Outils de synthèse pour les réseaux réflecteurs exploitant la cellule Phoenix et les réseaux de neurones

par Vincent Richard

Thèse de doctorat en Télécommunications

Sous la direction de Renaud Loison.

Soutenue le 05-04-2018

à Rennes, INSA , dans le cadre de École doctorale Mathématiques et sciences et technologies de l'information et de la communication (Rennes) , en partenariat avec Université Bretagne Loire (Comue) , Thales alenia space (entreprise) , Centre spatial de Toulouse (EPIC) et de Institut d'Electronique et de Télécommunications de Rennes / IETR (laboratoire) .


  • Résumé

    Menée en partenariat avec Thales Alenia Space et le Centre National d’Etudes Spatiales (CNES), cette thèse s’inscrit dans un contexte international très actif sur une nouvelle technologie de systèmes antennaires : les réseaux réflecteurs (RA). Combinant les atouts des réflecteurs classiques et ceux des réseaux, les RA pourraient remplacer, à terme, les réflecteurs formés utilisés aujourd’hui. Ils sont constitués d’une source primaire placée en regard d’un réseau de cellules contrôlant les propriétés du champ électromagnétique réfléchi. Si de nombreuses études portent déjà sur la caractérisation des cellules, une des problématiques consiste à les sélectionner judicieusement pour réaliser l’antenne finale : c’est l’étape de synthèse.Un tour d’horizon consacré aux différentes méthodes de synthèse a révélé toute la complexité d’obtenir rapidement de bonnes performances simultanément sur les polarisations directes et croisées, pour une large bande de fréquences et pour la réalisation de diagrammes formés. La cellule Phoenix est sélectionnée dans ce travail pour ses bonnes propriétés puisqu’elle fournit l’ensemble de la gamme de phase suivant un cycle continu de géométries.Parce qu’une des contraintes dans la conception de RA est de maintenir des variations de géométries continues entre deux cellules juxtaposées à la surface du RA, un outil de représentation sphérique permettant de classer l’ensemble des cellules d’étude est proposé. Il répertorie judicieusement toutes les cellules sur une surface continue, fermée et périodique.Une nouvelle étape est franchie avec la conception de modèles comportementaux à l’aide de réseaux de neurones (ANN). Ces modèles permettent une caractérisation électromagnétique très rapide des cellules en termes de phase et d’amplitude des coefficients directs et croisées de la matrice de réflexion.L’originalité de l’algorithme de synthèse proposé dans ce travail se base sur l’utilisation combinée de la représentation sphérique et de la caractérisation rapide par ANN. Un outil d’optimisation de type min / max est utilisé pour améliorer les performances globales du panneau RA. Il est ensuite appliqué à un cas concret dans le cadre d’une mission de télécommunication.

  • Titre traduit

    Application à l’optimisation d’une antenne spatiale en bande C


  • Résumé

    In collaboration with Thales Alenia Space and the French Space Agency (CNES), this PHD takes part in a very active international context on a new antenna: the reflectarrays (RA).Combining the advantages of conventional reflectors and those of networks, RA could eventually replace the currently used shaped reflectors. They consist of a primary source placed in front of a network of cells controlling the properties of the reflected electromagnetic field. Although many studies already focus on the characterization of cells, one of the issues is to carefully select them to achieve the final antenna: this is the synthesis step.An overview of different synthesis methods revealed the complexity to quickly obtain good performance simultaneously on the co- and cross-polarizations, for a wide frequency band and for the realization of shaped radiation pattern. The Phoenix cell is selected in this work for its good properties since it provides the entire phase range following a continuous cycle of geometries.Because one of the constraints in the design of RA is to maintain continuous geometry variations between two juxtaposed cells on the layout, a spherical representation tool made it possible to classify all the studied cells. It judiciously lists all the cells on a continuous, closed and periodic surface.A new step is reached with the design of behavioral models using Artificial Neural Networks (ANN). These models enable to a fast electromagnetic characterization of cells in terms of phase and amplitude of the direct and cross coefficients of the reflection matrix.The originality of the synthesis algorithm proposed in this work is the combined use of the spherical representation and a rapid cell characterization by ANN. A min / max optimization tool is used to improve the overall performance of the RA panel. It is then applied to a concrete case as part of a telecommunication mission.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?