Thèse soutenue

Estimation d'état, estimation paramétrique et identifiabilité des modèles quasi-LPV

FR  |  
EN
Auteur / Autrice : Krishnan Srinivasarengan
Direction : Christophe AubrunDidier Maquin
Type : Thèse de doctorat
Discipline(s) : Automatique, Traitement du signal et des images, Génie informatique
Date : Soutenance le 28/06/2018
Etablissement(s) : Université de Lorraine
Ecole(s) doctorale(s) : École doctorale IAEM Lorraine - Informatique, Automatique, Électronique - Électrotechnique, Mathématiques de Lorraine (1992-....)
Partenaire(s) de recherche : Laboratoire : Centre de recherche en automatique (Nancy)
Jury : Président / Présidente : Eric Levrat
Examinateurs / Examinatrices : Carine Jauberthie, Marcin Witczak, Fatiha Nejjari
Rapporteurs / Rapporteuses : Carine Jauberthie, Marcin Witczak

Résumé

FR  |  
EN

Dans cette thèse, deux problèmes liés aux approches basées sur des modèles pour le diagnostic de défauts et l'estimation du niveau de dégradation des équipements dans un bâtiment sont étudiés: la conception d'observateurs adaptatifs pour l'estimation de l'état et des paramètres, et l'analyse de l'identifiabilité des paramètres. La classe des modèles considérés est celle des modèles quasi-linéaires à paramètres variants dans le temps (quasi-LPV) avec paramétrisation affine des matrices d'état. Utilisant l'approche polytopique de Takagi-Sugeno (T-S), deux types d'observateurs sont proposés, un pour des systèmes en temps continu et l'autre pour des systèmes en temps discret. La structure de Luenberger (correction de la dynamique à l'aide de l'erreur d'estimation de la sortie) est choisie pour la partie d'estimation d'état de l'observateur pour les deux et leur conception s'appuie sur l'approche de Lyapunov. Pour la partie d'estimation des paramètres, une structure originale est proposée en temps continu et une structure proportionnelle-intégrale (PI) est utilisée en temps discret. La troisième contribution présente succinctement une méthode d'estimation d'état et des paramètres de façon découplée. Elle utilise conjointement l'approche de l'espace de parité et un observateur à mémoire finie. Pour la quatrième contribution relative à l'identifiabilité des paramètres, les états du système sont tout d'abord éliminés en utilisant une approche de type espace de parité. Cela permet d'extraire le `résumé exhaustif' du modèle qui aide à établir l'identifiabilité du modèle. Tous les résultats sont illustrés à l'aide d'exemples