Modélisation multi-échelle de la déformation d’alliage de zirconium sous irradiation

par Benjamin Christiaen

Thèse de doctorat en Physique et Science des Matériaux


  • Résumé

    Les alliages de zirconium sont utilisés pour fabriquer des gaines de combustible ainsi que des assemblages combustibles des réacteurs nucléaires à eau sous pression. Sous irradiation, ils montrent un changement dimensionnel communément appelé croissance. Des observations expérimentales ont montré qu'au-dessus d'une dose seuil, ces alliages sont sujets à une croissance accélérée appelée "breakaway". Il a été bien établi que la formation sous irradiation de boucles de dislocation ‹a› et ‹c› est directement responsables de la croissance des alliages de zirconium sous irradiation et que l’apparition des boucles ‹c› est corrélée avec cette accélération de croissance. Cependant, les mécanismes de germination des boucles qui semblent influencés par la présence d’éléments d’alliage sont encore mal compris. Afin d'améliorer notre compréhension des mécanismes élémentaires, une approche multi-échelle a été utilisée pour simuler l'évolution de la microstructure du zirconium sous irradiation. Des calculs à l’échelle atomique basés sur la théorie de la fonctionnelle de la densité (DFT) et sur des potentiels empiriques sont utilisés dans un premier temps pour déterminer les propriétés des amas de défauts ponctuels (boucles de dislocation, cavités, pyramides de fautes d’empilement). Les résultats obtenus sont ensuite insérés en tant que paramètres d'entrée dans un code Monte Carlo cinétique d'objet (OKMC) qui nous permet de simuler l’évolution de la microstructure du matériau sous irradiation, et donc de prédire la croissance. Nos résultats montrent qu’il est nécessaire de considérer une migration anisotrope de la lacune pour prédire l’accélération de croissance.

  • Titre traduit

    Multiscale modeling of the deformation of zirconium alloy under irradiation


  • Résumé

    Zirconium alloys are used to manufacture fuel cladding as well as fuel assemblies of pressurized water nuclear reactors. Under irradiation, they show a dimensional change commonly called growth. Experimental observations have shown that above a threshold dose, these alloys are subject to accelerated growth called "breakaway". It has been well established that the irradiation formation of <a> and <c> dislocation loops is directly responsible for the growth of irradiated zirconium alloys and that the appearance of <c> loops is correlated with this growth acceleration. However, the nucleation mechanisms of the loops that seem to be influenced by the presence of alloying elements are still poorly understood. In order to improve our understanding, a multi-scale modelling approach has been used to simulate the evolution of zirconium microstructure under irradiation. Atomic-scale calculations based on the density functional theory (DFT) and empirical potentials are used to determine the properties of clusters of point defects (dislocation loops, cavities, pyramids of stacking faults). The results obtained are then used as input parameters of an object kinetic Monte Carlo (OKMC) code which allows us to simulate the microstructure evolution of the material under irradiation. Our results show that it is necessary to consider an anisotropic migration of the vacancies to predict the growth acceleration.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université des sciences et technologies de Lille. Service commun de la documentation. Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.