Étude expérimentale et simulation numérique de l’usinage des matériaux en nids d’abeilles : application au fraisage des structures Nomex® et Aluminium

par Mohamed Jaafar

Thèse de doctorat en Énergie et mécanique

Sous la direction de Mohammed Nouari.

Le président du jury était Abdelhadi Moufki.

Le jury était composé de Laurent Guillaumat, Frédéric Jacquemin, Madalina Calamaz, Hamid Makich, Xavier Soldani.

Les rapporteurs étaient Laurent Guillaumat.


  • Résumé

    L'utilisation des structures sandwichs composées d’âme en nid d'abeilles et de peaux a considérablement augmenté ces dernières années dans plusieurs secteurs industriels tels que l’aéronautique, l’aérospatiale, le navale et l’automobile. Cet intérêt croissant pour ces matériaux alvéolaires est principalement lié à leur faible densité et meilleur rapport masse/rigidité/résistance en comparaison avec les alliages métalliques ou les matériaux composites classiques. Cependant, leur constitution rend souvent les opérations de mise en forme par usinage compliquées et difficile à mener à cause de l’usure prématurée des outils coupants et l’endommagement important induit en subsurface des pièces. En effet, les vibrations importantes des parois minces du nid d’abeilles sont une source de plusieurs problèmes comme la mauvaise qualité des surfaces usinées, les fibres non coupées, délaminage, défauts, etc. Les travaux de cette thèse s’intéressent à la compréhension du comportement des structures nids d’abeilles composite (Nomex®) et métallique (aluminium) en usinage. L’enlèvement de matière par fraisage présente pour ces matériaux plusieurs verrous scientifiques et technologiques. Une analyse expérimentale a permis d’identifier dans un premier temps les phénomènes physiques mis en jeu lors de la formation des copeaux et les interactions entre les arêtes de coupe et les parois minces des cellules de la structure alvéolaire. Un intérêt particulier a été porté sur la caractérisation des défauts induits dans le matériau par les différentes parties composant la fraise, le déchiqueteur et le coteau. Deux protocoles expérimentaux ont été mis en place afin de qualifier la qualité et l’intégrité des surfaces usinées. Ils tiennent compte de la particularité des âmes en nid d'abeilles : composite ou métallique, leur géométrie alvéolaire, leur densité et l’épaisseur fine des parois. Un nouveau critère de qualité a été établi et proposé en tant qu’indicateur d’endommagement pour le suivi de l’état des surfaces alvéolaires fraichement usinées. Basée sur l’analyse statistique de Taguchi, une hiérarchisation des paramètres d’usinage et leur influence sur le comportement de ces matériaux ont été ensuite réalisées. Par ailleurs, l’usure des outils de coupe a été étudiée selon le couple outil-matériau usiné et les conditions de fraisage choisies. Comme l’a montré l’étude expérimentale, l’optimisation des paramètres d’usinage via une approche expérimentale seule est souvent longue et coûteuse. La simulation numérique peut apporter une aide complémentaire et constituer un outil intéressant pour l’analyse de la physique de la coupe des nids d’abeilles. Dans cette optique et en deuxième partie de la thèse, un modèle numérique par éléments finis a été spécifiquement développé pour la simulation du fraisage 3D des matériaux nids d’abeilles. Pour le Nomex®, deux lois de comportement mécanique couplées avec l’endommagement ont été identifiées et implémentées via la subroutine VUMAT dans Abaqus explicit. Pour simuler la formation des copeaux, deux critères de rupture (Hashin et Tsai-Wu) avec chute de rigidité ont été exploités. Les résultats du calcul numérique et ceux des essais expérimentaux ont montré une bonne concordance en termes de mécanismes de formation des copeaux, d’efforts de coupe et de modes d’endommagement

  • Titre traduit

    Experimental study and numerical simulation of the machining of honeycomb structures : Milling application for Nomex® and Aluminium structures


  • Résumé

    The use of sandwich structures made with honeycomb core and skins has considerably increased these last years in several industrial sectors such as aeronautics, aerospace, naval and automotive. This growing interest for the alveolar materials is mainly related to their low density and better mass/stiffness/strength ratio compared to metal alloys or conventional composites. However, their constitution makes machining operations complicated and difficult to control because of the premature cutting tool wear and the significant damage induced in the workpiece. In fact, the important vibrations of the thin honeycomb walls are a source of several problems such as the poor surface quality, uncut fibers, delamination, defects, etc. This work deals with the understanding of the honeycomb composites behavior and metallic during machining. The material removal process by milling of these materials presents several scientific and technological challenges. Firstly, an experimental analysis has been used to identify the physical phenomena involved during the chip formation process and generated by the interactions between the cutting edge and the honeycomb cell walls. A particular interest was focused on the characterization of defects induced in the material by different parts of the cutter, the shredder and the saw blade. Two experimental protocols have been set up to qualify the quality and integrity of the machined surface. They consider the particularity of the honeycomb cores: composite or metallic, their geometry, and the thin wall thickness. A new quality criterion has been established and proposed as a damage indicator to monitoring the machining process and choice optimal cutting conditions. Based on Taguchi's statistical analysis, a hierarchy of the machining parameters and their influence on the behavior of these materials have then realized. In addition, the wear of cutting tools has been studied according to the selected tool-material couple and milling conditions. The optimization of machining parameters is often long and expensive only via experimental approach. Modelling and numerical simulation can provide complementary support with an interesting numerical tool to analyze the physics of cutting honeycombs. In this perspective and in the second part of the PhD thesis, a finite element numerical model has been especially developed for the 3D milling operation. For Nomex®, two coupled mechanical-damage behavior laws have been identified and implemented in Abaqus explicit subroutine VUMAT. To simulate the chip formation process and induced subsurface damage, two fracture criteria (Hashin and Tsai-Wu) with stiffness degradation concept have been operated. The comparison between the numerical simulation results and experimental data shows a good agreement in terms of the chip formation mechanisms, cutting forces and damage modes


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.