Estimation d’énergies de GIBBS de solvatation pour les modèles cinétiques d’auto-oxydation : développement d’une banque de données étendue et recherche d’équations d’état cubiques et SAFT adaptées à leur prédiction

par Edouard Moine

Thèse de doctorat en Génie des procédés, des produits et des molécules

Sous la direction de Romain Privat et de Baptiste Sirjean.

Le président du jury était Lourdes F. Vega.

Le jury était composé de Guillaume Galliéro.

Les rapporteurs étaient Lourdes F. Vega, Guillaume Galliéro.


  • Résumé

    Les réactions d’oxydation d’hydrocarbures en phase liquide (aussi appelées auto-oxydation) jouent un rôle essentiel dans un grand nombre de procédés de l’industrie pétrochimique car elles assurent la conversion du pétrole en composés chimiques organiques valorisables. Elles régissent également la stabilité à l’oxydation des carburants (vieillissement) et des produits chimiques dérivés du pétrole. Ces réactions d’oxydation en phase liquide relèvent de mécanismes radicalaires en chaîne impliquant des milliers d’espèces et de réactions élémentaires. La modélisation cinétique de tels systèmes reste actuellement un défi car elle nécessite de disposer de données thermodynamiques et cinétiques précises, qui sont rares dans la littérature. Le logiciel EXGAS, développé au LRGP, permet de générer automatiquement des modèles cinétiques détaillés pour des réactions d’oxydation d’hydrocarbures en phase gazeuse. Qu’il s’agisse d’une phase gazeuse ou liquide, les réactions élémentaires mises en jeu sont de même nature et la méthodologie de génération du mécanisme est la même. Pour passer d’un mécanisme en phase gaz à un mécanisme en phase liquide il convient d’adapter les valeurs des constantes d’équilibre et de vitesse (appelées constantes thermocinétiques) des réactions du mécanisme. L’objectif de cette thèse est de proposer une méthode pour corriger les constantes thermocinétiques de la phase gaz pour qu’elles deviennent applicables à la phase liquide. Cette correction fait intervenir une grandeur appelée énergie de GIBBS de solvatation molaire partielle. Une analyse de la définition précise de cette quantité nous a permis de montrer qu’elle s’exprime simplement en fonction d’un coefficient de fugacité et d’une densité molaire. Nous avons ensuite relié cette grandeur à des quantités thermodynamiques mesurables (coefficients d’activité, constantes de HENRY …) et nous nous sommes appuyés sur toutes les données qu’il nous a été possible de trouver dans la littérature pour créer la banque de données expérimentales d’énergies de GIBBS de solvatation molaires partielles la plus complète (intitulée CompSol). Cette banque de données a ensuite servi à valider l’utilisation de l’équation d’état UMR-PRU pour prédire ces énergies. Les bases d’une équation d’état de type SAFT, au paramétrage original, développé dans le cadre de cette thèse, ont été posées. Notre objectif était de simplifier l’estimation des paramètres corps purs de cette équation d’état en proposant une méthode de paramétrage ne nécessitant aucune procédure d’optimisation, claire et reproductible, à partir de données très facilement accessibles dans la littérature. Cette équation a été utilisée pour estimer les énergies de GIBBS de solvatation molaires des corps purs et les énergies de GIBBS de solvatation molaires partielles de systèmes {soluté+solvant}. Enfin, ces méthodes d’estimation des énergies de GIBBS de solvatation molaires partielles ont été combinées au logiciel EXGAS afin de modéliser l’oxydation du n-butane en phase liquide

  • Titre traduit

    Estimation of Gibbs energies of solvation for autooxidation kinetics models : Creation of a comprehensive databank and development of cubic ans SAFT equations of state for their prediction


  • Résumé

    Liquid phase oxidation of hydrocarbons (also called autoxidation) is central to a large number of processes in the petrochemical industry as it plays a key role in the conversion of petroleum feedstock into valuable organic chemicals. This phenomenon is also crucial in oxidation-stability studies of fuels and its derivatives (aging). These liquid-phase oxidation reactions entail radical mechanisms involving more than thousands of compounds and elementary reactions. Kinetic modelling of these kinds of reactions remains a significant challenge because it requires thermodynamic and kinetic parameters, which are not abundant in literature. The EXGAS software, developed at LRGP, is able to generate these kinds of models but only for oxidation reactions taking place in a gaseous phase. It is assumed that the nature of elementary reactions in the liquid and gaseous phases is the same. The unique need to transfer a kinetic mechanism from a gas phase to a liquid phase is to update kinetic rate constant values and equilibrium constant values (called thermokinetic constants) of mechanism reactions. Therefore, in the framework of this PhD thesis, a new method aimed at applying a correction term to thermokinetic constants of gaseous phases is proposed in order to obtain constants usable to describe liquid-phase mechanisms. This correction involves a quantity called partial molar solvation GIBBS energy. An analysis of the precise definition of this property led us to conclude that it can be simply expressed as a function of fugacity coefficients and liquid molar density. As a result, this property could also be expressed with respect to measurable thermodynamic quantities as activity coefficients or HENRY’s law constants. By combining all the experimental data related to these measurable properties that can be found in the literature, it was possible to develop a comprehensive databank of partial molar solvation GIBBS energies (called the CompSol database). This database was used to validate the use of the UMR-PRU equation of state to predict solvation quantities. Moreover, the bases of a new parameterization for SAFT-type equations of state were laid. It consists in estimating pure-component parameters of SAFT-like equation using a very simple, reproducible and transparent path for non-associating pure components. This equation was used to calculate partial molar GIBBS energy of solvation of pure and mixed solutes. Last, equations of state were combined with EXGAS software to model the oxidation of n-butane in the liquid phase


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine. Direction de la documentation et de l'édition. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.