament is a complete graph with an orientation. In Figure 1.1.9 we can see an
example of these graphs. Remark that a transitive tournament on n vertices can be totally ordered by the
edge relation: for all i ∈ �0, n− 1�, there is a unique vertex vi such that N+(vi) = i. These last definitions

0

1

2

3

4

3

0

2

1

4

Figure 1.1.9: Examples of tournaments, the right one being transitive.

are necessary for the proof of Theorem 3.19.

Now, we present the basis of identifying vertices on graphs for Chapter 2.
The study of identifying codes on a graph uses a very specific vocabulary:

• code: a subset of the vertices,

• codeword : a vertex of a code,

• non-codeword : a vertex that is not in the code.

Definition 1.24 (Identifying set) Let G(V,E) be a graph and C ⊂ V a code. For all v ∈ V , the
identifying set or Iset of v is:

IG,C(v) = N [v] ∩ C.

When no confusion is possible we skip the G,C subscripts.

Definition 1.25 (Identifying code) Let G(V,E) be a graph and C ⊂ V . The code C is an identifying
code on G if:

∀u �= v ∈ V, IG,C(u) �= IG,C(v) and IG,C(u) �= ∅

The identifying code of minimal cardinality on G is an optimal identifying code of G and its cardinality
is denoted by γID(G).

Proposition 1.26 ([18]) Let G(V,E) be a graph. The graph G admits identifying codes if and only if for
all u �= v ∈ V 2, N [u] �= N [v].

Hence, graph with twins dont have identifying codes.
Identifying codes can be used to identify faulty processors in multiprocessors systems. In Figure 1.1.10, if
vertices are processors and the sensors in 0 and 2 are activated, then the faulty processor is 1, as it is the
only one to have the set {0, 2} as Iset.

This problem is hard:
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Figure 1.1.10: Example of an ID-code, codewords have halos.

Theorem 1.27 (IC-problem is NP -complete) [22] Let G(V,E) be a connected graph over n vertices
and k ≤ n be a positive integer. Knowing if there is an ID-code of size at most k on G is a NP -complete
problem.

Reduction to a known NP -complete problem. This proof is done by reduction of the 3-SAT
problem to the IC-problem. Let us recall the 3-SAT problem:

3-SAT problem: let ε be a collection of clauses over a set X of variables where each clause contains
exactly three literals. Knowing if ε can be satisfied is NP -complete.

Here we are just giving the reduction to this problem, for more details we invite the readers to see the
original paper.

Let ε = {C1, . . . , Cm} be an instance of a 3-SAT over the set X = {x1, . . . , xn} where each clause contains
exactly three literals taken in U = {x1, . . . , xn, x1, . . . , xn}. We construct a graph G(V,E) such that ε can
be satifsfied if and only if V contains an ID-code of size at most k for a certain k.
For each variable xi of X, let Gxi

be the graph of vertex set Vxi
= {ai, bi, xi, xi, ci, di} and edge set

Exi
= {aibi, bixi, bixi, xici, xici, cidi}.

For each clause Cj = {uj,1, uj,2, uj,3}, let GCj
be the graph of vertex set VCj

= {αj , βj} and edge set
ECj

= {αjβj}.
Now, let E′

Cj
= {αjuj,1, αjuj,2, αjuj,3} and G be the graph of vertex set V = Vx1

∪· · ·∪Vxn
∪VC1

∪· · ·∪VCm

and edge set E = Ex1
∪ · · · ∪ Exn

∪ EC1
∪ · · · ∪ ECm

∪ E′
C1

∪ · · · ∪ E′
Cm

and let k = 3n + m. This con-
struction is polynomial on the size of the 3-SAT, as |V | = 6n + 2m. If ε can be satisfied, then we can
construct an ID-code C of size equal to k: for all 1 ≤ i ≤ n, bi, ci and whichever of xi or xi is true, be-
long to C and for all 1 ≤ j ≤ m, αj belongs to C. This code is of size 3n+m = k, and it is an ID-code of G.

As well, if C is an ID-code in G, then for all 1 ≤ i ≤ n, |C ∩ {xi, xi}| = 1, C has size at least k and as αj

must be covered by a vertex other than βj and itself, it has at least one of uj,1, uj,2 or uj,3 in C. Hence ε
is satisfied by setting xi to true if xi ∈ C and to false otherwise.

In Chapter 2 identifying codes are studied over circulant graphs by using known results over infinite regular
grids.

1.1.2 Games

Here we give basic definitions useful to understand the games studied in Chapters 3 and 4.
Combinatorial games as such were introduced in [10]:

Definition 1.28 (Combinatorial games) A combinatorial game is a two-player game such that:

• players alternate turns,
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ai bi

xi

xi

ci di

αj βj

. . .

. . .

Figure 1.1.11: Example of a graph Gxi and a graph GCj .

• there is no chance in the game,

• there are no loops and the game is finite,

• it has perfect information: every player knows all the possible moves

• the last move determines the winner

In normal convention, the last player to play wins, in misere convention loses.
A combinatorial game G is called a position and the set available moves from a given position are called
options of G.

Here we consider only impartial games, meaning that both players always have the same moves, unlike
partisan games where each player have its own moves.

In the game of chess, there are two players that alternate turns, there is no luck, the game is finite and
has perfect information. But the last person to play is not necessarily the winner, as draws are possible.
Moreover, in chess loops are also possible. For the game of go it is similar: it has a lot of combina-
torial characteristics, but the winner is determined by the score of the game and not the last person to play.

In what follows we mostly consider combinatorial games played on heaps of tokens in normal convention.
A position of a game on t heaps with n1, . . . , nt tokens in each heap respectively is denoted by (n1, . . . , nk).
Remark that their order is not important and hence the position (n1, . . . , nk) is the same as (nk, . . . , n1).
From now on we assume them to be in increasing order.

An example of a combinatorial game on heaps is tokens:

tokens: The tokens game is played on t heaps of tokens. Players alternate turns to remove one or
three tokens from a heap.

Assume now that Alice and Bob play tokens game on two heaps from the starting position (1, 3).
If Alice starts by emptying one heap, Bob empties the other one and wins. Hence Alice starts by moving
to the position (1, 2). From this position Bob can either empty the first heap or remove one token from
the second, in both cases, Alice does the other move and at his next turn he has only one non-empty heap
with one token: he wins.
The game tree corresponds to a digraph where all the positions of the game are shown along with their
options. The vertex set is the set of all positions (x, y) with x ≤ 1 and y ≤ 3 and the edge set is �(x, y), (u, v)
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for all options (u, v) of the position (x, y). These games are without loops and finite, hence these graphs
have a source (the starting position) and sinks (the final positions).

In Figure 1.1.12 we can see that from the starting position (1, 3) (the source) there are 7 different positions
(1, 3), (0, 3), (1, 2), (0, 2), (1, 1), (0, 1) and (0, 0) (the sink).

(1, 3)

(1, 2)

(0, 3) (0, 2) (1, 1)

(0, 1)

(0, 0)

Figure 1.1.12: Game tree of tokens from the starting position (3, 1).

As combinatorial games have no draws, an option of a game is either good or bad for the players. For
instance from the last position (0, 0) players have no moves, hence the player that has to play from this
position loses. As well, the player starting at the position (1, 0) only has one move and it allows him to
win.
In the general case, if G is a position of a game and it is a final position, no player can win from this
position: the next player loses. Let us call it a P-position: the previous player wins. Now, if G is such
that it has a position P among its options, the next player has a winning option: it plays to a P-position
and the player that comes after loses. Let us call this position an N -position: the next player wins.

Definition 1.29 (Outcomes) Let G be a position of a game.

• If G is a final position or if all options of G are N -positions, then G is a P-position.

• If G has an option that is a P-position, G is an N -position.

The outcome of G is denoted by o(G).

From this and the game tree, we can deduce an algorithm to determine the outcomes of all positions of
the game:
Hence in the tokens game from before: (0, 0) is a P-position and (1, 0) is an N -position. The application
of Algorithm 1 is shown in Figure 1.1.13: the first player starts from a P-position. If the players play
optimally, the second player wins this game.

Assume now Alice and Bob play tokens on three heaps containing respectively 1, 3 and 4 tokens. The
options of this positions are either options of the game (1, 3) leaving the third heap unchanged, or options
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Algorithm 1 Outcomes of a game of tree
−→
G(V,

−→
E )

while V �= ∅ do
R = ∅

for all sink v do
R = R ∪ {v}
o(v) = P
for all u ∈ N−(v) do

R = R ∪ {u}
o(u) = N

end for
end for
V = V \R

end while

(1, 3)

(1, 2)

(0, 3) (0, 2) (1, 1)

(0, 1)

(0, 0)

P

N

N
P

P

N

P

Figure 1.1.13: Outcomes for the game tokens from the starting position (3, 1).

of (4) leaving (1, 3) unchanged. The underlying operations is the sum of games: the game of tokens on
n heaps is also n games of tokens on one heap. The players chose which game they play in and they
make a move on that game. The set of options of a sum of two games is the cartesian product of the sets
of options of each game.

Definition 1.30 (Sum of games) Let G and H be two positions of two games of respective options
{OG,0, . . . , OG,n−1} and {OH,0, . . . , OH,m−1}. The sum of these games, S = G+H is the position of options
{(OG,0, H), . . . , (OG,n−1, H), (G,OH,0), . . . , (G,OH,m−1)}, where each option (Gi, Hi) is then treated as a
sum Gi +Hi. In other words, at each turn the players choose the game in which they play and choose an
option of that game.

Now assume Alice and Bob play a different game called nim.

nim: The nim game is played on heaps of tokens. Players alternate turns to remove one or more tokens
from a single non-empty heap.

If there is only one heap the game is quite simple: the first player takes all tokens from the heap and
wins, as the second player is not able to play. In particular, the nim game on one heap with n tokens is
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an N -position if and only if n �= 0. If they have two heaps say (n1, n2), the outcome of the game depends
on n2−n1. When n2 = n1 no matters what the first player does on one heap, the other player can always
do the same on the other heap: when one heap is emptied, the second players empties the remaining one,
winning the game. When n2 �= n1 the first players removes tokens from the bigger heap to obtain two
heaps of same size.

Assume, now, Alice and Bob want to spice things up: they play now a sum of the two games, they have
four heaps of tokens, the first two heaps are for tokens and the two last heaps are for nim. At each
turn, each player choses a game between the two and plays on the corresponding heaps, they start on the
position (3, 1, 3, 2).
Remark all positions (0, 0, x, y) have the same outcome as (x, y) in nim, as well as positions (x, y, 0, 0) in
tokens. We can see the outcome of the game in Table 1.1.1.

tokens
P N N P P N P

(3,1) (3,0) (2,1) (2,0) (1,1) (1,0) (0,0)

nim

N (3,2) N P P N N P N
N (3,1) N N N N N N N
N (3,0) N N N N N N N
P (2,2) P N N P P N P
N (2,1) N N N N N N N
N (2,0) N N N N N N N
P (1,1) P N N P P N P
N (1,0) N P P N N P N
P (0,0) P N N P P N P

Table 1.1.1: Outcome of the game mixed tokens and nim from the starting position (3, 1, 4, 1)

The starting position (3, 1, 3, 2) is a winning position for the first player. Positions P + P seem to give
P-positions and positions P + N seem to give N -positions. The sum of two N + N is more difficult to
understand: sometimes it gives P (like for (1, 0, 1, 0)) and sometimes it gives N (for (3, 1, 3, 0)).
Here the game tree was not drawn for practical reasons: there are a lot of vertices and it will not be easy
to read. These trees are good for small examples, to understand how the game works, but in practice this
method takes a lot of space and time. Thankfully there are more tools to determine the outcome of sum
of games.

Definition 1.31 (Equivalent classes) Two positions G and G′ are equivalent if for every position H,
o(G+H) = o(G′ +H). This means that G+H is a P-position if and only if G′ +H is a P-position.

In particular, from Table 1.1.1 we remark that positions (2, 0) in nim and (3, 0) in tokens are not
equivalent since o((2, 0)nim + (3, 0)tokens) = N and o((3, 0)tokens + (3, 0)tokens) = P. For impartial game
in normal convention there is a much more precise property:

Theorem 1.32 (Equivalent classes) Two positions G and G′ are equivalent if and only if o(G+G′) =
P.

In nim two heaps are equivalent if and only if they are of same size: the P-positions of nim on two heaps
are exactly (n, n), hence in the sum of two heaps, (n) and (m) we have a P-position if and only if n = m.
In particular, the heap of size n in nim defines a unique equivalent class, denoted n. There is a mapping
between equivalent classes and positive integers.
For multiheap nim games we can compute the class by using Nim-sums :

Definition 1.33 (Nim-sum) Let n0, . . . , nk−1 be non-negative integers. The nim-sum of these integers,
n0 ⊕ · · · ⊕ nk−1, is the bitwise XOR of these integers.

Theorem 1.34 (Resolution of Nim) Let G = (n0, . . . , nk−1) be a game of nim on k heaps. The game
G is a P-position if and only if n0 ⊕ · · · ⊕ nk−1 = 0.
Moreover G is equivalent to the nim game (n0 ⊕ · · · ⊕ nk−1) on one heap.
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Proof. First of all, the position (0, . . . , 0) has 0 as nim-sum and is a P-position.
Now, let (n0, . . . , nk−1) be a position with 0 as nim-sum. In particular, for all i, ni = n0 ⊕ · · · ⊕ ni−1 ⊕
ni+1 ⊕ · · · ⊕ nk−1. All options of G are of the form (n0, . . . , ni−1, n

′
i, ni+1, . . . , nk−1) for particulars i

and n′
i < ni. Assume one of this options has also 0 as nim-sum, say for i and n′

i < ni, then n′
i =

n0 ⊕ · · · ⊕ ni−1 ⊕ ni+1 ⊕ · · · ⊕ nk−1 which is a contradiction since this nim-sum is equal to ni and n′
i < ni.

Hence no option has 0 as nim-sum.
To finish, let (n0, . . . , nk−1) be a position with x as nim-sum, x > 0 and let xp2

p + · · · + x02
0 be its

binary decomposition with p such that 2p+1 > max(n0, . . . , nk−1, x) ≥ 2p. As well, for 0 ≤ i ≤ k − 1, let
bi,p2

p + · · ·+ bi,02
0 be the binary decomposition of ni. Let j be such that xj �= 0 and for all i > j, xi = 0.

There is some i such that bi,j �= 0, in particular, ni ⊕ x < ni since 2j is removed and at most 2p − 1 is
added. Let n′

i = ni ⊕ x, then n0 ⊕ · · · ⊕ ni−1 ⊕ n′
i ⊕ ni+1 ⊕ · · · ⊕ nk−1 = x⊕ ni ⊕ n′

i = 0, meaning that the
position (n0, . . . , nk−1) has an option with 0 as nim-sum.
In particular, positions with 0 as nim-sum are P-positions.
Moreover, the game (n0, . . . , nk−1)+(n0⊕· · ·⊕nk−1) is a P-position, hence the games (n0, . . . , nk−1) and
(n0 ⊕ · · · ⊕ nk−1) are equivalent.

In fact, these classes are denoted Grundy numbers and we have:

Definition 1.35 (Grundy numbers) The Grundy number of a position G of nim on one heap of size
n, denoted G(G), is n.

Moreover, these are the only possible classes, as Sprague and Grundy showed independently:

Theorem 1.36 (Sprague-Grundy theorem) For every impartial game G there is a non-negative in-
teger n such that G is equivalent to a nim heap of size n.

In particular, every impartial game has a Grundy number, and one of the main problems is to determine
it. These numbers can be computed recursively from the final positions of the game:

Definition 1.37 (Minimal excluded value) Let S = {n1, . . . , nk} be a set of non-negative integers.
The minimal excluded value of S, denoted by mex(S) is the minimum non-negative integer m such that
m /∈ S.

Proposition 1.38 Let G be a position of a game of options {O1, . . . Ot}.
• if G is a P-position, then G(G) = 0,

• otherwise, G(G) = mex({G(O1), . . . ,G(Ot)}).
In other words, the final positions have Grundy value 0 and any other position has the minimum Grundy
value that is not among the Grundy values of its options.
Moreover, it gives the Grundy numbers of sums:

Theorem 1.39 (Sum of games and Grundy numbers) Let G and H be two impartial games such
that G(G) = g and G(H) = h. The Grundy number of G+H is G(G+H) = g ⊕ h.

This algorithm uses the game tree as a base whose sier is in genaral too large compared to the size of the
game position. The goal is now to find a more practical way of computing Grundy numbers without com-
puting the game tree. For instance, for nim on k heaps, n0, . . . , nk−1, the game tree has n0 × · · · × nk−1

vertices and n0 + · · · + nk−1 edges, but computing the Grundy number needs only one operation: the
nim-sum.

Here we study mainly taking and breaking games that are played on heaps where players can remove tokens
or split heaps. The particularity of these games is that an instance of a game on k heaps, (n0, . . . , nk−1) is
exactly the same as the sum of k games on one heap (n0) + · · ·+ (nk−1). Knowing the Grundy number of
a heap of size n for all n gives all the information needed to compute the Grundy number of a multiheap
game. Hence for these games on heaps we only need to compute the Grundy number of the heap of size
n for all n to understand the behavior of the whole game.
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Definition 1.40 (Grundy sequence) Let G be a game played on a heap of tokens and denote by (n)G
the heap of size n. The Grundy sequence of G is the non-negative sequence (G((n)G))n∈N.

Remark that the sequence starts with the heap of size 1, as for the heap of size 0 the players have no
options, the Grundy number is always 0.

For the game tokens the Grundy sequence is 10101010101 . . . and for nim, by definition, it is 123456 . . ..
According to the games, these sequences can have different behaviors, among others there are periodic
sequences, artithmetic-periodic sequences or a mix of the two:

Definition 1.41 (type of sequences) Let S = (sn)n∈N be a sequence of integers.

• Periodicity: The sequence A is periodic if there is a positive integer p such that for all n ∈ N,
sn = sn+p; p is then called the period.
The sequence is ultimately periodic if there are two positive integers e and p such that for all n ≥ e,
sn = sn+p; e is then called the pre-period.

• Arithmetic-Periodicity: The sequence A is arithmetic-periodic if there are two positive integers s
and p such that for all n ∈ N, sn+p = sn + s; s is then called the saltus and p the period.
The sequence A is ultimately arithmetic-periodic if there are three positive integers e, p and s such
that for all n ≥ e, sn+p = sn + s; e is then called the pre-period.

• Split arithmetic-periodic/periodic-regular or sapp-regular: The sequence A is sapp-regular
if there is a partition of N into two sets X,Y such that A |X= (sn)n∈X is periodic and A |Y = (sn)n∈Y
is arithmetic-periodic.

To ease the notations we denote by:

(e1, . . . , et) ((n1, . . . , nm1
)k1(nm1+1, . . . , nm2

)k2 . . . (nmr−1
, . . . , nmr

)kr)k (+s)

the ultimately arithmetic-periodic sequence of preperiod t for e1, . . . , et; of period (m1k1 + · · ·+mrkr)k
for ((n1, . . . , nm1

)k1 . . . (nmr−1
, . . . , nmr

)kr)k; and of saltus s, where each subsequence (nmi
, . . . , nmi+1

) is
repeated ki times and the complete subsequence (n1, . . . , nm1

, . . . , nmr−1
, . . . , nmr

) is repeated k times.
When there is no preperiod the first part is omitted.

There are other behaviors, like the ruler-regularity, that are not useful in the following. For more details
we refer to [42].
In Chapter 4 details of Grundy sequences of some taking and breaking games are given.



Chapter 2

Identifying codes and variants

“En essayant continuellement on
finit par réussir. Donc : plus ça
rate, plus on a de chance que ça
marche.”

Jacques Rouxel - Les Shadoks

In this chapter I present the results obtained during a 5 months stay in Turku, Finland. This is a joint
work with Ville Junnila and Tero Laihonen.
In this chapter we study identifying codes on graphs. We start with some definitions and examples. We
introduce two variants of identifying codes and then we focus on our contributions. Recall that for G(V,E)
and C ⊂ V , C is called a code, items of the code are called codewords and for v ∈ V , the Iset of v is
IG,C(v) = N [v] ∩ C.
Identifying codes on regular graphs have been largerly studied: optimal codes have been found for infinite
grids (the square, the triangular and the king grid) and also on finite graphs like cycles and power of
cycles. Here we focus on graphs linked to power of cycles: the circulant graphs. These graphs are also
regular and some of them are embeddable on the infinite grids.

2.1 Introduction and some definitions

In 1984 Slater introduced locating-dominating codes that are now considered as a variant of identifying
codes:

Definition 2.1 (Locating-dominating code) [62] Let G(V,E) be a graph and C a code of G. The code
C is a locating-dominating, or LD- code if:

∀u, v ∈ V \ C, u �= v, IC,G(u) �= IC,G(v) and IC,G(u) �= ∅.

A LD-code of G of minimal cardinality is an optimal LD-code of G and its cardinality is denoted by
γLD(G).

In Figure 2.1.1 the Isets of vertices 0, 5, 8, 10 are not written as they are not needed to see if it is a
LD-code. We can see that all the other Isets are pairwise different, hence the code {0, 5, 8, 10} is a
locating-dominating one.

Locating-dominating sets where introduced in 1984 by Slater in [62]. They are used to locate faulty pro-
cessors. Indeed, if we assume the graph of Figure 2.1.1 is a network of processors and that the vertices
0, 5, 8 and 10 have sensors on them, then if there is a faulty processor v, the sensors neighbors to that
processor will be activated. For instance, if the sensors of 0, 5 and 8 are activated, then we can identify
the processor 3 as being the faulty one as its Iset is exactly {0, 5, 8}.

21
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0

1

2

3

4

5

6

7

8

9

10

11

vertex Iset
0 −
1 {0, 5, 10}
2 {0}
3 {0, 8}
4 {0, 5, 8}
5 −
6 {10}
7 {8}
8 −
9 {5, 8, 10}
10 −
11 {8, 10}

Figure 2.1.1: Example of a LD-code, {0, 5, 8, 10} on the dodecahedron.

In 1998,[54], Karpovsky, Chakrabarty and Levitin arose the question of identifying all the vertices, indeed,
in locating-dominating codes the only vertices that are identified are the vertices that are not in the code,
codewords are assumed to be non-faulty or to identify themselves right away.

Definition 2.2 (Identifying code) Let G(V,E) be a graph and C ⊂ V be a code. The code C is an
identifying, or ID- code if:

∀u, v ∈ V, IC,G(u) �= IC,G(v) and IC,G �= ∅.

An ID-code of G of minimal cardinality is an optimal ID-code of G and its cardinality is denoted by
γID(G).

0

1

2

3

4

5

6

7

8

9

10

11

vertex Iset
0 {0, 3, 4}
1 {0}
2 {0, 3, 7}
3 {0, 3, 4, 7}
4 {0, 3, 4, 9}
5 {0, 4, 9}
6 {7}
7 {3, 7}
8 {3, 4, 7, 9}
9 {4, 9}
10 {9}
11 {7, 9}

Figure 2.1.2: Example of an ID-code, {0, 3, 4, 7, 9}, on the dodecahedron.

Then again, if there is a faulty processor v, the active sensors on its neighborhood will help identify which
vertex it is.

Now, assume there are two faulty processors, or more. None of these two codes help identify them. Assume
for example the processors 5 and 6 are faulty. In the LD-case, the sensors activated are 0,4,9 and 7, which
does not correspond to any Iset. The same hapepns for the ID-case.
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To overcome this issue, Honkala and Laihonen defined a new type of codes in [48]: the self-identifying
codes.

Definition 2.3 (Self-Identifying code) Let G(V,E) be a graph and C ⊂ V a code. The code C is a
self-identifying, or SID- code if:

∀u, v ∈ V, IC,G(u) �⊂ IC,G(v).

An SID-code of G of minimal cardinality is an optimal SID-code of G and its cardinality is denoted by
γSID(G).
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vertex Iset
0 {0, 1, 3, 4}
1 {0, 1, 6, 10}
2 {0, 1, 3, 6, 7}
3 {0, 3, 4, 7, 8}
4 {0, 3, 4, 8, 9}
5 {0, 1, 4, 9, 10}
6 {1, 6, 7, 10}
7 {3, 6, 7, 8}
8 {3, 4, 7, 8, 9}
9 {4, 8, 9, 10}
10 {1, 6, 9, 10}
11 {6, 7, 8, 9, 10}

Figure 2.1.3: Example of a SID-code, {0, 1, 3, 4, 6, 7, 8, 9, 10}, on the dodecahedron.

This new code has a very specific name self -identifying. This comes from the fact that, even if in the
definition it seems necessary to compare all the Isets, in fact this is not needed.

Theorem 2.4 [51] Let C be a code of G. Then the following statements are equivalent:

• The code C is self-identifying in G.

• For all u ∈ C we have IC,G(u) �= ∅ and
⋂

c∈IC,G(u)

N [c] = {u}.

In particular this theorem gives a quick test for determining SID-codes.

Now, if in the graph and code of Figure 2.1.3 the sensors of vertices {0, 1, 3, 4} are all activated, then it seems
that N [0]∩N [1]∩N [3]∩N [4] = {0, 1, 2, 3, 4, 5} ∩ {0, 1, 2, 5, 6, 10} ∩ {0, 2, 3, 4, 7, 8} ∩ {0, 3, 4, 5, 8, 9} = {0}
is the faulty vertex.

Moreover, if two processors are faulty the code allows the user to identify at least one and know if there
is another one to look for. If the sensors 0, 1, 6, 9, 10 are activated, then N [0] ∩ ... ∩ N [10] = {}, which
indicates that there is more than one faulty vertex. Now, let us do the intersections step by step:

vertex cumulative intersections
0 N [0] = {0, 1, 2, 3, 4, 5}
1 N [0] ∩N [1] = {0, 1, 2}
6 N [0] ∩N [1] ∩N [6] = {1, 2}
9 N [0] ∩N [1] ∩N [6] = {}
10 N [0] ∩N [1] ∩N [6] ∩N [10] = {}

If we remove 9 from the list, we obtain {1}, and we identified a faulty vertex. In reverse order, we would
have removed 0 and find {10} as the faulty vertex.
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From these definitions we can directly deduce that SID-codes are ID-codes, and that ID-codes are also
LD-codes, in particular:

γLD(G) ≤ γID(G) ≤ γSID(G)

In this chapter we focus on the ID-codes and then see briefly the modifications needed to treat the LD-
and SID-codes.

2.2 Case of ID-codes

In the introductory paper, Karpovsky et al. gave lower and upper bounds for optimal ID-codes.

Proposition 2.5 [54] Let G be a graph of order n. Then γID(G) ≥ �log2(n+ 1)�.
Moreover, if the graph is regular, we have:

Proposition 2.6 [54] Let G be a r-regular graph of order n. Then γID(G) ≥ 2n
r+2 .

Proof. Let G be a r-regular graph of order n and C an identifying code on G.
As all vertices must have different Isets, there are at most |C| vertices with Isets of cardinal 1. At best,
all other vertices have in their Isets only two codewords. On one hand we count the minimum number of
codewords seen by each vertex: ∑

v∈V
|IC,G(v)| ≥ 1× |C|+ 2× (n− |C|),

on the other hand, in the sum each codeword appears r+ 1 times, as for each c ∈ C, |N [c]| = r+ 1, thus:

(r + 1)|C| ≥ 2n− |C| ⇔ |C| ≥ 2n

r + 2
.

This code has also been studied in infinite regular grids:

Definition 2.7 (Infinite square, triangular, hexagonal and king grids) Here we define some infi-
nite regular graphs.

• Square grid:
The infinite square grid, S, is the graph of vertex set Z2 and such that for all (i, j) ∈ Z

2, N((i, j)) =
{(i− 1, j), (i, j − 1), (i, j + 1), (i+ 1, j)}.

• Triangular grid:
The infinite triangular grid, T , is the graph of vertex set Z

2 and such that for all (i, j) ∈ Z
2,

N((i, j)) = {(i− 1, j − 1), (i− 1, j), (i, j − 1), (i, j + 1), (i+ 1, j), (i+ 1, j + 1)}.
• King grid: The infinite king grid, K, is the graph of vertex set Z2 and such that for all (i, j) ∈ Z

2,
N((i, j)) = {(i−1, j−1), (i−1, j), (i−1, j+1), (i, j−1), (i, j+1), (i+1, j−1), (i+1, j), (i+1, j+1)}.

• Hexagonal grid: The infinite hexagonal grid, H, is the graph of vertex set Z
2 and such that for

all (i, j) ∈ Z
2, if i + j ≡ 0 mod 2 then N((i, j)) = {(i − 1, j), (i + 1, j), (i, j − 1)} and N((i, j)) =

{(i− 1, j), (i+ 1, j), (i, j + 1)} otherwise.

For examples of these grids we refer to Figures 2.2.1 to 2.2.3. These graphs are infinite and we have not
yet defined the optimal identifying codes in infinite graphs. . .

Definition 2.8 [21] The density of an ID-code of an infinite grid over Z
2, G, is:

DG(C) = lim
n→∞

|C|
|Qn|

where Qn = �−n, n�2.
An optimal ID-code of an infinite grid over Z

2, G, is a code of minimum density and its density is denoted
γID(G).
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Figure 2.2.1: Example of square and king grids.

triangular grid (1)
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triangular grid (2)
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Figure 2.2.2: Example of triangular grids in the orthogonal plane and in the isometric plane

From Proposition 2.6:

Proposition 2.9 The optimal ID-codes on the infinite grids S, T ,K,H are such that:

γID(S) ≥ 1/3
γID(T ) ≥ 1/4
γID(K) ≥ 1/5
γID(H) ≥ 2/5

In 2001 Cohen, Honkala, Lobstein and Zémor improved the lower bound for the ID-code on the square
grid:

Proposition 2.10 [22] Let C be an ID-code on the infinite square grid S, then:

DS(C) ≥ 15

43
.

Moreover, the known codes with small densities in these grids are:

Proposition 2.11 Known codes of smallest densities in S, T ,K,H:
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hexagonal grid (2)
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Figure 2.2.3: Example of hexagonal grids in the orthogonal plane and the hexagonal mesh

grid density reference
S 7/20 [8],[31]
T 1/4 [22]
K 2/9 [18],[21]
H 3/7 [23]

In fact, here we have an optimal code for the triangular grid with the expected density, 1/4. In [8] Ben-
Haim and Litsyn proved that ID-codes on the square grid have density at leat 7/20. As well, Cohen,
Honkala and Lobstein showed in [21] that ID-codes in the king grid have density at least 2/9. In this
table we have then three optimal values, and the only open question is

Open question 2.12 Is 3/7 the optimal density for ID-codes on the hexagonal grid H?

Other regular graphs that have already been studied are cycles. Recall that Cn denotes the cycle of length
n.
From Proposition 2.6:

Proposition 2.13 Let n be a positive integer, n ≥ 3 and let C be an ID-code of Cn. Then

|Cn| ≥
n

2
.

More precisely:

Theorem 2.14 Let n be a positive integer.

• [11] If n ≥ 4 is even:

γID(Cn) =

{
3 if n = 4
n
2 otherwise

• [40] If n ≥ 5 is odd:

γID(Cn) =

{
3 if n = 5
n+3
2 otherwise
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Figure 2.2.4: Examples of optimal ID-codes on an even cycle (left) and on an odd one (right). The codes are
{0, 2, 4, 6, 8, 10, 12, 14} in the first case and {0, 1, 2, 3, 5, 7, 9, 11, 13, 15} in the second case.

Examples of optimal codes are shown in Figure 2.2.4.
As well as cycles, there has been also some interest on power of cycles.

Definition 2.15 Let n be a positive integer. The cycle Cn to the p-th power, denoted by Cp
n, is the graph

of vertex set 0, . . . , n− 1 and such that N(i) = {(i− p) mod n, (i− p+ 1) mod n, . . . , i− 1, i+ 1, . . . , (i+
p) mod n}.

In [11, 19, 40, 50, 63] and [74] is the complete study of ID-codes on powers of cycles. Here we are interested
in a variant of these powers of cycles: the circulant graphs.

Definition 2.16 (Circulant Graph) Let n be a positive integer and d1, . . . , dk be k integers such that
for all i, di ≤ n/2. The circulant graph Cn(d1, . . . , dk) is the graph of vertex set 0, . . . , n− 1 and such that
for all i:

N(i) = {i− dk, i− dk−1, . . . , i− d1, i+ d1, . . . , i+ dk}
where the computations are done modulo n.

Remark that the circulant graph Cn(1, 2, . . . , r) is exactly the r-th power of Cn, Cr
n. In Figure 2.2.5 we

can see two examples of circulant graphs, where one of them is also a power of a cycle. These graphs are
all regular, hence we can apply Proposition 2.6.
As the optimal ID-codes for power of cycles where already studied, in 2013, Ghebleh and Niepel considered
circulant graphs that where not powers of graphs.

Theorem 2.17 [37] Let n be a positive integer, n ≥ 15, then:

γID(Cn(1, 3)) ≥
⌈
4n

11

⌉
.

Moreover,

γID(Cn(1, 3))

{
= �4n11 � n �≡ 8 mod 11
≤ �4n11 �+ 1 otherwise

In the same article they explain why their methods are not easily applied to general circulant graphs of
the form Cn(1, d). They also suggested that for n ≡ 8 mod 11 the lower bound was not attainable.
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Figure 2.2.5: Example of circulant graphs: C16(1, 2, 3) = C3
16 and C17(1, 3, 5).

Sadly, n ≡ 8 mod 11 is not the only special case: there are no ID-codes on C11q+2(1, 3) of cardinality 4q+1
for q ≥ 5, there is a problem in their codes. In 2017, in collaboration with V.Junnila and T.Laihonen, we
correct this last part. Moreover we give the exact sizes of optimal ID-codes on circulant graphs Cn(1, 3)
for n ≥ 11. We introduce a new method to bound below the optimal ID-codes, which is also suitable for
general circulant graphs as we see later.

Theorem 2.18 [53] Let n ≥ 11 and (a, b) the unique couple such that n = 11a+ b and 0 ≤ b < 11. Then:

γID(Cn(1, 3)) =

{
�4n11 �+ 1 if b = 2, a ≥ 5 or b = 5, a ≥ 3 or b = 8
�4n11 � otherwise

The proof of this theorem needs a strong tool introduced by Slater in 2002:

Definition 2.19 (Share) [68] Let G be a graph and C a code on G such that for all v ∈ V, IC,G(v) �= ∅.
The share of a codeword c, sC,G(c) is:

sC,G(c) =
∑

v∈N [c]

1

|IC,G(v)|
.

In other terms, a share of a codeword corresponds to the fraction of identifying it does for its neighbors.

Proposition 2.20 [68] Let G be a graph and C a code of G such that for all v ∈ V, IC,G(v) �= ∅. Then:∑
v∈C

sC,G(v) = n.

Proof. In the sum ∑
c∈C

s(c) =
∑
c∈C

∑
v∈N [c]

1

|IC,G(v)|

each vertex v ∈ V appears exactly |IC,G(v)| times (as it has that number of codewords in its Iset), hence:

∑
c∈C

s(c) =
∑
v∈V

|IC,G(v)| ×
1

|IC,G(v)|
= n.
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In particular if all shares are upper bounded by a constant α we obtain directly: α|C| ≥ n, hence |C| ≥ n/α.

In the proof of Theorem 2.18 we take an ID-code and use a discharging method over the shares of each
codeword to bound above the total shares. Here we present only the sketch of the proof, for the complete
proof we refer to the Appendix A.
Sketch of the proof of Theorem 2.18. Let n ≥ 11 and C be an ID-code of Cn(1, 3). Recall that the
vertices are identified to the set Zn.

Let P be the pattern formed by 9 consecutive vertices u, u + 1, . . . , u + 8 such that u, u + 1, u + 3, u +
4, u + 5, u + 6, u + 7, u + 8 �∈ C and u + 2, u + 3 ∈ C. We denote by P ′ the reverse pattern of P , i.e.,
u + 5, u + 6 ∈ C and the rest are not in C. We say a codeword c is in a pattern P if c is one of the
codewords u+ 2, u+ 3, or respectively of P ′ if c is one of the codewords u+ 5 or u+ 6.
We compute the shares in Cn(1, 3) with the code C and discharge the heavy ones to get a lower mean on
the shares. The discharging method follows the rules:

1. If c is a codeword such that its surroundings are as in Figure 2.2.6(1), then 1/12 shares are shifted
from c to c+ 1 by rule R1.1 and 1/24 shares are shifted to c− 1 by rule R1.2.

2. If c is a codeword such that its surroundings are as in Figure 2.2.6(2), then 1/8 shares are shifted to
c+ 4 from c by rule R2.1 and from c+ 1 by rule R2.2.

3. If c is a codeword such that its surroundings are as in Figure 2.2.6(3) then 1/24 shares are shifted
from c to c+ 1 by rule R3.1, to c+ 4 by rule R3.2 and to c+ 7 by rule R3.3.

4. If c is a codeword such that its surroundings are as in Figure 2.2.6(4), then 1/8 shares are shifted to
c+ 11 from c by rule R4.1, from c+ 1 by rule R4.2 and from c+ 4 by R4.3.

5. If c is a codeword such that its surroundings are as in Figure 2.2.6(5), then 1/8 shares are shifted
from c to c+ 3 by rule R5.

6. If c is a codeword such that its surroundings are as in Figure 2.2.6(6), then 1/8 shares are shifted
from c to c+ 1 by rule R6.

7. If c is a codeword such that its surroundings are as in Figure 2.2.6(7), then 1/12 shares are shifted
from c to c+ 1 by the rule R7.

Of course, if the surroundings of a codeword are symmetric to one of these cases, then we shift the shares
symmetrically. By shifting shares this way and denoting ss(u) the share of codeword u after shifting, we
have:

Claim 1 Let u be a codeword receiving shares by these rules. Then, if u is from a pattern P (or P ′) then
ss(u) ≤ 11/4, otherwise ss(u) ≤ 11/4− 1/24.

And:

Claim 2 Let u be a codeword not receiving shares by these rules. Then, if u is from a pattern P (or P ′) then
ss(u) ≤ 11/4, otherwise ss(u) ≤ 11/4− 1/24.

In particular for n ≡ 2, 5, 8 mod 11, if no codeword of C belongs to a pattern P or P ′:

• If n = 11q1 + 2, q1 ≥ 5, then |C| ≥ 4q1 + 2 = �4n/11�+ 1.

• If n = 11q2 + 5, q2 ≥ 3, then |C| ≥ 4q2 + 3 = �4n/11�+ 1.

• If n = 11q3 + 8, q3 ≥ 1, then |C| ≥ 4q3 + 4 = �4n/11�+ 1.
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Figure 2.2.6: The rules of the discharging method illustrated. The haloed dots represent codewords, the ones
without halo represent non-codewords, the gray ones can be either codewords or not. In figures (1), (2) and (5) at
least one of the squares is a codeword. Note that the edges are omitted in the figure but from left to right vertices
increase in value modulo n.

When n = 11a + b, b ∈ {2, 5, 8}, it is not possible to only have patterns P and P ′, hence there must be
codewords not belonging to any pattern P or P ′. This implies a drop of strictly more than 3/4 on the
shares:

n =
∑
c∈C

s(c) <
11

4
|C| − 3

4
.

Hence:

• for n = 11q1 + 2: |C| > 4q1 + 1,

• for n = 11q2 + 5: |C| > 4q2 + 2,

• for n = 11q3 + 8: |C| > 4q3 + 3.
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For a positive integer q, let Cq = {11i+ j | 0 ≤ i ≤ q − 1, j ∈ {0, 1, 4, 5}}.
n ID-code |C|
11q Cq 4q
11q+1 Cq ∪ {11q} 4q + 1 = �4n/11�
11q+2 Cq ∪ {11q, 11q + 1} 4q + 2 = �4n/11�+ 1
11q+3 Cq ∪ {11q, 11q + 1} 4q + 2 = �4n/11�
11q+4 Cq ∪ {11q, 11q + 1} 4q + 2 = �4n/11�
11q+5 Cq ∪ {11q, 11q + 1, 11q + 2} 4q + 3 = �4n/11�+ 1
11q+6 Cq ∪ {11q, 11q + 1, 11q + 2} 4q + 3 = �4n/11�
11q+7 Cq ∪ {11q, 11q + 1, 11q + 3} 4q + 3 = �4n/11�
11q+8 Cq ∪ {11q, 11q + 1, 11q + 2, 11q + 3} 4q + 4 = �4n/11�+ 1
11q+9 Cq ∪ {11q, 11q + 1, 11q + 2, 11q + 3} 4q + 4 = �4n/11�
11q+10 Cq ∪ {11q, 11q + 1, 11q + 3, 11q + 4} 4q + 4 = �4n/11�

Table 2.2.1: Examples of optimal ID-codes on Cn(1, 3) for n ≥ 55

Explicit codes attaining these bounds are given in Table 2.2.1 for Cn(1, 3), n ≥ 55. And in Figure 2.2.7
there are examples of these codes on Cn(1, 3) graphs for n ∈ �55, 65�.
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Figure 2.2.7: Example of optimal ID-codes on Cn(1, 3) for n ∈ {55, 58, 63}

In [52] we applied this same method to study circulant graphs of the form Cn(1, d), Cn(1, d, d + 1) and
Cn(1, d− 1, d, d+ 1).
First of all remark that these graphs are linked to the infinite grids:

Theorem 2.21 [52] Let n, d and k be positive integers such that d ≥ 2.

• If C is an identifying code in Cn(1, d) with k codewords, then there exists an identifying code in the
infinite square grid S with density k/n.

• If C is an identifying code in Cn(1, d, d + 1) with k codewords, then there exists an identifying code
in the infinite triangular grid T with density k/n.

• If C is an identifying code in Cn(1, d− 1, d, d+ 1) with k codewords, then there exists an identifying
code in the infinite king grid K with density k/n.

Proof. Here we are only presenting the proof of the first result as the two others have very similar proofs.
Let C be an identifying code in Cn(1, d). We will use the following correspondence of the vertex x =
(x1, x2) ∈ Z

2 in the square grid with the vertex x1+x2 ·d in Cn(1, d) where x1+x2 ·d is computed modulo n.
Namely the closed neighbourhood of x is NS [x] = {(x1, x2), (x1−1, x2), (x1+1, x2)(x1, x2−1), (x1, x2+1)}
and the corresponding set in Cn(1, d) is {x1+x2·d, x1−1+x2·d, x1+1+x2·d, x1+(x2−1)·d, x1+(x2+1)·d} =
NCn(1,d)[x1 + x2 · d] as shown in Figure 2.2.8. We define the following code in the square grid:
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Figure 2.2.8: Example of C7(1, 3) in the square grid where the rectangles represent copies of C7(1, 3). Remark that
the neighborhood of (x, y) in the grid corresponds to the neighborhood of x+ y · d in the circulant graph.

CS = {(x1, x2) ∈ Z
2 | x1 + x2 · d ∈ C}.

In other words, a vertex (x1, x2) belongs to CS if and only if the corresponding vertex x1 + x2 · d belongs
to C. In what follows we show that CS is an identifying code in S.
First let us show that CS is a dominating set in S. Let (x, y) ∈ S. Assume IS((x, y)) = ∅, i.e.,
N [(x, y)] ∩ CS = ∅. This means that the vertices (x− 1, y), (x, y − 1), (x, y), (x+ 1, y), (x, y + 1) are not
in CS , and by definition of CS , the vertices (x− 1+ y · d, x+(y− 1) · d, x+ y · d, x+1+ y · d, x+(y+1) · d
of Cn(1, d) are not in C and, as N [x+ y · d] = {x+ y · d− d, x+ y · d− 1, x+ y·, x+ y · d+1, x+ y · d+ d},
I(x+ y · d) = ∅, hence C is not an ID-code in Cn(1, d), a contradiction. Hence CS is a dominating set in
S.
Now, assume there exist two distinct vertices A = (x, y) ∈ Z

2 and B = (z, t) ∈ Z
2 in the square grid such

that IS(A) = IS(B). Without loss of generality we can assume t ≥ y. As IS(A) �= ∅ and IS(B) �= ∅, the
vertices A and B are at distance at most 2 in S, i.e. B ∈ {(x−2, y), (x−1, y), (x, y), (x+1, y), (x+2, y), (x−
1, y + 1), (x, y + 1, (x+ 1, y + 1), (x, y + 2)}. Moreover, IS(A) = IS(B) implies I(x+ y · d) = I(z + t · d),
hence x+ y · d ≡ z + t · d mod n since C is an ID-code in Cn(1, d). As B and A are at distance at most
2, we have: z = x+ a, t = y + b for a particular couple (a, b), −2 ≤ a ≤ 2, 0 ≤ b ≤ a. This gives directly
a + b · d ≡ 0 mod n, i.e.a = b = 0 or a = 0, b = 2 and n = 2d. Assume a = 0, b = 2 and n = 2d, in
this case the only codeword in IS(A) is (x, y + 1). As A and B correspond to the same vertex in Cn,
(z, t+ 1) ∈ IS(B), i.e. IS(A) �= IS(B), hence CS is an ID-code in S.
For the cases of Cn(1, d, d+ 1) and Cn(1, d− 1, d, d+ 1) the proof is similar.

In particular, the lower bounds of ID-codes in these three grids give directly lower bounds of ID-codes
for the graphs Cn(1, d).

Corollary 2.22 Let n and d be positive integers such that d ≥ 2 and d ≤ n/2. Then we have:

γID(Cn(1, d)) ≥
⌈
7n

20

⌉
, γID(Cn(1, d, d+ 1)) ≥

⌈n
4

⌉
and γID(Cn(1, d− 1, d, d+ 1)) ≥

⌈
2n

9

⌉
.

There are infinitely many values n, d such that the optimal ID-codes attain these lower bounds:

Theorem 2.23 Let n and d be two positive integers such that n ≥ 2d.

1. For Cn(1, d):
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Figure 2.2.9: Example of C7(1, 3) in the triangular and king grids. The rectangles represent copies of C7(1, 3).

If n ≡ 0 mod 40 and d ≡ 4 mod 40, then we have γID(Cn(1, d)) =
7n
20 .

If n ≡ 0 mod 20 and d ≡ 6 mod 20, then we have γID(Cn(1, d)) =
7n
20 .

2. For Cn(1, d− 1, d):
There is a sequence (ni, di, Ci)

∞
i=1 such that for all i, Ci is an ID-code on the graph Cni

(1, di− 1, di),

lim
i→∞

ni = ∞ and lim
i→∞

|Ci|
ni

=
1

4
.

3. For Cn(1, d− 1, d, d+ 1):
There is a sequence (ni, di, Ci)

∞
i=1 such that for all i, Ci is an ID-code on the graph Cni

(1, di −
1, di, di + 1),

lim
i→∞

ni = ∞ and lim
i→∞

|Ci|
ni

=
2

9
.

Proof. Let n and d be two positive integers such that n ≥ 2d.

1. For Cn(1, d):
Let n ≡ 0 (mod 40) and d ≡ 4 (mod 40). Define

B1 = {0, 1, 2, 8, 10, 12, 16, 18, 22, 24, 26, 32, 33, 34}

and
D1 = {u ∈ Zn | u ≡ b (mod 40) for some b ∈ B1}.

It is straightforward to verify that B1 is an identifying code in C40(1, 4). In what follows, we prove
that D1 is an identifying code in Cn(1, d) by showing that all the identifying sets ICn(1,d),D1

(x) are
nonempty and unique. Observe first that by the construction of D1 we obtain for all x ∈ Zn that

ICn(1,d),D1
(x) ≡ IC40(1,4),B1

(x′) (mod 40),

where x′ is an integer such that x ≡ x′ (mod 40) and 0 ≤ x′ ≤ 39. Therefore, the identifying sets
ICn(1,d),D1

(x) are nonempty for all x ∈ Zn. Let x and y be distinct vertices of Zn. Assume first
that x �≡ y (mod 40). Let then x′ and y′ be integers such that x ≡ x′ (mod 40), y ≡ y′ (mod 40),
0 ≤ x′ ≤ 39 and 0 ≤ y′ ≤ 39.
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Therefore, by the previous observation, if ICn(1,d),D1
(x) = ICn(1,d),D1

(y), then IC40(1,4),B1
(x′) =

IC40(1,4),B1
(y′) and we have a contradiction as B1 is an identifying code in C40(1, 4). Hence, we

may assume that x ≡ y (mod 40). Let us then show that N [Cn(1, d);x] ∩N [Cn(1, d); y] = ∅. Sup-
pose to the contrary that there exist x, y ∈ Zn such that x+j = y+j′ for some j, j′ ∈ {−d,−1, 0, 1, d}.
Since x ≡ y (mod 40), we obtain that j ≡ j′ (mod 40). This further implies that j = j′ and x = y
(a contradiction).

Therefore, as each vertex of Zn is covered by a codeword of D1, we have ICn(1,d),D1
(x) �= ICn(1,d),D1

(y).
Thus, D1 is an identifying code in Cn(1, d).

Now, let n ≡ 0 (mod 20) and d ≡ 6 (mod 20). Define B2 = {0, 2, 8, 9, 11, 12, 18} and

D2 = {u ∈ Zn | u ≡ b (mod 20) for some b ∈ B2}.

It is straightforward to verify that B2 is an identifying code in C20(1, 6). Then, using similar argu-
ments as in the case (i), we can prove that D2 is an identifying code in Cn(1, d).

2. For Cn(1, d− 1, d):
Let d ≥ 6 be even and n = 6d. Denote S = {j | 0 ≤ j ≤ d, j ≡ 0 (mod 2)}. We define

Cd = {v ∈ Zn | v ≡ b (mod 2d) for some b ∈ S}.

The code Cd has cardinality 3(d/2 + 1). Thus limd→∞ |Cd|/n = 1/4.

We will show that Cd is identifying in Cn(1, d− 1, d). If x ≡ s (mod 2d) with d ≤ s ≤ 2d− 1 and x
is odd, then {x− d+ 1, x+ d− 1} ⊆ I(x). Since N [x− d+ 1] ∩N [x+ d− 1] = {x}, it follows that
I(x) �= I(y) for any y �= x. If x ≡ s (mod 2d) where x is even and d ≤ s ≤ 2d − 1 or s = 0, then
{x− d, x+ d} ⊆ I(x). Since N [x− d] ∩N [x+ d] = {x}, the I(x) is distinguished from other I(y)’s.
Suppose then that x ≡ s (mod 2d) with 1 ≤ s ≤ d − 1 and x is odd. Now {x − 1, x + 1} ⊆ I(x)
and again I(x) is unique among I-sets. If x ≡ s (mod 2d) with 1 ≤ s ≤ d − 1 and x is even, then
I(x) = {x}. It follows that Cd is identifying.

3. For Cn(1, d− 1, d, d+ 1):

Let d ≥ 15, d ≡ 3 (mod 6) and n = 3d−9. Notice that n ≡ 0 (mod 6). We divide the vertices of the
circulant graph into three sections denoted by A1 = {0, 1, 2 . . . , d − 1}, A2 = {d, d + 1, . . . , 2d − 1}
and A3 = {0, 1, . . . , n− 1} \ (A1 ∪A2). We will first consider the code

Cd = {v | v ∈ (A1 ∪A3), v ≡ 5 (mod 6)} ∪ {v | v ∈ A2, v ≡ 0, 4 (mod 6)}.

Using this code we can construct (by adding later two more codewords) an identifying code in
Cn(1, d − 1, d, d + 1). The ratio |Cd|/n tends to 2/9 as d tends to infinitely. First we exclude some
‘borderline’ vertices from the three sections and denote A′

1 = A1\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, d−1}, A′
2 =

A2 \ {d, 2d− 1} and A′
3 = A3 \ {2d}. We consider the borderline vertices later. It is straightforward

to check that the I-sets with regard to the code Cd are as follows for x ∈ A′
1 ∪A′

2 ∪A′
3:

x ∈ A′
1 I(x) d(c1, c2) I(x) mod 6

≡ 0 mod 6 {x− 1, x+ d+ 1} d+ 2 4, 5
1 {x− d+ 1, x+ d} d− 8 4, 5
2 {x− d, x+ d− 1, x+ d+ 1} 0, 4, 5
3 {x− d− 1, x+ d} d− 10 0, 5
4 {x+ 1, x+ d− 1} d− 2 0, 5
5 {x}
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x ∈ A′
2 I(x) d(c1, c2) I(x) mod 6

≡ 0 mod 6 {x}
1 {x− d+ 1, x− 1, x+ d+ 1} 0, 5, 5
2 {x− d, x+ d} 2d
3 {x− d− 1, x+ 1, x+ d− 1} 4, 5, 5
4 {x}
5 {x− 1, x+ 1} 2

x ∈ A′
3 I(x) d(c1, c2) I(x) mod 6

≡ 0 mod 6 {x− d+ 1, x− 1} d− 2 4, 5
1 {x− d, x+ d+ 1} d− 10 4, 5
2 {x− d− 1, x− d+ 1, x+ d} 0, 4, 5
3 {x− d, x+ d− 1} d− 8 0, 5
4 {x− d− 1, x+ 1} d+ 2 0, 5
5 {x}

Let us compare these I-sets (that is, when x ∈ A′
1 ∪ A′

2 ∪ A′
3). Clearly, the I-sets of size one are

distinguished. Consider then the I-sets of size two. In the tables above, one can found the distances
c1 − c2 of the codewords in I(x) with c1 > c2. If the distance is different, the I-sets cannot be
the same. For those, which have the same distance, the c1 (mod 6) and c2 (mod 6) are different as
shown in the table, and the I-sets again cannot be the same. Let us study the I-sets of size three
then. According to the tables, the codewords in the I-sets are different modulo 6 unless x ∈ A′

1

where x ≡ 2 (mod 6) and y ∈ A′
3 where y ≡ 2 (mod 6). However, now I(y) has distance 2 between

its two largest codewords, but I(x) has corresponding distance d− 10. Consequently, I(x) �= I(y).

For the rest of the vertices (i.e., the borderline vertices x /∈ A′
1∪A′

2∪A′
3) we get the following I-sets:

I(0) = {d + 1, 2d − 8, 3d − 10}, I(1) = {d + 1, 2d − 8}, I(2) = {d + 1, d + 3, 2d − 8, 2d − 6}, I(3) =
{d+3, 2d− 6}, I(4) = {5, d+3, 2d− 6}, I(5) = {5}, I(6) = {5, d+7, 2d− 2}, I(7) = {d+7, 2d− 2},
I(8) = {d+ 7, d+ 9, 2d− 2}, I(9) = {d+ 9}, I(d− 1) = {2d− 2, 3d− 10}, I(d) = {d+ 1, 3d− 10},
I(2d − 1) = {2d − 2} and I(2d) = {d + 1}. It is straightforward to check (considering sizes of
I-sets, codewords modulo 6 in I-sets and their distances) that we have exactly the following non-
distinguished I-sets: I(9) = I(d+9), I(d−1) = I(d−2), I(d+1) = I(2d) and I(2d−2) = I(2d−1).
We add two more codewords, namely, 0 and 2d to the code Cd to avoid these same I-sets. Denote
C ′
d = Cd ∪ {0, 2d}. We should bear in mind that if ICd

(x) �= ICd
(y), then also IC′

d
(x) �= IC′

d
(y). Now

we have (with respect to C ′
d) that 2d ∈ I(9)\I(d+9), 0 ∈ I(d−1)\I(d−2), 2d ∈ I(2d−1)\I(2d−2)

and 0 ∈ I(d+ 1) \ I(2d). Therefore, C ′
d is an identifying code and the proof is completed.

It is interesting to see that in all the cases these bounds are optimal, in one case we find infinity many
values attaining it but in the other cases this bound is only approached. Recall that from Proposition 2.6,
the optimal bound for an ID-code in Cn(d1, d2, . . . dr) is of cardinal at least n

r+1 .
The following result considers the situation when this bound can be achieved.

Theorem 2.24 [52, 54] Let k be an integer such that k ≥ 2 and G(V,E) be a finite k-regular graph. Then:

γID(G) ≥
⌈
2|V |
k + 2

⌉

and an ID-code in G has cardinality 2|V |
k+2 if and only if there exist exactly |C| vertices u ∈ V such that

|IC(u)| = 1 and for all other vertices v ∈ V we have |IC(v)| = 2.

Now for the lower bounds in Cn(1, d, d+ 1):

Theorem 2.25 Let n, r and d2, . . . , dr be integers such that r ≥ 3 and 1 < d2 < · · · < dr ≤ n/2.
Then there does not exist any ID-code C in Cn(1, d2, . . . , dr) such that |C| = n/(r + 1).
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Proof. Let C be an ID-code in Cn(1, d2, . . . , dr) such that |C| = n/(r+1). This is possible if and only if
there are exactly |C| vertices x1, . . . , x|C| such that |I(xi)| = 1 and the rest of the vertices have identifying
sets with exactly two vertices. If there exists a vertex of C, say u, such that |IC(u)| = 2 then we have
IC(u) = {u, v} and IC(v) = IC(v) as all identifying sets have at most two codewords (a contradiction).
Hence, the codewords of C are the vertices x1, . . . , x|C|. Therefore, we have IC(x1) = {x1}, implying that
x1 +1 /∈ C and |IC(x1 +1)| = 2. If IC(x1 +1) = {x1, x1 +1± di}, for some i, then the vertex v = x1 ± di
contains {x1, x1 + 1± di} in its Iset (a contradiction). Hence, it has to be that IC(x1 + 1) = {x1, x1 + 2}.
As x1 + 2 ∈ C, IC(x1 + 2) = {x1 + 2}, then, using similar arguments as above, we obtain that x1 + 3 /∈ C
and IC(x1 + 3) = {x1 + 2, x1 + 4}. Thus, by continuing this process, we obtain that every other vertex
of Cn(1, d2, . . . , dr) is a codeword. Clearly, this leads to a contradiction with the chosen cardinality of C,
thus we conclude that γID(Cn(1, d2, . . . , dr)) > n/(r + 1).

In particular the lower bound 1/4 of circulant graphs Cn(1, d, d+ 1) is not attainable. This theorem does
not helps answer the following question:

Open question 2.26 Is there a triplet (n, d, C), n ≥ 2d, d ≥ 3, such that C is an ID-code of Cn(1, d−
1, d, d+ 1) of cardinality 2/9 ?

In the following section we see similar results with LD- and SID-codes on the circulant graphs.

2.3 Differences with LD and SID

The same kind of results have been found for LD- and SID-codes. We start by showing the Cn(1, 3) case
and then focus on the graphs Cn(1, d), Cn(1, d, d+ 1) and Cn(1, d− 1, d, d+ 1).

In [37], Ghebleh and Niepel gave good bounds for optimal cardinalities of LD-codes on Cn(1, 3) for most
values of n:

Theorem 2.27 [37] Let n ≥ 9. Then⌈n
3

⌉
≤ γLD(Cn(1, 3)) ≤

⌈n
3

⌉
+ 1.

Moreover, if n ≡ 0, 1, 4 mod 6, γLD(Cn(1, 3)) = �n/3�.

As well they conjectured:

Conjecture 2.28 [37] Let n ≥ 13 and n mod 6 ∈ {2, 3, 5}. The circulant graph Cn(1, 3) does not admit
a LD-code of size �n/3�.

In [53] we prove this conjecture for n ≥ 17 and give the optimal codes.

Theorem 2.29 [53] Let n > 17. Then

γLD(Cn(1, 3)) =

⎧⎪⎪⎨
⎪⎪⎩

⌈n
3

⌉
if n ≡ 0, 1, 4 mod 6

⌈n
3

⌉
+ 1 otherwise

The proof of this last theorem is similar to Theorem 2.18 where we redistribute shares and remark some
usual patterns that improve the lower bound in the cases n ≡ 2, 3, 5 mod 6. The proof is found in
Appendix B.
As well, in [53] we studied the optimal SID-codes on the graphs Cn(1, 3):
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Theorem 2.30 [52] The optimal cardinalities of SID-codes in Cn(1, 3) for n > 11 are:

γSID((Cn(1, 3)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4k if n = 7k
4k + 1 if n = 7k + 1
4k + 2 if n = 7k + 2
4k + 3 if n ∈ {7k + 3, 7k + 4}
4k + 4 if n ∈ {7k + 5, 7k + 6}

Proof. Let n be an integer such that n > 11. Observe first that we have the following characterization
for self-identifying codes in Cn(1, 3):

• A code K in Cn(1, 3) is self-identifying if and only if |IK(c)| ≥ 3 for all c ∈ K and {u−3, u+3} ⊆ IK(u)
for all u ∈ Zn \K.

Indeed, if K is a self-identifying code in Cn(1, 3), then the given conditions are met by the previous
proposition. On the other hand, if K satisfies the conditions, then it is straightforward to verify that K
is a self-identifying code by Theorem 2.4.
Let K be a self-identifying code in Cn(1, 3). In what follows, we study more closely what happens if there
exists consecutive non-codewords in K:

• If there are four or more non-consecutive non-codewords, then the first one, say u, contradicts with
the previous characterization as u+ 3 does not belong to K.

• If there are exactly three consecutive non-codewords, say {0, 1, 2} (and thus n − 1 and 3 are in the
code), then {n − 4, n − 3, n − 2, 4, 5, 6} are all codewords (by the characterization). Let P3 be the
pattern with 3 consecutive non-codewords followed by four consecutive codewords (see Figure 2.3.1).

• If there are exactly two consecutive non-codewords, say {0, 1}, then {n−3, n−2, n−1, 2, 3, 4} are in
the code. Let P2 be the pattern with two consecutive non-codewords followed by three consecutive
codewords as in Figure 2.3.1.

• Suppose then that there is only one consecutive codeword, say non-codeword 0 (and n − 1 and 1
are in the code). If 2 ∈ K, then we get the pattern P1a with one non-codeword followed by two
codewords. On the other hand, if 2 /∈ K, then we obtain (by the characterization) the pattern P1b
with five consecutive vertices with only the first and the third one being non-codewords.

Notice that the smallest density among the patterns is the one with three consecutive non-codewords
followed by four codewords, i.e., the density of the codewords in the patter is 4/7.
Due to the obtained patterns, we may conclude that there exists in the graph two consecutive codewords
followed by a non-codeword. Without loss of generality, it can be assumed that n − 2, n − 1 ∈ K and
0 /∈ K.
Furthermore, there exists a vertex x1 such that the set s1 = {0, 1, . . . , x1} is one of the patterns P3, P2,
P1a or P1b. Hence x1−1 and x1 are codewords and we can do the same thing with the next non-codeword
vertex x2 (notice that x2 may be different from x1 + 1). Let x3 be such that s2 = {x2, x2 + 1, . . . , x3} is
one of the patterns. We can go on to the right and define all the sets s1, . . . , sr that correspond to the
patterns. Note that the vertices that are not in these sets are all codewords. This partition the graph
in patterns with maybe some codewords separating them. Notice also that the last pattern sr do not
intersect the first one s1. For each of these sets si let di be its density and ni the number of vertices. The
density of K can then be estimated

d ≥ 1

n
(
∑

1≤i≤r

dini + n−
∑

1≤i≤r

ni) ≥
1

n
(
∑

1≤i≤r

4

7
ni + n−

∑
1≤i≤r

ni) =
4

7

This implies that the self-identifying code K has at least �4n/7� codewords. The proof now divides into
the following cases depending on the remainder of n when divided by 7:
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P3
0 1 2 3 4 5 6

P2
0 1 2 3 4

P1a
0 1 2

P1b
0 1 2 3 4

Figure 2.3.1: The patterns for Cn(1, 3). Codewords are haloed.

• If n = 7k, then the code has at least �47n� codewords, that is, 4k. The code K1 = {i+ 7j | 0 ≤ i ≤
3, 0 ≤ j ≤ k − 1} is self-identifying. Indeed, for every vertex v /∈ K, we have {v − 3, v + 3} ⊆ I(v).
Furthermore, for every vertex v ∈ K, we have |IK1

(v)| ≥ 3. Thus, according to the characterization,
the code K1 is self-identifying in Cn(1, 3).

• If n = 7k + 1, then the code has at least �47n� codewords, that is, 4k + 1. By the same argument as
for the case n = 7k, the code K2 = {i + 7j | 0 ≤ i ≤ 3, 0 ≤ j ≤ k − 1} ∪ {7k} can be shown to be
self-identifying.

• If n = 7k+2, then the code has at least �47n� = 4k+2 codewords. By the same argument as for the
case n = 7k the code K3 = {i+ 7j | 0 ≤ i ≤ 3, 0 ≤ j ≤ k − 1} ∪ {7k, 7k + 1} works.

• If n = 7k+4 (notice that the more difficult case of n = 7k+3 will be dealt later), then the code has
at least 4k + 3 codewords, the code K5 = {i + 7j | 0 ≤ i ≤ 3, 0 ≤ j ≤ k − 1} ∪ {7k − 1, 7k, 7k + 1}
works. Indeed, as above, it is straightforward to verify that {v− 3, v+3} ⊆ IK5

(v) for all v /∈ K and
|IK5

(c)| ≥ 3 for all c ∈ K5. Thus, K5 is self-identifying by the characterization.

• If n = 7k + 6 (notice that the case n = 7k + 5 is postponed), then the code has at least 4k + 4
codewords. As above, we can show that the code K7 = {i + 7j | 0 ≤ i ≤ 3, 0 ≤ j ≤ k} is
self-identifying in Cn(1, 3).

• Suppose n = 7k+3. We will first show that now a self-identifying code has at least 4k+3 codewords.
Every self-identifying code on C7k+3(1, 3) needs at least �47n� = 4k+2 codewords. Assume that there
is a self-identifying code K on Cn(1, 3) with 4k+ 2 codewords. Recall that the density of codewords
in the patterns is at least 3/5 unless the pattern is P3. If there are at most k − 2 patterns of P3,
then |K| ≥ 4

7(7(k − 2)) + 3
5(n − 7(k − 2)) = 4k + 11

5 > 4k + 2. Consequently, there must be either
k or k − 1 patterns of P3. Suppose first that there are k of them. This implies that there are three
vertices outside of them (not necessarily consecutive). Recall that if we have a pattern P3 starting
from a vertex u, then the vertices u − 1, u − 2, u − 3 and u − 4 are all codewords. Therefore, as
we have only three vertices outside of patterns P3, they all have to be codewords. Suppose then
that there are k − 1 patterns P3. Now there are 10 vertices not in these patterns. If a vertex
u starts a pattern P3 such that u − 1 is not part of a pattern P3 (indeed, such pattern has to
exist), then u − 1 is a codeword (as above) and does not belong to any pattern since none of the
patterns other than P3 ends with four consecutive codewords. Therefore, we obtain that 7(k − 1)
vertices belongs to some pattern P3, one codeword does not belong to any pattern and the rest
9 of the vertices belong to patterns other than P3 (or not to any pattern). Thus, we obtain that
|K| ≥ 4

7(7(k − 1)) + 1 + 3
5(n− 7(k − 1)− 1) = 4k + 12

5 > 4k + 2.
Hence, there is no self-identifying code with 4k + 2 codewords and the size of the code is at least
4k + 3. By the same argument as above, we can show that the code K4 = {i + 7j | 0 ≤ i ≤ 3, 0 ≤
j ≤ k − 1} ∪ {7k, 7k + 1, 7k + 2} works.

• If n = 7k+5, then we show next that the code has at least 4k+4 codewords. It needs at least 4k+3
codewords. Let us use the sets si of the patterns again. If there is at most k − 1 patterns P3, then
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|K| ≥ 4
7(7(k − 1)) + 3

5(n − 7(k − 1)) = 4k + 16
5 > 4k + 3. Therefore, there must be k patterns of

P3 and five vertices outside them (not necessarily consecutive). Suppose first that these five vertices
are not consecutive. Then they all must be codewords since four consecutive vertices left to any
pattern P3 are codewords. Suppose then that the five vertices are consecutive. This implies (with
the same argument) that four of them has to be codewords. Thus, in both cases, at least four of the
five vertices are codewords. Hence, we have |K| ≥ 4k + 4. As above, it is straightforward to verify
that K6 = {i+ 7j | 0 ≤ i ≤ 3, 0 ≤ j ≤ k} is an optimal self-identifying code with 4k + 4 vertices.

Now, if we see the more general cases of Cn(1, d), Cn(1, d, d+ 1) and Cn(1, d− 1, d, d+ 1), we can do the
same as for the ID-case: get lower bounds from the optimal LD- and SID-codes in the infinite grids.

These optimal densities give lower bounds for LD- and SID-codes on the circulant graphs Cn(1, d),
Cn(1, d, d+ 1) and Cn(1, d− 1, d, d+ 1). Moreover, these are optimal lower bounds:

Theorem 2.31 [52] Let n and d be positive integers such that n ≥ 2d, d ≥ 4.

• For the LD-codes:

1. If n ≡ 0 mod 20 and d ≡ 5 mod 20, then γLD(Cn(1, d)) = 3n/10.
2. If n ≡ 0 mod 57 and d ≡ 8 mod 57, then γLD(Cn(1, d− 1, d)) = 13n/57.
3. If n ≡ 0 mod 10, d ≡ 8 mod 10 and n ≥ 4d+ 6, then γLD(Cn(1, d− 1, d, d+ 1)) = n/5.

• For the SID-codes:

1. If d and n are even and n ≥ 4d+ 1, then SID(Cn(1, d)) = n/2.
2. If n ≥ 4d+ 1 and n is even, then γSID(Cn(1, d− 1, d)) = n/2.
3. If d ≡ 1 mod 3, n ≥ 4d+ 5, n ≡ 0 mod 3, then SID(Cn(1, d− 1, d, d+ 1)) = n/3.

Proof.

• For the LD-codes:

1. Let n ≡ 0 (mod 20) and d ≡ 5 (mod 20). Define B3 = {0, 4, 7, 11, 14, 17} and

D3 = {u ∈ Zn | u ≡ b (mod 20) for some b ∈ B3}.

It is straightforward to verify that B3 is a locating-dominating code in C20(1, 5). Then, using
similar arguments as in the case for ID-codes we have that D3 is a locating-dominating code in
Cn(1, d).

2. Let d ≡ 8 (mod 57), d ≥ 8, n ≥ 2d and n ≡ 0 (mod 57). We denote

B = {0, 2, 4, 6, 15, 18, 27, 29, 31, 33, 43, 45, 47}.

Let further
C = {v ∈ Zn | v ≡ b (mod 57) for some b ∈ B}.

It is straightforward to check that B is a locating-dominating code in C57(1, d− 1, d) for d = 8.
Next we will show that C is locating-dominating in Cn(1, d − 1, d). Let us first show that
I(x) = I(y) for x �≡ y (mod 57) and x, y /∈ C. Denote x′ = x (mod 57) and y′ = y (mod 57)
where 0 ≤ x′ ≤ 56 and 0 ≤ y′ ≤ 56. If I(x) = I(y), then it follows that the codewords in I(x)
and in I(y) would be equal modulo 57. However, that is not possible, since IB(x

′) �= IB(y
′) for

distinct x′, y′ /∈ B. Therefore, it suffices to consider I(x) = I(y) for x ≡ y (mod 57), x �= y and
x, y /∈ C. Let j ∈ {−d, d + 1,−1, 0, 1, d − 1, d} and x + j ∈ I(x). Consequently, x + j = y + j′
for some j′ ∈ {−d, d + 1,−1, 0, 1, d − 1, d}. Since x ≡ y (mod 57), we get j = j′ giving x = y.
Hence C is locating-dominating.
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3. Let d ≡ 8 (mod 10), n ≥ 4d+ 6 and n ≡ 0 (mod 10). Next we will verify that the code

C ′ = {v ∈ Zn | v ≡ 0, 4 (mod 10)}
is locating-dominating in Cn(1, d− 1, d, d+1). Since d ≡ 8 (mod 10), then we get the following
I-sets depending on the value of non-codewords x modulo 10

x (mod 10) I(x) I(x) (mod 10)
1 {x− 1, x− d+ 1, x+ d+ 1} 0, 4, 0
2 {x− d, x+ d} 4, 0
3 {x+ 1, x− d− 1, x+ d− 1} 4, 4, 0
5 {x− 1, x+ d+ 1} 4, 4
6 {x+ d} 4
7 {x− d+ 1, x+ d− 1} 0, 4
8 {x− d} 0
9 {x+ 1, x− d− 1} 0, 0.

Let x �= y. Clearly, I(x) �= I(y) for those x and y which have different sizes of the I-sets. Let
us first consider the cases where the size of the I-sets equal one. If x ≡ 6 (mod 10) and y ≡ 8
(mod 10), then (see the table above) c ∈ I(x) has c ≡ 4 (mod 10) and c′ ∈ I(y) has c′ ≡ 0
(mod 10). Therefore, I(x) �= I(y). Obviously, the sets I(x) �= I(y) if x ≡ y ≡ 6 (mod 10) or if
x ≡ y ≡ 8 (mod 10). Consider then the case of I-sets of size three. Let first x ≡ 1 (mod 10)
and y ≡ 3 (mod 10). Now the set I(x) has exactly one codeword c such that c ≡ 4 (mod 10)
and the set I(y) has exactly two such codewords. Therefore, I(x) �= I(y). Consider then the
case x ≡ y ≡ 1 (mod 10). Now the only codeword which is 4 modulo 10 is x − d + 1 in I(x)
and y − d+ 1 in I(y). Consequently, if I(x) = I(y), then x− d+ 1 ≡ y − d+ 1 (mod n) giving
x = y (in Zn). The case if x ≡ y ≡ 3 (mod 10) goes similarly. Consider then the I-sets of size
two. We start with the situation I(x) = I(y) where x �≡ y (mod 10). If x ≡ 5 (mod 10) (resp.
x ≡ 9 (mod 10)), then in I(x) both of the codewords are equal to 4 (resp. 0) modulo 10. If
x ≡ 2 (mod 10) or x ≡ 7 (mod 10), then the I(x) has exactly one codeword 0 modulo 10 and
one 4 modulo 10. Therefore, it suffices to consider the case x ≡ 2 (mod 10) or y ≡ 7 (mod 10).
Now I(x) = {x− d, x+ d} and I(y) = {y − d+ 1, y + d− 1}. Due to the residue classes modulo
10, we must have x− d ≡ y + d− 1 (mod n) and x+ d ≡ y − d+ 1 (mod n). This implies that
2x ≡ 2y (mod n). If n is odd, we immediately have x = y (in Zn). If n is even, we still have
x = y due to the fact that n ≥ 4d+ 6.

The cases x ≡ y ≡ 2 (mod 10) and x ≡ y ≡ 7 (mod 10) go as above based on the residue classes
modulo 10 of the codewords in I(x) and I(y). In the cases x ≡ y ≡ 5, 9 (mod 10) we use the
fact that n ≥ 4d+ 6. In summary I(x) �= I(y) for x �= y and we obtain the assertion.

• For the SID-codes:

1. We show that the code
C = {v ∈ Zn | v ≡ 0 (mod 2)}

is self-identifying in the circulant graph Cn(1, d). If x ≡ 0 (mod 2), then I(x) = {x−d, x, x+d}
and otherwise I(x) = {x− 1, x+ 1}. Since n ≥ 4d+ 1, we get that N [x− d] ∩N [x− d] = {x}
and N [x − 1] ∩ N [x + 1] = {x}. Consequently, the condition for self-identification, namely,
∩c∈I(x)N [c] = {x}, is satisfied. As n

2 is the lower bound, we showed that γSID(Cn(1, d)) =
n
2 .

2. Let d ≥ 4, n ≥ 4d+ 1 and n be even. The code

C = {v ∈ Zn | v ≡ 0 (mod 2)}
is self-identifying in Cn(1, d − 1, d) as will be seen next. If d is even (resp. odd) and x ≡ 0
(mod 2), then {x− d, x+ d} ⊆ I(x) (resp. {x− d+ 1, x+ d− 1} ⊆ I(x)). Hence in both cases
∩c∈I(x)N [c] = {x}. If d is even (resp. odd) and x ≡ 1 (mod 2), then {x−d+1, x+d−1} ⊆ I(x)
(resp. {x − d, x + d} ⊆ I(x)). Consequently, again ∩c∈I(x)N [c] = {x}. Therefore, C is self-
identifying. As n

2 is the lower bound, we showed that γSID(Cn(1, d− 1, d)) = n
2 .
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3. Let
C = {v ∈ Zn | v ≡ 0 (mod 3)}.

We verify next that C is self-identifying in Cn(1, d − 1, d, d + 1). If x ≡ 0 (mod 3), we have
I(x) = {x, x− d+ 1, x+ d− 1} since d ≡ 1 (mod 3). If x ≡ 1 (mod 3) (resp. x ≡ 2 (mod 3)),
then I(x) = {x− 1, x− d, x+ d+ 1} (resp. I(x) = {x+ 1, x− d− 1, x+ d}). Now in each case,
the intersection ∩c∈I(x)N [x] = {x} due to the fact that n ≥ 4d+ 5. Hence C is self-identifying.

In Table 2.3.1 there is a summary of all the results obtained in this section.

square grid S triangular grid T king grid K
LD 3/10 [68] 13/57 [46] 1/5 [47]
ID 7/20 [8, 20] 1/4 [54] 2/9 [18, 22]
SID 1/2 [48] 1/2 [48] 1/3 [48]

Table 2.3.1: Optimal densities of ID, LD and SID-codes on the infinite square, triangular and king grids along
with the corresponding references.

Here all the lower bounds are attained but it could be interesting to know if the lower bound 2/9 of
ID-codes in the infinite king grid is a minimum, and of course, understand why the ID-codes behave
differently in the triangular and the king grids.



42 CHAPTER 2. IDENTIFYING CODES AND VARIANTS



Chapter 3

Graph marking and graph coloring games

“S’il n’y a pas de solution c’est
qu’il n’y a pas de problème.”

Jacques Rouxel - Les Shadoks

In this chapter two games are studied. First some definitions are given with the general context of both
games, then the graph marking game is studied for graph operators and at the last section the edge coloring
game is studied on graph decompositions.

3.1 Definitions and general context

In this chapter two two-players games on graphs are presented along with some of their variants. Histori-
cally, the first one to be studied was the vertex coloring game, then to simplify its study the vertex marking
game was introduced. As their names suggest, the edge coloring and marking games have also been studied.

It all started in 1981 when Brams introduced a game in an attempt to find a non-computational proof for
the 4-color theorem, [36]. Later on Bodlaender rediscovered that game and established some results for
the tree class of graphs.

coloring game: The coloring game is played by two players, Alice and Bob on a graph G with a set
C of colors. Players take turns to properly color an uncolored vertex v with a color of C. If, at the end,
the graph is properly colored, then the first player (by convention is Alice) wins, otherwise, Bob wins.

For this game the parameter to consider is the number of colors. Indeed, if there are not enough colors,
Alice can never win. Hence, for a given number of colors, the main question is: is there a strategy for
Alice with k colors such that, no matter how Bob plays, at the end the graph is properly colored?

Definition 3.1 (game chromatic number) The game chromatic number χg(G) is the minimum num-
ber of colors such that Alice has a winning strategy for the coloring game on G, meaning that no
matters how Bob plays, Alice can always win.

Consider the first graph of Figure 3.1.1. Assume the players play with 4 colors: when Alice colors a vertex
i with the color c, Bob colors the vertex (i+ 3) mod 6 with a new color. Each time Alice plays, she needs
a new color, hence, after four turns there are no colors left and Bob wins. If they play with 5 colors, the
last vertex to be played, say i, can always take the color of the vertex (i+ 3) mod 6. Hence χg(G) = 5.
Now consider the second graph, the vertices 1, 3, 4 and 5 form a complete graph, hence they need at least
4 colors. With 4 colors, Alice’s strategy is to play first vertices of degree 4 unless Bob colors the vertices
0 or 4, in which case she colors the other one (of 0, 4) with the same color.

43
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Figure 3.1.1: Example of graphs where Alice needs 5 (left) and 4 (right) colors to win the coloring game.

We have some trivial bounds, for the game chromatic number, depending on the maximum degree and
the chromatic number.

Proposition 3.2 ([13]) Given a graph G of maximum degree Δ and chromatic number χ(G):

χ(G) ≤ χg(G) ≤ Δ+ 1

Proof. For the lower bound we have only to note that if Alice wins, the graph is properly colored, meaning
that there are at least χ(G) colors.
If they play with Δ+1 colors, when a vertex is colored it has at most Δ colors in its neighborhood, hence
there is always a color available.

One way to simplify the study of the coloring game is by studying the marking game. It was first men-
tioned on a paper of Faigle et al. in 1993 [32], then properly introduced in a paper of Zhu in 1998 [75].

marking game: The marking game is played on a graph G by two players Alice and Bob. They
alternately take turns to mark unmarked vertices. At the beginning (no vertex is marked) the score of
each vertex is 0. Each time a vertex is marked, its score changes to one plus the number of marked
neighbors it has. At the end, the score of the graph is the maximum score obtained along the game.

In this case, Alice wants to minimize the score and Bob wants to maximize it.

Definition 3.3 (game coloring number) The game coloring number of a graph G, noted colg(G) is
the minimum score ensured by Alice, meaning that no matter how Bob plays, Alice has a strategy ensuring
score at most colg(G).

Please note that the game chromatic number is the parameter of the coloring game and the game coloring
number is the one of the marking game.
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Figure 3.1.2: Example of graphs where colg(G) = 4.
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Consider the first graph of Figure 3.1.2, Bob should play in his first two turns the vertices 1 and 7. This
way the last vertex to be marked is of degree 3 and has all of its neighbors marked, hence the maximum
score is at least 4. As the maximum degree is 3, the maximum score possible is 4, hence colg(G) = 4.
Now consider the second graph of Figure 3.1.2. Alice starts by marking the vertices 1, 7 and 4 in that
order. In the worst case Bob marks first two neighbors of 4 (different from 7) and the final score is 4
for the vertex 4, hence colg(G) ≤ 4. If Alice starts by marking 4, Bob marks 0 and Bob has the time to
mark at least three neighbors of 1 or 7 before Alice marks both of them, ensuring a score of 4. It is the
same if she starts by marking the vertex 7 but with the vertices 1 and 4. If she starts by marking another
vertex one of the vertices 1, 4 or 7 has score at least 4 as Bob starts by marking 0 and 2. Hence colg(G) = 4.

This game is useful for the study of the coloring game since the game coloring number is an upper bound
for the game chromatic number, as Figure 3.1.3 suggests.

Proposition 3.4 ([75]) Let G be a graph, then χg(G) ≤ colg(G).

Proof. If Alice has a strategy with score k on the graph G for the vertex marking game, she can use this
strategy: each time a vertex v is colored it has at most k− 1 neighbors already colored, as they play with
k colors there is always at least one color available to color it.
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Figure 3.1.3: In one game we look at the number of neighbors, in the other, at the number of colors.

Another interesting remark about this new upper bound is that the gap between the two values can be as
large as wanted. Indeed, for the bipartite clique Kn,n we have: χg(Kn,n) = 3 and colg(Kn,n) = n + 1 as
suggested in Figure 3.1.4.
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Figure 3.1.4: Gap as large as we want between colg and χg
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Indeed, for the coloring game, Bob uses his first turn to color with a second color a vertex on the same
side as Alice (if Alice played the color 1, he plays the color 2 for instance): the vertices on the other side
need a third color, hence χg(Kn,n) ≥ 3. In fact if they continue to play (with only 3 colors), on one side
all the vertices will have the third color, and on the other side the players can always color with 1 or 2.
Hence χg(Kn,n) = 3. For the marking game, the last vertex to be marked has all of its neighbors marked,
hence the final score is n+ 1.

Since 1983, the vertex marking game has been largely studied to give upper bounds for the vertex coloring
game. Some of the most interesting results about the marking game where shown in [75]. Zhu showed
that for spanning subgraphs of a graph G and for edge-partitions the game coloring number can be easily
upper bounded:

Theorem 3.5 [75] Let G(V,E) be a graph.

• Let G1(V,E1) and G2(V,E2) such that E1, E2 is a partition of E, then:

colg(G) ≤ colg(G1) + Δ(G2).

• Let H be a spanning subgraph of G. Then

colg(H) ≤ colg(G).

These last results are helpful to bound the game coloring and game chromatic numbers by constructing
the graphs step by step. Moreover, in this paper Zhu raises a very important, and still open, question:

Open question 3.6 Assume χg(G) = k. For k′ > k, can Alice win with k′ colors?

Intuitively one would like it to be true, but no formal proof has been found yet. For the marking game,
by definition, we obtain this monotonicity: Alice can always ensure a score at most k, k > colg(G) as she
can always ensure a score of at most colg(G).

In 2003 Wu and Zhu improved the result about subgraphs:

Theorem 3.7 [71] Let G be a graph and H be a subgraph of G (not necessarely spanning). Then colg(H) ≤
colg(G).

And in fact, they also gave unfortunate counterexamples showing this cannot be the case for the coloring
game. We are giving them as a proposition.

Proposition 3.8 [71] There is a graph G(V,E) and e ∈ E such that removing the edge e gives: χg(G \
{e}) > χg(G).
As well, there is a graph G(V,E) and v ∈ V such that removing the vertex v gives: χg(G−{v}) > χg(G).

Proof. Let Kn,n be the complete bipartite graph on 2n vertices denoted a0, . . . , an−1, b0, . . . , bn−1 such
that the vertices ai form a stable set, as well as the bi-ones. Let M = {a0b0, . . . , an−1bn−1} be a perfect
matching of Kn,n. Take G = Kn,n \ (M \ {a0b0}). We have then χg(G) = 3 and χg(G \ {a0b0}) = n.
For the first equality, assume they play with 3 colors. Alice starts by coloring a0 with 1 and then Bob
colors a1 with 2: all the vertices b2, . . . , bn−1 have to be colored with a third color (in particular Bob wins
if they play with 2 colors). Alice then answers by coloring with 3 the vertex b1: all the vertices ai can be
colored with 1 and 2 and all vertices bi can be colored with 3.
Now, let us show that χg(G \ {a0b0}) = n.
Bob’s strategy is to always play the unmatched vertex of Alice’s: when Alice plays ai with color j, Bob
colors bi with color j. By doing this, after the i-th turn of Bob, each uncolored vertex is neighbor to
i colors, hence, by the n − 1-th turn of Bob, the remaining two vertices need a n-th color, as shown in
Figure 3.1.5(a).
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(a) χg(Kn,n \M) = n (b) χg(G) = 3 (c) χg(G) = 3
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Figure 3.1.5: Examples of graphs for Proposition 3.8.

Now, let us prove the vertex case. Take the same graph Kn,n \M and this time add a vertex v neighbor
of all the vertices a0, . . . , an−1.
Bob’s strategy is the following: if Alice starts by coloring v (or a vertex bi respectively) with color j, then
he colors a vertex bi (v resp.) with another color. Then the vertices a0, . . . , ai−1, ai+1, . . . an−1 are all
neighbor with vertices colored with two colors, hence need a third one (see Figure 3.1.5(b)).
If Alice starts by coloring a vertex ai, then Bob colors with a different color aj , j �= i, hence v needs a
third color (see Figure 3.1.5(c)).
Playing this way, we obtain χg(G) ≥ 3. It is clear that Alice can win with three colors.
If we remove the vertex v, then χg(G) = n as shown before.

The marking game behaves much more nicely than the coloring game, while giving a good upper bound.
Thus the interest in this new game that seems easier to get in charge of.

Instead of studying graph by graph, it is more practical to have results about classes of graphs. To do
that, the following generalization is needed.

Definition 3.9 Let C be a class of graphs. Then:

χg(C) = sup{χg(G) | G ∈ C}
colg(C) = sup{colg(G) | G ∈ C} .

One of the classes the most studied is the class of trees. This class is interesting in the particular case of
the marking and coloring games, because of the introduction of a powerful tool: the activation strategy.
The first result about trees was given by Bodlaender in 1981, in his introductory paper.

Theorem 3.10 [13] Let T be a tree, then χg(T ) ≤ 5.

Even though he gave examples of trees having game chromatic number 4, he raised the question of the
existence of trees having it at 5. Faigle, Kern, Kierstead and Trotter answered this issue in 1993 by
introducing the famous activation strategy, and proving a stronger result:

Theorem 3.11 [32] Let T be a tree. Then colg(T ) ≤ 4.

Proof by the activation strategy. We are giving a strategy for Alice such that, when playing the
marking game on a tree T the final score is at most 4.
While reading this proof we recommend to look at Figure 3.1.6.

She starts by rooting the tree at a vertex r, meaning that she chooses a vertex r that we will call the root.
She marks it. She will keep track of three sets of vertices: the marked ones M , the activated ones A and
the unmarked and unactivated U . In particular, we will have A ⊂ U , and each time a vertex v of A is
colored, A becomes A \ {v} and M receives v, thus A ∩ M = ∅. When deciding which vertex to mark
Alice will give priority to the active vertices.
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Each time Bob marks a vertex v, Alice looks at the unique path between v and r that we denote u0, u1,. . . ,
ul, where u0 = v and ul = r. Following this path from v to r she activates the vertices and she stops at
the first vertex she cannot activate, say uj , meaning that is was already either activated or marked. Then:

• if uj was already activated, then she marks it,

• if uj was already marked, then

– if j �= 1, she marks uj−1,
– otherwise, she marks any vertex having a marked father.

Alice starts by choosing a root r.
She marks it.

r

Alice activates the path and marks the one
before last.

B

A

r

When Alices encounters an already activated
vertex, she marks it.

B B

A

A

r

Or she marks a vertex having an already
marked father.

B B B

A

A A

r

Figure 3.1.6: Steps of the activation stragegy. Marked vertices are drawn in gray and activated ones have a halo.
For precision we marked the vertices Alice activates and marks at each step. The letters on each vertex if for the
player that marks it.

By this strategy, each time Alice encounters an already activated vertex she marks it, hence when a vertex
is marked, it has at most 2 children marked: the first made her activate it and the second mark it. As
each vertex has exactly one father, when a vertex is marked it has at most 3 neighbors marked: the final
score is at most 4.
In particular and by Proposition 3.4, we obtain that χg(G) ≤ colg(G) ≤ 4.

Remark that the chronology here is not respected: the marking game was not yet introduced when Faigle
et al. did this the proof. In fact in their paper they talked about a colorblind version of the coloring game
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without properly introducing it.

In particular, if we mix this result with the fact that Bodlaender gave examples of trees with game
chromatic number equal to 4 we obtain:

Theorem 3.12 [13, 32] Let T be the class of trees. Then χg(T ) = 4.

The activation strategy has been modified and used to find new bounds in other classes of graphs. The
main results are on classes of graphs liken to trees and planar graphs. Later on this chapter we modify it
to find upper bounds for the edge coloring game on some particular classes of graphs.

Another class for which we have a tight result is the class of cactuses. A cactus is a graph such that any
two cycles of the graph share at most one vertex.

Theorem 3.13 [66] Let C be the class of cactuses. Then χg(C) = colg(C) = 5.

But if we look at the wide class of planar graphs we can only give an upper and a lower bound.

Theorem 3.14 [56, 71, 77] Let P be the class of planar graphs. Then 11 ≤ colg(P) ≤ 17.

In fact, this result comes from different papers: Kierstead et al. started by bounding below by 7 and
above by 33. Since then, Zhu improved it to 30, then 19 and at the end by 17 (with Dinski in [26];[75];[77]
respectively) and in between Kierstead also improved it from 19 to 18 [55]. In [71] Wu and Zhu improved
the lower bound to 11. As well, in 2002, He, Hou, Lih, Shao, Wang and Zhu specified lower upper bounds
in some particular cases that were later completed by Sekisgushi in 2014.

Theorem 3.15 Let G be a planar graph of girth g. Then:

if g ≥ 4 then colg(G) ≤ 13 [64]
if g ≥ 5 then colg(G) ≤ 8 [45]
if g ≥ 7 then colg(G) ≤ 6 [45]
if g ≥ 11 then colg(G) ≤ 5 [45]

Moreover, the subclass of outerplanar graphs has also been study on its own:

Theorem 3.16 [41] Let O be the class of outerplanar graphs. Then

χg(O) ≤ 7.

Let us look closer, the results from He et al. in [45] are proven using edge-decompositions of planar graphs.
More precisely:

Theorem 3.17 [45] Let G be a planar graph of girth g. Then G has an edge-partition into a forest T and
a subgraph H such that:

Δ(H) ≤ 4 if g ≥ 5
Δ(H) ≤ 2 if g ≥ 7
Δ(H) ≤ 1 if g ≥ 11

.

Hence, by combining it with Theorems 3.5 and 3.11 we find the result.

Other classes of graphs that have been studied are k-trees, partial k-trees, the interval graphs and some
very specific cartesian products (in particular the toroidal grids). Most of these results are shown with a
modified activation strategy.
One very strong result using this method is found in [76]. In this paper, Zhu defines a new class of
graphs, the pseudo partial k-trees, containing different known families of graphs (forests, interval graphs,
outerplanar graphs, k-trees, chordal graphs. . . ), and gives an upper bound that allows to find the known
upper bounds for these known families. More precisely, he points out all the known (up to then) results
on these classes were done by using kinds of tree structures and following the activation strategy. Hence,
Zhu defines a more general and stronger strategy that leads to slighty better results on partial 2-trees.
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Definition 3.18 [76] Let 0 ≤ a ≤ b be two integers and G(V,E) be a graph.
The graph G is a (a, b)-pseudo partial k-tree if there are two digraphs

−→
G1(V,

−→
E1) and

−→
G2(V,

−→
E2) such that:

• E1∩E2 = ∅, E = E1∪E2, where Ei is the set of edges obtained from
−→
Ei by omitting their orientation,

• −→
G1 is acyclic and has a unique sink s with maximum outdegree k,

• −→
E2 has maximum outdegree ≤ a and maximum degree ≤ b,

• for all x, the set of outneighbors of x in
−→
G1, N+−→

G1

(x) induces a transitive tournament in
−→
G∗, the graph

defined by (V,
−→
E1 ∪

−→
E2).

It is clear by the definition that (0, 0)-pseudo partial k-trees are partial k-trees. As well, forests are partial
k-trees, interval graphs are chordal graphs and outerplanar are partial 2-trees. Thus all these graphs are
particular (a, b)-pseudo partial k-trees.

In his paper, Zhu defines a strategy for Alice in the pseudo partial k-trees in which she keeps track of a
set Ta ⊂ V of activated vertices that always induces a tree in the graph.
To keep track of this set, he also defines two operations over Ta so that each time Bob plays, Ta is updated.

Theorem 3.19 [76] Let G be a (a, b)-pseudo partial k-tree. Then colg(G) ≤ 3k + 2a+ b+ 2.

Sketch of the proof by the generalized activation strategy to pseudo partial k-trees. Here we
are just giving the strategy for Alice, the rest of the proof can be found in the original paper.
The graph G has an edge-decomposition as in Definition 3.18. In particular for x ∈ V , the outneighbors
of x in

−→
G∗ induce a transitive tournament, thus for each 0 ≤ j ≤ |N−→

G1
(x)| − 1 there is vj ∈ N−→

G1
(x)

having outdegree j, for each j we will talk about the j-th outneighbor of x. In particular if j = 0 the j-th
outneighbor of x is denoted f(x) (first outneighbor) and if j = |N−→

G1
(x)| − 1 we will denote it by l(x) (last

outneighbor). Note that these two outneighbors exist if x �= s (where s is the unique sink of
−→
G1).

Let T be the spanning directed tree of
−→
G1 induced by the edges xf(x) for x ∈ V . The set of activated

vertices Ta will always contain s (the root of T which is also the sink of
−→
G1) and be an induced subtree of

the graph T . Remark that here Ta can also contain marked vertices.

Figure 3.1.7: Example of k-tree with the orientation of
−→
G1 and the tree T of edges xf(x).
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We define two operations to update Ta. This operations are done over directed paths. Let P = u0 . . . uk
be a directed path of

−→
G1.

• extension: Let P ′ = uk . . . uk′ be the unique directed path in T connecting P to Ta, i.e. uk′ is in
Ta and uk′−1 is not. Then the path u0 . . . uk′ is the extension of the path P , we denote it PP ′.
If uk is already in Ta, then P is its own extension.

• switch If uk is the j-th outneighbor of uk−1 and uk �= l(uk−1) then the switch of P is the path
P ′ = u0 . . . uk−1uk′ where uk′ is the j + 1-th outneighbor of uk.

We will say that a vertex v is free if it is unactivated and unmarked.

The strategy of Alice is the following: she starts by marking the root r. The activated set is now Ta = {r}.
When Bob marks a vertex x, Alice chooses the vertex she plays by repeating the following procedure: let
P1 = xf(x) and P2 be the extension of P1. Remark that as P2 is a path from T , P2 can be written as
xf(x)f2(x) . . . fk−1(x) if P2 is of length k.

Start: Assume the path to consider is the path P2t = xf(x)u2 . . . uk then:

1. if uk is a free vertex, Alice marks it;
2. if uk is marked then:

(a) if uk = l(uk−1):
i. if uk−1 is free, Alice marks it,
ii. otherwise Alice marks any free vertex having all of its outneighbors marked.

(b) otherwise, let P2t+1 be the switch of P2t and P2t+2 the extension of P2t+1, and go back to
Start.

If P2j is the last path taken into account in this procedure, then Alice adds the vertices of the path and
the vertex she marked to Ta. We add only the vertices, the edges of Ta are those induced by T , hence Ta

is a subtree of T .
For an example of game using this strategy we refer to Figures 3.1.8 to 3.1.11.

Alice starts by marking the root r

A

Ta = {r}

Figure 3.1.8: Example of generalized activation strategy in a 3-tree
Start of the game

In fact, if we look closer, this result does not give the best known bounds, but by doing this strategy in the
particular case of forests, outerplanar graphs and interval graphs, Alice acheives the best bounds. This
then a generalization of the activation strategies proposed in the corresponding papers.
In particular, this result improves the previous bound on k-trees that was quadratic on k, [26]. More-
over, by modifying a little this strategy for pseudo 2-trees Zhu also gives much better bounds, namely: if
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Bob plays a vertex v

A

B

By 2.(b) Alice changes the path

A

B

By 2.(a)i. Alice marks uk−1

A

B

A

Figure 3.1.9: Example of generalized activation strategy in a 3-tree. Alices keeps the tree updated, after marking
her vertex.

Bob marks another vertex, v

A

B

A

B

By 1. Alices marks uk

A

B

A

B

A

Figure 3.1.10: Example of generalized activation strategy in a 3-tree. Alice lands on an already activated vertex.

Bob marks a new vertex v

A

B

A

B

A

B

By three times 2(b) and then 2.(a)ii. Alices marks
a vertex having its outneighbors marked

A

B

A

B

A

B

A

Figure 3.1.11: Example of generalized activation strategy in a 3-tree
the games goes on...

G is a (a, b)-pseudo 2-tree then colg(G) ≤ a+b+8 which depends only on the decomposition and not on k.

However, even if this result applies to all graphs, it is NP -complete to determine if a graph G is a k-tree,
[4]. The advantage of the pseudo partial k-tree definition is that the graph

−→
G2 can be anything, hence it
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is sufficient to find a subgraph of G that is a k-tree, for some k, and denote a, b the corresponding degrees
of

−→
G2.

In [14] Bodlaender gives a linear time algorithm that takes an integer k and a graph G and gives either a
tree decomposition of G if it is of treewidth k or returns that G is not of treewidth k. It should be feasible
to find a polytime algorithm inspired by Bodlaender’s to find a subgraph of treewidth k. The problem
is then to find suitable values of a and b. Knowing if a graph G is a (a, b)-pseudo partial k-tree is not a
solved problem. . . Even if this upper bound seems to be a good generalization, is not of much use without
a good decomposition.

Remark that many classes of graphs have been studied, even though for now most of these results are
only partial. We have seen that edge decompositions are also interesting when studying these problems,
since Zhu’s result about decompositions. As well, decompositions that lead to tree structures somehow
give new strategies of activation. It becomes clear that the study of the possible decompositions could
help understand better how the coloring game works, hence opening the door to a wider study.

In this chapter we study two different aspects of these games. In the first part we talk about the evolution
of the vertex -marking game when modifying the graphs. The modifications we consider are the operators
of minor graphs (deletion of vertices and edges and contraction of edges), the union of two graphs and the
cartesian product. For each operator f we give upper and lower bounds for the game coloring number of
f(G) as functions of the game coloring number of G.
In the second part we focus on a variant of these games, when the players, instead of playing on the vertices,
play on the edges: the edge-coloring game. For an introduction of this game, we refer to Section 3.3. More
precisely, we define a new way of edge-decomposing the graphs that gives new bounds for some families of
graphs (by the use of the activation strategy). Among others we improve known bounds on planar graphs.

3.2 Marking game and graph operations

This work was done in collaboration with Paul Dorbec, Éric Sopena and Elżbieta Sidorowicz.

We recall some notations that are widely used in what follows. We denote by G − {v} the graph G(V \
{v}, E), obtained from G by deleting the vertex v and by G \ {e} the graph G(V,E \ {e}) obtained by
deleting the edge e. We also note G/e the graph obtained by contraction of the edge e. In this last case,
the two endpoints of e, say u and v are contracted into a unique vertex w.

3.2.1 Definitions and notations

Assume Alice and Bob play the marking game on a graph G. After her first turn, it is Bob’s turn on
a graph where there is a marked vertex v. We can consider this as a new instance of the game, where:
there are already vertices marked (here just v) and Bob starts. In particular, if we study this game on
graphs having already marked vertices and where each of the players can start we can see the progress of
the whole game. We define then the A-marking game as the marking game where Alice starts and the
B-marking game the one where Bob starts. Moreover, we denote by G|M the graph where the vertices of
the set M are already marked. As well, we define the A-game coloring number of G|M , colA(G | M), as
the minimum score ensured by Alice on the A-marking game played on G|M (the vertices of M have no
score), and the B-game coloring number of G|M , colB(G | M), as the minimum score ensured by Alice
on the B-marking game on G|M .

Assume they play the X ∈ {A,B} marking game on a graph G|M . We say Alice has a strategy with score
s if she has a strategy ensuring a score of at most s. As well, we say Bob has a strategy with score s if he
has a strategy ensuring a score of at least s. Remark that if they both have a strategy with score s then
colX(G) = s.
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We see first how the A- and the B-game coloring numbers interact and, then, using these results we focus
on the operations.

Definition 3.20 For an integer s and a graph G, we define As(G) = {v ∈ VG | d(v) ≥ s − 1} and
Bs(G) = VG \As(G).

Lemma 3.21 Let G be a graph, M a set of marked vertices of G and s an integer.
For the A-marking game: if |As \M | > |Bs \M | then Bob has a strategy with score s. For the B-marking
game: if |As \M | ≥ |Bs \M | then Bob has a strategy with score s.

Proof. Let s be a positive integer.
If |As \M | ≥ |Bs \M | Bob marks in the first place vertices of Bs and when there are no more, the vertices
of As. In the A-marking game, after each of Bob’s turns there are at most the same number of vertices
of As marked than vertices of Bs, hence, by this strategy, the last vertex of As to be marked has at least
s− 1 neighbors already marked, hence Bob has a strategy with score s if |As \M | > |Bs \M |.
In the B-marking game, if |As \M | = |Bs \M | then the last vertex to be marked is a vertex of As hence
it has all of its neighbors already marked: at least s− 1, hence a score of at least s.

In particular, the largest integer s such that |As| ≤ |Bs| gives a lower bound for the A- and B-game
coloring numbers.
Moreover, the A- and the B-game coloring numbers can differ by at most 1:

Lemma 3.22 If Alice has a strategy in the B-marking game with score s on a graph G|M , then Alice has
a strategy in the A-marking game with score s on the graph G|M .
Moreover, if Alice has a strategy in the A-marking game with score s on a graph G|M , then Alice has a
strategy in the B-marking game with score s+ 1 on the graph G|M .
In particular: colA(G|M) ≤ colB(G|M) ≤ colA(G|M) + 1.

Proof. Let’s prove colA(G|M) ≤ colB(G|M) first.
Assume Alice has a strategy in the B-marking game with score s. Playing the A-marking game, Alice uses
the same strategy. For her first move, she imagines Bob has already played on a vertex x ∈ Bs \M and
she plays the vertex y she would have played in that case. We call this vertex the phantom vertex and we
denote it by φ. For the following moves, she plays as if the phantom vertex was marked and she follows
her strategy step by step. Each time Bob marks the phantom vertex, she imagines Bob plays another
vertex x′ ∈ Bs \ (Vm ∪M), where Vm is the set of marked vertices during the game. The phantom vertex
φ is now x′. She plays then the vertex y′ she would have played in that case. Remark that as Alice has a
strategy with score s for the B-marking game, then |As \M | < |Bs \M | (by Lemma 3.21), which means
that as long as there are unmarked vertices, we have |As \ (Vm ∪{φ}∪M)| < |Bs \ (Vm ∪{φ}∪M)|, hence
when she needs to imagine Bob marked a vertex x she can always select it in Bs.
After t+ 1 moves on the B-marking game, there is one vertex marked that is not in the A-marking game
after t moves. Hence, each time a vertex is marked in the A-marking game, it has at most as large number
of neighbors marked than in the B-marking game, since Alice uses the same strategy. When the vertex φ
is marked, it may have all of its neighbors marked, but as d(φ) < s− 1, it does not change the maximum
score.
The maximum score is at most s.

Now, we prove colB(G | M) ≤ colA(G | M) + 1.
Assume Alice has a strategy in the A-marking game with score s. Playing the B-marking game Alice
uses the same strategy. Bob starts playing and Alice plays ignoring his move. If at some point she has to
mark the vertex marked by Bob, Alice marks a vertex of As (if there is none, there are only vertices of
Bs unmarked, hence no vertex with score bigger than s). At each step there is one more vertex marked
in the A-marking game than in the B-marking game: when a vertex is marked it has at most s marked
neighbors, instead of s− 1. The final score is at most s+ 1.
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This result shows that Alice has no gain in passing her first turn, as well as Bob his in the B-marking
game. More precisely:

Lemma 3.23 If Alice has a strategy on the graph G|M with score s for the marking game, then if Bob
passes a turn, she still has a strategy with score s.
If Bob has a strategy for the marking game with score s on a graph G|M , then, if Alice passes a turn, he
has still a strategy with score s.

Proof. Assume they play the X-marking game on a graph G | M , X ∈ {A,B}. As long as nobody passes
a turn, nothing changes.
If Alice has a strategy with score s then by following her strategy all vertices will have score at most s.
Everytime just before Bob plays, the game is equivalent to start over a B-marking game on the graph
G|(Vm∪M), where Vm is the set of marked vertices. As the score before starting this new game is at most
s, the score of the game is max(s, colB(G|(Vm ∪M))), hence if Bob passes his turn, the score is at most
max(s, colA(G|(Vm ∪M))), which is at most the same as before.
Hence if Bob passes a turn, Alice still has a strategy with score s.

Now, if Bob has a strategy with score s then if there is already a vertex with score s, if Alice passes a turn
it changes nothing to the score. If there is no such vertex and Alice passes a turn: it is the same than
starting over on G|(Vm ∪M) the A-marking game and Alice passes her first turn which gives a score of at
most max(s, colA(G|(Vm ∪M)) i.e. at least as large as max(s, colB(G|(Vm ∪M))).
Hence if Alice passes a turn, Bob still has a strategy with score s.

Note that this result, for M = ∅, was already known, proved by Zhu in [75].
In particular this result shows that it is not advantageous to pass turns for either of them.
We assume from now on that nobody passes turns.

We saw earlier that for a given integer s the sets As and Bs give a bound for the coloring number. Indeed
the vertices that are dangerous for Alice are those of As: if she wants to keep a score of at most s. In fact,
we can show that these vertices can be the only vertices Alice plays.

Lemma 3.24 Let G be a graph, M some marked vertices of G and s ≥ colX(G|M), X ∈ {A,B}. Then
Alice has a strategy with score s by only playing on vertices of As as long as there are unmarked vertices
in As.

Proof. Let G be a graph and M ⊂ V , assume Alice has a strategy with score s on G | M . She changes
her strategy as follows: she plays by her strategy if the vertex in her strategy is in As, otherwise she passes
her turn. She does so as long as there are unmarked vertices in As. If there are none, she plays by her
strategy.
Everytime a vertex of As is marked it has at most s− 1 neighbors marked, since she follows her strategy
for these vertices. Hence the score is at most s.

In particular, from now on we can assume Alice only plays on vertices of As if she wants a score of at most s.

Now we understand, somehow, how the game takes place from start to finish and how the two game coloring
numbers interact with each other. In the following the interactions with the graphs will be studied. But
first, we define a new class of graphs that introduces smoothly the upcoming results.

3.2.2 Sunflower class of graphs

The sunflowers graphs are obtained by joining a clique and a stable set in a particular, regular way. More
precisely:

Definition 3.25 Let n, k be two integers, n ≥ k > 0. The sunflower SFn,k is the graph where:

• we denote its vertices by {a0, . . . , an−1, b0, . . . , bn−1};
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• and the edge set is {aiaj | 0 ≤ i, j < n, i �= j} ∪ { aibj | 0 ≤ i < n, j ∈ {i, (i+ 1) mod n, . . . , (i+ k −
1) mod n}}.

We denote by A the set of vertices {a0, . . . , an−1}, we call them seed-vertices; and by B the set of vertices
{b0, . . . , bn−1} and we call them petal-vertices.

Remark that the vertices of A form a clique and the vertices of B form a stable set. Examples of these
graphs are shown in Figure 3.2.1.

As well, as we are considering vertex deletions, we can directly define the sunflowers without a petal.

Definition 3.26 We denote by SF∗
n,k the graph SFn,k − {b0}.
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Figure 3.2.1: Examples of complete sunflowers SFn,k and sunflowers missing a petal SF∗
n,k

When (in the pictures) the vertices and/or edges are in gray, unless mentioned otherwise, is to mark their
absence. Sometimes when the graph is too large the edges of the clique are not drawn.

By definition we have directly that the sets As and Bs, for s = n+k, defined in Definition 3.20 are exactly
the sets A and B of the definition of sunflower graphs. In particular, both sets have the same number of
vertices, hence by Lemma 3.21, Bob has a strategy with score n+ k for the B-marking game in the graph
SFn,k. It is not always true for the A-marking game.

Theorem 3.27 Let n ≥ k be two positive integers. Then:

colA(SFn,k) =

{
n+ k − 1 if n = k
n+ k otherwise and colB(SFn,k) = n+ k.
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Proof. As mentioned before, we only need to prove the results for the A-marking game.
Let us start with the case n = k. Alice’s strategy is to only play in A. No matter how Bob plays, when
the last vertex of A is marked, say it is the vertex ai, there is at most n− 1 vertices in B that are marked,
hence the vertex ai has at most 2(n − 1) neighbors marked, its score is then 2n − 1 = n + k − 1. Bob
ensures this score by playing only on the vertices of B.

Now, for the rest of the cases, we just have to give a strategy for Bob. Bob’s strategy is the following:
each time Alice plays a vertex ai, he plays the vertex b(i−1) mod n. If she plays elsewhere, he plays a vertex
bi having unmarked neighbors if possible. If they are playing the B-marking game, the last vertex to be
marked is a vertex of A, hence the score is n+ k. If they are playing the A-marking game, when the last
vertex of A, say ai, is marked there is maybe an unmarked vertex in B. As he has always followed his
strategy, this unmarked vertex is exactly the one he would mark after Alice’s turn, hence it is b(i−1) mod n

which is not a neighbor of ai since k < n, hence the score of ai is n+ k.

In particular, if we recall the results of Lemma 3.22: colA(G) ≤ colB(G) ≤ colA(G) + 1 we remark that
the lower bound is tight when n = k and that the upper bound is tight in all the other cases.
Now we study the evolution of the X-game coloring number when applying minor graph operators, i.e.,
how this number changes when we delete a vertex or an edge and when we contract an edge (the operators
used to obtain minor graphs).

For the sunflower graphs, we only have to study two cases for the vertices and two for the edges: v ∈ A
or v ∈ B for the vertices, and for the edges e = aiaj for some i �= j or e = aibj for j ≤ i < (j + k) mod n.

3.2.3 Vertex deletion

Let us start by the computation of the game coloring numbers on the graphs SF∗
n,k.

Theorem 3.28 Let n, k be two positive integers such that n ≤ k2+3k− 1. Then colA(SF∗
n,k) = n+k− 1.

Proof. Assume first that n = k2 + 3k − 1. We define k + 2 A-zones and k + 2 B-zones as follows (see
Figure 3.2.2):

Az−1 = {a1, . . . , ak}
Azi = {a(i+1)k+1, . . . , a(i+2)k} for − 1 < i < k
Azk = {a(k+1)k+1, . . . , a(k+2)k−1}

Bz−1 = {b1, . . . , bk}
Bzi = {b(i+1)k+1, . . . , b(i+2)k} ∪ {a(n−i) mod n} for − 1 < i < k
Bzk = {b(k+1)k+1, . . . , b(k+2)k}

Remark that these zones do not form a partition on the vertices, since b(k+2)k+i for 1 ≤ i ≤ k − 2 are not
included, but they for disjoint sets. Remark that every vertex of A is is one of the zones. Moreover we
have |Az−1| = |Bz−1| and for i > −1, |Azi|+ 1 = |Bzi|. In addition, the vertices that can have a score of
n+ k are exactly the vertices in the A-zones.
Alice’s strategy is to play only in the A-zones and in decreasing order. More precisely, she starts by playing
the vertex ak. Then, each time Bob plays in a B-zone, say Bzi, Alice plays the vertex aj with maximum
j in the zone Azi. If Bob plays elsewhere, she plays the last ai available with i < n− k.

By following this strategy, after each of Alice’s turns, in every zone there is at least one more unmarked
vertex in the zone Bzi than in the zone Azi for all i. If Bob plays on vertices of the A-zones, this difference
increases, hence we can assume the last vertex to be marked in the zone Azi is always a(i+1)k+1: the only
vertex of Azi that is neighbor of all the vertices in Bzi. The last vertex of the A-zones to be marked has
always an unmarked vertex in the corresponding B-zone, hence its score is at most n + k − 1. Before
the last vertex of the A-zones is marked, all the vertices of A have a score s < n+ k − 1 since they have
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Figure 3.2.2: A- and B-zones for k = 3, n = k2 + 3k − 1.

unmarked neighbors in A.
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Figure 3.2.3: A- and B-zones for n < k2 + 3k − 1, here k = 3 and n ∈ {14, 15, 16}. Here the edges are not drawn.

For the cases n < k2 +3k− 1 we take the most we can of each zone in increasing order, i.e., the zones are
the same for −1 ≤ i ≤ j and Azj = {a(k+1)k+1, . . . , an−1} for some j and the same for the B-zones. This
way there is always more vertices in Bzi than in Azi. The proof works the same way. For more details
about the zones see Figure 3.2.3.

For the B-marking game we have the same kind of result, with the same kind of proof.

Theorem 3.29 Let n, k be two positive integers such that n ≤ k2 + k. Then colB(SF∗
n,k) ≤ n+ k − 1.

Proof. It is the same kind of proof as above, so we are just giving the main lines for n = k2 + k and then
show quickly how it works for n < k2 + k.
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Here we need a strategy for Alice ensuring a score of at most n + k − 1 when n = k2 + k. Alice divides
the graph in the following zones:

Azi = {aik+1, . . . , a(i+1)k} for 0 ≤ i ≤ k − 1

Bzi = {bik+1, . . . , a(i+1)k} ∪ {a(n−i) mod n} for 0 ≤ i ≤ k − 1

Here, each B-zone has exactly one more vertex than the corresponding A-zone, and the only dangerous
vertices for Alice are exactly the vertices of the A-zones. We modify her strategy of above by removing
her first move, since here Bob is the one that starts playing.
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Figure 3.2.4: A- and B-zones for k = 3 and n = k2 + k of Theorem 3.29.

For n < k2 + k, we take the first complete zones and the most we can of the last one such that there is
always one more vertex in the zone Bzi than in the zone Azi. And it is the same proof.
For a picture of the zones see Figure 3.2.4.

We will see later that in fact these two last theorems could be improved: when the final score is not
n+ k − 1 then it is exactly n+ k. There are some values for which we can give a strategy for Bob:

Theorem 3.30 Let n, k be two integers such that n ≥ 2k2 + 2. Then colA(SF∗
n,k) = n+ k.

Proof. We proceed as above: we take n = 2k2 + 2, we divide the graph in zones and give a strategy
ensuring that score. Then we show how it changes for n > 2k2 + 2.
Let n = 2k2 + 2. The A- and B-zones are:

Bzi = {bik+1} for i ∈ {0, . . . , 2k}
Bz−1 = B \ (Bz0 ∪ · · · ∪Bz2k)

Az0 = {an−k+2, . . . , a0, a1}
Azi = {a(i−1)k+2, . . . , aik+1} for i ∈ {1, . . . 2k}

An example of these zones are given in Figure 3.2.5. Thus for every A-zone there is a B-zone, but not the
converse. Moreover, Azi is the exact neighborhoud of Bzi.
Bob’s strategy is to play first the vertices {a2k2−k+3, a2k2−k+4, . . . , an−1, a0}. If in her first k turns Alice
marks any of these vertices, Bob marks any vertex of any set Azi. After 2k turns, (k for each player), all
of these vertices are marked and there are k vertices in the A-zones that are also marked. After these 2k



60 CHAPTER 3. GRAPH MARKING AND GRAPH COLORING GAMES

turns, Bob plays any vertex of Bz−1. When this is no longer possible (all vertices of Bz−1 are marked)
that means that at most n − (2k − 1) turns of Alice have passed and at most n − (2k + 1) − 1 turns of
Bob. Thus, as there are 2k more vertices marked in A than in B, there is only one vertex of A that is
unmarked and by this strategy, it is in one of the A-zones, say Azj , the vertex aj′ . In the petals only the
vertices bik+1, i ∈ {0, . . . , 2k} are unmarked, in particular, bjk+1 is unmarked and is the only remaining
unmarked neighbor of aj′ . As it is Bob’s turn, he can mark it and when Alice marks aj′ its score is n+ k.
For n = 2k2 + 2 Bob has a strategy ensuring a score of n+ k.

Now, for n > 2k2 + 2 we only need to redefine new zones and the same proof will hold. Remark that the
vertices an−k+1, . . . , a0 do not need to be defined in a zone Azi since they will be marked by Bob in the
first k turns. Thus:

• the new B-zones are: Bzi = {bik+1} for i ∈ {1, . . . , �(n− 1)/k�},

• and the A-zones are: Azi = N(Bzi)
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Figure 3.2.5: A- and B-zones for n ≥ 2k2 + 2 of Theorem 3.30. Here k = 3 and n ∈ {20, 21, 22}, the edges of the
clique are not drawn.
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And Bz−1 is defined as the remaining vertices in B. This way Bob has more zones, his strategy changes
only at the end: when there are no more vertices of Bz−1, he marks vertices of B that have unmarked
vertices if possible. By the same argument (the fact that the first 2k fully marked A-zones give 2k B-zones
where Bob will not play), the last vertex to be marked in A has all of its neighbors marked.

As we know that colB(G) > colA(G), we obtain the same result for the B-marking game for n ≥ 2k2 + 2,
but in fact we can do better than that.

Theorem 3.31 Let n, k be two positive integers, such that n ≥ 2k2 − k + 2. Then colB(SF∗
n,k) = n+ k.

Proof. For n = 2k2 − k + 2 the zones are:
Azi = {a(i−1)k+2 mod n, . . . , aik+1} for i ∈ {0, . . . , 2k − 1}

Bzi = {bik+1} for i ∈ {0, . . . , 2k − 1}
Bz−1 = B \ (Bz0 ∪ · · · ∪Bz2k−1)

Bob uses the same strategy as above and as he is not playing in the zones Bzi, i ≥ 0 until the end, he
makes sure the last vertex Alice marks has all of its neighbors marked.
An example of these zones is given in Figure 3.2.6.
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Figure 3.2.6: Example of A- and B-zones for n = 17 and k = 3 of Theorem 3.31.

For n > 2k2 − k + 2, we define the exact same zones and the same strategy holds.

We know that for a graph SF∗
n,k, the final score (if the players play smartly) is either n+ k or less. If for

the A-marking game it is n + k, then for the B-one it is also n + k. And, conversely, if it is < n + k for
the B-one, it is also < n+ k for the A-marking game.
The previous theorems give two bounds (for each game) which separates the two possibilities (n + k or
not). Naturally, the following two questions are raised:

Open question 3.32 for k ≥ 3 and k2 + 3k − 1 < n < 2k2 + 2, what is the exact value of colA(SF∗
n,k)?

Open question 3.33 for k ≥ 2 and k2 + k < n < 2k2 − k + 2, what is the exact value of colB(SF∗
n,k)?

We have seen the deletion of a petal-vertex, and in particular, we do not know the exact values of colA and
colB when we delete a petal in the general case. For the deletion of a seed-vertex we are only discussing
three cases that are useful in the following.
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Theorem 3.34 Let n be a positive integer, n > 2. Then:

colA(SFn,1 − {a0}) = n colB(SFn,1 − {a0}) = n
colA(SFn,n−1 − {a0}) = 2n− 3 colB(SFn,n−1 − {a0}) = 2n− 2
colA(SFn,n − {a0}) = 2n− 3 colB(SFn,n − {a0}) = 2n− 2

Proof. We do the proof item by item.

• SFn,1 − {a0}:
The maximum possible score is n. Alice’s first turn is used to play on some vertex of A, say ai. Bob’s
strategy is to play on vertices of B having unmarked neighbors, hence he is not playing b0 nor bi. He
has the time to mark all the remaining vertices of B before Alice marks the last vertex of A, hence
the score of this last vertex is n.
For the B-marking game, it is the same strategy: he leaves b0 for the end. When Alice marks the
last vertex of A, all the vertices of B (except b0) are marked, the score is then n.

• SFn,n−1 − {a0}:
First, remark that Δ(SFn,n−1−{a0}) = Δ(SFn,n−1)−1, hence, as colA(SFn,n−1) = 2n−1 = Δ(SFn,k)
we have that colA(SFn,n−1 − {a0}) ≤ 2n− 2. Moreover, there is one more vertex in B than in A.
Now for the A-marking game, assume Alice only plays on A. After each of Bob’s turns, if there still
are unmarked vertices on A then there are still at least two unmarked vertices on B. Hence, the last
vertex of A to be marked has at least one unmarked neighbor. The score is thus 2n− 3. Bob ensures
this score by playing the vertex bi−1 when Alice plays the vertex ai.

For the B-marking game we only need to give a strategy for Bob ensuring score at least 2n − 2.
He starts by playing bn−1, the only vertex that is not a neighbor of a0. Now, all vertices in A have
a neighbor marked. For the rest of the game, when Alice plays the vertex ai, he plays the vertex
bi−1, the only vertex that is not a neighbor of ai. By doing this, each time he marks a vertex, all
the unmarked vertices in A have one more marked neighbor in B, hence the last vertex in A to be
marked, say ai, (after n− 1 turns of Bob) has n− 1 neighbors in B that are marked: its score is then
n− 1 + n− 2 + 1 = 2n− 2. And the remaining vertex is bi−1 that is not a neighbor of ai.

• SFn,n − {a0}:
Alice plays in order the vertices of A. For the A-marking game, the last vertex of A to be marked,
say ai, has n − 2 marked vertices in a and at most n − 2 neighbors marked in B. The score of ai
is thus at most 2n − 3. For the B-marking game, the only thing that changes is that B has played
n− 1 turns, hence at the end the score if at most 2n− 2. Bob ensures this score by only playing on
vertices of B.

Here we have colX(SFn,1) = 1 + colX(SFn,1 − {a0}), a drop of exactly one. And colX(SFn,k) = 2 +
colX(SFn,k − {a0}) for k ∈ {n− 1, n}, id est, a drop of 2.
We can raise the more general question:

Open question 3.35 for which values of n and k do we have a drop of 1? of 2? for the A-game? for
the B-game?

We conjecture the drop is linear in k:

Conjecture 3.36 For X ∈ {A,B} and n ∈ N, there is an integer kc,X,n such that:

• if k ≤ kc,X,n then colX(SFn,k) = 1 + colX(SFn,k − {a0}),
• otherwise: colX(SFn,k) = 2 + colX(SFn,k − {a0}).

Now, for non-particular graphs, we can see that the only possibilities are: a drop of 2, of 1 or not a drop
at all. First, before comparing colX(G) to colX(G− {v}) we are comparing colA(G) to colB(G− {v}).
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Lemma 3.37 Let G(V,E) be a graph, M a set of marked vertices and v ∈ V \M , such that |N(v)∩M | <
colB(G− {v} | M). Then:

colA(G|M) ≤ colB(G− {v}|M) + 1

Proof. Assume Alice has a strategy for the B-marking game on G−{v} | M with score s. Then, playing
the A-marking game on G | M , she starts by marking v and then she follows her strategy. At the end, all
the vertices have score at most s in G− {v} | M , hence at most s+ 1 in G | M .

With this result we can now deduce:

Theorem 3.38 Let G be a graph, M a set of marked vertices and v ∈ V \ M with p |N(v) ∩ M | <
colB(G− {v} | M). We assume G− {v}|M has at least one unmarked vertex.

colA(G|M)− 2 ≤ colA(G− {v}|M) ≤ colA(G|M)
colB(G|M)− 2 ≤ colB(G− {v}|M) ≤ colB(G|M)

.

Both bounds are tight. Moreover the lower bound can be tight only for vertices of AcolX(G) for the X-marking
game.

Proof. For the second inequality, Alice has a strategy with score s in G | M that she uses also in
G− {v} | M . Assume that, following this strategy she has to mark v after t turns. Let Vm be the set of
marked vertices during this t turns: Alice has a strategy with score s on G | (M ∪ Vm) for the A-marking
game. In particular, she also has a strategy with score s on G | (M ∪ Vm ∪ {v}) for the B-marking game
and then, she has a strategy with score s on G | (M ∪ Vm ∪ {v}). Thus, she has a strategy with score s
on G− {v} | (M ∪ Vm). If she does not have to mark v, then she just follows her strategy with score s in
G | M .
By doing this, each unmarked vertex has at most the same number of marked neighbors than in G | M ,
which gives a score of at most s.
For the A-marking game, the graphs SFn,n attain this bound when removing b0 (see Theorem 3.28). For
the B-marking game, the graphs SFn,k attain this bound, for n ≥ 2k2 − k + 2, when removing b0 (see
Theorem 3.31).

For the first inequality, we use Lemma 3.22 and Lemma 3.37. The first one tells us colB(G − {v}) ≤
colA(G− {v}) + 1 and the second one colA(G) ≤ colB(G− {v}) + 1.
Thus colA(G)− 2 ≤ colA(G− {v}) and the arguments go for the B-marking game.
For the A- and B-marking games the graphs SFn,n attain the bound when removing a0 (see Theorems 3.27
and 3.34).

Now, let us prove the tightness is achieved only for vertices of AcolX(G). Assume they are playing the
X-game and let v /∈ AcolX(G). Assume Alice has a strategy with score s in G−{v}. When they play in G
she uses the same strategy. If at some point Bob plays v then it is like he passes his turn on G−{v}. Thus
in G−{v} the score will be at most s and counting v, at most s+1. Hence colX(G) ≤ colX(G−{v})+1.

In particular, if we recall Theorems 3.28 to 3.31 and 3.34 we can see that there are examples of the three
different cases (−2,−1, 0) inside the sunflower class of graphs. Moreover, we can even see that there are
large families of graphs such that removing a vertex (any vertex) decreases the game coloring number.

Definition 3.39 A graph G(V,E) is vertex-critical if ∀v ∈ V , colA(G− {v}) < colA(G).
As well, a graph G(V,E) is vertex-hyper-critical if G is vertex-critical and ∀v ∈ AcolA(G), colA(G−{v}) =
colA(G)− 2.

Remark that the vertex-hyper-critical condition implies that for each vertex we have the maximum drop
possible (depending on their degree). Moreover we know:

Corollary 3.40 (Theorems 3.28 and 3.34) Let n, k be two positive integers.
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• if n ≥ k2 + 3k − 1 then SFn,k is vertex-critical and

• if k = n− 1 then SFn,k is vertex-hyper-critical.

We have seen the vertex deletion and stressed that not all the cases have been studied. However, we can
bound below the maximum drop when removing a vertex and we exhibit infinite many graphs that have
this maximum drop when removing any vertex.

3.2.4 Edge deletion

The study for the edge deletion is much simpler, so we will not get into the most precise details. On the
contrary, we will just give some families such that edge deletions decrease the game coloring number.

Theorem 3.41 Let n, k be two positive integers, such that k ≤ n ≤ 3k. Then for e any edge of SFn,k we
have: colA(SFn,k \ {e}) = colA(SFn,k)− 1.

Proof. Let e be an edge of SFn,k, by Theorem 3.5 we know that colA(SFn,k) ≤ colA(SFn,k \ {e})+ 1. Let
us show that this inequality is in fact tight.
As colA(SFn,k) = n+k, we prove that colA(SFn,k \{e}) = n+k−1. As there are no edges between vertices
of B, we can assume we remove an edge of the vertex a0. Alice’s strategy is the following: she starts by
playing ak. If Bob plays a0 then she plays the minimal ai such that i ≥ 2k (if n ≥ 2k, otherwise she plays
ai with i maximal). If he plays a vertex of B, say bj , she marks the minimal ai such that ai ∈ N(bj),
i �= 0. If he plays elsewhere or none of these possibilities is available, she plays the minimal ai such that
i > 0.
We define the A-zones:

Azi = {aik+1, . . . , a(i+1)k} for i ∈ {0, 1}
Az2 = {a2k+1, . . . , an−1}

Remark that a0 is not in any of the A-zone.
By following this strategy, if Alice plays all the vertices of the A-zones and a0 is still unmarked, then the
maximum score is n − 1 + k obtained either for a0 or for the last vertex of A marked before it. If Bob
marked at some point a0, then the first vertex of each A-zone has been marked.
In this case, when there are k − 1 consecutive marked vertices in B then there are k consecutive vertices
marked in A. Indeed, by following her strategy, for every k consecutive vertices in A there is at least one
of them marked. Hence there are at most k − 1 consecutive unmarked vertices in A. By her strategy, she
marks the minimum ai neighbor of bj marked by Bob, thus, these consecutive vertices, bj , . . . , bj+k−1 mod n,
make Alice mark the vertices aj−k+1 mod n, . . . , aj if unmarked, but there was already one marked, hence
the vertices aj−k+1, . . . , aj+1 are marked.
In fact, before Bob marks a0, for every x consecutive vertices marked in B there are at least x consecutive
vertices of A marked, thus when he marks a0, there is no unmarked vertex of A with all of its neighbors
in B already marked.
In particular, when Bob marks the k-th consecutive vertex in B, bj , . . . , bj+k−1 mod n their only common
neighbor in A, aj , is already marked. Thus the score is at most n+k−1 and as colA(SFn,k\{e}) ≥ n+k−1,
we have the equality.

For the B-marking game we need to decrease the upper bound:

Theorem 3.42 Let n, k be two positive integers such that k ≤ n ≤ 2k. Then for e any edge of SFn,k we
have: colB(SFn,k \ {e}) = colB(SFn,k)− 1.

Proof. We can assume the vertex a0 is missing an edge. Alice’s strategy is: if Bob plays a0, she plays
the minimal ai such that i ≥ k. If he plays a vertex of B, say bj , she marks the minimal ai such that
ai ∈ N(bj), i �= 0. If he plays elsewhere or none of these possibilities is available, she plays the minimal
ai, i > 0.
The rest of the proof is exactly the same as for Theorem 3.41 but we define only two zones: Az0 =
{a1, . . . , ak} and A1 = {ak+1, . . . , an−1}.
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These upper bounds may not be tight, but we know that for n big enough these results are no longer true:

Theorem 3.43 Let n, k be two positive integers such that n ≥ 4k − 1, k ≥ 2. Then colA(SFn,k) =
colA(SFn,k \ {a0b0}).

Proof. We recall that colA(SFn,k) = n+ k as n �= k. We give a strategy for Bob ensuring a score n+ k
in the graph SFn,k \ {a0b0}.
We assume first that n = 4k − 1 and we define the zones:

Azi = {aik, . . . , a(i+1)k−1} for i ∈ {0, 1, 2, 3}
Bz0i = {bk−1, b2k−1, b3k−1, b4k−1}

Remark that Az0 and Az3 have a common vertex a0.
Bob’s strategy is to first plays a0. If this is not possible (Alice played it at her first turn), then he marks
a1. After the second turn of Alice, there are three marked vertices in A. Then, for all of his other turns,
he marks bj for j minimal and bj /∈ Bz0. He can play this way for at most n− 4 turns. After these turns,
when it is his turn (Alice has just played), the number of marked vertices in A is (n−4)+1+1+1 = n−1
where two 1’s come from the first turns of Alice and Bob, the (n− 4) from the next (n− 4) turns and the
last 1 comes from the turn Alice has just played. Hence there is still an unmarked vertex in A, say ai,
and it is Bob’s turn. The only unmarked vertices in B are those of Bz0. Remark that these vertices have
no common neighbor: the vertex ai has exactly one unmarked vertex, say bj . Bob marks it and hence the
score of ai is n+ k.
For n > 4k − 1, we define the exact same zones (all vertices ai, bi, i > 4k − 1 are just ignored) and his
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Figure 3.2.7: Example of zones for k = 4, n = 4k − 1 and n = 4k + 1. The edges are not drawn and the vertex a0
is missing an edge.

strategy is the same: he doesnt play in Bz0 as long as he can. This is possible for his first n− 4+1 turns.
If the remaining unmarked vertex of A, say ai, is such that i < 4k − 1, then Bob marks his unmarked
neighbor, if i ≥ 4k − 1 then all its neighbors are already marked and the score is the same.
For some examples of these zones we refer to Figure 3.2.7.

And it is the same for the B-marking game with a lower upper bound:

Theorem 3.44 Let n, k be two positive integers such that n ≥ 3k − 1. Then colB(SFn,k \ {a0b0}) =
colB(SFn,k).
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Proof. We give a strategy for Bob ensuring a score of n+k in SFn,k\{a0b0}. Assume first that n = 3k−1.
Bob divides the graph in zones:

Azi = {aik, . . . , a(i+1)k−1} for i ∈ {0, 1, 2}
Bz0 = {bk−1, b2k−1, b3k−1}

Remark that a0 is in Az0 and Az2.
Bob’s strategy is to first play a0. After Alice’s first turn, his strategy is to play vertices of B that are not
in Bz0. By the same argument as in Theorem 3.43 the final score is n+ k.

In fact, we know for k ∈ {1, 2, 3}, n ≥ 3k + 1 we can remove an edge and Bob has a strategy that gives a
score n+ k, but for k > 3 we do not know what happens.

Open question 3.45 for k, n such that 3k + 1 ≤ n ≤ 4k − 2, it is possible to remove an edge of SFn,k

without changing the A-game marking number?

Open question 3.46 for k, n, 2k < n < 3k−2, is it possible to remove an edge of SFn,k without changing
the B-coloring number?

These results call to mind the vertex-critical situations we introduced above. Let us see how the game
coloring numbers evolve when deleting an edge.

Theorem 3.47 Let G be a graph, M a set of marked vertices of G and e an edge of G. We assume G
has at least one unmarked vertex.

colA(G|M)− 1 ≤ colA(G \ {e}|M) ≤ colA(G|M)
colB(G|M)− 1 ≤ colB(G \ {e}|M) ≤ colB(G|M)

And these bounds are tight.

Proof. Assume Alice has a strategy for the A-marking game on the graph G \ {e} | M with score s. On
the graph G | M Alice uses her strategy: each time a vertex is marked it has at most (s− 1)+1 neighbors
marked. Hence at the end the score of G | M is at most s + 1. The same proof holds for the B-marking
game.
The graphs SFn,n attain this lower bound when removing the edge a0a1 (see Figure 3.2.8).
For these graphs we have: colA(SFn,n) = 2n− 1 and colB(SFn,n) = 2n.
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b0 b1

b2b3

Figure 3.2.8: SFn,n for n = 4

When an edge is removed the strategy for Alice is to mark last the two vertices of degree 2n− 2 (the two
endpoints of e). By doing so, the best way to maximize the score is for Bob to play on the vertices of B,
and the final score is: for the A-marking game s = 2n− 2 and for the B-one s = 2n− 1.

The second inequality is easily obtained: Alice plays by her strategy with score colX(G | M) and she
ensures then a score of at most colX(G | M).
For the tightness we can take the graphs SFn,1, n ≥ 2. We have colA(SFn,1) = n + 1 and when the edge
a0b0 is removed we have colA(SFn,1 \ {a0b0}) = n+ 1.

In particular we obtain a stronger result than in Theorem 3.5:
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Corollary 3.48 (Theorems 3.38 and 3.47) Let H be a subgraph of a graph G with the set M of vertices
marked such that ∀v ∈ V (G), |N(v) ∩M | < colB(H|MH), MH = M ∩ V (H). . Then:

colA(H|MH) ≤ colA(G|M)
colB(H|MH) ≤ colB(G|M)

Indeed, it is stronger since H is any subgraph, not necessarily induced nor spanning. For M = ∅ this
result was already known [72], the fact that it works also for M �= ∅ makes it stronger still.

Analogously to the vertex deletion results, we can introduce the edge-critical graphs:

Definition 3.49 A graph G(V,E) is edge-critical if ∀e ∈ E, colA(G \ {e}) = colA(G)− 1.

We know already some edge-critical graphs.

Corollary 3.50 (Theorem 3.41) Let n, k be two positive integers such that k < n ≤ 3k. Then SFn,k is
edge-critical.

Remark that criticality has been only defined for the A-marking game. Indeed, since in the litterature
only the A-marking game is studied we restrict only to this case. Obviously, a definition for the B-marking
game with the same kind of results could be done. It could be interesting to know if the critical graphs
are the same for both games.

3.2.5 Edge contraction

Even though we are using sunflower graphs for the tightness of the edge contraction results, we have not
done much about the edge contraction on the sunflowers.
Indeed this operator is much more difficult to manipulate: removing an edge or a vertex leaves a graph
very similar to the starting sunflower. Contracting an edge modifies the graph much more and describing
precisely what remains it not the subject here. For now we just focus on the contraction of an edge in any
graph.

Theorem 3.51 Let G be a graph, M a set of marked vertices and e = uv an edge of G.

colA(G|M)− 2 ≤ colA(G/e|M) ≤ colA(G|M) + 2

And these bounds are tight.

Proof. First, we prove the first inequality.
We remark that G− {u, v} = G/e− {w} and by Lemma 3.37 we have
colA(G/e|M) ≤ colB(G− {u, v}|M) + 1.
Then by Corollary 3.48: colB(G− {u, v}|M) + 1 ≤ colB(G|M) + 1 and by Lemma 3.22 colB(G|M) + 1 ≤
colA(G|M) + 2.

We have proved: colA(G/e|M) ≤ colA(G|M) + 2.
For the other inequality, we prove colA(G|M) ≤ colA(G/e|M) + 2. Assume Alice has a strategy for the
A-marking game on G/e|M with score s. She uses her strategy on G|M . If during the game she has to
mark the vertex w on the graph G/e|M , she marks the vertex u in G|M . In the graph G/e|M it is like she
passed her turn (w has two corresponding vertices and Alice cannot mark them at the same time). The
vertex v has at most s−1 neighbors marked before Alice marked u, then u is marked, hence at most s. At
his next turn, Bob can mark another neighbor of v, hence its score is at most s+2. Alice marks v just after
she marks u. Any other vertex has a score of at most s in G/e, in G it is at most s from G/e, plus 1 from
v and plus 1 from the fact that Alice takes one of her turns to mark v. Hence the final score is at most s+2.

The tightness is reached for the family of graphs obtained as following: take SF∗
n+1,n+1 (see Figure 3.2.9).

The vertex contracted is one of A hence obtaining the graph SFn,n.
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The graph G = SF∗
n+1,n+1.
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The graph G/{a0a1} = SFn,n.
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Figure 3.2.9: tightness for the A-marking game: colA(G) = colA(G/e) + 2

In the Figure 3.2.9 colA(G) = 11 and colA(G/e) = 9.

The tightness of the other inequality is with a graph slightly different.
Let us take for G a subgraph of SF∗

n+1,n+1 where we remove some edges in the following way: aibi for
1 ≤ i < n+ 1 and the edges an+1bi for i ≥ �n/2� and the edges a0bi for i ≤ �n/2� and for i = n. In this
case we have, if n is even d(a0) = d(an+1) + 1 and if n is odd d(a0) = d(an+1) (see Figure 3.2.10).

Graph G for n = 6

e
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Graph G/e for n = 6
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Figure 3.2.10: Tightness for colX(G/e) = 2 + colX(G), for clarity we only drew the edges missing between A and
B (dotted) except for a0 and an in the first case, for which we show all of their edges.

The graph G/e is then the graph obtained from G by contracting the edge anan+1, hence obtaining the
graph SFn,n without the edges aibi for 0 ≤ i ≤ n.
Let us prove that colA(G) = colB(G) = 2n− 3 if n ≥ 6.
Indeed, Alice’s strategy is to mark last an and before last a0. By following this strategy, the last vertex
she marks before marking an+1 has at most all of its neighbors (except a0 and an and maybe one in B)
marked, hence a score of at most 1 + 2(n − 2) = 2n − 3. When Alice marks a0 or an, they have at most
n − 1 + �n/2� neighbors marked, hence a score of at most �n/2� + n, and as n ≥ 6, this implies the
maximum score is at most 2n− 3.

Bob can force this score by playing opposite to Alice, meaning that each time Alice plays a vertex ai,
he plays the vertex bi that has no edge with ai. If the last two vertices to be marked in A are not
a0 and an then the score of the last one is 2n, hence Alice plays these two last. The last vertex to be
marked, say ai, before a0 and an, has all of its neighbors in B marked but one: bn. Hence its score is 2n−3.
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For the B-marking game it is the same strategy for Alice.

Now, for the graph G/e we only have to remark that a perfect matching is missing, hence by playing in
B Bob ensures a score of 2n− 1 even when Alice starts: when she plays on ai, he marks the matched one,
bi.

In particular, here, we have a lower and an upper bound that are both different from the starting game
coloring number and these bounds are tight.
Moreover we can perceive the flexibility of sunflower graphs: even if their study for edge contraction is
not developped, they verify the two bounds.

3.2.6 Union and cartesian product of graphs

Here we study separately the A- and B- marking games.

Theorem 3.52 Let G and H be two graphs. Then:

colB(G ∪H) = max(colB(G), colB(H))

Proof. For simplicity, we note U = G ∪H.
First of all, we remark that G ⊂ U and H ⊂ U , thus max(colB(G), colB(H)) ≤ colB(U) by Corollary 3.50.
Let us now prove colB(G∪H) ≤ max(colB(G), colB(H)). Without loss of generality we assume colB(G) ≥
colB(H). For this proof we are using the strategy of following : Alice plays always in the same graph as Bob.
Assume Alice has a strategy for the B-marking game with score s on the graph G. As colB(G) ≥ colB(H),
Alice has also a strategy for the B-marking game with score s on H. In this case, we need to prove Alice
ensures a score s on the graph U for the B-marking game.
Bob starts playing. If he starts on G, then Alice plays in G by her strategy. If he starts on H, she plays
on H by her strategy. She plays this way until playing on the same graph as Bob is no longer possible.
The only case where she cannot play this way is when Bob marks the last vertex of G or H. In this case,
she imagines a move of Bob in the other graph and plays accordingly (this is possible whenever there are
still two vertices unmarked, if this is not the case no vertex has score s+1). By the imagination strategy,
every time she marks a vertex, it has at most s− 1 marked neighbors, hence all the vertices have score at
most s.
We have just proved that if she has a strategy of score s for the B-marking game on G, then she has a
strategy of score s for the B-marking game on G ∪H. Thus colB(G ∪H) = max(colB(G), colB(H)).

Now, for the marking game the expression of colA(G ∪H) is not so simple:

Theorem 3.53 Let G and H be two graphs:

colA(G ∪H) = min

{
max(colA(G), colB(H))
max(colA(H), colB(G))

}

Proof. Let U be the union graph. Without loss of generality, we can assume colA(G) ≥ colA(H). We
can separate the proof in two cases. First of all, by Lemma 3.22 we have: colB(G) ≥ colA(H), hence we
distinguish only the terms on the first maximum.

• if colA(G) = colA(H) and colB(G) = colB(H) = colA(G) + 1: colA(G ∪H) = colA(G) + 1.
Assume Alice has a strategy for the A-marking game on the graph G with score s and one for the
B-marking game on the graph H with score s + 1. She starts by playing on G and each time Bob
plays a vertex on G ∪H, Alice responds by her strategy of G with score s if Bob played on G or of
H with score s+ 1 if he played on H.
If she cannot respond by her strategy, it is because there is no unmarked vertex on that graph: she
plays on the other graph. Notice that in this graph it is Bob’s turn to play and Alice has a strategy
with score s′ (s′ = s or s′ = s + 1 depending on the graph), and it is as if Bob passes his turn. By
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Lemma 3.23, Alice has a strategy with same score for the A-marking game. This way, she ensures s
on G and s+ 1 on H, in total the score is at most s+ 1 on G ∪H.

In the other hand, if Bob has a strategy with score s + 1 in H for the B-marking game, he has
also a strategy with score s + 1 in G for the B-marking game. His strategy is then to apply one of
these strategies depending on where Alice played first: if Alice starts by playing on G, he applies his
strategy on H, if she starts on H, he applies it on G. If she starts playing on G, he plays on H by
his strategy. Each time she plays on H, he answers by his strategy and each time she plays on G,
he plays randomly on G. Vice versa if she starts by playing on H. Either way, he obtains a score of
s+ 1, hence proving that colA(G ∪H) = colA(G) + 1 = colB(G).

• Otherwise: colA(G ∪ H) = colA(G). In this case, without loss of generality, if colA(G) = colA(H),
we can assume colB(G) > colB(H) (otherwise these values are all equal).

By Lemma 3.22: colA(G) ≤ colA(G ∪H). As colB(H) ≤ colA(G) by the strategy used above, Alice
can win with score colA(G) on G∪H by playing on G first and colA(G∪H) = colA(G) because Bob
can decide to play by a strategy of score colA(G) on G.

If colA(H) ≥ colA(G) in the strategy we exchange H and G. In all the cases, we have the claimed equality.

It is interesting to see that, compared to the results we had before, here we have the exact value of the
A- and the B-game coloring numbers, for any two graphs G and H. The only information we need is the
values of the A- and B-game coloring numbers for each graph.

In 2009, Sia bounded above the coloring number of the cartesian product of two graphs.

Proposition 3.54 [65] Let G and H be two graphs and denote by � the cartesian product of graphs.
Then:

colg(G�H) ≤ colg(�V (H)G) + Δ(H)

where �V (H)G is the union of each of the copies of G in the cartesian product.

Hence, we obtain almost directly:

Corollary 3.55 (Theorems 3.52 and 3.53 and [65]) Let G and H be two graphs. Then:

colA(G�H) ≤ min

{
colB(G) + Δ(H)
colB(H) + Δ(G)

}
.

And this bound is tight.

Proof. Here we only need to give examples of tightness.
One class of graphs verifying this equality are the graphs SFn,k�Kl for n ≥ k ≥ 1, l ≥ 2.
Indeed, let Gn,k,l be such a graph for some n, k, l verifying the conditions. We give a strategy for Bob that
ensures a score of colB(SFn,k) + l − 1 = n+ k + l.
Here we have l copies of SFn,k, hence for the copy i we are denoting the vertices a0,i, . . . , an−1,i and
b0,i, . . . , bn−1,j . In particular, the set of A-vertices is {aj,i|0 ≤ i ≤ l − 1, 0 ≤ j ≤ n − 1} and the set of
B-vertices is the same for the bj,i.

Bob’s strategy is to play only on vertices bj,i under the conditions that each time he plays, there is
0 ≤ j′ ≤ n − 1 such that aj′,i is unmarked. In other words, it has an unmarked A-neighbor. This means
that each time Alice marks the vertices a0,i, . . . , an−1,i there is some integer 0 ≤ j′ ≤ n− 1 such that bj′,i
is unmarked and has all of its A-neighbors marked. Thus, in the last copy of SFn,k to be completed, say
the copy i, Bob played at least one extra turn, ensuring that all bj,i are marked before all the aj,i, hence
the last aj,i to be marked has all of its A-neighbors marked (n+ l − 1) and all of its B-neighbors marked
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Figure 3.2.11: Example of a graph Gn,k,l = SFn,k�Kl for n = 5, k = 3, l = 3.
Here not all the graphs Kl are drawn. The black lines are there to emulate the correspondance between the graphs
SFn,k.

(k), ensuring a score of n+ l − 1 + k + 1 = n+ l + k.
For an example of these graphs see Figure 3.2.11

We have seen good bounds for all the operators we considered along this section. It is interesting to see
that the sunflower graphs allows to show the lower and upper bounds. But the study is not at all over.
Some of the very interesting questions that were raised during this study are explained and developped in
the following paragraph.

3.2.7 Open questions for the understanding of the marking game

Here we introduced a very practical tool to bound below the game coloring numbers: the sets As and Bs

for s an integer. We have seen that just by looking at the difference of cardinalities of these sets we can
estimate a good lower bound for their game parameters.
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In fact, it would be interesting to characterize some graphs with some particularities regarding these sets.
We suggest to look for the graphs such that:

Open question 3.56 Which graphs are such that colA(G) = Δ(G) + 1?

Open question 3.57 Which graphs are such that |AcolA(G)| = |BcolA(G)|?
Finding the answer to these questions does not seem easy, since there must be a lot of different families
of graphs verifying either of these two conditions. Just finding necessary or sufficient conditions to verify
these equalities could already open the way to more precise studies.

For the vertex deletion something interested about tightness is:

Open question 3.58 Which are the graphs G having a vertex v such that colA(G) = colB(G−{v}) + 1?

Open question 3.59 Which are the graphs G such that ∀v ∈ V (G), colA(G− {v}) = colA(G)− 1?

Open question 3.60 Which are the graphs G having a vertex v ∈ AcolA(G) such that colA(G − {v}) =
colA(G)− 2?

As well, and maybe an easier question to study, is about edge tightness:

Open question 3.61 which are the graphs G and edges e such that colA(G \ {e}) = colA(G)− 1?

Note that we defined the vertex-criticality and the edge-one. For the edge contraction we have not even
given any results about the sunflowers graphs. A natural question that raises up for the edge contraction
is about their existence:

Open question 3.62 are there graphs edge-contracting-criticals?

As well, we studied some binary operators: the union and the cartesian graphs. These two operators
come often into play to defining some classes of graphs. For instance, the hamming spaces can be seen as
the cartesian product between an edge and itself n times. As well, even if we have not studied the join
operator, the cograph class could also be interesting.

Open question 3.63 By recursion using the results on the cartesian product, is the A-game coloring
number of hamming graphs computable?

Open question 3.64 Can we bound above and/or below the A-game coloring number of G ∨H knowing
the game coloring numbers of G and H?

Open question 3.65 Can we deduce the A-game coloring number for the cograph class of graphs?

Of course, all of these questions are also pertinent for the B-marking game.

Now, if we look a little into the sunflower graphs we remark very nice properties: the vertices of A have
all the same degree, as well for the vertices of B. Moreover, if we remove the vertices of B we obtain a
regular graph. We obtain, most of the time (when n �= k), just n+ k as their game coloring number.
These particularities are not only found on this class of graphs, maybe there are other that give the same
results about tightness. In particular, the way to connect the vertices between A and B was a choice we
made.

Open question 3.66 By connecting the vertices between the vertices of A and B in such a way that we
obtain the same degree for all the vertices of A, the same degree for all the vertices of B and such that the
graph induced by the vertices of A is also regular, can we obtain a graph verifying the same tightnesses as
the sunflower graphs?

Open question 3.67 Is the regularity a necessary condition for any of these tightness results?

Even if we are under the impression of openning a Pandora’s box, our results help understand the rela-
tionship between graphs when studying the marking game as well as find new ways of determining the
game coloring numbers of families of graphs that are constructed recursively.



3.3. PRECISE CASE OF EDGE-GAMES 73

3.3 Precise case of edge-games

Here we study the edge-marking game, an edge version of the marking game studied in the last section.
In 1999, Lam, Shiu and Xu where the first to introduce this game:

edge coloring game: The edge coloring game is played by two players, Alice and Bob with a set of
colors C on a graph G. They alternate turns to properly color an uncolored edge. Normally Alice starts.
If at the end all the graph is properly colored, then Alice wins. Otherwise, i.e.~there is an uncolored
edge that cannot be properly colored, Bob wins. The game chromatic index of G, noted χ′

g(G), is the
minimum number of colors such that Alice has a winning strategy, meaning that no matters how Bob
plays, at the end the graph is properly colored.

As well, we can define the edge marking game. It was first introduced by Cai and Zhu in [16].

edge marking game: players alternate turns to mark edges. At the beginning all edges have score 0
and each time a player marks an edge e, its score is 1 plus the number of marked edges incident to e.
The score of the graph is the maximum score obtained along the game.
The game coloring index of G, noted col′g(G) is the minimum number k such that no matters how Bob
plays, Alice has a strategy ensuring a score of at most k.

It is clear that χ′
g(G) ≤ col′g(G).

In their paper, Lam et al. expose the trivial bounds of the game chromatic index:

Theorem 3.68 [58] Let G be a graph. Then: χ′(G) ≤ χ′
g(G) ≤ 2Δ− 1.

Indeed, these are called trivial since it suffices to see that at the end of the game, if Alice won, the graph
is properly edge-colored, hence there are more than χ′(G) colors. As well, if they play with 2Δ− 1 colors,
when an edge e is colored it has at most 2Δ − 2 incident colored edges, hence there is always a color
available for e.

They also adapted the activation strategy introduced by Kierstead and co. to study the game chromatic
index of trees.

Theorem 3.69 [58] Let T be a tree. Then χ′
g(T ) ≤ Δ(T ) + 2.

Proof. Here we are doing the proof using the marking game.
As always, Alice keeps track of the activated edges that are unmarked. Alice starts by marking an edge
of T , that we are calling the root and denoting r. Each time Bob marks an edge e, Alice chooses her next
edge as follows. There is a unique path starting from e and ending with r, say e0 . . . ek with e0 = e and
ek = r. Starting at e1 and following the path, Alice activates the edges. When this is not possible, say for
an edge ei, is because the edge is already activated or marked. She then does:

1. if ei is activated but unmarked, Alice marks it,

2. if ei is marked:

(a) if i �= 1 then Alice marks ei−1,
(b) otherwise Alice marks an edge f such that in the path f . . . r the second edge is already marked.

For more details see Figure 3.3.1.

By following this technic, when an edge is marked it has at most Δ− 1 edges marked (on the side of the
root) and at most two edges marked from the other side. Hence col′g(T ) ≤ Δ(T )+2, so χ′

g(G) ≤ Δ(T )+2.

In particular, the activation strategy seems to be straight forward applicable to the case of the edges.
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Alice marks ei−1 by 2.(a) Alice marks ei−1 by 2.(a)

Alice marks ei by 1. Alice marks an edge by 2.(b)

Figure 3.3.1: Example of activation strategy on edges. Here the black are unmarked, the gray edges are marked
and the dotted edges are activated.
In this example, the last edge at depth 3 will have all Δ− 1 edges marked on its side of the root.

Another result shown by Lam Shiu and Xu in their introductory paper is about the game chromatic index
of wheels. A wheel of size n, denoted Wn, is the cycle of size n with a universal vertex in the center
(i.e.~the central vertex sees all the vertices of the cycle). They give the exact value of χ′

g(Wn).

Theorem 3.70 [58] Let n ≥ 3 be an integer. Then:

χ′
g(Wn) =

5 for n = 3
n+ 1 otherwise .

This proof is done by showing that Alice can always color edges of the center with n+ 1 colors, since the
others edges can always be colorable with n+ 1 colors (if n ≥ 4).

They finish the paper by raising an interesting question in the hope of a generalized result to all graphs:

Open question 3.71 Is there a constant c ≥ 2 such that for all graph G: χ′
g(G) ≤ Δ + c? If true, is

c = 2 enough?

In fact, in 2008 Beveridge, Bohman, Frieze and Pikhurko prove this conjecture not to be true.

Theorem 3.72 [12] For large enough d, there is a graph G such that Δ(G) ≤ d and χ′
g(G) ≥ 1.008d.

They prove this by defining an integer n = f(d) and giving a graph G of order n that satisfies the inequal-
ity. In particular, this inequality also holds for col′g.

They wonder then about an upper bound linear on Δ:

Theorem 3.73 [12] For μ > 0, there is ε > 0 such that for all G, Δ(G) ≥ (μ + 1/2)|V |, χ′
g(G) ≤

(2− ε)Δ(G).

Hence the open question is now about this upper bound:

Open question 3.74 ∃ε > 0, ∀G, χ′
g(G) ≤ (2− ε)Δ(G)?
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If we go back to the proper study of the game, in 2001, Cai and Zhu studied the game chromatic index of
k-degenerate graphs. This gave the first upper bounds for the classes of planar graphs, bounded arboricity
graphs and some specific trees. Most importantly, they showed this result by using an improved activation
strategy. We dont detail it here but we give the main results of that paper.

Theorem 3.75 [16] Let G be a k-degenerate graph. Then col′g(G) ≤ Δ(G) + 3k − 1.

Corollary 3.76 [16] Thus we obtain the following upper bounds:

• if G is planar: col′g(G) ≤ Δ(G) + 14,

• if G is of arboricity a: col′g(G) ≤ Δ(G) + 6a− 4,

• if G is a forest: col′g(G) ≤ Δ(G) + 2,

• if G is a forest with Δ(G) = 3: col′g(G) ≤ 4.

Remark that we knew already about the forests. What we did not know is that in the specific case of
forests of maximum degree 3 we had a better upper bound. In fact for almost all forests we have this
improvement. Indeed, in 2005 Erdös, Faigle, Hochst and Kern gave the same results for Δ ≥ 6 and
then, in 2006, Stephan Dominique Andres improved the upper bound for forests with maximum degree
Δ ≥ 5. Erdös et al. gave a proof by "permitted" substructures. Each time Alice plays, the graph can be
decomposed in permitted structures, and each time Bob plays there is at most one unpermitted structure
that Alice can restore at her next turn. Andres generalizes this strategy to the case Δ = 5 and he points
out that this strategy, as he presents it, does not work for the case Δ = 4.

Theorem 3.77 [29] Let F be a forest with Δ(F ) ≥ 6. Then: col′g(F ) ≤ Δ(F ) + 1. Moreover, for Δ ≥ 2,
there is a forest F with Δ(F ) = Δ such that χ′

g(F ) = Δ.

And Andres’s result is the following:

Theorem 3.78 [3] Let F be a forest with Δ(F ) ≥ 5. Then: col′g(F ) ≤ Δ(F ) + 1.

The question is now, what happens for Δ = 4?

Open question 3.79 Is there a forest F with Δ = 4 such that col′g(F ) = Δ + 2?

In 2008, Yang and Kierstead improved the bounds for planar graphs, and graphs of bounded arboricity.
As well they gave bounds for outerplanar graphs. They did this by studying a variant of the marking
game: for a, b to integers, at each turn they allow Alice to play a vertices and Bob to play b. They call this
game the (a, b)-marking game and denote (a, b)gcol(G) the (a, b)-coloring number of a graph G. Here we
are just giving the results for a = b = 1. They also define a graph parameter: Δ∗ = min−→

G∈O(G)
Δ+(

−→
G)

where O(G) is the set of orientations of G and Δ+(
−→
G) is the maximum outdegree of

−→
G .

Theorem 3.80 [57] Let G be a graph of maximum degree Δ. Then: col′g(G) ≤ Δ+ 3Δ∗(G)− 1.

The proof introduces a new strategy: the limited harmonious strategy in which Alice makes a sort of
discharging method function of the edge marked by Bob. Each time Bob marks an edge e, she distributes
shares to each of the outneighbors of e by following some rules (here we consider the orientation of G,

−→
G

that gives the Δ∗ = Δ+(
−→
G)). She then takes the edge that, after some given number of distributions,

received the least number of shares.
This result gives more specific upper bounds for some classes:

Corollary 3.81 [57] We obtain then

• if G is planar: col′g(G) ≤ Δ+ 8,

• if G is outerplanar: col′g(G) ≤ Δ+ 5,
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• if G is of arboricity a: col′g(G) ≤ Δ+ 3a− 1,

• and if Δ∗(G) = −1: col′g(G) ≤ Δ+ 2.

Independently of this results, Bartnicki and Grytczuk also obtained the same upper bound for graphs of
arboricity a for the edge coloring game, this time using the activation stragegy.

If we recall what was done with the vertex version of these games, we see that there are tree decompositions
that help the study of different classes of graphs. Their study is in fact simplifyed by the use of the
activation strategy (on kind of tree structures) and the result about edge-decomposition shown by Zhu in
[75]: Theorem 3.5.
In the next part we give a generalized activation strategy on very specific decompositions of graphs and
improve some of the already known bounds.

3.4 Coloring game on F+-decomposable graphs

This work was done in collaboration with Clément Charpentier and Brice Effantin and published in 2017
in the journal Discrete Applied Mathematics.

We defined a new way of decomposing graphs edge-wise.

Definition 3.82 A graph G is F+(a, {d1, . . . , dk}, d)-decomposable if its edge-set can be partitioned into
a forests of unbounded degree, k forests of maximum degrees at most d1, . . . , dk respectively and a graph of
maximum degree d.

An example of different decompositions can be found in Figure 3.4.1.
This is a generalisation of the (a, d)- and F (a, d)-decomposition where we decompose the graph in a
forests and a graph of maximum degree d (this graph is a forest if it is a F (a, d)-decomposition). Indeed
the decomposition (a, d) is the same as a decomposition F+(a, {}, d) and the F (a, d) is a decomposition
F+(a, {d}, 0) (as well as a F+(a, {}, d)).

We give a strategy for Alice on a graph G with a given F+(a, {d1, . . . , dk}, d)-decomposition (d1 ≥ · · · ≥ dk)
and then see what is the score she can ensure by it.

3.4.1 Definitions and notations

As the graph decomposes in a+k forests we can give an orientation to the forests. For each 1 ≤ i ≤ k, let
Ai be the set of edges of the forest of bounded degree di, and let A− = A1 ∪ · · · ∪Ak. As well, let A∞ be
the edges of the a forests of unbounded degree and A = A∞ ∪ A−. Let D be the remaining edges (those
of the graph of maximum degree d).
We give an orientation to every forest such that each one of them has outdegree at most 1. This gives an
orientation of A with maximum outdegree at most a+k.

Definition 3.83 For every arc −→uv of
−→
A we define the following sets:

• F (−→uv) = {−→vx ∈ −→
A}, the set of fathers of −→uv;

• S(−→uv) = {−→xu ∈ −→
A}, the set of sons of −→uv;

• B(−→uv) = {−→xv ∈ −→
A}, the set of brothers of −→uv;

• P (−→uv) = {−→ux ∈ −→
A ;u �= v}, the set of partners of −→uv.

For each I of these sets, we denote by I∞(−→uv) = I(−→uv) ∩A∞, and by I−(−→uv) = I(−→uv) ∩A−.
We also define:
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Figure 3.4.1: Example of decompositions: forests are marked with black edges (plain for unbounded ones, dotted
for bounded ones) and the graph of bounded maximum degree is in gray. Each forest of bounded degree is a star
graphs, for the first one they are centered in {17, 13, 7, 11} respectively, the second in {19, 6, 12, 5, 11} and the last
in {13, 15, 14, 17}.

• U(−→uv) = {vx ∈ F}, the set of uncles of −→uv;

• C(−→uv) = {ux ∈ D}, the set of cousins of −→uv.

As well, for the edges of D we can define analogous parenthoods:

Definition 3.84 For every edge uv ∈ D, we define the following sets:

• F (uv) = {−→ux ∈ −→
A} ∪ {−→vx ∈ −→

A}, the set of fathers of uv;

• S(uv) = {−→xu ∈ −→
A} ∪ {−→xv ∈ −→

A}, the set of sons of uv;

• and B(uv) = {ux ∈ D,x �= v} ∪ {vx ∈ D,x �= u}, the set of brothers of uv.

We remark directly that for each arc of
−→
A the sum of fathers, brothers and uncles is at most Δ− 1. An

illustration of these two definitions is given in Figure 3.4.2.
Now we can give a strategy for Alice depending on these decompositions and new definitions.

3.4.2 Alice’s strategy

We give an activation strategy for Alice on graphs F+(a, {d1, . . . , dk}, d)-decomposables. Hence, all along
the game, Alice keeps track of active edges/arcs. For each set E of edges we define by Ea and Em its
subset of activated and marked edges, respectively. The same notation holds for arcs.

Definition 3.85 An arc or an edge is neutral if it is inactive and has no unmarked father or uncle.
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Figure 3.4.2: Illustration of the orientation and the notations.

When there is no neutral arc or edge in the graph, each arc or edge has at least one unmarked father
or uncle, which implies there is at least one uncolored cycle such that, for each arc or edge, its succes-
sor is one of its fathers, and if it has none, its successor is one of its uncles. If all the arcs and edges
of the graph are inactive, a neutral move consists for Alice to pick one of these cycles, to activate all its
arcs and edges and to mark one of them. If there is no such cycle, she marks an edge or arc without a father.

Alice’s strategy is as follows: she starts by doing a neutral move. Each time Bob marks an arc or an
edge, say e1/

−→e1 , Alice selects her next move by following the steps illustrated in Figure 3.4.3 and described
below.
To simplify the notations, we are not drawing the arrows of arcs in the description of the strategy.

Start: Assume the edge/arc she is considering is ei then:

1. if ei is inactive (or if e1 was inactive before Bob marked it), Alice activates it and:

(a) if ei has an unmarked father in
−→
A∞, f , then ei+1 = f , and she goes back to Start;

(b) if j is the smallest index for which ei has an unmarked father on
−→
A j , f , then ei+1 = f and she

goes back to Start;

(c) if j is the smallest index for which ei has an unmarked brother on
−→
A j , then she marks it;

(d) if ei has an unmarked uncle, then Alice marks it;

2. if ei is active:
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(a) if it is marked, then Alice does a neutral move;
(b) otherwise, Alice marks it.
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Figure 3.4.3: Sketch of the selection recursion.

In fact, with this strategy as it is, our results were not interesting, hence we decided to mix up the stages
of selection of vertices by moving around the stages 2(b), 2(c) and 2(d). The i − j − k-strategy, for
i, j, k ∈ {b, c, d}, is the strategy were those stages are ordered 2(i) first, 2(j) second and 2(k) third. We say
i > j if step 2(i) comes before 2(j), as well γi>j = 1 if i > j and 0 otherwise. We introduce the maximum
degree of the bounded forests as Sk =

∑k
�=1 d� and we define three values depending on the order of the

three exchangeable steps:

• μ1 = 2a+ (1− γc>b)2k + γd>bd+ γc>b2Sk,

• μ2 = 4a+ (γb>c − γc>b)2k + (γd>b + γd>c)d+ (A+ γc>b)2Sk − 2,

• μ3 = 2a+ (γb>d − γc>d)2k + γc>d2Sk + d.

Lemma 3.86 In every game and for a given strategy,

1. when an arc −→e ∈ −→
A∞ is marked, if has at most 2a sons already marked;

2. when an arc −→e ∈ −→
A− is marked, the number of its already marked sons is at most μ1;

3. when an arc −→e ∈ −→
A− is marked, the number of its sons and brothers already marked is at most μ2;
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4. when an edge e = uv ∈ D is marked, the number of marked sons adjacent to u is at most μ3, moreover
the total number of already marked sons of e is at most 2μ3 − 1.

The proof of this lemma is a quite long case study. Interested readers can check the proof in Appendix C.
As well, the proof of the following theorem will be given in the appendix.

Theorem 3.87 For any F+(a, {d1, . . . , dk}, d)-decomposable graph G,

col′g(G) ≤ max

⎧⎨
⎩

Δ+ 3a+ k + d− 1
min{Δ+ μ1 + a+ k + d− 1, μ2 + 2a+ 2k + 2d}

min{Δ+ μ3 + a+ k + d− 1, 2μ3 + 2a+ 2k + 2d− 2}

⎫⎬
⎭

This theorem gives Table 3.4.1, depending on the strategy used.

Table 3.4.1: Upper bounds of col′g for a F+(a, {d1, . . . , dk}, d)-decomposable graph.

Strategy A∞ A−
b− c− d

Δ+ 3a+ k + d− 1

Δ + 3a+ 3k + d− 1 6a+ 4k + 2d+ 2Sk − 2
b− d− c Δ+ 3a+ 3k + d− 1 6a+ 4k + 3d+ 2Sk − 2
c− b− d Δ+ 3a+ k + d+ 2Sk − 1 6a+ 2d+ 4Sk − 2
c− d− b Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 3d+ 4Sk − 2
d− b− c Δ+ 3a+ 3k + 2d− 1 6a+ 4k + 4d+ 2Sk − 2
d− c− b Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 4d+ 4Sk − 2

Strategy D
b− c− d Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 2k + 4d+ 4Sk − 2
b− d− c Δ+ 3a+ 3k + 2d− 1 6a+ 6k + 4d− 2
c− b− d Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 2k + 4d+ 4Sk − 2
c− d− b Δ+ 3a− k + 2d+ 2Sk − 1 6a− 2k + 4d+ 4Sk − 2
d− b− c Δ+ 3a+ k + 2d− 1 6a+ 2k + 4d− 2
d− c− b Δ+ 3a+ k + 2d− 1 6a+ 2k + 4d− 2

Now we only have to have a decomposition to compute the best upper bound, hence the best strategy for
Alice. In the next section we exhibit the upper bounds for some particular decompositions.

3.4.3 Some particular graphs

Let us consider the particular case of (a, d)- and F (a, d)-decomposable graphs.

Corollary 3.88 (Theorem 3.87) Let G be a graph:

• if G is (a, d)-decomposable:

col′g(G) ≤

⎧⎨
⎩

Δ+ 3a+ 2d− 1 if Δ ≤ 3a+ 2d− 1,
6a+ 4d− 2 if 3a+ 2d− 1 ≤ Δ ≤ 3a+ 2d− 1,
Δ+ 3a+ d− 1 otherwise;

• if G is F (a, 1)-decomposable:

col′g(G) ≤

⎧⎨
⎩

Δ+ 3a+ 2 if Δ ≤ 3a,
6a+ 2 if3a ≤ Δ ≤ 3a+ 2,
Δ+ 3a otherwise;

• if G is F (a, d1)-decomposable and d1 > 1:

col′g(G) ≤

⎧⎨
⎩

Δ+ 3a+ 2 if Δ ≤ 3a+ 2d1,
6a+ 2d1 + 2 if 3a+ 2d1 ≤ Δ ≤ 3a+ 2d1 + 2,
Δ+ 3a otherwise.
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Table 3.4.2: Upper bounds of col′g for (a, d)-decomposable graphs.

Strategy A∞ A− D
b− c− d

Δ+ 3a+ d− 1

Δ + 3a+ d− 1
6a+ 2d− 2

Δ + 3a+ 2d− 1 6a+ 4d− 2

b− d− c 6a+ 3d− 2
c− b− d 6a+ 2d− 2
c− d− b

Δ+ 3a+ 2d− 1
6a+ 3d− 2

d− b− c
6a+ 4d− 2

d− c− b

Table 3.4.3: Upper bounds of col′g for F (a, d1)-decomposable graphs.

Strategy A∞ A− D
b− c− d

Δ+ 3a

Δ+ 3a+ 2 6a+ 2d1 + 2
Δ+ 3a+ 2d1 6a+ 4d1

b− d− c Δ+ 3a+ 2 6a+ 4
c− b− d

Δ+ 3a+ 2d1 6a+ 4d1 − 2
Δ + 3a+ 2d1 6a+ 4d1

c− d− b Δ+ 3a+ 2d1 − 2 6a+ 4d1 − 4
d− b− c Δ+ 3a+ 2d1 6a+ 2d1 + 2

Δ+ 3a 6a
d− c− b Δ+ 3a+ 2 6a+ 4d1 − 2

It all comes from the Tables 3.4.2 and 3.4.3 obtained by replacing with the real values of k, Sk and d.
Hence, if we look at the graph of Figure 3.4.4, we can look at it as a F+(1, {4}, 4)-, F+(0, {15, 4}, 4)-,
or F+(1, {}, 6)-decomposable graph. Where the decompositions are done as follow: the plain edges are a
forest of maximum degree 15, the dotted edges is a forest of maximum degree 4 and the gray edges is a
graph of maximum degree 4; if we take the dotted and gray vertices at the same time we obtain a graph of
maximum degree 6 (degree of the vertex 8). Hence, By applying the formulas with Δ = 15 we obtain 26
for the two firsts decompositions and 28 for the last one: the knowledge of the maximum degree of each
subgraph can give better bounds.
Remark that the difference between the trivial upper bound and the bounds given are 3 and 1 respectively.
Fortunately, there are some graph decompositions that help estimate these upper bounds without do-
ing much computations. For instance, for planar graphs there are known results of (a, d)- and F (a, d)-
decompositions function of their girth.

Theorem 3.89 Let P be a planar graph.

1. Then P is of arboricity at most 3. [61]

2. More precisely, P is F (2, 4)-decomposable. [39]

3. If P has no 4-cycles then P is (1, 5)-decomposable. [15]

4. If P is of girth g, the graph P has the decomposition type displayed in the following table: [60, 61, 70]

g ≥ 8 6 4
decomposition F (1, 1) F (1, 2) F (2, 0)

The best known upper bound for graphs of arboricity a was given by Bartnicki and Grytczuk in 2008, and
it was a bound for the coloring game.

Theorem 3.90 [7] Let G be a graph of arboricity a and maximum degree Δ. Then:

χ′
g(G) ≤ Δ+ 3a− 1.

Remark that a graph of arboricity a is a graph F+(a, {}, 0) decomposable, hence by Table 3.4.1 we obtain
the exact same result but for col′g: it is a stronger result. Moreover, if we look at the decompositions of
planar graphs given in Theorem 3.89 we obtain:



82 CHAPTER 3. GRAPH MARKING AND GRAPH COLORING GAMES

0

1234

5

6

7

8

9

10

11

121314

15

1617

18 19

20

212223

2425

26 2728

29

Figure 3.4.4: Example of a graph F+(1, {4}, 4)-, F+(0, {15, 4}, 4)- and F+(1, {}, 6)-decomposable

Corollary 3.91 Let P be a planar graph.

1. Then P is of arboricity at most 3, hence:

col′g(G) ≤ Δ+ 8.

2. The graph P is F (2, 4)-decomposable, hence:

Δ 0 14 16 ∞
col′g(P ) ≤ Δ+ 8 22 Δ + 6

3. If P has no 4-cycles, it is (1, 5)-decomposable, hence:

Δ 0 12 17 ∞
col′g(P ) ≤ Δ+ 12 24 Δ + 7

4. If P is of girth g:

(a) if g ≥ 4, P is arboricity 2, hence:
col′g(P ) ≤ Δ+ 5,

(b) if g ≥ 6, P if F (1, 2)-decomposable, hence:

Δ 0 7 9 ∞
col′g(P ) ≤ Δ+ 5 12 Δ + 3

(c) if g ≥ 8, P is F (1, 2)-decomposable, hence:

Δ 0 3 5 ∞
col′g(P ) ≤ Δ+ 5 8 Δ + 3



3.4. COLORING GAME ON F+-DECOMPOSABLE GRAPHS 83

a better bound is obtained for Δ < 4 considering the graph as (1, 1)-decomposable:

Δ 0 4 5 ∞
col′g(P ) ≤ Δ+ 4 8 Δ + 3

Details of the computations for F (2, 4)-decomposable graphs..
Here a = 2, k = 1, Sk = 4 and d = 0, so, by Table 3.4.1 we obtain the table:

Strategy A∞ A− D
b− c− d

Δ+ 6

Δ+ 8 22
Δ + 14 28

b− d− c Δ+ 8 16
c− b− d

Δ+ 14 26
Δ + 14 28

c− d− b Δ+ 12 24
d− b− c Δ+ 8 22

Δ + 6 12
d− c− b Δ+ 14 26

Depending on Δ it gives:

Strategy Δ
0 12 14 16 20 22 ∞

b− c− d and c− b− d Δ+ 14 28 Δ + 6
b− d− c and d− b− c Δ+ 8 22 Δ + 6
c− d− b and d− c− b Δ+ 14 26 Δ + 6

min: ∗ − b− ∗ − c Δ+ 8 22 Δ + 6

In particular, according to the girth and the maximum degree of a planar graph the bound of Theorem 3.90
can be improved. For instance for planar graphs of girth g ≥ 8 and Δ ≥ 4 we obtain an upper bound of
Δ+ 3, instead of Δ+ 5.
Here, we have new ways to find suitable bounds for graphs depending on their decompositions. And,
contrary to (a, b)-pseudo partial k-trees, these decompositions can be done in polytime. Indeed, by the
BFS algorithm we can compute some forests and computing the maximum degree of the remaining graph
can also be done in polytime. The problem here is to identify, for a graph G, the best decomposition in
terms of strategy.

3.4.4 Conclusion

In this chapter we studied two games that are closely linked: first we focused on the marking game and
the changes of strategy when modifying the graph, then we focused on the edge-coloring game on F+-
decomposable graphs and the best strategy for Alice as function of the decomposition.

In the first part we studied the minor-graph operators: the edge deletion, the vertex deletion and the
edge contraction. For each of these operators we gave lower and upper bounds for the score obtained
along the game as function of the score obtained on the initial graph. Each of these bounds are attained
for infinitely many graphs and we introduced a class of graphs that give these bounds: sunflower graphs.
Moreover, we studied also the strategy for the union of two graphs and the cartesian product of any graph
and a complete graph. For these two last operations we give upper bounds and we show these bounds are
attained for some graphs linked to the sunflower class of graphs.
This study helps understanding the behavior of the marking game even if a lot of questions remain open,
namely, the characterisation of graphs with the same game coloring number for the A-marking game and
the B-marking game.

In the second part, we studied the edge-coloring game on F+-decomposable graphs. These new decomposi-
tion is a generalisation of the (a, d)- and F (a, d)-decompositions: we have forests with unknown maximum
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degree, forests with known maximum degree and a graph of maximum degree. We give a strategy for Alice
for F+-decomposable graphs and by doing this we improve bounds for the edge-chromatic index of planar
graphs. Our strategy is an activation strategy that takes into account the number of forests with known
maximum degree, the number of forests with unknown maximum degree and the maximum degree of the
remaining graph. The bounds found as function of these three parameters is computable in constant time,
the main difficulty is, for a given graph, to find the decomposition that gives the best bounds.



Chapter 4

Taking and Breaking games

"Là, vous faites sirop de
vingt-et-un et vous dites : beau
sirop, mi-sirop, siroté,
gagne-sirop, sirop-grelot,
passe-montagne, sirop au bon
goût."

Perceval - Kaamelott

In this chapter we study combinatorial games played on heap of tokens. We focus on games where players
can take tokens from a heap and/or can break a heap into multiple heaps.
In the litterature, taking and taking and breaking games have been largely studied. Namely, most of the
known taking games have periodic or arithmetic-periodic Grundy sequences. When adding the breaking
part to these games the study changes: some of them are conjectured to be ultimately periodic, some
specific ones are arithmetic-periodic and some others have other behaviors as sapp-regularity or even
ruler-regularity, for some no regularity has been found. For very specific classes of taking and breaking
games there are tests for periodicity or arithmetic-periodicity, meaning that if the first values verify some
conditions, then the sequence is periodic or arithmetic-periodic. Taking and breaking games are often
studied one by one as no global result about their behavior exists.
These two big families of games are presented in the two following sections among with their important
results.
In the third section a joint work with Éric Duchêne, Antoine Dailly and Urban Larsson is presented about
breaking games. We introduce these games and we present some results about the behavior of their Grundy
sequences.

4.1 Pure taking games

4.1.1 Subtraction games

In the game of Nim a particular constant is that the players can always take a whole heap. Subtraction
games are such that this move is not possible: there is a maximum number of tokens that can be taken
from a heap.

subtraction S(n1, . . . , n�): Let n1, . . . , n� be a list of � ∈ N positive integers. The subtraction

game S(n1, . . . , n�) is a game played on k heaps of tokens where the players alternate turns to remove
x ∈ {n1, . . . , n�} tokens from a single heap.

For instance, take the game S(1, 3). In this game a move consists on removing 1 or 3 tokens from a heap
of tokens, in other words, this is exactly the same game as tokens, seen in Section 1.1.1.
Now, consider the game S(1, 2, 3). From the starting positions (1), (2) or (3) the first player can easily win

85
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by taking all tokens from the heap. From (4), the options are {(1), (2), (3)}: this is a P-position. As well,
if they start with a heap of 5, 6 or 7 tokens, the first player can leave 4 tokens, hence these are N -positions.

In fact, the particular case where n1, . . . , n� are consecutive integers with n1 = 1 gives periodic Grundy
sequences:

Theorem 4.1 Let � be a positive integer. The Grundy sequence of the game S(1, 2, . . . , �) is (1,2, . . . , �,0) (+0),
which is periodic of period �+ 1.

Proof. Let n be a non-negative integer and a, b such that n = a(� + 1) + b and 0 ≤ b ≤ �. Assume n is
the minimum integer such that G((n)) �= b. As for m ∈ �0, �� the options are exactly the same as in nim,
we can assume n ≥ �+ 1.
The options from the heap of size n are a(� + 1) + b − �, a(� + 1) + b − � + 1, . . . , a(� + 1) + b − 1 which
have Grundy number b+ 1, . . . , �,0, . . . ,b− 1 respectively. In particular, there is no option of Grundy
number b and for all 0 ≤ i ≤ b− 1 there is an option of Grundy value i. A contradiction. Hence there is
no minimum conterexample, meaning that the Grundy sequence is periodic of period �+ 1.

Hence, the important parameter in the game S(1, . . . , �) is the last integer in the list. For other games,
like for instance S(1, 3, 4) the Grundy sequence is quite different as the Grundy values are not consecutive.
Indeed in Table 4.1.1 we give the options and Grundy numbers of the first heaps. In the first values there
are multiples P-positions and a period of length 7 seems to appear.

n options Grundy value
0 ∅ 0
1 {0} 1
2 {1} 0
3 {0, 2} 1
4 {0, 1, 3} 2
5 {1, 2, 4} 3
6 {2, 3, 5} 2
7 {3, 4, 6} 0
8 {4, 5, 7} 1
9 {5, 6, 8} 0
10 {6, 7, 9} 1
11 {7, 8, 10} 2
12 {8, 9, 11} 3
13 {9, 10, 12} 2
14 {10, 11, 13} 0
15 {11, 12, 14} 1

Table 4.1.1: First Grundy values for the game S(1, 3, 4) on one heap.

In fact, all subtraction games have periodic Grundy sequences:

Theorem 4.2 [1] The Grundy sequence of a subtraction game is always periodic.

Proof. Let L = {�1, . . . , �k} be an increasing sequence of non-negative integers with k ∈ N and Gn the
subtraction game S(L) on one heap of size n.
Remark first that from the position Gn there are at most k options: {n−�k, . . . , n−�1}, hence G(Gn) ≤ k.
As all Grundy values are bounded by k, there are finitely many blocks of �k consecutive blocks. Hence there
is a couple of integers (q, r) such that �k ≤ q, r and G(Gq−�k−1) = G(Gr−�k−1), . . . , G(Gq−1) = G(Gr−1).
This gives directly that G(Gq) = G(Gr).
Now, let m be a non-negative integer and assume that for all m′ < m, G(Gq+m′) = G(Gr+m′). As for all
i ∈ {�1, . . . , �k}, G(Gq+m−�i) = G(Gr+m−�1), the grundy values of Gq+m and Gr+m are the same. Hence,
for all m ≥ 0, G(Gq+m) = G(Gr+m), meaning that the Grundy sequence is ultimately periodic of period
r − q and preperiod q.
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Corollary 4.3 Let G = S(�0, . . . , �k−1) be a subtraction game with �1 ≤ · · · ≤ �k−1. Let e and p be
positive integers such that G(n+ p) = G(n) and e ≤ n < e+ a. The Grundy sequence of G is then periodic
of period p and preperiod e.

This gives a practical way of finding the Grundy sequence for any subtraction game. Indeed, we need to
compute the first values until �k−1 consecutive values are repeated and from this corollary, the periodicity
comes straight forward.
An example using this corollary can be the computation of S(2, 4, 7). The first 26 values are shown in
Table 4.1.2

Table 4.1.2: First 26 values of the Grundy sequence of S(2, 4, 7)

heap of size options Grundy value heap of size options Grundy value
25 18,21,23 1 12 5,8,10 0
24 17,20,22 3 11 4,7,9 1
23 16,19,21 0 10 3,6,8 2
22 15,18,20 2 9 2,5,7 0
21 14,17,19 2 8 1,4,6 1
20 13,16,18 1 7 0,3,5 3
19 12,15,17 1 6 2,4 0
18 11,14,16 0 5 1,3 2
17 10,13,15 0 4 0,2 2
16 9,12,14 2 3 1 1
15 8,11,13 0 2 0 1
14 7,10,12 1 1 0
13 6,9,11 2 0 0

Here, we remark that for e = 0, p = 17 and � ≤ n < �+ 7, we have G(n+ p) = G(n), hence this sequence
is periodic of preperiod 0 and period 17, the sequence is (0,0,1,1,2,2,0,3,1,0,2,1,0,2,1,0,2) (+0).

Now we know how to compute in polynomial time the Grundy sequences of all subtraction games. Even
though the behavior of all of these games is known, there is still an important question that remains open:

Open question 4.4 What is the minimum period of the Grundy sequence of S(�1, . . . , �k)? is there a
bound on the length of the preperiod?

Having a good bound for this period as a function of n1, . . . , n� could improve the computations of the
Grundy sequence.

In the next section some infinite subtraction games are studied.

4.1.2 All-but games

Another way of looking to infinite subtraction games is to see what numbers of tokens are not takeable
from the heaps:

all-but A(n1, . . . , n�): Let n1, . . . , n� be a list of � ∈ N positive integers. The all-but game

A(n1, . . . , n�) is a game played on heaps of tokens where the players alternate turns to remove
x ∈ N \ {n1, . . . , n�} tokens from a single heap.

For instance, consider the game A(1, 3, 4). The heaps of sizes 0 and 1 have no options, hence their value
is 0. The heap of size 2 has a unique option, 0, hence its value is 1. The first 24 values are given in
Table 4.1.3.
Here, the difference between the third and the last column is always 4. This Grundy sequence seems to
be arithmetic-periodic with no preperiod.
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Table 4.1.3: First 24 values of the Grundy sequence of A(1, 3, 4).

heap of size Grundy value heap of size Grundy value
23 7 11 3
22 7 10 3
21 6 9 2
20 6 8 2
19 7 7 3
18 5 6 1
17 6 5 2
16 4 4 0
15 5 3 1
14 5 2 1
13 4 1 0
12 4 0 0

In fact, as for subtraction games, there is also a result that reduces the computations as soon as the values
repeat themselves:

Theorem 4.5 [1] Let G = A(n1, . . . , n�) n1 ≤ · · · ≤ n�. Assume there is s, p and e such that for all
e ≤ n ≤ e+ 2n�, G(n+ p) = G(n) + s. Then the Grundy sequence of G is arithmetic-periodic of preperiod
e, period p and saltus s.

This way, we are sure that the Grundy sequence of A(1, 3, 4) above is what it seems:

(0,0,1,1,0,2,1,3,2,2,3,3) (+4).

In particular, once e and p have been identified, the only interesting values of the Grundy sequence are
those for 0 ≤ n ≤ e+ 2a+ p, all other values are given by arithmetic-periodicity.
In fact all all-but games are arithmetic-periodic:

Theorem 4.6 [1] Let �1, . . . , �� be a list of non-negative integers with �1 ≤ · · · ≤ ��. Then the Grundy
sequence of A(�1, . . . , ��) is arithmetic-periodic.

The proof of Theorem 4.6 is similar to the one of Theorem 4.2 but quite more technical, interested readers
are invited to read the 150th page of [1].

Moreover, for some particular cases the study can be reduced to smaller lists of integers. For instance
when the gap between the two greater values is big enough.

Theorem 4.7 [1] Let G = A(�0, . . . , �k−1) and G′ = A(�0, . . . , �k) with �0 < · · · < �k−1 and 2�k−1 < �k.
Then G and G′ have the exact same Grundy sequences.

Of course this study does not give a bound on the size of the period nor the size of the preperiod. More-
over, here we only discussed finite subtraction games or finite all-but games, the cases where we remove
an infinite set and keep also an infinite set are not so easy to compute as we see on some examples.

4.1.3 Non-finite games

Here the games subtract a power of two and subtract a square are presented.

subtract a power of two: is a game played on heaps of tokens where the players alternate turns
to remove x ∈ {2i | i ∈ N} tokens from a single heap.
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Consider n be a positive integer and a0, . . . , ap its binary decomposition: n =
∑

0≤i≤p ai2
i, with ap �= 0.

A move from a heap of size n consists of removing 2i, i ≤ p tokens from the heap. If there is only one i
such that ai �= 0, one possible move is to the position (0), which is a P-position, hence (n) is a N -position.
In the following table we give the first 16 Grundy numbers of its Grundy sequence.

Table 4.1.4: First 16 values of the Grundy sequence of S(2i, 0 ≤ i).

heap of size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Grundy value 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2 0 1

This is one example of an infinite subtraction game where the Grundy sequence is easy to understand: it
is periodic of period three and the pattern repeated is 1,2,0.

Another example is subtract a square, introduced in [38] by S.W. Golomb.
subtract a square: is a game played on heaps of tokens where the players alternate turns to remove
x ∈ {i2 | i ∈ N} tokens from a single heap.

The first 50 Grundy numbers are shown in Table 4.1.5. No structure seems to appear on these values, and
in fact no structure on this sequence has been found.

Table 4.1.5: First 100 values of the Grundy sequence of subtract a square.

heap value heap value heap value heap value
99 2 74 5 49 3 24 2
98 4 73 1 48 2 23 1
97 6 72 0 47 3 22 0
96 1 71 3 46 2 21 1
95 0 70 4 45 1 20 0
94 5 69 2 44 0 19 2
93 4 68 1 43 2 18 1
92 6 67 0 42 3 17 0
91 2 66 1 41 2 16 1
90 4 65 0 40 1 15 0
89 2 64 3 39 0 14 2
88 3 63 1 38 2 13 1
87 6 62 0 37 3 12 0
86 1 61 5 36 2 11 1
85 0 60 4 35 1 10 0
84 5 59 3 34 0 9 2
83 4 58 1 33 4 8 1
82 3 57 0 32 3 7 0
81 2 56 5 31 2 6 1
80 6 55 4 30 3 5 0
79 5 54 3 29 5 4 2
78 4 53 1 28 4 3 1
77 3 52 0 27 3 2 0
76 2 51 5 26 2 1 1
75 6 50 4 25 3 0 0

In particular, infinite subtraction games do not behave as regularly as finite ones.

4.2 Some taking and breaking games

In this section taking and breaking games are studied, in these games players can take tokens from heaps
and/or can split heaps into multiple ones. First some examples are shown and then octal and hexadecimal
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games are presented.

4.2.1 Some examples

1. Kayles
Kayles game was invented by Dudeney and studied by Guy and Smith in [43].

kayles: two players take turns to remove one or two consecutive tokens from a heap and then
they can also split it into two heaps.

In other words, players choose a heap and take tokens either from endpoints (leaving a smaller heap)
or in the middle (leaving two smaller heaps). In Figure 4.2.1 we can see a game starting with 15
tokens.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Start
Alice takes the 3th and 4th
Bob takes the 15th
Alice takes the 5th
Bob takes the 12th
Alice takes the 1st and 2nd
Bob takes the 11th
Alice takes the 6th and 7th
Bob takes the 14th
Alice takes the 9th and 10th
Bob takes the 13th
Alice takes the 8th
Alice wins

Figure 4.2.1: Example of game with 15 tokens initially.

In fact, here the players did not play the winning moves. Indeed, at her first turn, Alice should have
taken the 8-th token hence leaving a sum of two games with the same size. As well, Bob could have
done a winning move in his first turn by takng the 9-th token.
Remark that when they split a heap in two, the game on one heap becomes a game in two heaps or
the sum of two games each one on one heap. Here the nim-sum over Grundy numbers come in handy
to study the Grundy sequence of a single heap. In the general case, when they start with a heap
with n tokens, n > 2, the first player can leave two heaps of equal size by removing 1 or 2 tokens
from the middle. In particular, this says that the Grundy sequence of Kayles has only one 0, for the
empty heap. The first 96 values of its Grundy sequence are shown in Table 4.2.1.

Table 4.2.1: First 96 values of the Grundy sequence of Kayles.

b 0 1 2 3 4 5 6 7 8 9 10 11
12× 0 + b 0 1 2 3 1 4 3 2 1 4 2 6
12× 1 + b 4 1 2 7 1 4 3 2 1 4 6 7
12× 2 + b 4 1 2 8 5 4 7 2 1 8 6 7
12× 3 + b 4 1 2 3 1 4 7 2 1 8 2 7
12× 4 + b 4 1 2 8 1 4 7 2 1 4 2 7
12× 5 + b 4 1 2 8 1 4 7 2 1 8 6 7
12× 6 + b 4 1 2 8 1 4 7 2 1 8 2 7
12× 7 + b 4 1 2 8 1 4 7 2 1 8 2 7
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In fact, it has been proved that this sequence is periodic of preperiod 72 and period 12. In practice
if you are playing this game, we recommend to have this table on sight, otherwise you will have to
do a lot of computations if you want to play optimally.

2. Dawson Kayles

Consider the same game as before, but this time players are not able to take only one token.

dawson kayles: players alternate turns to take two tokens and split it if they want into two
heaps.

By changing this rule, the sequence changes a lot: it is now of preperiod 52 and of period 34. The
first 88 values are shown in Table 4.2.2.

Table 4.2.2: First 88 values of the Grundy sequence of Dawson Kayles.

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17× 0 + b 0 0 1 1 2 0 3 1 1 0 3 3 2 2 4 0 5
17× 1 + b 2 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7
17× 2 + b 4 0 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5
17× 3 + b 5 2 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7
17× 4 + b 4 8 1 1 2 0 3 1 1 0 3 3 2 2 4 4 5
17× 5 + b 5 9 3 3 0 1 1 3 0 2 1 1 0 4 5 3 7

3. Dawson Chess

Consider now another version of the same game, introduced by Dawson in [25].

dawson chess: players alternate turns to either take an entire heap, if it has one, two or three
tokens; or take two or three tokens from a pile. Moreover after removing tokens they can also
break the remaining heap in two.

For instance, for a heap of size 10 the options are 7, 8, (1, 6), (2, 5), (3, 4). In Table 4.2.3 the Grundy
values of heaps of sizes less than 34 are shown.

Table 4.2.3: First 34 Grundy values for Dawson Chess.

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17× 0 + b 0 1 1 2 0 3 1 1 0 3 3 2 2 4 0 5 2
17× 1 + b 2 3 3 0 1 1 3 0 2 1 1 0 4 5 2 7 4

If we compare Table 4.2.2 and Table 4.2.3 we remark there is a shift of one on the Grundy sequence,
at least for these first values. In fact, this shift is kept all along. The Grundy sequence of Dawson
Chess is periodic of preperiod 51 and period 34.

4.2.2 Octal and Hexadecimal games

We have seen some examples of games where the players can take and break heaps. If we remember the
rules of the last game, Dawson Chess, the players can remove 1, 2 or 3 tokens if they empty a heap, or
they can remove 2 or 3 tokens from any heap, or they can take 3 tokens and divide the remaining heap
in two. The rules start to be difficult to describe. . . In fact, the games we have seen earlier are easier to
explain. In this section we see octal and hexadecimal games and some of their properties.

1. Octal games
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octal games: Let d1, . . . , dt be t integers such that ∀1 ≤ i ≤ t, 0 ≤ di ≤ 7. The octal game

0.d1 . . .dk is the game where for each 1 ≤ i ≤ t:

di = ei,0 + 2ei,1 + 4ei,2

with ei,j ∈ {0, 1} and:

• if ei,0 = 1: taking a heap of size i is permitted,

• if ei,1 = 1: taking i tokens from a heap of size j > i is permitted, leaving a heap of size j − i,

• if ei,2 = 1: taking i tokens from a heap and split the remaining into two non-empty heaps is
permitted.

The following table sums up the possible moves:

Table 4.2.4: Details of the possible moves in octal games

di (di)2 Removing i tokens. . .
0 000 is not possible,
1 001 is possible if it empties the heap,
2 010 is possible if it does not empty the heap,
3 011 is possible, no splitting is possible,
4 100 is possible as long as the remaining heap is cut in two,
5 101 is possible if the remaining heap is cut in two (if non-empty),
6 110 is possible if at least a token is left and the remaining may be split in two,
7 111 is possible, the remaining heap may be split in two.

For instance, the game 0.1234 is a game where removing 1 or 3 tokens is allowed if it empties the
heap, removing 2 or 3 tokens is allowed if the heap is not emptied and removing 4 is allowed if the
remaining heap is cut in two.
Now consider the game 0.137: removing 1 is allowed if it empties the heap, removing 2 tokens is
allowed if the remaining heap is not cut in two and removing 3 tokens is always allowed (emptying
the heap, leaving a heap or cutting the heap). In other words, this is exactly Dawson Chess. As well,
the game 0.07 is exactly Dawson Kayles, and Kayles is 0.77.

In the octal games that we studied so far (the last three examples) the Grundy sequences tend to be
periodic with some preperiod. In fact, to this day no octal game has been proven not to be periodic.
Guy conjectured that all octal games are ultimately periodic. In practice, to see if an octal game is
periodic we use a result similar to Corollary 4.3.

Theorem 4.8 (Octal periodicity test) Let G be an octal game 0.d1 . . .dk of finite length k. If
there exist n0 ≥ 1 and p ≥ 1 such that:

G(n+ p) = G(n), ∀n0 ≤ n < 2n0 + p+ k,

then G is ultimately periodic with period p and preperiod n0.

The main difficulty is to find n0 and p to deduce the regularity of the sequence. In fact, these values
can be extremely big, as is the case for 0.454 which has a preperiod of 160949019 and a period of
60620715. For some games, the conjectured values n0 and p have not been found yet, like 0.6, 0.14,
0.172 or even 0.007, more details can be found in Table 4.2.5 taken from [33].

Remark that the game 0.07 is solved (Arithmetic-Periodic Grundy sequence) and the game 0.007
remains unknown.
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Table 4.2.5: Details of computations of the games 0.6, 0.14 and 0.007

Games maximum n maximum G(i) number of P-positions
0.6 233 363 14
0.14 232 85 172
0.172 231 387 10
0.007 228 1689 37

Consider now the game 0.41. In this game the players can take one token and split the remaining
heap in two or take two tokens from a heap of size 2. The first 18 heaps are given in Table 4.2.6
along with their Grundy numbers.

Table 4.2.6: Grundy sequence of the game 0.41 up until the 119-th value.

b 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
17× 0 + b 0 0 1 1 0 2 1 3 0 1 1 3 2 2 3 4 1
17× 1 + b 5 3 2 2 3 1 1 0 3 1 2 0 1 1 4 4 2
17× 2 + b 6 4 1 1 0 2 1 3 0 1 1 3 2 2 3 4 4
17× 3 + b 5 7 2 2 3 1 1 0 3 1 2 0 1 1 4 4 3
17× 4 + b 6 4 1 1 0 2 1 3 0 1 1 3 2 2 3 4 4
17× 5 + b 5 7 2 2 3 1 1 0 3 1 2 0 1 1 4 4 3
17× 6 + b 6 4 1 1 0 2 1 3 0 1 1 3 2 2 3 4 4
17× 7 + b 5 7 2 2 3 1 1 0 3 1 2 0 1 1 4 4 3
17× 8 + b 6 4 1 1 0 2 1 3 0 1 1 3 2 2 3 4 4

Here we remark that a period of 34 seems to rule the last values (starting at 34), hence the preperiod
seems to be n0 = 34, and the period also p = 34. Moreover, for all n0 ≤ n ≤ 2n0 + p+ 2 = 104, we
have G(n + p) = G(n), hence, this sequence is periodic of preperiod n0 and period p. Remark that
here we need to compute all the values between 34 and 138 to be able to apply the theorem.

2. Hexadecimal games

A natural extension to octal games is when players are allowed to cut heap into three non-empty
ones. These games can be coded with an hexadecimal code and are called hexadecimal games.

hexadecimal games: Let d1, . . . , dt be t integers such that for all 1 ≤ i ≤ t we have 0 ≤ di ≤ 15.
For clarity if di > 9, di is 10, 11, 12, 13, 14 or 15, and we denote it by A,B,C,D,E of F respectively.
The game 0.d1 . . .dt is then the game where for each 1 ≤ i ≤ t:

di = e0 + 2e1 + 4e2 + 8e3

with ei,j ∈ {0, 1} and:

• if ei,0 = 1: taking a heap of size i is permitted,

• if ei,1 = 1: taking i tokens from a heap of size j > i is permitted, leaving a heap of size j − i,

• if ei,2 = 1: taking i tokens from a heap and splitting it into two non-empty heaps is permitted,

• if ei,3 = 1: taking i tokens from a heap and splitting it into three non-empty heaps is
permitted.

For instance, the game 0.F is the game where players can remove one token and leave 0, 1, 2
or 3 non-empty heaps. This game exhibits a periodic Grundy sequence which is (01). In fact,
hexadecimal games have a behavior sometimes different from octal ones. For example, the game
0.89. In Tables 4.2.7 and 4.2.8 the first heaps are shown with their options and Grundy values.
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Table 4.2.7: Example of Hexadecimal game: 0.89, first 11 options and Grundy values.

heap options Grundy value
0 − 0
1 − 0
2 0 1
3 − 0
4 (1, 1, 1) 1
5 (1, 1, 2), (1, 1, 1) 2
6 (1, 1, 3), (1, 2, 2), (1, 1, 2) 2
7 (1, 1, 4), (1, 2, 3), (2, 2, 2), (1, 1, 3), (1, 2, 2) 2
8 (1, 1, 5), (1, 2, 4), (1, 3, 3), (2, 2, 3), (1, 1, 4), (1, 2, 3), (2, 2, 2) 3
9 (1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3), (1, 1, 5), (1, 2, 4), (1, 3, 3), (2, 2, 3) 4
10 (1, 1, 7), (1, 2, 6), (1, 3, 5), (1, 4, 4), (2, 2, 5), (2, 3, 4), (3, 3, 3), (1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3) 4

Table 4.2.8: First 28 Grundy values of 0.89.

b 0 1 2 3
4× 0 + b 0 0 1 0
4× 1 + b 1 2 2 2
4× 2 + b 3 4 4 4
4× 3 + b 5 6 6 6
4× 4 + b 7 8 8 8
4× 5 + b 9 10 10 10
4× 6 + b 11 12 12 12

This sequence is not periodic, but arithmetic-periodic, of preperiod 3, period 4 and saltus 2:
(001) (0122) (+2).
This is a usual behavior for hexadecimal games. Some results similar to Theorem 4.8 have been
done for these games, for instance in [5], Austin gives a test to check arithmetic-periodicity when the
saltus seems to be a power of 2, and in [49], Howse and Nowakowski give a similar test for arbitrary
saltus. In both tests the number of values we have to check out is much larger than for the octal
one: for octal games we checked 2 expected periods, and for hexadecimal games we need to check
at least 7 expected periods. Moreover, hexadecimal games can also have other kind of Grundy se-
quences: the game 0.205200C is sapp-regular and the game 0.20..48 (with an odd number of *0*s)
is ruler-regular.
Anyhow, the difficulty when studying these games remains in founding the expected values for the
period or understanding the behavior of the sequence when no period appears.

It goes without saying, most of the taking and breaking games can be described by using codes of
the form d0.d1... dk for k finite or not, where the values of di’s depend on the maximum number of
breaks allowed. Higher bases are not of much interest here.

The breaking part of these games shows new behaviors for the Grundy sequences. Between octal
games and hexadecimal games there is already a gap between a unique behavior and multiples ones
when the only difference, rule-wise, is cutting twice the heaps. In the next section we focus on pure
breaking games where players can cut heaps a given number of times and can never take tokens.

4.3 Pure breaking games

Taking games, when they are subtraction ones, are easy to study: there are all periodic and then the
research for their period is what remains still open. When dealing with taking and breaking games,
the behaviors of the Grundy sequence change and we can also see arithmetic-periodicity among other
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types of sequences. The regularity of their sequences is not known, even if globally they show some king
of periodicity. In both cases, for taking and taking and breaking games there are tests to show their
regularities (periodicity and arithmetic-periodicity) by computing the first values of the sequence. The
main problem is determine how far to take the computations as in some cases these are done for very big
values without a final result.
Here we show pure breaking games where the players can only split the heaps, without taking tokens.

4.3.1 Introduction of pure breaking games

In [9], Grundy’s game was introduced:

grundy’s game: players alternate turns to chose a heap and split it into two non-empty heaps of
different sizes.

An example of game is given in Figure 4.3.1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Start with 15 tokens
Alice breaks in (2, 13)

Bob breaks in (2, 5, 8)

Alice breaks in (2, 2, 3, 8)

Bob breaks in (2, 2, 3, 2, 6)

Alice breaks in (2, 2, 3, 2, 1, 5)

Bob breaks in (2, 2, 3, 2, 1, 2, 3)

Alice breaks in (2, 2, 3, 2, 1, 2, 2, 1)

Bob breaks in (2, 2, 1, 2, 2, 1, 2, 2, 1)

Bob wins

Figure 4.3.1: Example of grundy’s game played by two players with an initial heap of 15 tokens

Here the players start with a heap of 15 tokens, but here Alice does a bad move, since (2, 13) is an
N -position. For once we will not give the Grundy values of the first heaps, since, for now, it has been
computed for the first 235 heaps without a glimpse of regularity.

Remark that allowing to split heaps in equal-sized ones gives a very easy game to study: the Grundy
sequence is periodic of period (01) and preperiod 1.

As well, other breaking that has been studied in the litterature is couples are forever:

couples are forever: players alternate turns to split a heap of size n > 3 into two non-empty heaps.

As for grundy’s game, the Grundy sequence of couples are forever does not show a regular behavior
yet.

In this section we explore games where the players can split heaps in a given number of non-empty heaps
and we call them pure breaking games. In this games no addition rule is given: the heaps resulting
from the splitting can have same size, the only condition is that they are non-empty.

pure breaking games: Let L = {�1, . . . , �k} be a set of positive integers, called the cut numbers. The
pure breaking game PB(L) is the heap game such that the heap of size n has the following options:

{ (i0, . . . , i�) | � ∈ L, ∀j, ij > 0 and i0 + · · ·+ i� = n }.
In other words, in PB(L), at each move the players chose an integer � ∈ L and a heap of size n > �
and split the heap in � + 1 non empty heaps. Such a move is called an �-cut. In practice, for the game



96 CHAPTER 4. TAKING AND BREAKING GAMES

PB({�1,. . . ,�k}) we assume �1 < · · · < �k.

Consider the game PB({2,3}). In Table 4.3.1 we can see the first heaps with their options and their
Grundy value.

Table 4.3.1: First heaps of the game PB({2,3}).

heap options Grundy value
0 − 0
1 − 0
2 − 0
3 (1, 1, 1) 1
4 (1, 1, 2), (1, 1, 1, 1) 1
5 (1, 1, 3), (1, 2, 2), (1, 1, 1, 2) 2
6 (1, 1, 4), (1, 2, 3), (2, 2, 2), (1, 1, 1, 3), (1, 1, 2, 2) 2
7 (1, 1, 5), (1, 2, 4), (1, 3, 3), (2, 2, 3), (1, 1, 1, 4), (1, 1, 2, 3), (1, 2, 2, 2) 3
8 (1, 1, 6), (1, 2, 5), (1, 3, 4), (2, 2, 4), (2, 3, 3), (1, 1, 1, 5), (1, 1, 2, 4), (1, 1, 3, 3), (1, 2, 2, 3), (2, 2, 2, 2) 3

The Grundy sequence seems to be arithmetic-periodic of period 2 and saltus 1. We will see later that this
is the expected behavior of pure breaking games.

4.3.2 Solving some particular families

In the last example, for the list {2, 3}, the Grundy sequence seemed to be of period 2 and saltus 2. In
fact, when 1 is not in the list, this is the normal behavior of pure breaking games.

Theorem 4.9 Let L = {�1, . . . , �k} be a set of cut numbers such that 2 ≤ �1 < · · · < �k. Then PB(L)’s
Grundy sequence is (0)�1 (+1).

Proof. Let L = {�1, . . . , �k} such that 2 ≤ �1 < · · · < �k. We prove this by contradiction, let n be a
positive integer, then there is a unique couple (a, b) of non-negative integers such that 0 ≤ b ≤ �1 − 1 and
n = a�1 + b+ 1. We prove that for every positive integer G(n) = a.
Assume that n is the smallest positive integer such that G(n) �= a.
Assume G(n) > a. In particular, there is an option of the heap of size n with Grundy value a, i.e., there
is an m ∈ L and an m-cut of n, say On = (a0�1 + b0 + 1, . . . , am�1 + bm + 1) such that:

• G(On) = a0 ⊕ · · · ⊕ am = a, and

• ∑m
i=0(ai�1 + bi + 1) = a�1 + b+ 1.

As b ≤ �1 − 1, we have a0 + · · · + am ≤ a, and since a = a0 ⊕ · · · ⊕ am ≤ a0 + · · · + am, we know
a = a0+ · · ·+am. Directly, we have 1+ b =

∑m
i=0(1+ bi) = m+1+ b0+ · · ·+ bm, which is a contradiction

since m ≤ �1 and b < �1. Thus, there is no option of the heap of size n with Grundy value a, in particular
G(n) < a.
We now prove that the heap of size n has options of Grundy values i for i ∈ �0, a − 1�. There are two
cases:

1. if �1 is even, then for i ∈ �0, a− 1�, let On = (i�1 + b+ 1, a− i, . . . , a− i) be an �1-cut. This always
exists since �1 ≥ 2. Moreover it is an option of n: i�1+b+1+(a−i)�1 = a�1+b+1 = n. Furhermore,
we have G(On) = G(i�1 + b+ 1)⊕ (�1 ⊗ G(a− i)). Since G(i�1 + b+ 1) = i, by minimality of n, and
�1 is even, we have �1 ⊗ G(a− i) = 0 and G(On) = i.

2. if �1 is odd, then for all i ∈ �0, a− 1�, we define an option On of n, obtained by an �1-cut, such that
G(On) = i. We have two subcases:
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(a) if a− i is odd, let
h0 = i�1 + b+ 1

hj = 1
2(a− i− 1)�1 + 1 for j = 1, 2

hj = 1 for 3 ≤ j ≤ �1

this always exists since �1 ≥ 3 (if �1 = 3 then there are only the first four heaps) and (a− i− 1)
is even. Moreover, it is an option of n:

i�1+ b+1+2

(
1

2
(a− i− 1)�1 + 1

)
+(�1−2) = i�1+ b+1+(a− i−1)�1+ �1 = a�1+ b+1 = n.

Furthermore, we have:

G(On) = G(i�1 + b+ 1)⊕
(
2⊗ G

(
1

2
(a− i− 1)�1 + 1

))
⊕ ((�1 − 2)⊗ G(1)) = i

since G(i�1 + b+ 1) = i by minimality of n and G(1) = 0.
(b) If a− i is even, let

h0 = i�1 + b+ 1

hj = 1
2((a− i− 1)�1 + 1) for j = 1, 2

hj = 2 for j = 3

hj = 1 for 4 ≤ j ≤ �1

This always exists since �1 ≥ 3, (if �1 = 3, then there are only the first four heaps) and (a− i−1)
and �1 are odd so (a− i− 1)�1 + 1 is even. Moreover, it is an option of n:

i�1+b+1+2 · 1
2
((a− i−1)�1+1)+2+(�1+3) = i�1+b+1+(a− i−1)�1+ �1 = a�1+b+1 = n.

Furthermore, we have:

G(On) = G(i�1 + b+ 1)⊕
(
2⊗ G

(
1

2
((a− i− 1)�1 + 1)

))
⊕ G(2)⊕ ((�1 − 3)⊗ G(1)) = i

since G(i�1 + b+ 1) = i by minimality of n and G(1) = G(2) = 0.

This proves that we have at least an option with Grundy value i for all 0 ≤ i < a, and thus that G(n) ≥ a,
a contradiction. Consequently, there is no counterexample to the sequence (0)�1 (+1).

What is interesting here is that the number of cuts or the values of the cuts are of no importance at all,
the only thing that we have to look at is the minimum value of cuts.
Allowing 1-cuts when the rest of the cuts are all odd gives always the same periodic Grundy sequence:

Theorem 4.10 Let L = {1, �2, . . . , �k} be a sequence of odd cut numbers. Then PB(L)’s Grundy sequence
is (0,1) (+0).

Proof. We prove this by contradiction. Let n be the smallest positive integer for which the Grundy value
of a heap of size n does not match with the sequence (0,1) (+0).

First assume that n is even. We will prove that all the options of n have Grundy value 0. Let On be an
option of n. Note that On exists since n ≥ 2 and 1 ∈ L. Since all the values of L are odd, On contains
an even number of non empty heaps whose sum is even. Hence On contains an even number of odd-sized
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heaps. Since all the heaps in On are strictly smaller than n, their Grundy values satisfy the sequence
(0,1) (+0), which implies that On contains an even number of heaps of Grundy value 1. Therefore, we
have G(On) = 0 and thus G(n) = 1. Hence our counterexample n is necessarily odd.

We will show that n has no option of Grundy value 0. It is straightforward if n has no option. Otherwise,
let On be an option of n. Since all the values of L are odd, On contains an even number of non empty
heaps whose sum is odd. Hence On contains an odd number of odd-sized heaps and an odd number of
even-sized heaps. Since all the heaps in On are strictly smaller than n, their Grundy values satisfy the
sequence (0,1) (+0), which implies that On contains an odd number of heaps of Grundy value 1. Hence
G(On) = 1 and thus G(n) = 0.

Consequently, there is no counterexample to the sequence (0,1) (+0).

Another easy case to study is when players can cut 1, 2 and 3 times.

Theorem 4.11 Let k ≥ 3 and L = {1, 2, 3, �4, . . . , �k} be a sequence of cut numbers. The Grundy sequence
of PB(L) is (0) (+1).

Proof. We prove this result by contradiction. Let n be the smallest positive integer such that G(n) �=
n− 1. Note that n ≥ 3 since we have G(1) = 0 and G(2) = 1.

Suppose first that G(n) > n− 1.
Then n has an option On = (h0, . . . , h�) such that:

�∑
i=0

hi = n and
�⊕

i=0

G(hi) =
�⊕

i=0

(hi − 1) = n− 1.

However,
∑�

i=0(hi − 1) = n− �− 1, and since � ≥ 1 we have

G(On) = n− 1 >

�∑
i=0

(hi − 1) ≥
�⊕

i=0

(hi − 1) = G(On),

a contradiction.

Thus, there is no option of n with Grundy value n− 1, which implies Gn < n− 1.
We now prove that, from a heap of n counters, we can play to an option of Grundy value m for all
m < n− 1, which will lead to a contradiction.
If m = n − 2, then let On = (1, n − 1) which is clearly an option of n with Grundy value n− 2 by
minimality of n. Otherwise, let m < n− 2. There are two cases:

1. If n is even, then there are two subcases:

(a) If m is odd, m ∈ �1, n− 3�, let

On = (m+ 1,
n− 1−m

2
,
n− 1−m

2
)

obtained by a 2-cut. It is an option of n and by minimality of n, GOn = G(m+ 1) = m.
(b) If m is even, m ∈ �0, n− 4�, let:

On = (m+ 1, 1,
n−m− 2

2
,
n−m− 2

2
)

obtained by a 3-cut. It is an option of n and by minimality of n, G(On) = G(m+ 1) = m.

2. If n is odd, then there are two subcases:
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(a) If m is odd, m ∈ �1, n− 4�, let:

On = (m+ 1, 1,
n−m− 2

2
,
n−m− 2

2
)

obtained by a 3-cut. It is an option of n and by minimality of n, G(On) = G(m+ 1) = m.

(b) If m is even, m ∈ �0, n− 3�, let:

On = (m+ 1,
n− 1−m

2
,
n− 1−m

2
)

obtained by a 2-cut. It is an option of n and by minimality of n, G(On) = G(m+ 1) = m.

Thus, for both cases, G(n) ≥ mex({0, ...,n− 2}) = n− 1, a contradiction.
Consequently, there is no counterexample to the sequence (0)1 (+1).

Let us now make things a little harder. Consider now sequences where players can cut 1, 3 times and also
an even number of times. Their Grundy sequences are just harder to describe, but they still have a nice
behavior.

Theorem 4.12 Let k ≥ 1 and L = {1, 3, 2k} be a sequence of cut numbers. The Grundy sequence of
PB(L) is (0,1)k (+2).

Proof. We want to prove that for all n = 2ka + b + 1 ≥ 1, G(n) = 2a+ (b mod 2). We proceed by
contradiction.
Let n = 2ka+ b+ 1, 0 ≤ b < 2k, be the smallest positive integer such that G(n) �= 2a+ (b mod 2). Note
that n ≥ 3 since we have G(1) = 0 and G(2) = 1.

Assume first that G(n) > 2a+ (b mod 2).
Then n has an option On = (2ka0 + b0 + 1, . . . , 2kam + bm + 1) with m ∈ L such that G(On) =
2a+ (b mod 2).

As On is an option of n with Grundy value 2a+ (b mod 2) and n is minimal, we have, on one hand:

G(On) =

m⊕
i=0

(2ai + (bi mod 2)) = 2

m⊕
i=0

ai +

m⊕
i=0

(bi mod 2) = 2a+ (b mod 2).

The second equality holds since 2 is a power of two and for all i, (bi mod 2) < 2.
On the other hand we have:

n =

m∑
i=0

(2kai + bi + 1) = 2k

m∑
i=0

ai +

m∑
i=0

bi +m+ 1 = 2ka+ b+ 1.

Since a is the quotient of n−1 by 2k, we have that a0+. . .+am ≤ a, and since a0+. . .+am ≥ a0⊕. . .⊕am,
we have a = a0 ⊕ . . .⊕ am = a0 + · · ·+ am.
In particular

∑m
i=0 bi +m+ 1 = b+ 1. Here we have two cases:

1. If m = 2k, then we have b ≥ m = 2k, a contradiction.

2. If m ∈ {1, 3}, then we have:

b mod 2 =

m⊕
i=0

(bi mod 2) =

(
m⊕
i=0

bi

)
mod 2 =

(
m∑
i=0

bi

)
mod 2 =

(
m∑
i=0

bi +m+ 1

)
mod 2 = (b+1) mod 2

a contradiction.
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Thus, there are no options of n with Grundy value 2a+ (b mod 2), which implies G(n) < 2a+ (b mod 2).
We now prove that, from a heap of n counters, we can play to an option of Grundy value g for any g in
�0, 2a+ (b mod 2)− 1�, which will lead to a contradiction.
There are two cases:

1. If b is even, then 2a+ (b mod 2) = 2a and from a heap of size n we can play to:

(a) for all x ∈ �0, a− 1�, the options:

On = (2kx+ b+ 1, a− x, . . . , a− x)

obtained by a 2k-cut. By minimality of n, G(On) = 2x. By doing this, we obtain the even
Grundy values in �0, 2a− 2�.

(b) if b = 0, for all x ∈ �1, a− 1�, the options:

On = (2kx+ b, 1, (a− x)k, (a− x)k)

obtained by a 3-cut. By minimality of n, G(On) = 2(x− 1) + (2k− 1 mod 2) = 2x− 1 since
x ≥ 1. By doing this, we obtain the odd Grundy values in �1, 2a − 3� and the value 2a − 1 is
obtained by the option On = (2ka, 1).

(c) if b > 0, for all x ∈ �0, a− 1�, the options:

On = (2kx+ b, 1, (a− x)k, (a− x)k)

obtained by a 3-cut. By minimality of n, G(On) = 2x+ (b− 1 mod 2) = 2x+ 1 since b is even.
By doing this, we obtain the odd Grundy values in �1, 2a− 1�.

Putting the three previous cases altogether, this implies G(n) ≥ 2a, being a contradiction.

2. If b is odd, then 2a+ (b mod 2) = 2a+ 1, and from a heap of size n we can play to:

(a) for all x ∈ �0, a− 1�, the options:

On = (2kx+ b+ 1, a− x, . . . , a− x)

obtained by a 2k-cut. By minimality of n, G(On) = 2x+ 1. By doing this, we obtain the odd
Grundy values in �1, 2a− 1�.

(b) for all x ∈ �0, a− 1�, the options:

On = (2kx+ b, 1, (a− x)k, (a− x)k)

obtained by a 3-cut. By minimality of n, G(On) = 2x. By doing this, we obtain the even Grundy
values in �0, 2a− 2� and the value 2a is obtained by the option On = (2ka+ b, 1).

Altogether, this implies G(n) ≥ 2a+ 1, a contradiction.

Consequently, there is no counterexample to the sequence (0,1)k (+2).

This last case says that if k = 1, then the Grundy sequence of {1, 2, 3} is (0,1)1 (+2) which is exactly
the same sequence as (0) (+1), hence Theorem 4.12 contains the particular case L = {1, 2, 3} but says
nothing about cut lists of the form L = {1, 2, 3, �4, . . . , �k} for k > 3. As well, Theorem 4.12 says nothing
about cut lists of the form {1, 3, 2k, �4, . . . , �k}.
In Table 4.3.2 a summary is presented.
Here lies a global view of different classes of pure breaking games. All games seem, however, to be
arithmetic-periodic or periodic. The remaining cases are not so natural to prove, and as, by computations,
they seem arithmetic-periodic, we were inspired by Theorem 4.8 to look into arithmetic-periodicity tests.
In the next section details of some other families are given and the arithmetic-periodic test is introduced.
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Table 4.3.2: Summary of Grundy sequences of pure breaking Games

cut sequence Grundy sequence reduction
L = {�1, . . . , �k}, �1 > 1 (0)�1 (+1) {�1}
L = {1, �2, . . . , �k}, �i odd (0,1) (+0) {1}
L = {1, 2, 3, �4, . . . , �k} (0) (+1) {1, 2, 3}
L = {1, 3, 2k}, k ≥ 1 (0,1)k (+2) −

4.3.3 Arithmetic-Periodicity test

Consider the games PB({1,4}) and PB({1,6}). The options for a heap of size 17 are shown in Table 4.3.3.
As we can see, it becomes quickly very hard to keep track of all the options. In Tables 4.3.4 and 4.3.5 we
present the first Grundy values for these two games.

Table 4.3.3: Options of a heap of size 17 for the games PB({1,4}) and PB({1,6})

game 17
1-cuts (1, 16), (2, 15), (3, 14), (4, 13), (5, 12), (6, 11), (7, 10), (8, 9)
4-cuts (1,1,1,1,13), (1,1,1,2,12), (1,1,1,3,11), (1,1,1,4,10), (1,1,1,5,9), (1,1,1,6,8), (1,1,1,7,7), (1,1,2,2,11),

(1,1,2,3,10), (1,1,2,4,9), (1,1,2,5,8), (1,1,2,6,7), (1,1,3,3,9), (1,1,3,4,8), (1,1,3,5,7), (1,1,3,6,6), (1,1,4,4,7),
(1,1,4,5,6), (1,1,5,5,5) (1,2,2,2,10), (1,2,2,3,9), (1,2,2,4,8), (1,2,2,5,7), (1,2,2,6,6), (1,2,3,3,8), (1,2,3,4,7),
(1,2,3,5,6), (1,2,4,4,6), (1,2,4,5,5), (1,3,3,3,7), (1,3,3,4,6), (1,3,3,5,5), (1,3,4,4,5), (1,4,4,4,4), (2,2,2,2,9),
(2,2,2,3,8), (2,2,2,4,7), (2,2,2,5,6), (2,2,3,3,7), (2,2,3,4,6), (2,2,3,5,5), (2,2,4,4,5), (2,3,3,3,6), (2,3,3,4,5),
(2,3,4,4,4), (3,3,3,3,5), (3,3,3,4,4)

6-cuts (1,1,1,1,1,1,11), (1,1,1,1,1,2,10), (1,1,1,1,1,3,9), (1,1,1,1,1,4,8), (1,1,1,1,1,5,7), (1,1,1,1,1,6,6),
(1,1,1,1,2,2,9), (1,1,1,1,2,3,8), (1,1,1,1,2,4,7), (1,1,1,1,2,5,6), (1,1,1,1,3,3,7), (1,1,1,1,3,4,6), (1,1,1,1,3,5,5),
(1,1,1,1,4,4,5), (1,1,1,2,2,2,8), (1,1,1,2,2,3,7), (1,1,1,2,2,4,6), (1,1,1,2,2,5,5), (1,1,1,2,3,3,6), (1,1,1,2,3,4,5),
(1,1,1,2,4,4,4), (1,1,1,3,3,3,5), (1,1,1,3,3,4,4), (1,1,2,2,2,2,7), (1,1,2,2,2,3,6), (1,1,2,2,2,4,5), (1,1,2,2,3,3,5),
(1,1,2,2,3,4,4), (1,1,2,3,3,3,4), (1,1,3,3,3,3,3), (1,2,2,2,2,2,6), (1,2,2,2,2,3,5), (1,2,2,2,2,4,4), (1,2,2,2,3,3,4),
(1,2,2,3,3,3,3), (2,2,2,2,2,2,5), (2,2,2,2,2,3,4), (2,2,2,2,3,3,3)

Table 4.3.4: First 72 Grundy values of the game PB({1,4})

b 0 1 2 3 4 5 6 7 8 9 10 11
12× 0 + b 0 1 0 1 2 3 2 3 1 4 5 4
12× 1 + b 3 2 3 2 4 5 4 5 6 7 6 7
12× 2 + b 8 9 8 9 10 11 10 11 9 12 13 12
12× 3 + b 11 10 11 10 12 13 12 13 14 15 14 15
12× 4 + b 16 17 16 17 18 19 18 19 17 20 21 20
12× 5 + b 19 18 19 18 20 21 20 21 22 23 22 23

Table 4.3.5: First 108 Grundy values of the game PB({1,6})

b 0 1 2 3 4 5 6 7 8 9 10 11
12× 0 + b 0 1 0 1 0 1 2 3 2 3 2 3
12× 1 + b 1 4 5 4 5 4 3 2 3 2 3 2
12× 2 + b 4 5 4 5 4 5 6 7 6 7 6 7
12× 3 + b 8 9 8 9 8 9 10 11 10 11 10 11
12× 4 + b 9 12 13 12 13 12 11 10 11 10 11 10
12× 5 + b 12 13 12 13 12 13 14 15 14 15 14 15
12× 6 + b 16 17 16 17 16 17 18 19 18 19 18 19
12× 7 + b 17 20 21 20 21 20 19 18 19 18 19 18
12× 8 + b 20 21 20 21 20 21 22 23 22 23 22 23

These sequences look similar: the first one seems to have a period of 24 and a saltus of 8, and the second
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one seems to have a period of 36 and also a saltus of 8. Moreover, there are some common patterns like the
repetition of (0,1), (2,3), (4,5) and (6,7). Inspired by the octal periodicity test and the similar results
for hexadecimal games, we eased up the case by case study by introducing an arithmetic-periodic test:

Definition 4.13 (Arithmetic-Periodic Test (AP -test).) Let PB(L) be a pure breaking game. We say
that PB(L) satisfies the AP -test if there exist a positive integer p and a power of two s such that:

AP1 for n ≤ 3p, G(n+ p) = G(n) + s,

AP2 Im(G |�1,p�) = �0, s− 1�, and

AP3 for all n ∈ �3p + 1, 4p� and for all g ∈ �0, s− 1�, the heap of size n, Hn has an option On over
(m+ 1) non-empty heaps such that m ≥ 2, m ∈ L and G(On) = g.

The first two conditions seem rather standard, compared to similar results on subtraction games, octal and
hexadecimal games. The third condition, however, is unusual. We will see later that for some particular
pure breaking games, the first two conditions imply the third one. Remark that here the period is a power
of two: this is a strict condition, but, for pure breaking games the saltuses seem always to be powers of two.

Theorem 4.14 Let L = {�1, . . . , �k} be a set of positive integers with �k ≥ 2 and such that PB(L) verifies
the AP -test. Then for all n ≥ 1, G(n+ p) = G(n) + s.

In other words, if a pure breaking game verifies the AP -test, then it is arithmetic-periodic.
To prove this result we need first some lemmas:

Lemma 4.15 Let L = {�1, . . . , �k} be a set of positive integers. In the game PB(L), if there exist two
positive integers p and s, and n0 ≥ p such that for all n ≤ n0, G(n + p) = G(n) + s then for all
1 ≤ n = ap+ 1 + b ≤ n0 + p with 0 ≤ b < p, we have

G(n) = as+ G(1 + b)

Proof. It is clear that for all 1 ≤ n ≤ p, we have n = ap + 1 + b with a = 0 and 0 ≤ b < p, and hence
G(n) = as+ G(1 + b).
Let n = ap + b + 1 ≤ n0 + p be the smallest integer such that G(n) �= as + G(1 + b). From the previous
remark, we know that n > p. The Grundy value of n is:

G(n) = G(n− p) + s = G((a− 1)p+ 1 + b) + s,

remark this equality holds since n ≤ n0 + p.
Since n is minimal and (a− 1)p+ 1+ b < n, we have G((a− 1)p+ 1+ b) = (a− 1)s+ G(1 + b), and thus

G(n) = as+ G(1 + b),

which contradicts our initial hypothesis.

As a direct consequence, if Lemma 4.15 is satisfied with the two additional constraints:

• s is a power of 2

• G(n) < s for all 1 ≤ n ≤ p,

then any disjunctive sum G = (a0p+ 1+ b0, . . . , amp+ 1+ bm) with ajp+ 1+ bj ≤ n0 + p and 0 ≤ bj < p
for all 0 ≤ j ≤ m satisfies

G(G) = (a0 ⊕ · · · ⊕ am)s+ (G(1 + b0)⊕ · · · ⊕ G(1 + bm)) (4.3.1)

The Theorem 4.14 is proved by induction, with a rather technical base case. Part of this base case is
considered in the following lemma. Moreover, this lemma exposes why the condition �k ≥ 2 is necessary.
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Lemma 4.16 Let L = {�1, . . . , �k} be a set of positive integers with �k ≥ 2 such that PB(L) verifies the
test AP .
Then for i = 2, 3, for all n in �ip + 1, (i + 1)p� and for all g in �0, (i − 1)s − 1�, there is an option
On = (h0, . . . , hm),m ∈ L of n such that m ≥ 2 and G(On) = }.

Proof. Let L = {�1, . . . , �k} be such a set.

• We first consider the case i = 3. Let n = 3p+ 1 + b ∈ �3p+ 1, 4p� and g ∈ �0, 2s− 1�.
If g ∈ �0, s− 1� then condition AP3 ensures such an option exists.
Now, for g ∈ �s, 2s−1�, by the conditions AP1 and AP2, Lemma 4.15 can be applied, implying that
G(n) = 3s+G(1+ b) and hence that there is an option On of n such that G(On) = g. If 1 /∈ L, there
is nothing to prove. Consequently, it suffices to prove that if 1 ∈ L, and On = (h0, h1) is an option
of n obtained by a 1-cut, then G(On) /∈ �s, 2s − 1�. This result would indeed guarantee that all the
options of n with Grundy value in �s, 2s− 1� are obtained by m-cuts with m ≥ 2.
Assume 1 ∈ L and let On = (h0, h1) be an option of n obtained by a 1-cut. There exist four unique
non-negative integers a0, b0, a1, b1 such that 0 ≤ b0, b1 < p and On = (a0p+ 1+ b0, a1p+ 1+ b1). As
On is an option of n we have:

(a0 + a1)p+ 1 + 1 + b0 + b1 = n = 3p+ 1 + b

which gives
1 + b0 + b1 − b = (3− a0 − a1)p.

As 0 ≤ a0 + a1 ≤ 3 and b0 + b1 + 1 < 2p, we have in one hand 0 ≤ 1 + b0 + b1 − b < 2p and in the
other hand that 1 + b0 + b1 − b ≡ 0 (mod p). Hence 1 + b0 + b1 − b ∈ {0, p}. If it equals 0 then
a0 + a1 = 3, otherwise a0 + a1 = 2. Without loss of generality the possible values for a0, a1 and
a0 ⊕ a1 are summarized in the following table:

a0 a1 a0 ⊕ a1

0
2 2
3 3

1
1 0
2 3

In particular, we remark that a0⊕ a1 �= 1. And, by Equation (4.3.1) we have: G(On) = (a0 ⊕ a1)s+
G(1 + b0)⊕ G(1 + b1) /∈ �s, 2s− 1� since s is a power of two and G(1 + b0),G(1 + b1) < s.

• We now consider the case i = 2. Let n ∈ �2p+ 1, 3p� and g ∈ �0, s− 1�.
Let n′ = n+ p ∈ �3p+ 1, 4p� and g′ = g + s ∈ �s, 2s− 1�.
By the first part of the proof, we know that there is an option On′ = (a0,n′p+ 1+ b0,n′ , . . . , am,n′p+
1+bm,n′) of n′ such that m ≥ 2 and G(On′) = g′. Let N = (a0,n′ ⊕· · ·⊕am,n′), S = a0,n′ + · · ·+am,n′

and R = G(1 + b0,n′) ⊕ · · · ⊕ G(1 + bm,n′). Remark that N = 1 and G(On′) = Ns+R since we can
apply Equation (4.3.1) to On′ and g′ ∈ �s, 2s− 1�. We define the following m-cut option On of n by:

h0 = 1 + b0,n′

hj = 1
2(S − 1)p+ 1 + bj,n′ for j = 1, 2

hj = 1 + bj,n′ for 3 ≤ j ≤ m

Remark that S − 1 = S −N which is even and non-negative.
Note that On is indeed an option of n since we have that h0+ · · ·+hm = (S− 1)p+(1+ b0,n′ + · · ·+
1 + bm,n′) = n′ − p = n. By Equation (4.3.1), we have G(On) = R = g′ − s =m athbfg. Hence, On

is indeed an option of n with m ≥ 2 and G(On) = g.
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We can now prove Theorem 4.14, meaning that if a pure breaking game verifies the AP -test, then its
Grundy sequence is arithmetic periodic.
Proof of Theorem 4.14. Let us begin with some notations.
For all 1 ≤ n ≤ p we denote rn = G(n); thus for 0 ≤ a < 4 and n = ap+ b+1 ∈ �ap+1, (a+1)p�, and by
Lemma 4.15 we have G(n) = G(ap+ b+1) = as+ rb+1. Remark that for a family of non-negative integers
a0, . . . , am, if S = a0 + · · · + am and N = a0 ⊕ · · · ⊕ am then S ≥ N and S ≡ N mod 2. In particular,
S −N is an even non-negative integer.

We will now prove by induction that for n = ap+ 1 + b ≥ 1, the following two properties hold:

(A) G(n) = as+ r1+b and

(B) for all g ∈ �0, (a−1)s−1�, there is an option On = (h0, . . . , hm) of n such that m ≥ 2 and G(On) = g.

Let n = ap + 1 + b be the smallest positive integer such that either (A) or (B) is not verified. By
Lemma 4.15, we know that (A) holds for all n ≤ 4p. Moreover, by Lemma 4.16, we know that (B) holds
for a = 2, 3, and it is trivially true for a ≤ 1. Thus n > 4p.
Let n = ap+ 1 + b > 4p. We consider two cases:

1. Assume (A) is not verified. Thus either G(n) < as+ r1+b or G(n) > as+ r1+b.

(a) if G(n) < as+ r1+b: by minimality of n, the heap of size n′ = n − 2p = a′p + 1 + b′ verifies
conditions (A) and (B). Let On′ = (a0,n′p + 1 + b0,n′ , . . . , am,n′p + 1 + bm,n′) be an option
of n′ with Grundy value g, for some g < (a′ − 1)s and m ≥ 2. Let N = a0,n′ ⊕ · · · ⊕ am,n′ ,
S = a0,n′ + · · ·+ am,n′ and R = G(1+ b0,n′)⊕ · · ·⊕G(1+ bm,n′). Let On be the following option:

h0 = Np+ 1 + b0,n′

hj = 1
2(S −N + 2)p+ 1 + bj,n′ for j = 1, 2

hj = 1 + bm,n′ for j > 2

This is an option of n since h0 + · · ·+ hm = (2+S)p+1+ b0,n′ + · · ·+1+ bm,n′ and its Grundy
value is G(On) = Ns+R = g by Equation (4.3.1).
Hence, the heap of size n has options to all Grundy values in �0, (a′ − 1)s − 1�, i.e. G(n) ≥
(a′ − 1)s.
We now change On into O′

n as follows:

h′0 = (N + 2)p+ 1 + b0,n′

h′j = 1
2(S −N)p+ 1 + bj,n′ for j = 1, 2

h′j = 1 + bj,n′ for j > 2

This option is an option of n since h′0 + · · ·+ h′m = (2 + S)p+ 1+ b0,n′ + · · ·+ 1+ bm,n′ and its
Grundy value is G(O′

n) = (N+ 2)s+R = g + 2s.
Hence, the heap of size n has options of Grundy values in �2s, (a− 1)s− 1�. If a > 4 then with
the previous remark, the heap of size n has options to all Grundy values in �0, (a− 1)s− 1�.
Otherwise, if a = 4, then we take an option On′ = (a0,n′p+ 1 + b0,n′ , . . . , am,n′p+ 1 + bm,n′) of
n′ = 3p+1+b = n−p with Grundy value g in �0, s−1� and m ≥ 2, which exists by Lemma 4.16.
We note S = a0,n′ + · · ·+am,n′ , N = a0,n′ ⊕· · ·⊕am,n′ and R = G(1+ b0,n′)⊕· · ·⊕G(1+ bm,n′).
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We transform it into an option On = (h0, . . . , hm) by:

h0 = (N + 1)p+ 1 + b0,n′

hj = 1
2(S −N)p+ 1 + bj,n′ for j = 1, 2

hj = 1 + bj,n′ for 3 ≤ j ≤ m

it is an option of n since h0 + · · ·+ hm = (S + 1)p+ 1+ b0,n′ + · · ·+ 1+ bm,n′ = n′ + p = n and
its Grundy value is G(On) = G(On′) + s = g + s.
Hence, even for a = 4, the heap of size n has options obtained by m-cuts, m ≥ 2, to all Grundy
values in �0, (a− 1)s�, hence the heap of size n verifies (B).

Now, let n′′ = n− (a− 1)p = p+ 1 + b and g ∈ �0, s+ r1+b − 1�.
Let On′′ = (a0,n′′p+1+ b0,n′′ , . . . , am,n′′p+1+ bm,n′′) be an option of n′′ such that G(On′′) = g.
It exists since the heap of size n′′ verifies (B) by minimality of n. Please remark that as n′′ ≤ 2p,
if there is a j such that aj,n′′ �= 0, then it is unique, without loss of generality, assume that
a0,n′′ ∈ {0, 1} and for j > 0, aj,n′′ = 0. Hence if R = G(1 + b0,n′′) ⊕ · · · ⊕ G(1 + bm,n′′) then
G(On′′) = a0,n′′s+R by Equation (4.3.1).
Let On be the following option:

h0 = (a0,n′′ + a− 1)p+ 1 + b0,n′′

hj = 1 + bj,n′′ for j > 0

This is an option of n since h0+ · · ·+hm = (a0,n′′+a−1)p+1+b0,n′′+1+b1,n′′+ · · ·+1+bm,n′′ =
n′′ + (a − 1)p = n. Its Grundy value is G(On) = (a0,n′′ + a− 1)s+R = g + (a− 1)s. Hence,
the heap of size n has options to all Grundy values in �(a−1)s, as+r1+b−1�. With the previous
remarks, the heap of size n has options to all Grundy values in �0, as+ r1+b − 1�.
Altogether, this means G(n) ≥ as+ r1+b, a contradiction.

(b) Now, if G(n) > as+ r1+b:
Let On = (a0p+ 1+ b0, . . . , amp+ 1+ bm) be an option of n with Grundy value as+ r1+b. Let
N = a0 ⊕ · · · ⊕ am, S = a0 + · · · + am and R = G(1 + b0) ⊕ · · · ⊕ G(1 + bm). Remark that by
Equation (4.3.1) a0 ⊕ · · · ⊕ am = a and as S ≥ N , S = a. Let On′ be the following option of
n′ = n− 2p:

h′0 = (a− 2)p+ 1 + b0

h′j = 1 + bj for j > 1

This is an option of n′ since h′0 + · · ·+ h′m = (a− 2)p+ 1 + b = n− 2p and its Grundy value is
G(On′) = (a− 2)s+R = as+ r1+b − 2s = G(n′), a contradiction.

Hence, the heap of size n verifies (A).

2. Assume (B) is not verified:
By minimality of n, the heap of size n′ = n− 2p = a′p+ 1 + b′ verifies conditions (A) and (B). Let
On′ = (h0,n′ , . . . , hm,n′) = (a0,n′p+ 1 + b0,n′ , . . . , am,n′p+ 1 + bm,n′) be an option of n′ with Grundy
value g, for some g < (a′ − 1)s and with m ≥ 2. Let N = a0,n′ ⊕ · · · ⊕ am,n′ , S = a0,n′ + · · ·+ am,n′

and R = G1 + b0,n′ ⊕ · · · ⊕ G1 + bm,n′ . Let On be the following option:

h0 = Np+ 1 + b0,n′

hj = 1
2(S −N + 2) + 1 + bj,n′ for j = 1, 2

hj = 1 + bm,n′ for j > 2
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This is an option of n since h0 + · · · + hm = 2p + h0,n′ + · · · + hm,n′ and its Grundy value is
G(On) = Ns+R = g.
Hence, the heap of size n has options obtained by m-cuts with m ≥ 2 to all Grundy values in
�0, (a′ − 1)s− 1�.
We now change On into O′

n as follows:

h′0 = (N + 2)p+ 1 + b0,n′

h′j = 1
2(S −N) + 1 + bj,n′ for j = 1, 2

h′j = 1 + bj,n′ for j > 2

This option is an option of n since h′0 + · · ·+ h′m = 2p+ h0,n′ + · · ·+ hm,n′ and its Grundy value is
G(O′

n) = (N+ 2)s+R = g + 2s.
Hence, the heap of size n has options obtained by m-cuts, m ≥ 2 to all Grundy values in �2s, (a −
1)s− 1�. With the previous remark, this is true for all Grundy values in �0, (a− 1)s− 1�. Hence the
heap of size n verifies (B), a contradiction.

This result is strong as it ensures some sequences are arithmetic-periodic as long as they seem so for 4
periods. The third condition of the theorem seems complex to verify (as it needs to keep track of all
options within the range of Grundy values, instead of only looking at the Grundy values). In fact, in some
specific cases this last condition is unnecessary.

Theorem 4.17 Let L = {�1, . . . , �k} be a sequence of positive integers, k > 1. If PB(L) verifies the
conditions AP1 and AP2 if the AP -test and there are m1,m2 ∈ L of different parities such that 2 ≤
m1,m2 ≤ 2p+ 1, then PB(L) verifies the AP -test.

Proof. It suffices to prove that L verifies the condition AP3 of the AP -test. Without loss of generality,
we can consider that m1 is even and m2 is odd. We prove that for all n ∈ �3p+ 1, 4p� and g ∈ �0, s− 1�
there is an option On = (h0, . . . , hm) of n such that m ≥ 2 and G(On) = g.
Let n = 3p+ 1 + b with 0 ≤ b < p and g ∈ �0, s− 1�.
By AP2, there is c ∈ �0, p− 1� such that G(1 + c) = g. Let n′ = n− 1− c = 3p+ b− c. We consider two
cases:

• if n′ is even: let (q1, r1) be the unique couple such that 0 ≤ r1 < m1 and n′ = m1q1 + r1. In
particular, r1 is even, since m1 and n′ are also even. Moreover q1 > 0 since m1 ≤ 2p + 1 ≤ n′. We
define an option On of n by:

h0 = 1 + c

hj = q1 +
1
2r1 for j = 1, 2

hj = q1 for 3 ≤ j ≤ m1

It is indeed an option of n since h0 + · · · + hm1
= 1 + c + m1q1 + r1 = 1 + c + n′ = n and in the

expression G(h0)⊕ · · · ⊕ G(hm), the terms G(h1) and G(h3) appear an even number of times, which
gives directly G(On) = G(1 + c) = g.

• if n′ is odd: let (q2, r2) be the unique couple such that 0 ≤ r2 < m2, n′ = m2q2 + r2. Please remark
that q2 > 0 since m2 ≤ 2p + 1 ≤ n′. As n′ and m2 are odd, either q2 is even and r2 is odd or vice
versa.
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– if q2 is even and r2 is odd, we define the option On by:

h0 = 1 + c

hj = 3
2q2 +

1
2(r2 − 1) for j = 1, 2

hj = 1 for j = 3

hj = q2 for 4 ≤ j ≤ m2

If m2 = 3 then we only take the four first heaps.
The option On is an option of n since h0+ · · ·+hm2

= 1+ c+3q2+ r2−1+1+(m2−1−2)q2 =
1+ c+m2q2 + r2 = 1+ c+ n′ = n. In the expression G(h0)⊕ · · · ⊕ G(hm2

) the terms G(h1) and
G(h4) appear an even number of times and G(h3) = 0, hence G(On) = 1+ c = g.

– if q2 is odd and r2 is even, we define the option On by:

h0 = 1 + c

hj = 1
2(3q2 − 1) + 1

2r2 for j = 1, 2

hj = 1 for j = 3

hj = q2 for 4 ≤ j ≤ m2

it is an option of n since h0+· · ·+hm2
= 1+c+3q2−1+r2+1+(m2−3)q2 = 1+c+m2q2+r2 = n.

In the expression G(h0) ⊕ · · · ⊕ G(hm2
) the terms G(h1) and G(h4) appear an even number of

times and G(h3) = 0, hence G(On) = g.

In every case, there is an option On of n obtained by an m-cut, m ≥ 2, such that G(On) = g, i.e., PB(L)
verifies the condition AP3, which means PB(L) verifies the test AP .

This last result is, for instance, useful for the list (1, 2k), k ≥ 3.

Theorem 4.18 Let L = {1, �}, � > 2, even. If PB(L) verifies the conditions AP1 and AP2 of the AP -test
for some p with � ≤ p and there are x1, x2 ≤ p/2 such that G(x1) = G(x2) = 1 and x1 is odd and x2 is
even, then PB(L) verifies the AP -test.

Proof. We prove that the game PB(L) verifies the condition AP3, i.e., that for n ∈ �3p+ 1, 4p� and for
g ∈ �0, s − 1�, there exists an option On of n such that G(On) = g. Since the condition AP2 is verified,
this can be done by proving that for all n ∈ �3p + 1, 4p� and for all k ∈ �1, p�, there exists an option On

of n such that G(On) = G(k).
Let n ∈ �3p+ 1, 4p� and k ∈ �1, p�. The proof is divided in four cases depending on the parities of k and
n:

1. if n = 2i is even:

(a) if k = 2j is even, then let On = (h0, . . . , h�) be the following option, obtained by an �-cut:

h0 = 2j

hj = i− j + 1− 1
2� for j = 1, 2

hj = 1 for 3 ≤ j ≤ �

This option exists since i ≥ (3p + 1)/2, j ≤ p/2 and � ≤ p, hence i − j + 1 − �/2 > p/2 > 0.
Moreover it is an option of n since 2j + 2i− 2j + 2− �+ 1× (�− 2) = n and its Grundy value
is G(On) = G(k) since except 2j, all the other values in On appear an even number of times.
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(b) if k = 2j + 1 is odd, then let On be the following option, obtained by an �-cut:

h0 = 2j + 1

hj = xj for j = 1, 2

hj = 1
2(2i− 2j − �− x1 − x2 + 3) for j = 3, 4

hj = 1 for 5 ≤ j ≤ �

This option exists since i ≥ (3p+1)/2; j, x1, x2 ≤ p/2 and � ≤ p, hence 2i−2j−�−x1−x2+3 ≥ 4;
and 2i− 2j − �− x1 − x2 + 3 is even since x1 + x2 is odd.
Moreover, it is an option of n since 2j+1+x1+x2+ �− 4+ (2i− 2j− �−x1−x2+3) = 2i = n
and its Grundy value is G(On) = G(k)⊕G(x1)⊕G(x2) = G(k)⊕ 1⊕ 1 since the other values in
On each appear an even number of times.

2. if n = 2i+ 1 is odd:

(a) if k = 2j is even, then let On be the following option, obtained by an �-cut:

h0 = 2j

hj = xj for j = 1, 2

hj = 1
2(2i− 2j − �− x1 − x2 + 5) for j = 3, 4

hj = 1 for 5 ≤ j ≤ �

This option exists since i ≥ (3p+1)/2; j, x1, x2 ≤ p/2 and � ≤ p, hence 2i−2j−�−x1−x2+5 ≥ 6;
and 2i− 2j − �− x1 − x2 + 5 is even since x1 + x2 is odd.
Moreover, it is an option of n since 2j+x1+x2+ �− 4+ (2i− 2j− �−x1−x2+5) = 2i+1 = n
and its Grundy value is G(On) = G(k)⊕G(x1)⊕G(x2) = G(k) since the other values in On each
appear an even number of times.

(b) if k = 2j + 1 is odd, then let On be the following option, obtained by an �-cut

h0 = 2j + 1

hj = i− j + 1− 1
2� for j = 1, 2

hj = 1 for 3 ≤ j ≤ �

This option exists since i ≥ (3p+ 1)/2 and 2j + 1, � ≤ p, hence i− j + 1− �/2 > p/2 > 0.
Moreover it is an option of n since 2j+1+1× (�− 2)+ 2(i− j+1)− � = 2i+1 and its Grundy
value is G(On) = G(2j + 1) = G(k) since all the other values in On appear an even number of
times.

Hence, for all k ∈ �1, p�, there exists an option of n with the same Grundy value. This implies that the
condition AP3 is verified, and thus that the AP -test is verified for PB(L).

Moreover, we can go further than that for these games L = {1, �}, � > 2, � even.

Corollary 4.19 Let L = {1, �} with � > 2, even. If PB(L) verifies the conditions AP1 and AP2 of the
AP -test for some p ≥ 4�+ 3 then PB(L) verifies the condition AP3 of the AP -test.
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Proof. By Theorem 4.18, we only need to prove that there exists x1, x2 < p/2 such that G(x1) = G(x2) = 1
and x1 is odd and x2 is even.
Remark that G(2) = 1 since the only option is (1, 1) which has Grundy value 0. Hence we can assume
x2 = 2.
We claim that we can choose x1 = 2�+1. In order to do that, we prove that the beginning of the Grundy
sequence of the game PB(L) is (0,1)�/2 and the following � values are different from 1 and 0, and the
2�+ 1-th value is 1. Note that we trivially have G(1) = 0 and G(2) = 1.
Let k ≤ � be the smallest integer such that G(k) �= ((k mod 2) + 1 mod 2). The only possible options
for k are obtained by 1-cuts. If k is odd, then all the options are of the form (i0, i1) with i0 and i1 of
different parities, which have Grundy value 1 by minimality of k, a contradiction. If k is even, then all the
options are of the form (i0, i1) with i0 and i1 of same parities, which have Grundy value 0 by minimality,
a contradiction.
Now, let k ∈ �� + 1, 2��. If k is odd, then k admits the 1-cut option (k − �, �) of Grundy value 1 since �
is even, and the �-cut option (k − �, 1, . . . , 1) of Grundy value 0. If k is even, it admits the �-cut option
(k− �, 1, . . . , 1) of Grundy value 1, and the 1-cut option (k/2, k/2) of Grundy value 0. It thus implies that
G(k) > 1.

Finally, we prove G(2�+ 1) = 1. We now set k = 2�+ 1.
From k, one can reach the value 0 by the option (1, 2, . . . , 2) obtained by an �-cut. All the 1-cuts (i0, i1)
are such that without loss of generality i0 > � and i1 ≤ �, so G((i0, i1)) �= 1 since G(i1) < 2 and G(i2) ≥ 2.
Assume there is an �-cut Ok = (i0, . . . , i�) such that G(Ok) = 1. If there is some j such that ij > �, then
it is unique and G(Ok) ≥ 2, hence, there is none: for all j, ij ≤ �. We necessarily have an odd number of
ij ’s, say i0, . . . , ie with e even, such that G(ij) = 1 for j ∈ �0, e�. And for j > e, G(ij) = 0. Hence there is
an even number of odd ij ’s and an odd number of even ones, this gives directly that 2�+ 1 is even, which
is a contradiction.
Therefore, G(2�+ 1) = 1.
Moreover, 2� + 1 < p/2 since 4� + 3 ≤ p, hence it suffices to take x1 = 2� + 1 and x2 = 2 to meet the
conditions of Theorem 4.18 and thus the condition AP3 of the AP -test.

Remark that the games PB({1,4}) and PB({1,6}) are indeed arithmetic-periodic of period 24 and 36
respectively and of saltus 8. Moreover, it seems these games obey a certain rule:

Conjecture 4.20 Given � ≥ 2, the game PB(1,2�) is arithmetic-periodic of length 12� and saltus 8.

However, when we add other values to these cut sequences, the Grundy sequence changes and seems easier.

Conjecture 4.21 Let K be a finite set of positive integers such that 2 /∈ K, |K| ≥ 2 and K contains at
least one even value. The game PB(L) with L = {1} ∪ K is arithmetic-periodic with period (0,1)� and
saltus 2, where 2� is the smallest even number of K.

The case L = {1, 2} remains the hardest to understand. If Table 4.3.6 suggest an arithmetic-periodic
behavior when |L| ≥ 3, we did not detect any regularity in the period. For example, when |L| = 3, the
games {1, 2, 4} and {1, 2, 6} have identical Grundy sequence, whereas {1, 2, 5} and {1, 2, 7} are singular.
Moreover, the game {1, 2, 8} presents a preperiod.

4.3.4 Conclusion and perspectives

We have seen that pure breaking games tend to be at least ultimately arithmetic-periodic, the only case
that has a non-empty preperiod being the cut sequences {1, 2, 8} and {1, 2, 7, 8}. The only case that is
not clearly an arithmetic-periodic sequence seems to be for {1, 2} that shows a lot of regularity, except for
some values that dive away from the main behavior. Computations carried out so far give not clue about
a regular behavior. It would seem that this is the only sequence acting strangely.

Conjecture 4.22 Every game PB(L) with L �= {1, 2} has a Grundy sequence either ultimately periodic
or ultimately arithmetic-periodic.
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Table 4.3.6: Some tested pure breaking games by using the AP -test and Theorem 4.14

Cut sequence Grundy sequence
{1, 4} ((0,1)2(2,3)2,1,4,5,4, (3,2)2(4,5)2(6,7)2) (+8)
{1, 6} ((0,1)3(2,3)3,1,4, (5,4)3, (3,2)3(4,5)3(6,7)3) (+8)
{1, 8} ((0,1)4(2,3)4,1,4, (5,4)4, (3,2)4(4,5)4(6,7)4) (+8)
{1, 10} ((0,1)5(2,3)5,1,4, (5,4)5, (3,2)5(4,5)5(6,7)5) (+8)

{1, 3} ∪K
(0,1)2 (+2)with K ⊂ {3, 5, 6, 7, 8}, K �= ∅

{1, 6} ∪K
(0,1)3 (+2)with K ⊂ {3, 5, 7, 8}, K �= ∅

{1, 8} ∪K
(0,1)4 (+2)with K ⊂ {3, 5, 7}, K �= ∅

{1, 2, 4} ∪K, {1, 2, 6} ∪K ′
(0,1,2,3,1,54,3,2,4,5,6,7) (+8)with K ⊂ {6, 7, 8}, K ′ ∈ {7, 8}

{1, 2, 5} ∪K
(0,1,2,3,1,4,3,6,4,5,6,7) (+8)with K ⊂ {4, 6, 7, 8}

{1, 2, 7} (0,1,2,3,1,4,3,2,4,5,6,7,8,9,7,6,9,8,11,10,12,13,10,11,13,12,15,14) (+16)
{1, 2, 8}, {1, 2, 7, 8} (0,1,2,3,1,4) (3,2,4,5,6,7,8,9,7,11,9,8) (+8)

We present now a table summarizing the main results about pure breaking games along with two graphics
showing the behavior of the {1, 2}’s Grundy sequence. Even though this conjecture seems to treat all the

Table 4.3.7: The pure breaking games.

Cut sequence Grundy sequence

Solved

{�1, . . . , �k}, �1 > 1 (0)�1 (+1)
{1, �2, . . . , �k}, �i odd (0,1) (+0)
{1, 2, 3, �4, . . . , �k} (0)1(+1)
{1, 3, 2k}, k ≥ 1 (0,1)�1 (+2)

Requires AP1 and AP2
{1, 2�, 2�′ + 1, �1, . . . , �k} −

{1, 2�}, � ≥ 2 −
Requires also AP3 {1, �1, . . . , �k}, �i even, k ≥ 1 −

Figure 4.3.2: The Grundy sequence of PB({1,2}) for n ≤ 100 and n ≤ 4000
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cases, there are still some relevant questions, especially when we look at the test:

Open question 4.23 Do the conditions AP1 and AP2 of the AP -test immply the condition AP3 for any
pure breaking game ?

or the game PB({1,2}):

Open question 4.24 What is the behavior of the Grundy sequence of PB({1,2})?
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In Figure 4.3.2 we see a kind of regular behavior where only few values are left apart. Remark that this
sequence does not seem saap-regular as the left-apart values are not equal. As well the ruler -regularity
does not seem to hold since the frequence of the left-apart values does not seem regular. This behavior
looks like the one of the hexadecimal game 0.B33B, for which no regularity has been found. The first
3000 Grundy numbers are shown in Figure 4.3.3.
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Figure 4.3.3: First 3000 Grundy numbers of the hexadecimal game 0.B33B
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Chapter 5

Conclusion

I am my own man, I can wear my
pants backwards.

Sam - Atypical

Along these lines we saw different combinatorial problems that bring into play two parties.

First, in Chapter 2, identifying codes on circulant graphs were studied. This work was in collaboration
with Ville Junnila and Tero Laihonen. Three main locating codes were presented: the locating-dominating,
the identifying and the self-identifying codes. These codes counteract faulty vertices and are more or less
suitable to identify either a faulty vertex or multiple ones. Moreover, self-identifying codes allow a quick
identification of the faulty vertex. The study on circulant graphs was helped by the known optimal codes
on infinite grids (the square, the king and the triangular): circulant graphs can be embedded into very
particular grids (Cn(1, d) into the square one, Cn(1, d, d+1) into the triangular one and Cn(1, d−1, d, d+1)
into the king one). Once the best bounds were deduced from the grids, circulant graphs with these optimal
bounds were given (for most of the cases) or sequences of circulant graphs coupled with locating codes
approximating these bounds were given. All in all, one problem still open is for the identifying codes in
the circulant graphs Cn(1, d− 1, d, d+ 1): is the optimal bound 2/9 reached for some values of n and d?
or is it impossible to obtain?

Second, the marking game was studied: Alice faces Bob, an uncollaborative partner. In the first place
the graph operators were consired for the vertex game and in the second place the edge game was studied
over a new, yet global, edge-partition of graphs.
In Section 3.2 my work with Paul Dorbec, Éric Sopena and Elżbieta Sidorowicz was displayed. We bounded
above and below the game coloring number of f(G) as a function of the game coloring number of G where
f was either the deletion of a vertex, and edge or the contraction of an edge. As well, we did the same
for union of graphs and the cartesian product of a graph G and a clique. These bounds were shown to be
optimal thanks to the very flexible sunflower class of graphs. It could be interesting to study, using these
bounds, families of graphs obtained by these operators, for instance hamming graphs.
In Section 3.3 my work with Clément Charpentier and Brice Effantin was explained. We defined a new
edge-wise decomposition for graphs: the F+-decomposition, which generalizes the (a, d)- and F (a, d)-
decompositions. As well, we define a new activation strategy for the edge-marking game that uses the
F+ graphs and gives better bounds for specific decompositions. In particular better bounds for the edge
coloring index of planar graphs and (a, d)- and F (a, d)-decomposable graphs. Our results are limited by
the difficulty of finding good F+-decompositions.
In global, there is a lot of work to do for the marking game, for vertices or edges, the results are very
specific and a lot of open questions remain open.

Third, in Chapter 4, pure breaking games were shown. Alice still faces Bob, but here the main problem
is to find the winning moves. This work was done with Éric Duchêne, Antoine Dailly and Urban Larsson.
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First of all, taking games were presented: these games present very regular Grundy sequences and a test
to compute them which depends only on the parameters of the game. As well, some taking and break-
ing games have regular sequences, but the more we breake the less the regularity: between octal games
(breaking heaps once) and hexadecimal games (breaking heaps twice) the sequences go from ultimately
periodic (conjectured) to sapp-regular or even ruler-regular. . . , in some cases no regularity is found. We
focused on pure breaking games to try to understand this gap between pure taking and taking and breaking
games. Our study showed that pure breaking games tend to have regular sequences: most of them seem
to be arithmetic-periodic. We also created a test to compute the sequence with the first Grundy values.
Even if all sequences seemed to be regular, our computations were limited and a lot of sequences, that we
conjectured to be regular, have still unconfirmed behaviors. Moreover, the behavior of the sequence {1, 2}
remains a mistery.

All in all, my thesis focused on bilateral problems, where I had to prevent processors from faults, to play
against an uncollaborative partner, or just try to find the best way to play against another clever player.
In all the cases the main problem is to answer the optimal way: the less captors, less computations, the
best decompositions of the graphs or the quicker way to determine regularity. Optimisation remains a
main issue in the global subject of combinatorics and I had the chance to explore three problems that use
different tools and have separate purposes.



Appendix A

Complete proof of Theorem 2.19

Here we prove Theorem 2.18 by steps: first we give a general upper bound for ID-codes in Cn(1, 3), then
we refine these bounds with two lemmas and we conclude with the exact values for all n ≥ 11.

Theorem A.1 Let n be an integer such that n ≥ 11. If n ≡ 2, 5, 8 (mod 11), then we have �4n/11� ≤
γID(Cn(1, 3)) ≤ �4n/11�+ 1, and otherwise γID(Cn(1, 3)) = �4n/11�.

Proof. Let n, q and r be integers such that n = 11q + r, q ≥ 0 and 0 ≤ r < 11. Recall first that any
identifying code in Cn(1, 3) has at least �4n/11� codewords by [37]. For the constructions, we first define
a code

Cq = {11i+ j | 0 ≤ i ≤ q − 1 and j ∈ {0, 1, 4, 5}}.
Let then A be the following set of vertices: A = {3, 4, . . . , 11q − 4}. In Table A.0.1, we have listed the
identifying sets ICq

(u) and their reductions modulo 11 for all u ∈ A depending on the remainder when u
is divided by 11. Comparing the identifying sets ICq

(u) (mod 11), we immediately observe that ICq
(u) �=

ICq
(v) for all u, v ∈ A and u �≡ v (mod 11). Moreover, if u ≡ v (mod 11) and u �= v, then ICq

(u) �= ICq
(v)

as N [u] ∩ N [v] = ∅. This implies that Cq is an identifying set in C11q(1, 3) since it is straightforward to
verify that ICq

(u) are also non-empty and unique for all u ∈ {0, 1, 2, 11q−3, 11q−2, 11q−1}. Similarly, it
can be shown that the codes given in Table A.0.2 are identifying in Cn(1, 3). Observe that the cardinalities
of the identifying codes are also given in the table. Therefore, as the cardinalities meet the ones given in
the claim, the proof is concluded.

The general constructions given in the previous theorem can be improved for certain lengths n. These
smaller identifying codes are given in Table A.0.3. It is straightforward to verify that these codes are
indeed identifying. Observe also that the codes are optimal, i.e., attain the lower bound �4n/11�.

u ∈ A (mod 11) ICq (u) ICq (u) (mod 11)
0 {u, u+ 1} {0, 1}
1 {u− 1, u, u+ 3} {0, 1, 4}
2 {u− 1, u+ 3} {1, 5}
3 {u− 3, u+ 1} {0, 4}
4 {u− 3, u, u+ 1} {1, 4, 5}
5 {u− 1, u} {4, 5}
6 {u− 1} {5}
7 {u− 3} {4}
8 {u− 3, u+ 3} {0, 5}
9 {u+ 3} {1}
10 {u+ 1} {0}

Table A.0.1: Identifying sets ICq (u) and their reductions modulo 11 for all u ∈ A
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n identifying code C |C|
11q Cq 4q = �4n/11�

11q + 1 Cq ∪ {11q} 4q + 1 = �4n/11�
11q + 2 Cq ∪ {11q, 11q + 1} 4q + 2 = �4n/11�+ 1
11q + 3 Cq ∪ {11q, 11q + 1} 4q + 2 = �4n/11�
11q + 4 Cq ∪ {11q, 11q + 1} 4q + 2 = �4n/11�
11q + 5 Cq ∪ {11q, 11q + 1, 11q + 2} 4q + 3 = �4n/11�+ 1
11q + 6 Cq ∪ {11q, 11q + 1, 11q + 2} 4q + 3 = �4n/11�
11q + 7 Cq ∪ {11q, 11q + 1, 11q + 3} 4q + 3 = �4n/11�
11q + 8 Cq ∪ {11q, 11q + 1, 11q + 2, 11q + 3} 4q + 4 = �4n/11�+ 1
11q + 9 Cq ∪ {11q, 11q + 1, 11q + 2, 11q + 3} 4q + 4 = �4n/11�
11q + 10 Cq ∪ {11q, 11q + 1, 11q + 3, 11q + 4} 4q + 4 = �4n/11�

Table A.0.2: Identifying codes in Cn(1, 3) for n = 11q + r and their cardinalities

n identifying code C |C|
13 {0, 1, 4, 7, 8} �4n/11� = 5
16 {0, 1, 4, 7, 10, 11} �4n/11� = 6
24 {0, 1, 2, 6, 9, 10, 15, 16, 19} �4n/11� = 9
27 {0, 1, 2, 6, 9, 12, 13, 18, 19, 22} �4n/11� = 9
35 {0, 1, 6, 9, 10, 15, 16, 19, 24, 25, 26, 30, 34} �4n/11� = 13

Table A.0.3: Identifying codes in Cn(1, 3) for certain lengths n improving the general constructions

In what follows, we concentrate on improving the lower bound of γID(Cn(1, 3)) for n ≡ 2, 5, 8 (mod 11).
For the rest of the section, assume first that C is an identifying code in the circulant graph Cn(1, 3). For
the lower bound on |C|, we introduce a shifting scheme to even out the share among the codewords. The
rules of the shifting scheme are illustrated in Figure A.0.1. In addition to the rules shown in the figure,
we also have rules which are obtained by reflecting the figures over the line passing vertically through the
codeword c. For example, corresponding to Figure A.0.1(1), we also have the symmetrical rules R1.1’ and
R1.2’. In what follows, we describe more carefully how share is shifted by the rules:

• Let c be a codeword such that its surroundings are as in Figure A.0.1(1). In other words, {c−1, c, c+
1} ⊆ C, {c − 4, c − 3, c − 2, c + 2, c + 4} ∩ C = ∅ and at least one of c + 3 and c + 5 is a codeword.
Now 1/12 units of share is shifted from c to c + 1 by the ruleR1.1 and 1/24 units of share to c − 1
by the ruleR1.2. Symmetrically, if c is a codeword such that its surroundings are as Figure A.0.1(1)
when it is reflected over the line passing vertically through c, i.e., we have {c − 1, c, c + 1} ⊆ C,
{c − 2, c − 4, c + 2, c + 3, c + 4} ∩ C = ∅ and at least one of c − 5 and c − 3 is a codeword, then
1/12 units of share is shifted from c to c− 1 by the ruleR1.1’ and 1/24 units of share to c+1 by the
ruleR1.2’.

• If c is a codeword such that its surroundings are as in Figure A.0.1(2), then 3/24 units of share is
shifted to c+ 4 from c by the ruleR2.1 and from c+ 1 by the ruleR2.2. In the symmetrical case, we
have the analogous rulesR2.1’ and R2.2’.

• If c is a codeword such that its surroundings are as in Figure A.0.1(3), then 1/24 units of share is
shifted from c to c+1 by the ruleR3.1, to c+4 by the ruleR3.2 and to c+7 by the ruleR3.3. In the
symmetrical case, we have the analogous rulesR3.1’, R3.2’ and R3.3’.

• If c is a codeword such that its surroundings are as in Figure A.0.1(4), then 3/24 units of share is
shifted to c + 11 from c by the rule4.1, from c + 1 by the ruleR4.2 and from c + 4 by the ruleR4.3.
In the symmetrical case, we have the analogous rulesR4.1’, R4.2’ and R4.3’.

• If c is a codeword such that its surroundings are as in Figure A.0.1(5), then 3/24 units of share is
shifted from c to c+ 3 by the ruleR5. In the symmetrical case, we have the analogous ruleR5’.
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Figure A.0.1: The rules of the shifting scheme illustrated. The black dots represent codewords, the white dots
represent non-codewords, and the grey dots can be either codewords or non-codewords. In the figures(a), (b) and
(e), at least one of the vertices marked with a white square is a codeword. Notice that the edges of the circulant
graph are omitted in the figure.

• If c is a codeword such that its surroundings are as in Figure A.0.1(6), then 3/24 units of share is
shifted from c to c+ 1 by the ruleR6. In the symmetrical case, we have the analogous ruleR6’.

• If c is a codeword such that its surroundings are as in Figure A.0.1(7), then 1/12 units of share is
shifted from c to c+ 1 by the ruleR7. In the symmetrical case, we have the analogous ruleR7’.

The modified share of a codeword c ∈ C, which is obtained after the shifting scheme has been applied, is
denoted by ss(c). The usage of the shifting scheme is illustrated in the following example.
Let u be a vertex in Cn(1, 3). We say that the consecutive vertices u, u + 1, . . . , u + 8 form a pattern P
(resp. P ′) if {u+2, u+3} ⊆ C and {u, u+1, u+4, u+5, u+6, u+7, u+8}∩C = ∅ (resp. {u+5, u+6} ⊆ C
and {u, u + 1, u + 2, u + 3, u + 4, u + 7, u + 8} ∩ C = ∅). Furthermore, we say that a codeword c ∈ Zn

belongs to a pattern P (resp. P ′) if c is one of the codewords u+2 or u+3 (resp. u+5 or u+6) for some
pattern P (resp. P ′). Observe that all the codewords in the identifying code Cq belong to some pattern
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P or P ′. In what follows, we first show that after the shifting scheme has been applied the averaged share
ss(c) ≤ 65/24 = 11/4− 1/24 for any c ∈ C unless the codeword c belongs to some pattern P or P ′ when
we have ss(c) ≤ 11/4. Recall that in[37] Ghebleh and Niepel have shown using similar (albeit simpler)
methods that on average the share of a codeword is at most 11/4. Their method is based on a close study
of connected components of codewords. Our refinement of the upper bound, which is based on recognizing
the codewords achieving the upper bound of 11/4 units of share, is essential to improving the lower bound
for the lengths n ≡ 2, 5, 8 (mod 11) (as is shown later).
In what follows, we present two auxiliary lemmas for obtaining an upper bound on ss(u); in the first one,
we consider codewords receiving share according to some rule and, in the second one, we study codewords
not receiving any share. In the following lemma, we begin by presenting an upper bound on ss(u) when
u is a codeword receiving share according to some rule.

Lemma A.2 Let C be an identifying code in Cn(1, 3) and u ∈ C be a codeword such that u receives share
according to the previous rules. If u belongs to some pattern P or P ′, then we have ss(u) ≤ 11/4, and
otherwise ss(u) ≤ 65/24 = 11/4− 1/24.

Proof. Let C be an identifying code in Cn(1, 3) and u ∈ C be a codeword such that u receives share
according to some rule. The proof now divides into different cases depending on which rule(s) are applied
to u.
Suppose first that share is shifted to u according to the ruleR1.1. Observe first that |I(u + 1)| ≥ 3 and
|I(u + 3)| ≥ 2 since u + 2 or u + 4 belongs to C. Therefore, we have s(u) ≤ 3 · 1/2 + 2 · 1/3 ≤ 13/6 =
11/4 − 7/12. Furthermore, since {u − 2, u − 1} ⊆ C and at least one of u + 2 and u + 4 is a codeword,
we obtain that in addition to the ruleR1.1, u can receive share only according to the rulesR1.2’, R4.1,
R4.2 and R4.3. Therefore, ss(u) ≤ s(u) + 1/12 + 1/24 + 3 · 3/24 ≤ 8/3 = 11/4 − 2/24 and we are done.
If u receives share according to the symmetrical ruleR1.1’, then we are again done since the reasoning is
analogous to the considered case.
Suppose that u receives share according to the ruleR1.2; the case with the symmetrical ruleR1.2’ is
analogous. Now, as u− 1 /∈ C, {u+ 1, u+ 2} ⊆ C, and at least one of u+ 4 and u+ 6 is a codeword, it
is straightforward to check that (in addition toR1.2) u can receive share only according to the ruleR1.1’.
However, the case where u receives share according to the ruleR1.1’ has already been considered above.
Hence, we may assume that share is received only according to the ruleR1.2. Thus, as |I(u+ 3)| ≥ 3, we
obtain that s(u) ≤ 1+2 ·1/2+2 ·1/3 = 8/3 = 11/4−1/12. Therefore, ss(u) ≤ s(u)+1/24 ≤ 11/4−1/24
and we are done.
Suppose that u receives share according to the rulesR2.1 and R2.2 (the case with the rulesR2.1’ and
R2.2’ is analogous). Observe that since u + 2 or u + 4 is a codeword, at least one of the vertices u + 1
and u + 3 is adjacent to 3 codewords as otherwise I(u + 1) = I(u + 3). Therefore, we obtain that
s(u) ≤ 3 · 1/2 + 2 · 1/3 = 13/6 = 11/4− 7/12. Furthermore, comparing the surroundings of u to the ones
in other rules, it can be deduced that (besides the rulesR2.1 and R2.2) u can receive share only according
to the rulesR2.1’ and R2.2’. This implies that ss(u) ≤ s(u) + 4 · 3/24 = 11/4− 2/24 and we are done.
Suppose that u receives share according to the ruleR3.1 (the case with R3.1’ is analogous). Now it
straightforward to check that u cannot receive share according to any other rule. Furthermore, we have
s(u) = 1 + 2 · 1/2 + 2 · 1/3 = 8/3 = 11/4− 2/24. Therefore, we have ss(u) ≤ s(u) + 1/24 = 11/4− 1/24
and we are done.
Suppose that u receives share according to the ruleR3.2 (the case with R3.2’ is analogous). Now we have
s(u) ≤ 1+ 2 · 1/2+ 2 · 1/3 = 11/4− 2/24 as |I(u− 3)| = |I(u)| = 3. Therefore, if share is not shifted to u
by any other rule, then we are immediately done since ss(u) ≤ s(u) + 1/24 ≤ 11/4− 1/24. Furthermore,
it is straightforward to verify that in addition u can only receive share according to the ruleR3.3’. Then
u − 4, u − 3, u + 3, u + 6 and u + 7 are codewords and s(u) ≤ 1 + 1/2 + 3 · 1/3 = 5/2 = 11/4 − 1/4.
Therefore, we have ss(u) ≤ s(u) + 2 · 1/24 ≤ 11/4− 4/24 and we are done.
Suppose that u receives share according to the ruleR3.3 (the case with R3.3’ is analogous). Observe first
that if u+2 and u+4 are both non-codewords, then a contradiction follows as I(u− 1) = I(u+1) = {u}.
Hence, we may assume that u+2 or u+4 is a codeword. Therefore, one of the I-sets I(u+1) and I(u+3)
contains at least 3 codewords. Thus, we have s(u) ≤ 1+ 2 · 1/2+ 2 · 1/3 ≤ 11/4− 2/24. Observe that the
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ruleR3.2’ is the only other rule according to which u can receive; in particular, notice that share cannot be
received by the rule3.3’ since u+ 2 or u+ 4 is a codeword. Furthermore, the case where share is received
according to the ruleR3.2’ has already been considered above.
Suppose that u receives share according to the rulesR4.1, R4.2 and R4.3 (the case with R4.1’, R4.2’ and
R4.3’ is analogous). Observe first that u+ 1, u+ 2 or u+ 4 belongs to C since I(u− 3) �= I(u+ 1). This
implies that s(u) ≤ 3 · 1/2 + 2 · 1/3 ≤ 13/6 = 11/4− 7/12. Furthermore, if u receives no share according
to any other rule or receives share according to the rule1.1, then we are immediately done as in the case
of the ruleR1.1. The only other possibility for u to receive share is according to the rulesR4.1’, R4.2’
and R4.3’. However, in this case, the vertices u − 2, u − 1, u, u + 1 and u + 2 are all codewords. This
implies that s(u) ≤ 2 · 1/2 + 1/3 + 2 · 1/4 = 11/6. Therefore, we have ss(u) ≤ s(u) + 6 · 3/24 ≤ 49/20 =
11/4− 1/6 = 11/4− 4/24 and we are done.
Suppose that u receives share according to the ruleR5 (the case with R5’ is analogous). Now u cannot
receive share according to any other rule. Furthermore, as u + 2 or u + 4 is a codeword, we obtain
that s(u) ≤ 3 · 1/2 + 2 · 1/3 = 13/6 = 11/4 − 7/12. Therefore, we are immediately done since ss(u) ≤
s(u) + 3/24 ≤ 11/4− 11/24.
Suppose that u receives share according to the ruleR6 (the case with R6’ is analogous). Now it straight-
forward to verify that u does not receive share according to any other rule. Furthermore, as |I(u)| = 3
and |I(u+3)| ≥ 3, we immediately obtain that s(u) ≤ 3 · 1/2+ 2 · 1/3 = 13/6 = 11/4− 14/24. Hence, we
are immediately done since ss(u) ≤ s(u) + 3/24 ≤ 11/4− 1/24.
Suppose that u receives share according to the ruleR7 (the case with R7’ is analogous). Again u cannot
receive according to any other rule. Observe first that u+3 and u+4 are codewords since I(u−1) �= I(u)
and I(u − 3) �= I(u + 1). Therefore, as |I(u)| ≥ 3 and |I(u + 3)| ≥ 3, we immediately obtain that
s(u) ≤ 1 + 2 · 1/2 + 2 · 1/3 = 8/3 = 11/4 − 2/24. Thus, we have ss(u) ≤ s(u) + 1/12 ≤ 11/4. However,
now this is enough since u belongs to a pattern P ′. Thus, in conclusion, the claim follows.

In the following lemma, we give an upper bound on ss(u) when u is a codeword not receiving share
according to any rule.

Lemma A.3 Let C be an identifying code in Cn(1, 3) and u ∈ C be a codeword such that u does not
receive share according to any of the previous rules. If u belongs to some pattern P or P ′, then we have
ss(u) ≤ 11/4, and otherwise ss(u) ≤ 65/24 = 11/4− 1/24.

Proof. Let C be an identifying code in Cn(1, 3) and u ∈ C be a codeword such that u does not receive
share according to the rules. Observe first that if u+2 is a codeword, then we are immediately done since
at least two of the I-sets I(u − 1), I(u + 1) and I(u + 3) consists of at least three codewords implying
ss(u) ≤ s(u) ≤ 1 + 2 · 1/2 + 2 · 1/3 = 8/3 = 11/4− 2/24. The same argument also applies for u− 2 ∈ C.
Hence, we may assume that u− 2 and u+2 do not belong to C. Now the proof divides into the following
cases depending on the number of codewords in I(u):

• Suppose first that |I(u)| = 1, i.e., I(u) = {u}. The previous observation taken into account, we
now know that u − 3, u − 2, u − 1, u + 1, u + 2 and u + 3 are non-codewords. Therefore, as
I(u) �= I(u− 1) and I(u) �= I(u+1), we obtain that u− 4 and u+4 belong to C. Furthermore, since
I(u − 3) �= I(u − 1) = {u − 4, u} and I(u + 3) �= I(u + 1) = {u, u + 4}, we have |I(u − 3)| ≥ 3 and
|I(u+ 3)| ≥ 3. Hence, we have ss(u) ≤ s(u) ≤ 1 + 2 · 1/2 + 2 · 1/3 = 11/4− 2/24 and we are done.

• Suppose then that |I(u)| = 2. Now we have a further split into the cases with I(u) = {u− 3, u} and
I(u) = {u, u+ 1} (the cases with I(u) = {u+ 3, u} and I(u) = {u− 1, u} are analogous). Consider
first the case with I(u) = {u− 3, u}. If now u+ 4 ∈ C, then |I(u− 3)| ≥ 3 and |I(u+ 3)| ≥ 3 since
I(u − 3) �= I(u) and I(u + 1) �= I(u + 3) and we are done as ss(u) ≤ s(u) ≤ 1 + 2 · 1/2 + 2 · 1/3 =
11/4−2/24. Hence, we may assume that u+4 /∈ C. Therefore, as I(u−1) �= I(u+1) = {u}, we have
u− 4 ∈ C. Furthermore, since I(u+ 2) �= ∅, I(u+ 1) �= I(u+ 3) and I(u+ 2) �= I(u+ 4), we obtain
respectively that u+5, u+6 and u+7 belong to C. Now 3/24 units of share is shifted from u to u+7
according to the ruleR4.3. Thus, we have ss(u) ≤ s(u)−3/24 ≤ 1+3·1/2+1/3−3/24 = 11/4−1/24.
For the other case, suppose that I(u) = {u, u + 1}. Observe first that u + 4 belongs to C since
I(u) �= I(u+1). It suffices to assume that u−4 /∈ C since otherwise ss(u) ≤ s(u) ≤ 3 ·1/2+2 ·1/3 =
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13/6 = 11/4− 7/12 and we are done. If now u− 5 /∈ C, then u+5 ∈ C as I(u+2) �= I(u− 2) = {u}
and 1/12 units of share is shifted from u to u + 1 according to the ruleR7. Therefore, ss(u) ≤
s(u) − 1/12 ≤ 1 + 3 · 1/2 + 1/3 − 1/12 = 11/4 and we are done since u belongs to a patternP ′.
Hence, we may assume that u− 5 is a codeword. If u+ 5 is a codeword, then 3/24 units of share is
shifted from u to u+ 1 according to the ruleR6 and we are again done since ss(u) ≤ s(u)− 3/24 ≤
1+3 ·1/2+1/3−3/24 = 11/4−1/24. Hence, we may assume that u+5 /∈ C. If at least one of u+6
and u+8 is a codeword, then 3/24 units of share is shifted from u to u+4 according to the ruleR2.1
Thus, we have ss(u) ≤ s(u)−3/24 ≤ 1+3 ·1/2+1/3−3/24 = 11/4−1/24 and we are done. Hence,
we may assume that u + 6 and u + 8 do not belong to C. If u + 7 ∈ C, then 1/24 units of share
is shifted from u to u + 1, u + 4 and u + 7 according to the rulesR3.1, R3.2 and R3.3, respectively.
Therefore, we have ss(u) ≤ s(u)− 3 · 1/24 ≤ 1+3 · 1/2+1/3− 3/24 = 11/4− 1/24 and we are done.
Hence, we may assume that u+ 7 is a non-codeword. Thus, since I(u+ 6) �= ∅, I(u+ 5) �= I(u+ 7)
and I(u+6) �= I(u+8), we obtain respectively that u+9, u+10 and u+11 belong to C. Now 3/24
units of share is shifted from u to u + 11 according to the ruleR4.1. Therefore, we are again done
since ss(u) ≤ 11/4− 1/24. This concludes the proof of the current case.

• Suppose then that |I(u)| = 3. Observe first that if for some v ∈ N(u) we have |I(v)| ≥ 3, then we
are immediately done since ss(u) ≤ s(u) ≤ 1+2 ·1/2+2 ·1/3 = 11/4−2/24. Now, for |I(u)| = 3, we
have the following essentially different cases (others are analogous): I(u) = {u− 3, u, u+ 3}, I(u) =
{u−1, u, u+3}, I(u) = {u, u+1, u+3} and I(u) = {u−1, u, u+1}. For future considerations, recall
that the vertices u−2 and u+2 do not belong to C. Consider first the case with I(u) = {u−3, u, u+3}.
By the previous observation, we may assume that u− 4 and u+4 do not belong to C. However, this
implies a contradiction since I(u− 1) = I(u+ 1) = {u}.
Consider then the case with I(u) = {u−1, u, u+3}. By the previous observation, we may assume that
u−4, u+4 and u+6 are non-codewords. Thus, since I(u−3) �= I(u+1) = {u}, u−6 is a codeword.
If u+ 5 or u+ 7 is a codeword, then 3/24 units of share is shifted from u to u+ 3 by the ruleR2.1.
Therefore, we are done as ss(u) ≤ s(u)− 3/24 ≤ 1 + 3 · 1/2 + 1/3− 3/24 = 11/4− 1/24. Hence, we
may assume that u+ 5 and u+ 7 do not belong to C. Thus, since I(u+ 5) �= ∅, I(u+ 4) �= I(u+ 6)
and I(u+ 5) �= I(u+ 7), we obtain respectively that u+ 8, u+ 9 and u+ 10 belong to C. Now 3/24
units of share is shifted from u to u + 10 according to the ruleR4.2. Therefore, we are again done
since ss(u) ≤ 11/4− 1/24.

Suppose then that I(u) = {u, u+ 1, u+ 3}. By the previous observation, we may assume that u+ 4
and u + 6 are non-codewords. If u − 4 ∈ C, then we are immediately done since ss(u) ≤ s(u) ≤
3 · 1/2 + 2 · 1/3 = 13/6 = 11/4 − 7/12. Hence, we may assume that u + 4 /∈ C. Now u + 5 or
u+ 7 belongs to C as otherwise I(u+ 2) = I(u+ 4) = {u+ 1, u+ 3}. Therefore, 3/24 units of share
is shifted from u to u + 3 according to the ruleR5. Thus, we are done as ss(u) ≤ s(u) − 3/24 ≤
1 + 3 · 1/2 + 1/3− 3/24 = 11/4− 1/24.

Finally, suppose that I(u) = {u−1, u, u+1}. Now at least one of u−5 and u+5 is a codeword since
I(u− 2) �= I(u+2). Without loss of generality, we may assume that u+5 ∈ C. Then 1/24 and 1/12
units of share is shifted from u to u− 1 and u+ 1 according to the rulesR1.2 and R1.1, respectively.
Therefore, we are done since ss(u) ≤ s(u)− 1/24− 1/12 ≤ 1 + 3 · 1/2 + 1/3− 3/24 = 11/4− 1/24.

• Suppose then that |I(u)| = 4. The proof now divides into the following essentially different cases:
I(u) = {u−1, u, u+1, u+3} and I(u) = {u−3, u, u+1, u+3}. In the former case, we may first assume
that u−4 and u+4 are non-codewords by a similar argument as in the previous case. Then 1/24 and
1/12 units of share is shifted from u to u−1 and u+1 according to the rulesR1.2 and R1.1, respectively.
Therefore, we are done since ss(u) ≤ s(u)− 1/24− 1/12 ≤ 1 + 3 · 1/2 + 1/4− 3/24 = 11/4− 3/24.

Suppose now that I(u) = {u− 3, u, u+1, u+3}. By the previous observations, we may assume that
u− 4, u+4 and u+6 are non-codewords. Now u+5 or u+7 belongs to C since I(u+2) �= I(u+4).
Therefore, 3/24 units of share is shifted from u to u+ 3 according to the ruleR5. Thus, we are done
as ss(u) ≤ s(u)− 3/24 ≤ 1 + 3 · 1/2 + 1/4− 3/24 = 11/4− 3/24.
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• Finally, suppose that |I(u)| = 5, i.e., I(u) = {u− 3, u− 1, u, u+ 1, u+ 3}. Now we are immediately
done since ss(u) ≤ s(u) ≤ 1 + 3 · 1/2 + 1/5 = 27/10 = 11/4 − 1/20 ≤ 11/4 − 1/24. This concludes
the proof of the claim.

In conclusion, the previous lemmas state that any codeword c not belonging to a patternP or P ′ has
ss(c) ≤ 11/4 − 1/24. In the following lemma, we consider the case where C is an identifying code such
that no codeword belongs to one of the patterns.

Lemma A.4 Let C be an identifying code in Cn(1, 3) such that no codeword of C belongs to a patternP
or P ′. Then the following results hold:

• If n = 11q1 + 2 with q1 ≥ 5, then |C| ≥ 4q1 + 2 = �4n/11�+ 1.

• If n = 11q2 + 5 with q2 ≥ 3, then |C| ≥ 4q2 + 3 = �4n/11�+ 1.

• If n = 11q3 + 8 with q3 ≥ 1, then |C| ≥ 4q3 + 4 = �4n/11�+ 1.

Proof. Let C be an identifying code in Cn(1, 3) such that no codeword of C belongs to a patternP or
P ′. Denote n = 11q + r, where q is a nonnegative integer and r is an integer such that 0 ≤ r < 11. By
Lemmas A.2 and A.3, we know that ss(c) ≤ 65/24 for all c ∈ C. Therefore, we obtain that

n =
∑
c∈C

s(c) =
∑
c∈C

ss(c) ≤
65

24
|C|.

This further implies that

|C| ≥ 24

65
n =

24

65
(11q + r) = 4q +

4q + 24r

65
.

The rest of the proof now divides into the following cases:

• If n = 11q1 + 2 with q1 ≥ 5, then |C| ≥ 4q1 + (4q1 + 24 · 2)/65 ≥ 4q1 + 68/65. Therefore, we have
|C| ≥ �4q1 + 68/65� = 4q1 + 2 = �4n/11�+ 1.

• If n = 11q2 + 5 with q2 ≥ 3, then |C| ≥ 4q2 + (4q2 + 24 · 5)/65 ≥ 4q2 + 132/65. Therefore, we have
|C| ≥ �4q2 + 132/65� = 4q2 + 3 = �4n/11�+ 1.

• If n = 11q3 + 8 with q3 ≥ 1, then |C| ≥ 4q3 + (4q3 + 24 · 8)/65 ≥ 4q3 + 196/65. Therefore, we have
|C| ≥ �4q3 + 196/65� = 4q3 + 4 = �4n/11�+ 1.

In the following theorem, we improve the lower bound on γID(Cn(1, 3)) for lengths n such that n is large
enough and n ≡ 2, 5, 8 (mod 11).

Theorem A.5 Let n be a positive integer such that n = 11q1 + 2 with q1 ≥ 5, n = 11q2 + 5 with q2 ≥ 3,
or n = 11q3 + 8 with q3 ≥ 1. Now we have

γID(Cn(1, 3)) ≥
⌈
4n

11

⌉
+ 1.

Proof. Let C be an identifying code in Cn(1, 3). Recall that if no codeword of C belongs to a patternP or
P ′, then the claim immediately follows by Lemma A.4. Hence, we may assume that there exist codewords
of C belonging to a patternP or P ′. Suppose first that all the codewords belong to a patternP or P ′.
This implies that the code is formed by consecutive repetitions of P and P ′. Observe that consecutive
patternsP and P ′ form a segment of length 11 (with 4 codewords) similar to the identifying code Cq given
in Theorem A.1. However, as now n is not divisible by 11, the identifying code C cannot entirely be
formed by the segments of length 11. Thus, we obtain that all the codewords cannot belong to a patternP
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or P ′. In other words, after a (finite) repetition of patternsP and P ′, a codeword not belonging to the
patterns has to appear. In what follows, we first show that the end of the repetition of the patternsP and
P ′ implies a drop of strictly more than 3/4 units of share in the sum

∑
c∈C ss(c) compared to the average

share of 11/4, i.e.,
∑

c∈C ss(c) < 11
4 |C| − 3

4 . Based on this observation, we then show that the original
lower bound of �4n/11� can be improved by one.
Suppose first that the repetition of the patterns ends with a patternP . More precisely, let u− 7 and u− 6
be codewords belonging to a patternP , and assume that the next codeword to the right does not belong
to a patternP ′. Recall that due to the pattern P the vertices u − 9, u − 8, u − 5, u − 4, u − 3, u − 2
and u − 1 are non-codewords. Now u and u + 1 belong to C since I(u − 3) �= I(u − 5) = {u − 6} and
I(u − 2) �= ∅, respectively. By the assumption that u (and u + 1) do no belong to a patternP ′, we can
deduce that u+ 2 or u+ 3 is a codeword of C. These two cases are considered in the following:

(A1) Suppose first that u + 2 ∈ C. If u + 3 ∈ C, then no share is shifted to u according to any rule and
we have ss(u) ≤ s(u) ≤ 2 · 1/2 + 3 · 1/3 = 2 = 11/4 − 3/4. Furthermore, by Lemmas A.2 and A.3,
we have ss(u + 1) ≤ 11/4 − 1/24. Therefore, we are done since ss(u) + ss(u + 1) < 2 · 11/4 − 3/4.
Hence, we may assume that u + 3 does not belong to C. Now at least one of u + 4 and u + 6
is a codeword since I(u − 1) �= I(u + 3). Now we have s(u) ≤ 3 · 1/2 + 2 · 1/3 = 11/4 − 7/12
and similarly s(u + 2) ≤ 11/4 − 7/12. Moreover, it is straightforward to verify that u and u + 2
can receive share only according to the rulesR1.2 and R1.1, respectively. Therefore, we obtain that
ss(u) + ss(u + 2) ≤ (s(u) + 1/24) + (s(u + 2) + 1/12) ≤ 2 · 11/4 − 25/24 < 2 · 11/4 − 3/4. This
concludes the first case of the proof.

(A2) Suppose then that u + 2 /∈ C and u + 3 ∈ C. Observe first that u + 4 or u + 7 is a codeword
since otherwise I(u + 2) = I(u + 4) = {u + 1, u + 3} (a contradiction). Suppose first that u + 4
is a codeword. Observe then that |I(v)| ≥ 3 for all v ∈ {u, u + 1, u + 3, u + 4}. Therefore, we
have s(v) ≤ 1 + 1/2 + 3 · 1/3 for all v ∈ {u, u + 1, u + 3, u + 4}. It is straightforward to verify
that u and u + 1 do not receive share according to any rule. Moreover, either u + 3 or u + 4 can
receive share according to the rulesR4.1’, R4.2’ and R4.3’. Furthermore, if this happens for one of
the vertices, say v, then we have ss(v) ≤ 11/4 − 1/24 by the previous lemmas and the other one
does not receive share according to the rules. Thus, all the previous combined, we are done since
ss(u) + ss(u+ 1) + ss(u+ 3) + ss(u+ 4) ≤ 4 · 11/4− 3 · 1/4− 1/24 < 4 · 11/4− 3 · 1/4. Hence, we
may assume that u+ 4 /∈ C and u+ 7 ∈ C.

Suppose that u + 6 is a codeword. Then it is straightforward to verify that u + 3 can receive share
only according to the rulesR2.1’ and R2.2’. Therefore, since s(u + 3) ≤ 1/2 + 4 · 1/3 = 11/6, we
obtain that ss(u+3) ≤ s(u+3)+2 · 3/24 ≤ 11/4− 16/24. Thus, we are done as ss(u)+ ss(u+1)+
ss(u+3)+ ss(u+6) ≤ 3(11/4− 1/24)+11/4− 16/24 = 4 · 11/4− 19/24 < 4 · 11/4− 3/4. Hence, we
may assume that u+ 6 /∈ C. Suppose then that u+ 5 or u+ 9 is a codeword; denote the codeword
by v. Now we have s(u+ 3) ≤ 2 · 1/2 + 3 · 1/3. Moreover, u+ 3 can receive only 3/24 units of share
according to the ruleR5. Therefore, we obtain that ss(u)+ss(u+1)+ss(u+3)+ss(u+7)+ss(v) ≤
4(11/4 − 1/24) + 11/4 − 15/24 = 4 · 11/4 − 19/24 < 4 · 11/4 − 3/4. Hence, we may assume that
u+ 5 and u+ 9 are both non-codewords. Now u+ 8 is a codeword since I(u+ 5) �= ∅. Furthermore,
at least one of u + 10 and u + 12 is a codeword, say v, since I(u + 5) �= I(u + 9). Now we have
s(u + 3) ≤ 3 · 1/2 + 2 · 1/3 = 11/4− 14/24 and as above u + 3 can receive only 3/34 units of share
according to the ruleR5. Moreover, we have s(w) ≤ 1 + 2 · 1/2 + 2 · 1/3 = 11/4 − 2/24 for any
w ∈ {u+1, u+7, u+8} and none of the codewords receive share according to any rule. Furthermore,
we have ss(u) ≤ 11/4− 1/24 and ss(v) ≤ 11/4− 1/24 by Lemmas A.2 and A.3 since neither of the
vertices u and v belongs to a patternP or P ′. Thus, combining the previous observation, we obtain
that ss(u)+ss(u+1)+ss(u+3)+ss(u+7)+ss(u+8)+ss(v) ≤ 2(11/4−1/24)+3(11/4−2/24)+
(11/4 − 14/24 + 3/24) = 6 · 11/4 − 19/24 < 6 · 11/4 − 3/4. This concludes the proof of the current
case.

Suppose then that the repetition of the patterns ends with a patternP ′. More precisely, let u−4 and u−3
be codewords belonging to a patternP ′, and assume that the next codeword to the right does not belong
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to a patternP . Recall that due to the pattern P ′ the vertices u− 9, u− 8, u− 7, u− 6, u− 5, u− 2 and
u − 1 are non-codewords. Now u and u + 1 belong to C since I(u − 3) �= I(u − 4) = {u − 4, u − 3} and
I(u − 2) �= I(u − 6) = {u − 3}, respectively. By the assumption that u (and u + 1) do no belong to a
patternP , we can deduce that one of the vertices u+ 2, u+ 3, u+ 4, u+ 5 and u+ 6 is a codeword of C.
The proof now divides into the following five cases:

(B1) Suppose that u + 2 ∈ C. Now we have s(u) ≤ 1/2 + 4 · 1/3 = 11/4 − 22/24. Furthermore, u can
receive share only according to the rulesR4.1’, R4.2’ and R4.3’. Obviously, if u receives no share,
then we are immediately done as ss(u) ≤ s(u) ≤ 11/4− 22/24 ≤ 11/4− 3/4. Hence, we may assume
that share is shifted to u according to the rulesR4.1’, R4.2’ and R4.3’. This implies that u + 7,
u + 10 and u + 11 are codewords. Therefore, we have s(u + 1) ≤ 3 · 1/2 + 2 · 1/3 = 11/4 − 14/24
and u + 1 cannot receive share according to any rule. Thus, we are done since ss(u) + ss(u + 1) ≤
(11/4− 22/24 + 3 · 3/24) + (11/4− 14/24) = 2 · 11/4− 27/24 ≤ 2 · 11/4− 3/4.

(B2) Suppose that u+2 /∈ C and u+3 ∈ C. Now we have s(u) ≤ 3 · 1/2+ 1/3+ 1/4 = 11/4− 16/24 and
similarly s(u + 1) ≤ 11/4 − 16/24 (as I(u + 2) �= I(u + 4)). Hence, as neither u nor u + 1 receives
share according to any rule, we obtain that ss(u) + ss(u+1) ≤ s(u) + s(u+1) ≤ 2(11/4− 16/24) <
2 · 11/4− 3/4. Thus, we are done.

(B3) Suppose that u+2, u+3 /∈ C and u+4 ∈ C. Now we have s(u) ≤ 2 · 1/2+3 · 1/3 = 2 = 11/4− 3/4.
Furthermore, u does not receive share according to any rule. Therefore, as u + 1 does not belong
to any pattern P or P ′, we are done since ss(u) + ss(u + 1) ≤ (11/4 − 3/4) + (11/4 − 1/24) =
2 · 11/4− 19/24 < 2 · 11/4− 3/4.

(B4) Suppose that u + 2, u + 3, u + 4 /∈ C and u + 5 ∈ C. Observe first that u + 7 ∈ C since I(u + 4) �=
I(u + 2) = {u + 1, u + 5}. Now we have s(u) ≤ 1 + 2 · 1/2 + 2 · 1/3 = 11/4 − 2/24 and s(u + 1) ≤
3 · 1/2 + 2 · 1/3 = 11/4 − 14/24. Furthermore, neither u nor u + 1 receives share according to any
rule. Moreover, at least one of u+6, u+8 and u+11, say v, is a codeword since I(u+6) �= I(u+8).
Observe that if v = u+6 or v = u+8, then v does not belong to any patternP or P ′. Assuming u+6
and u+8 do not belong to C, then v = u+11 does not belong to P or P ′. Therefore, we are done as
ss(u)+ss(u+1)+ss(u+5)+ss(u+7)+ss(v) ≤ (11/4−2/24)+(11/4−14/24)+3(11/4−1/24) =
5 · 11/4− 19/24 < 5 · 11/4− 3/4.

(B5) Finally, suppose that u + 2, u + 3, u + 4, u + 5 /∈ C and u + 6 ∈ C. Observe first that u + 7 ∈ C
since I(u + 4) �= I(u + 2) = {u + 1}. This implies that s(u) ≤ 3 · 1/2 + 2 · 1/3 = 11/4 − 14/24. It
is also straightforward to verify that u can only receive 3/24 units of share according to the ruleR6’.
Therefore, we have ss(u) ≤ s(u) + 3/24 ≤ 11/4− 11/24. Furthermore, since I(u+ 6) �= I(u+ 7), we
know that at least one of u+8, u+9 and u+10 has to be a codeword. Suppose first that u+8 ∈ C.
Now we have s(u+6) ≤ 3 · 1/2+ 2 · 1/3 = 11/4− 14/24 (as I(u+5) �= I(u+9)), and u+6 can only
receive 1/24 units of share according to the ruleR1.2. (In particular, notice that if share is shifted to
u+6 according to the rulesR4.1’, R4.2’ or R4.3’, then I(u+5) = I(u+9) implying a contradiction.)
Thus, we have ss(u)+ss(u+6) ≤ (11/4−11/24)+(11/4−14/24+1/24) ≤ 2·11/4−1 < 2·11/4−3/4.
Hence, we may assume that u + 8 /∈ C. Suppose then that u + 9 ∈ C. Now we have s(u + 7) ≤
3 · 1/2 + 2 · 1/3 = 11/4− 14/24, and u+ 7 cannot receive share according to any rule. Therefore, we
are done as ss(u) + ss(u+7) ≤ (11/4− 11/24) + (11/4− 14/24) = 2 · 11/4− 25/24 < 2 · 11/4− 3/4.
Hence, we may assume that u+ 9 /∈ C and u+ 10 ∈ C.

Suppose first that u + 11 ∈ C. Now we have s(u + 7) ≤ 3 · 1/2 + 2 · 1/3 = 11/4 − 14/24, and
u + 7 can receive share only according to the ruleR6 (3/24 units). Therefore, we are done since
ss(u)+ss(u+7) ≤ (11/4−11/24)+(11/4−14/24+3/24) = 2 ·11/4−22/24 < 2 ·11/4−3/4. Hence,
we may assume that u + 11 /∈ C. Suppose then that u + 12 ∈ C or u + 14 ∈ C. This implies that
s(u+10) ≤ 3·1/2+2·1/3 = 11/4−14/24. Furthermore, u+10 receives share according to the rulesR2.1
(3/24 units) and R2.2 (3/24 units), and it can possibly receive share also by the rulesR2.1’ (3/24
units) and R2.2’ (3/24 units). If no share is shifted to u+ 10 according to the rulesR2.1’ and R2.2’,
then we are done since ss(u)+ss(u+10) ≤ (11/4−11/24)+(11/4−14/24+2·3/24) = 2·11/4−19/24 <
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2 · 11/4− 3/4. Hence, we may assume that u+10 receives share also according to the rulesR2.1’ and
R2.2’. This implies that u+ 13, u+ 14 and u+ 19 are codewords of C. Observe that the codewords
u+ 1, u+ 6, u+ 10, u+ 13, u+ 14 and u+ 19 do not belong to any patternP or P ′. In particular,
u + 19 does not belong to P or P ′ since u + 15 /∈ C. Thus, all the previous taken into account, we
obtain that ss(u)+ss(u+1)+ss(u+6)+ss(u+7)+ss(u+10)+ss(u+13)+ss(u+14)+ss(u+19) ≤
(11/4 − 11/24) + (11/4 − 14/24 + 4 · 3/24) + 6(11/4 − 1/24) = 8 · 11/4 − 19/24 < 8 · 11/4 − 3/4.
Hence, we may assume that u+ 12 /∈ C and u+ 14 /∈ C.
Suppose that u + 13 /∈ C. Now u + 15, u + 16 and u + 17 belong to C since I(u + 12) �= ∅,
I(u+ 13) �= I(u+ 11) = {u+ 10} and I(u+ 14) �= I(u+ 12) = {u+ 15}, respectively. Furthermore,
at least one of the vertices u+18, u+19 and u+21, say v, is a codeword since I(u+14) �= I(u+18).
Thus, if v = u+18, v = u+19, or v = u+21 and v does not belong to P or P ′, then we are done as
ss(u)+ ss(u+1)+ ss(u+6)+ ss(u+7)+ ss(u+10)+ ss(u+15)+ ss(u+16)+ ss(u+17)+ ss(v) ≤
(11/4 − 11/24) + 8(11/4 − 1/24) = 9 · 11/4 − 19/24 < 9 · 11/4 − 3/4 (none of the other codewords
either belong to a patternP or P ′). Hence, we may assume that v belongs to a patternP or P ′. This
implies that u + 18, u + 19 /∈ C and v = u + 21. Now u + 20 also belongs to the patternP and
the codewords u + 15, u + 16 and u + 17 form a case symmetrical to the case(B1). Hence, we may
assume that u + 13 ∈ C. Now u + 17 ∈ C because I(u + 14) �= I(u + 12). It is straightforward to
verify that u+13 can now receive share only according to the rulesR3.3 (1/24 units) and R3.2’ (1/24
units). If u + 15 is a codeword, then s(u + 13) ≤ 2 · 1/2 + 3 · 1/3 = 11/4 − 3/4. Furthermore, if
u+ 16 ∈ C, then we have s(u+ 13) ≤ 1 + 1/2 + 3 · 1/3 = 11/4− 6/24. Thus, in both cases, we have
ss(u+ 13) ≤ s(u+ 13) + 2 · 1/24 ≤ 11/4− 4/24. Therefore, all the previous taken into account, we
are done since ss(u) + ss(u + 1) + ss(u + 6) + ss(u + 7) + ss(u + 10) + ss(u + 13) + ss(u + 17) ≤
(11/4−11/24)+(11/4−4/24)+5(11/4−1/24) = 7·11/4−20/24 < 7·11/4−3/4 (none of the codewords
belong to a patternP or P ′). Hence, we may assume that u+15 and u+16 are non-codewords. Now
u + 18 and u + 19 belong to C since I(u + 15) �= ∅ and I(u + 16) �= I(u + 14) = {u + 13, u + 17},
respectively. Therefore, we have ss(u)+ ss(u+1)+ ss(u+6)+ ss(u+7)+ ss(u+10)+ ss(u+13)+
ss(u+17)+ss(u+18)+ss(u+19) ≤ (11/4−11/24)+8(11/4−1/24) = 9·11/4−19/24 < 7·11/4−3/4
(again none of the codewords belong to a patternP or P ′). Thus, in conclusion, we achieve a drop of
more than 3/4 units of share in the sum

∑
c∈C ss(c) in all the cases compared to the average share

of 11/4, i.e.,
∑

c∈C ss(c) <
11
4 |C| − 3

4 .

In the previous detailed case analysis, we have achieved a drop of more than 3/4 units of share in the sum∑
c∈C ss(c). In what follows, we show how this implies the improved lower bound. The proof now splits

into the following cases depending on the remainder when n is divided by 11:

• Suppose first that n = 11q1 + 2 with q1 ≥ 5. By the previous considerations, we now have

n =
∑
c∈C

s(c) =
∑
c∈C

ss(c) <
11

4
|C| − 3

4
.

This implies that

|C| > 4

11

(
n+

3

4

)
= 4q1 + 1.

Thus, we have |C| ≥ 4q1 + 2 = �4n/11�+ 1.

• Suppose then that n = 11q2 + 5 with q2 ≥ 3. As in the previous case, we obtain that

|C| > 4

11

(
n+

3

4

)
= 4q2 + 2 +

1

11
.

Thus, we have |C| ≥ 4q2 + 3 = �4n/11�+ 1.

• Finally, suppose then that n = 11q3 + 8 with q3 ≥ 1. As in the previous case, we obtain that

|C| > 4

11

(
n+

3

4

)
= 4q3 + 3 +

2

11
.
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Thus, we have |C| ≥ 4q3 + 4 = �4n/11�+ 1.

Thus, in conclusion, we have shown that γID(Cn(1, 3)) ≥ �4n/11� + 1 for n = 11q1 + 2 with q1 ≥ 5,
n = 11q2 + 5 with q2 ≥ 3, and n = 11q3 + 8 with q3 ≥ 8.

Recall the general constructions of Theorem A.1, the constructions for the specific lengths in Table A.0.3
and the improved lower bound of Theorem A.5. Combining all these results, we know the exact val-
ues of γID(Cn(1, 3)) for all the lengths n except for n = 46. In the open case n = 46, we have
17 = �4n/11� ≤ γID(Cn(1, 3)) ≤ �4n/11� + 1 = 18 by the general lower and upper bounds. Using
an exhaustive computer search, it can be shown that there does not exist an identifying code in C46(1, 3)
with 17 codewords, i.e., γID(C46(1, 3)) = 18. The method of the exhaustive search is briefly explained in
the following remark.

Remark: Let C be a code in C46(1, 3) with 17 codewords. Without loss of generality, we may assume that
8 of the codewords belong to {0, 1, . . . , 22} and the rest 9 codewords belong to {23, 24, . . . , 45}. Observe
that if C is an identifying code in C46(1, 3), then the vertices in {3, 4, . . . , 19} have a unique identifying
set among the codewords in {0, 1, . . . , 22} and the vertices in {26, 27, . . . , 42} have a unique identifying
set among the codewords in {23, 24, . . . , 45}. Using a computer search, we obtain that there exist 1919
codes C1 ⊆ {0, 1, . . . , 22} with |C1| = 8 such that IC1

(u), where u ∈ {3, 4, . . . , 19}, are all non-empty and
unique, and 23137 codes C2 ⊆ {23, 24, . . . , 45} with |C2| = 9 such that IC2

(u), where u ∈ {26, 27, . . . , 42},
are all non-empty and unique. By an exhaustive search, we obtain that no union of such codes C1 and
C2 is an identifying code in C46(1, 3). Therefore, by the previous observation, there does not exists an
identifying code in C46(1, 3) with 17 codewords. Hence, we have γID(C46(1, 3)) = 18.
The following theorem summarizes all these results and gives the exact values of γID(Cn(1, 3)) for all
lengths n ≥ 11. The exact values of γID(Cn(1, 3)) for the lengths n smaller than 11 have been determined
in[37].

Theorem A.6 Let n be an integer such that n ≥ 11. Now we have the following results:

• Assume that n ≤ 37. If n ≡ 8 (mod 11), then we have γID(Cn(1, 3)) = �4n/11�+ 1, and otherwise
γID(Cn(1, 3)) = �4n/11�.

• Assume that n ≥ 38. If n ≡ 2, 5, 8 (mod 11), then we have γID(Cn(1, 3)) = �4n/11� + 1, and
otherwise γID(Cn(1, 3)) = �4n/11�.
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Appendix B

Complete proof of Theorem 2.30

Here we prove that for n ≡ 2, 3, 5 mod 6 the optimal codes on Cn(1, 3) are of cardinal �n/3�+ 1, i.e., we
show there cannot be of cardinal �n/3� and then we give LD-codes attaining with cardinal �n/3�+ 1.

Proposition B.1 Let n ≥ 14 and C be a locating-dominating code in Cn(1, 3). For all c ∈ C, we have
either s(c) ≤ 17/6 or s(c) ∈ {3, 37/12, 10/3}. Moreover, the following statements hold:

• s(c) = 3 if and only if c belongs to a patternS1 or S3 (defined below).

• s(c) = 37/12 if and only if c belongs to a patternS4 (defined below).

• s(c) = 10/3 if and only if c belongs to a patternS6 (defined below).

Proof. Let c be a codeword in C. The proof now divides into three parts depending on whether |I(c)| ≥ 3,
|I(c)| ≥ 2 or |I(c)| = 1.

• Suppose first that |I(c)| ≥ 3. Observe that there exists at most one vertex u in N [c] such that
|I(u)| = 1, and the other vertices are covered by at least two codewords. Hence, we immeadiately
obtain that s(c) ≤ 1 + 3 · 1/2 + 1/3 = 17/6.

• Assume then that |I(c)| = 2. If all the vertices v ∈ N [c] have |I(v)| ≥ 2, then we get s(c) ≤ 5/2 <
17/6. Therefore, it is enough to consider the case where there is at least one vertex v ∈ N [c] with
|I(v)| = 1. There cannot be more than one such vertex. Indeed, such a vertex must be a non-
codeword, and if there were two, say u and w, then I(u) = I(w), which is not possible. Moreover, if
there is one vertex v ∈ N [v] such that |I(v)| ≥ 3, we have s(c) ≤ 17/6. Therefore, s(u) = 3 if and
only if all the vertices in N [c] have the size of the I-sets equal to 2 except one equal to 1. Next we
analyze this case more carefully.

– Let first c− 3 ∈ I(c) (the case c+ 3 goes analogously). If I(c− 1) = {c} (resp. I(c+ 1) = {c}),
then c+4 (resp. c−4) belongs to C implying |I(c+3)| ≥ 3 (resp. |I(c−3)| ≥ 3). If I(c+3) = {c},
then |I(c− 3)| ≥ 3 (since I(c− 1) �= I(c+ 1) = {c}). In all cases, the share is at most 17/6.

– Assume then that c−1 ∈ I(c) (the case c+1 is analogous). If I(c−3) = {c}, then |I(c+3)| ≥ 3.
If I(c + 3) = {c}, then |I(c − 1)| ≥ 3. In these cases s(c) ≤ 17/6. Therefore, we can assume
that I(c+ 1) = {c} and |I(c− 3)| = |I(c+ 3)| = 2. Due to c+ 3, we must have c+ 6 ∈ C. Now
either c−4 or c−6 belong to C (if both we are done). Moreover, we may assume that c−4 /∈ C
as otherwise |I(c − 1)| ≥ 3 implying s(c) ≤ 17/6. Therefore, it is enough to consider the case
c− 6 ∈ C. Consequently, we have the pattern:

x ∗ oooxxoooo ∗ x,

where c is denoted by the underlined codeword x. Both of the unknowns cannot be non-
codewords because then I(c− 2) = I(c+ 2) and c− 2, c+ 2 /∈ C. Moreover, we have c− 7 ∈ C
since otherwise I(c− 2) = I(c− 4). This leads to the following two patterns when s(c) = 3:
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S1 xxxoooxxoooo ∗ x
S3 xxooooxxooooxx

.

• Let then |I(c)| = 1. If there is no vertex v ∈ N(c) such that |I(v)| = 1, then it is easy to check that
s(c) ≤ 17/6 as at least one I-set has at least three codewords. Consequently, let us assume that such
v exists (clearly only one such vertex is possible). Without loss of generality, we may assume that v
is either c− 1 or c− 3.

– Let us assume first that v = c − 1. Due to c + 1, we must have c + 4 ∈ C. Moreover, since
I(c + 1) �= I(c + 3), we get c + 6 ∈ C. As I(c + 2) �= ∅ (resp. c − 2), we have c + 5 ∈ C (reps.
c− 5 ∈ C). In order to have I(c− 1) �= I(c− 3) we must have c− 6 ∈ C. In addition, c− 7 ∈ C,
since I(c − 2) �= I(c − 4). This leads to s(c) = 10/3 and the only way to achieve this is by the
pattern:

S6 xxxooooxoooxxx .

– Suppose then that v = c− 3. In order to have I(c− 3) �= I(c− 1), we must have c+2 ∈ C. Also
c−5 ∈ C because I(c−2) cannot be the empty set. Moreover, c+4 ∈ C due to I(c−1) �= I(c+1).
We also have c + 6 ∈ C to get I(c + 1) �= I(c + 3). Now s(c) = 37/12 and it comes from the
pattern:

S4 oxooooxoxox ∗ x .

Next we show that shifting the shares among codewords gives us the situation where the share of each
vertex is (after the shifting) less than 17/6 or equal to 3. Moreover, the share is equal to 3 if and only if
we have the case of pattern S3. The share of a vertex v ∈ C after shifting is denoted by ss(v). We do
the shifting using the following three shifting rules and their symmetric counterparts (where the pattern
is read from right to left):

c

5/12

(1)

c

7/12

(2)

c

1/3

(3)

Figure B.0.1: The black nodes are non-codewords, halo nodes are codewords and gray nodes can be anything. The
edges of the circulant graph are omitted in the figure.

• R1: The vertex c gives 5/12 units of share to c− 5.

• R2: The vertex c gives 7/12 units of share to c+ 4.

• R3: The vertex c gives 1/3 units of share to c+ 2.
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Notice that if a vertex receives shares by any of the rules, it cannot receive more share by another rule
(including its symmetric counterpart).

Proposition B.2 Let C be a locating-dominating code in Cn(1, 3) where n ≥ 14. Then we have ss(c) ≤
17/6 for all c ∈ C unless c belongs to a pattern S3 when ss(c) = 3.

Proof. If in the code C there are only codewords with share at most 17/6, then there is nothing to do.
Let us now consider the other cases:

• Let there be a codeword c with s(c) = 3 in the pattern S1. By the rule R1, we shift 5/12 units
of share to c − 5. Notice that s(c − 5) ≤ 13/6. Consequently, we have ss(c) = 31/12 < 17/6 and
ss(c− 5) ≤ 31/12.

• If there is a codeword c with share s(c) = 37/12 in the pattern S4. Using the rule R3 we shift
1/3 units of share to c + 2. The share s(c + 2) ≤ 29/12. Therefore, ss(c) = 11/4 < 17/6 and
ss(c+ 2) ≤ 11/4.

• Let there be a codeword c with share s(c) = 10/3 in the pattern S6. Now R2 shifts 7/12 units of a
share to c+ 4 with s(c+ 4) ≤ 13/6. Consequently, ss(c) = 11/4 and ss(c+ 4) ≤ 11/4.

Before our main theorem on locating-dominating codes, let us give the following technical lemma.

Lemma B.3 Let n > 17 be an integer such that n ≡ 3 (mod 6) or n ≡ 2 (mod 3), and let C be a
locating-dominating code in Cn(1, 3). If there is no pattern S3, then |C| > �n/3�.
Proof. By Proposition B.2, after shifting the shares and knowing there is no S3 we have ss(c) ≤ 17/6
for all c ∈ C. Hence,

n =
∑
i∈C

s(i) =
∑
i∈C

ss(i) ≤
17

6
|C|.

The proof divides now into the following cases:

• if n = 6k + 3, we have |C| ≥ 2k + 1 + 2k+1
17 > 2k + 1

• and if n = 3k + 2, we have |C| ≥ k + k+12
17 and as n > 17, k > 5, which gives |C| > k + 1.

Theorem B.4 Let n > 17. Then

γLD(Cn(1, 3)) =

⎧⎪⎪⎨
⎪⎪⎩

⌈n
3

⌉
if n ≡ 0, 1, 4 (mod 6)

⌈n
3

⌉
+ 1 otherwise

Proof. Let n > 17. For n ≡ 0, 1, 4 (mod 6) the result for locating-dominating codes is given in [37].
We need to prove that for n ≡ 2, 3, 5 (mod 6) the bound �n/3� is not attainable. On the other hand, in
[37] there are constructions of cardinality �n3 � + 1 given in these cases. We will write n = 6k + r with
r ∈ {2, 3, 5}. Notice that for r = 2, 5, we can write n in the form 3l + 2, which implies n ≡ 2 (mod 6)
for l ≡ 0 (mod 2) and n ≡ 5 (mod 6) otherwise. By Lemma B.3 we know that if there is no S3 patterns,
then the bound is not attainable. Assume then than there is a pattern S3. Note that these patterns
S3 can overlap each other. We denote by P6 the pattern xxoooo. Therefore, we can divide overlapping
S3-patterns into non-overlapping patterns P6.
Without loss of generality, we can assume that the vertices 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 form two patterns
P6 and s(7) = 3, that is, 0, 1, 6, 7, 12, 13 ∈ C. As n �≡ 0 (mod 6), we cannot have only patterns P6 in the
graph. Therefore, we can assume that there are t consecutive patterns P6 starting in 0 (to the right) and
that there is no pattern P6 on the vertices n− 6, n− 5, n− 4, n− 3, n− 2, n− 1.
We want to prove that the sum of all the shares of codewords is strictly less than 3|C| for n = 6k+ 3 and
strictly less than 3|C|− 1 for n = 6k+2 and n = 6k+5. This will imply the lower bounds as we shall see.
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• Let n = 6k+3. Since there is no pattern P6 on the vertices n− 6, n− 5, n− 4, n− 3, n− 2, n− 1, the
vertex 1 does not have the surroundings of the pattern S3. Therefore, ss(1) < 3 by Proposition B.2.
Hence, we have

n =
∑
i∈C

s(i) =
∑
i∈C

ss(i) < 3|C| ⇔ 6k + 3 < 3|C|

⇔ 2k + 1 < |C|.
Consequently, |C| ≥ 2k + 2 = �n/3�+ 1.

• Now, let n ≡ 2, 5 (mod 6). It is easy to check that s(1) ≤ 3 and s(0) ≤ 3. We will try to find such
vertices, say b of them, that their shares (after the shifting by the above rules) is less than 3b− 1− ε
for some ε > 0.

– Let first s(1) = 3. This implies that n − 5 ∈ C and n − 3, n − 2, n − 1 are not codewords (due
to patternsS1 and S3). If s(0) = 3, then we get a pattern P6 on the vertices n − 6, n − 5, n −
4, n− 3, n− 2, n− 1, hence, as we assumed there was no such pattern, s(0) < 3. Consequently,
n− 4 ∈ C. In addition, n− 6 ∈ C due to I(n− 1) �= I(n− 3). This implies that s(0) ≤ 7/3.
The share of n− 4 is then at most 13/6, hence we have that the share of 0 and n− 4 (before the
shifting by the rules) drops from 2 · 3 by at least −2/3− 5/6 = −3/2. Only the rule R1 applies
here and it can give to n− 4 the amount of 5/12. Therefore, the total drop in shares is at least
−3/2 + 5/12 = −13/12 (which is enough as we try to have drop of −1− ε). Hence,∑

i∈C
s(i) =

∑
i∈C

ss(i) ≤ 3|C| − 13/12.

– Suppose then that s(1) < 3. In what follows, we study vertices n− 1, n− 2, etc., and different
variants of possible codewords among them in order to find the codewords whose shares drop
enough (of course, excluding the cases s(1) = 3).
We start by consider separately the cases n− 1 ∈ C and n− 1 /∈ C.
(i) Suppose first that n − 1 ∈ C. We divide further the study into two cases n − 2 ∈ C and
n − 2 /∈ C. Let n − 2 ∈ C. Now s(1) ≤ 2 and s(0) ≤ 2. Therefore, the drop of the vertices 0
and 1 is −2 compared to 2 · 3 and since no rules gives these vertices any additional share, we are
done. Assume then that n− 2 /∈ C. Now s(1) ≤ 13/6 and s(0) ≤ 17/6. Thus s(0)+s(1) ≤ 5. If
s(0) + s(1) < 5, then the drop is −1− ε and no rules give extra share to them, so we are done.
If s(0)+ s(1) = 5, then we have n− 5 ∈ C and n− 4, n− 3, n− 2 /∈ C and s(n− 1) ≤ 13/6. The
drop among the vertices 0,1 and n − 1 is altogether −11/6. The rules R1 and R2 can give at
most 7/12 to the vertex n − 1 (not both at the same time), and the codewords 0 and 1 do not
receive share according to any rule. Therefore, the total drop is at least −11/6 + 7/12 = −5/4.
Hence we have ∑

i∈C
ss(i) ≤ 3|C| − 5

4
.

(ii) Let then n− 1 /∈ C. Notice that in this case no rules give any additional share to vertices 0
and 1. In the following, we consider the cases depending on which of the vertices in {n− 5, n−
4, n − 3, n − 2} are codewords. If there are three (or four) codewords in that set, it is easy to
compute that s(0)+s(1) ≤ 29/6. Hence the drop of the vertices 0 and 1 is at least −7/6. Recall
that the rules give no extra here. Consequently,∑

i∈C
ss(i) ≤ 3|C| − 7/6.

The remaining cases are listed below. Notice that since s(1) < 3, the case where n−5, n−4 ∈ C
and n − 3, n − 2 /∈ C and also the case where n − 5 ∈ C and n − 4, n − 3, n − 2 /∈ C can be
excluded. Furthermore, the case n−4 ∈ C and n−5, n−3, n−2 /∈ C is excluded because in that
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case I(n− 2) = I(2) = {1} and 2, n− 2 /∈ C which is impossible since C is locating-dominating.
In the table below, we have all the other cases:

Case pattern s(1) s(0) ≤ s(p) ≤ drop

Case 1 ooxxox
0
xooooxx

7
5/2 2 −3/2

Case 2 xox
p
oox

0
xooooxx

7
8/3 17/6 2 −1/2−1

Case 3 xooxox
0
xooooxx

7
8/3 13/6 −7/6

Case 4 oox
p
oox

0
xooooxx

7
17/6 17/6 17/6 −1/3−1/6

Case 5 oxx
p
oox

0
xooooxx

7
17/6 13/6 8/3 −1−1/3

Case 6 ooox
p
ox
0
xooooxx

7
17/6 13/6 8/3 −1−1/3

Case 7 oxoxox
0
xooooxx

7
17/6 2 −7/6

In all the cases except Case 4, we have a drop strictly smaller than −1 and the rules do not give
any extra share to the vertex marked by p (the vertices 0 and 1 did not get any as mentioned
earlier). To examine Case 4 more carefully, we study the vertices n−9, n−8, n−7 and n−6 and
codewords among them. The cases where the codewords among these four vertices are as follows
{oooo, xoxo, xooo, ooxo, oxxo, oxoo} are forbidden in a locating-dominating code. Indeed, the
first four combinations give I(n− 5) = ∅ and the two last ones give I(n− 6) = I(n− 4). All the
other cases are studied in the following table. In Case 4.6 we have added one more codeword,
namely, the p0 (which necessarily must be a codeword).

Case pattern s(1) s(0) s(n− 3)
∑

s(pi) ≤ drop

Case 4.1 xxxxooxoox
0
xooooxx 17/6 8/3 23/12 −19/12

Case 4.2 xxxoooxoox
0
xooooxx 17/6 17/6 13/6 −7/6

Case 4.3 xxox
p
ooxoox

0
xooooxx 17/6 8/3 5/2 2 −2

Case 4.4 xoxxooxoox
0
xooooxx 17/6 8/3 23/12 −19/12

Case 4.5 oxxxooxoox
0
xooooxx 17/6 8/3 2 −3/2

Case 4.6 x
p0

x
p1

x
p2

ooooxoox
0
xooooxx 17/6 17/6 17/6 2 ∗ 8/3 + 17/6 −1/2−5/6

Case 4.7 xoox
p
ooxoox

0
xooooxx 17/6 8/3 5/2 5/2 −3/2

Case 4.8 oxox
p
ooxoox

0
xooooxx 17/6 8/3 8/3 7/3 −3/2

Case 4.9 ooxxooxoox
0
xooooxx 17/6 8/3 2 −3/2

Case 4.10 ooox
p
ooxoox

0
xooooxx 17/6 8/3 8/3 8/3 −7/6

Notice that the vertices 0, 1 and n−3 cannot receive any extra share from the rules. In addition,
the codewords marked by p also do not receive share by the rules. Now let us consider the special
case Case 4.6. The vertices p2 and p1 do not receive share from the rules. If the vertex p0 does
not receive extra share, then the drop is enough. However, the vertex p0 can get a share from
the left by the rules R1 or R2. Suppose first that p0 (the vertex n − 10) receives 5/12 units of
share by the rule R1 from the vertex n−15. But then the vertices n−14 and n−15 belong to C
and thus s(p2) ≤ 8/3, s(p1) ≤ 7/3 and s(p0) ≤ 13/6. Hence the new drop (taking into account
the vertices 0, 1, n− 3, p0, p1 and p2) is at least −7/3. So even with the extra share the drop is
enough −7/3+ 5/12 = −23/12. Assume then that p0 gets extra share 7/12 by the rule R2 from
n− 14 (which belongs to C). Now s(p2) ≤ 8/3, s(p1) ≤ 17/6 and s(p0) ≤ 13/6. Consequently,
the drop of the six vertices is at least −11/6 and with the extra share −11/6 + 7/12 = −5/4,
which is enough.

In all the cases studied above, we get that the drop of the share is strictly more than 1. Recall that
we consider the cases n ≡ 2, 5 (mod 6). We write n as 3k+2, which implies n ≡ 2 (mod 6) for k ≡ 0
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(mod 2) and n ≡ 5 (mod 6) otherwise. Therefore, we have, for some ε > 0:

n =
∑
i∈C

ss(i) ≤ 3|C| − 1− ε ⇔ 3k + 2 + 1 + ε ≤ 3|C|

⇔ k + 1 +
ε

3
≤ |C|

⇒
|C|∈N

k + 2 ≤ |C|

This implies that |C| ≥ �n/3�+ 1.
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Alice’s strategy (details)

Here we give the details of Alice’s strategy and we prove the announced bounds. Recall Alice’s strategy:

Alice’s strategy is as follows: she starts by doing a neutral move (i.e.an inactive edge having no marked
father nor uncle) . Each time Bob marks an arc or an edge, say e1/

−→e1 , Alice selects her next move by
following the steps illustrated in Figure C.0.1 and described below.
To simplify the notations, we are not drawing the arrows of arcs in the description of the strategy.

Start: Assume the edge/arc she is considering is ei then:

1. if ei is inactive (or if e1 was inactive before Bob marked it), Alice activates it and:

(a) if ei has an unmarked father in
−→
A∞, f , then ei+1 = f , and she goes back to Start;

(b) if j is the smallest index for which ei has an unmarked father on
−→
A j , f , then ei+1 = f and she

goes back to Start;

(c) if j is the smallest index for which ei has an unmarked brother on
−→
A j , then she marks it;

(d) if ei has an unmarked uncle, then Alice marks it;

2. if ei is active:

(a) if it is marked, then Alice does a neutral move;
(b) otherwise, Alice marks it.

Please remark that considering an edge for the first time means to activate it (and to mark it if it is a
brother or an uncle of the previous considerated one). The second time an edge is considered, it is marked
(if it is not).

Observation C.1 (by rules {1} and {2}) In all strategies, each arc of �A is considered at most twice.

Notice that from the definitions we obtain directly:

Observation C.2 For every arc �e of �A, |F (�e)|+ |B(�e)|+ |U(�e)| ≤ Δ(G)− 1. Moreover,

• if �e ∈ �A∞, then |P∞(�e)| ≤ a− 1, |P−(�e)| ≤ k and |C(�e)| ≤ d;

• if �e ∈ �A−, then |P∞(�e)| ≤ a, |P−(�e)| ≤ k − 1 and |C(�e)| ≤ d.

In fact, with this strategy as it is, our results were not interesting, hence we decided to mix up the stages
of selection of vertices by moving around the stages 2(b), 2(c) and 2(d). The i − j − k-strategy, for
i, j, k ∈ {b, c, d}, is the strategy were those stages are ordered 2(i) first, 2(j) second and 2(k) third. We say
i > j if step 2(i) comes before 2(j), as well γi>j = 1 if i > j and 0 otherwise. We introduce the maximum
degree of the bounded forests as Sk =

∑k
�=1 d� and we define three values depending on the order of the

three exchangeable steps:
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Start

activate

Start

Start

Start

mark

mark

mark

mark

neutral

FA∞

FA1

FAk

BA1

BAk

U or BD

not active

active

marked

not marked

Figure C.0.1: Sketch of the selection recursion.

• μ1 = 2a+ (1− γc>b)2k + γd>bd+ γc>b2Sk,

• μ2 = 4a+ (γb>c − γc>b)2k + (γd>b + γd>c)d+ (A+ γc>b)2Sk − 2,

• μ3 = 2a+ (γb>d − γc>d)2k + γc>d2Sk + d.

Lemma C.3 In every game and for a given strategy,

1. when an arc �e ∈ �A∞ is marked, it has at most 2a sons already marked.

2. when an arc �e ∈ A− is marked, the number of its already marked sons is at most μ1.

3. when an arc �e ∈ A− is marked, the number of its sons and brothers already marked is at most μ2.

4. when an edge e = uv ∈ D is marked, the number of marked sons adjacent to u is at most μ3.
Moreover the total number of already marked sons of e is at most 2μ3 − 1.

Proof. We define Sk =
∑k

l=1 dl.

1. Each time a son of �e ∈ �A∞ is activated, Alice considers an arc of {�e} ∪ P∞(�e) (of size at most a
by Observation C.2) by rule 2(a). By Observation C.1 an arc/edge is considered at most twice (and
marked the second time). Thus �e is marked when at most 2a of its sons are marked.

2. Take an unmarked arc �e ∈ �A−. Each time a son of �e is activated, one of the following may occur:
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• By rule 2(a), Alice considers an arc of P∞(�e). By Observation C.1, this happens at most 2a
times. This gives at most 2a marked sons by this rule.

• By rule 2(b), Alice considers an arc of {�e} ∪ P−(�e). The arc �e is marked right after or already
marked when this happens 2k times. This gives at most 2k marked sons by this rule.

• By rule 2(c), Alice marks an arc of S−(�e). This can happen only if c > b, otherwise, by rule
2(b), �e is already marked. It happens at most

∑k
l=1(dl− 1) = Sk −k times. Note that each time

Alice does it, it is because another arc of S−(�e) was activated or marked just before. This gives
at most 2γc>b(Sk − k) marked sons by this rule.

• By rule 2(d), Alice marks an edge of C(�e). As �e is unmarked, this can happen only if d > b and
at most d times. This gives at most γd>bd marked sons by this rule.

Thus �e is marked when at most (2a+ 2k) + 2γc>b(Sk − k) + γd>bd = μ1 sons are marked.

3. Take an arc �e ∈ �A−, say �e ∈ �A∞ for some 1 ≤ i ≤ k. As seen in the previous case, when μ1 sons of
�e are marked, then if �e is not, it is immediately marked by Alice.
Each time �e or a brother of �e is marked, one of the following may occur:

• Alice considers an arc of F∞(�e) by rule 2(a). This may only occur 2a times, which gives at most
2a brothers.

• Alice considers an arc of F−(�e) by rule 2(b). As �e is unmarked, this may only occur if b > c and
only 2k times. This gives at most γb>c2k brothers.

• Alice marks an arc of {�e} ∪B(�e) by rule 2(c). If this occurs Sk − k times, arc �e is marked right
after or already marked. As above, each time Alice does it, is because another arc of {�e} ∪B(�e)
has been activated or marked. This gives in total 2(Sk − k)− 1 brothers marked before �e.

• Alice marks an edge of U(�e) by rule 2(d). This occurs only if d > c and at most d times. This
gives γd>cd brothers.

Be careful, if |Sm(�e)| = μ1, then �e is marked right after. Thus �e is marked right after |Sm(�e)| ≥ μ1

or right after rule 2(c) happens Sk − k times. This means that, when �e is marked, it has at most:

(μ1 − 1) + (2a) + (γb>c2k) + (2(Sk − k)− 1− 1) + (γd>cd) + 1

sons and brothers already marked.
In total

μ2 = 4a+ (γb>c − γc>b)2k + (1 + γc>b)2Sk + (γd>b + γd>c)d− 2

sons and brothers already marked.

4. Take an edge e = uv ∈ D. Each time a son of e adjacent to u is marked, one of the following may
occur:

• Alice considers an arc of F∞(�e) adjacent to u by rule 2(a). This may only occur 2a times.
• Alice considers an arc of F−(�e) adjacent to u by rule 2(b). This may only occur if b > d and

only 2k times.
• Alice marks an arc of S−(�e) adjacent to u by rule 2(c). As e is unmarked, this may only occur

if c > d and at most −k+
∑

1≤l≤k dl times. This makes in total at most 2(Sk − k) sons marked.
• Alice marks an edge of {e} ∪B(�e) by rule 2(d). Arc �e is marked if it occurs d times.

Thus the number of sons of e adjacent to u marked before e is at most μ3. This is also true for v,
but e is marked right after one of these bounds is reached, so the total number of sons of e marked
before is at most 2μ3 − 1.
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Theorem C.4 For any F+(a, {d1, . . . , dk}, d)-decomposable graph $G $,

col(G) ≤ max {x1, x2, x3} ,

with

x1 = Δ+ 3a+ k + d− 1

x2 = min{Δ+ μ1 + a+ k + d− 1, μ2 + 2a+ 2k + 2d}
x3 = min{Δ+ μ3 + a+ k + d− 1, 2μ3 + 2a+ 2k + 2d− 2}

Proof. Consider Alice uses one of our strategies. For any arc or edge of G, we give an upper bound on
the number of adjacent arcs and edges already marked, using Observation C.2.

• First take an arc �e ∈ �A∞. It has at most Δ − 1 fathers, uncles and brothers, at most a + k − 1
partners, d cousins, and when it is marked, it has at most 2a sons already marked by Lemma C.3.1.
Thus it has at most Δ+ 3a+ k + d− 2 neighbors marked before itself.

• Now take an arc �e = uv ∈ �A−. At the endvertex v there is at most Δ− 1 arcs and edges. Depending
on the value of Δ it is more interesting to count the number of already marked arcs and edges instead
of the general bound Δ− 1. We study both cases.

– It has at most Δ − 1 fathers, brothers and uncles, at most a + k − 1 partners and at most d
cousins. By Lemma C.3.2, we know that when �e is marked, its number of sons already marked
is bounded by μ1. Altogether, �e has at most Δ+ μ1 + a+ k + d− 2 neighbors already marked.

– Edge �e has at most a+k fathers, a+k−1 partners, d uncles and d cousins. Using Lemma C.3.3,
we know �e has at most μ2 sons and brothers already marked, and so μ2 + 2a + 2k + 2d − 1
neighbors marked before itself.

• Finally, take an edge e ∈ D. As above, we study the general bound Δ − 1 at one endvertex v and
the number of already marked arcs and edges at both endvertices.

– Edge e = uv has at most Δ − 1 adjacent edges adjacent to vertex v. It also has at most a + k
fathers and d−1 brothers adjacent to u. When it is marked, by Lemma C.3.4, it has at most μ3

sons indicent to u already marked. Altogether, in this case, e has at most Δ+μ3+a+ k+ d− 2
neighbors marked before itself.

– Edge e has at most 2a+2k fathers and at most 2d−2 brothers. When e is marked, its number of
marked sons is bounded by 2μ3− 1 by Lemma C.3.4. Thus e has at most 2μ3+2a+2k+2d− 3
neighbors marked before itself.

Therefore this gives

col(G) ≤ 1 + max

⎧⎨
⎩

Δ+ 3a+ k + d− 2, (A∞)
min{Δ+ μ1 + a+ k + d− 2, μ2 + 2a+ 2k + 2d− 1}, (A−)
min{Δ+ μ3 + a+ k + d− 2, 2μ3 + 2a+ 2k + 2d− 3} (D)

⎫⎬
⎭ .

This completes the proof.

We display in Table C.0.1 the details of Theorem C.4 for each of Alice’s strategy.
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Table C.0.1: Upper bounds of col for a F+-decomposable graph (Theorem C.4)

Strategy A∞ A−
b− c− d

Δ+ 3a+ k + d− 1

Δ + 3a+ 3k + d− 1 6a+ 4k + 2d+ 2Sk − 2
b− d− c Δ+ 3a+ 3k + d− 1 6a+ 4k + 3d+ 2Sk − 2
c− b− d Δ+ 3a+ k + d+ 2Sk − 1 6a+ 2d+ 4Sk − 2
c− d− b Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 3d+ 4Sk − 2
d− b− c Δ+ 3a+ 3k + 2d− 1 6a+ 4k + 4d+ 2Sk − 2
d− c− b Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 4d+ 4Sk − 2

Strategy D
b− c− d Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 2k + 4d+ 4Sk − 2
b− d− c Δ+ 3a+ 3k + 2d− 1 6a+ 6k + 4d− 2
c− b− d Δ+ 3a+ k + 2d+ 2Sk − 1 6a+ 2k + 4d+ 4Sk − 2
c− d− b Δ+ 3a− k + 2d+ 2Sk − 1 6a− 2k + 4d+ 4Sk − 2
d− b− c Δ+ 3a+ k + 2d− 1 6a+ 2k + 4d− 2
d− c− b Δ+ 3a+ k + 2d− 1 6a+ 2k + 4d− 2
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