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Chapter 1

Introduction

The motivation of this study is the need for a mechanics-based approach to support the

treatment of ventral hernia to help surgeons in solving the problem of hernia recurrences.

Mathematical models are created to predict the mechanical behaviour of the implant-

abdominal wall system and they can be used in the optimization of ventral hernia repair

parameters. However, challenges such as the uncertainty related to natural variability

of abdominal tissue mechanics and difficulties accurate measurement of material model

parameters may occur in the modelling. Therefore, this study concerns an application of

uncertainty quantification methods in the models of the implant-abdominal wall system.

1.1 Ventral Hernia

A ventral hernia is a bulge of tissues through a gap in the muscalo-fascial system. The

hernia defect can be congenital, develop over time as a result of muscle weakness or

be caused by trauma. Nowadays hernia commonly occurs at the place of an incision

after other abdomen surgery (incisional hernia). In the study of Bensley et al. [10]

hernia developed in 12% of patients after major abdominal surgery and in 3.3% after

a laparoscopic operation. In France alone around 13 000 incisional hernia repairs are

performed each year with an annual cost of around 84 million euros when estimated

indirect cost related to sick leave etc. are included [56].

The treatment of ventral hernia is usually carried out by surgical intervention. An

implant in the form of a surgical mesh is connected by the surgeon to the abdominal

wall to cover the defect. It can be performed by an open or laparoscopic operation.

Laparoscopic ventral hernia repair (LVHR) is less invasive and is believed to be superior

to open repair in terms of short-term results [134, 142]. Although a smaller number

1



2 1. Introduction

of postoperative complications were observed in patients treated by the laparoscopic

method, the hernia recurrence rate is similar for both methods. Meshes for LVHR are

typically made from polypropylene, polyester or expanded polytetrafluoroethylene [46].

It is desirable to reduce the number of hernia recurrences and pseudo-recurrences related

to excessive bulging of the mesh. An increase of efficiency of hernia repair would have

not only a clinical impact, but also a societal and economical one. It has been estimated

that reduction of the recurrence rate only by 1% would save 32 million dollars just in the

US [132]. Despite a number of studies, there is no consensus on the material and type

of fixation which should be used in hernia repair [18].

Brown and Finch [20] wrote a medical review on surgical mesh choice which also de-

scribed the history of surgical meshes as implants in hernia repair. The use of surgical

meshes to reinforce the abdominal wall in hernia treatment began in 1958. Initially it was

believed that a higher tensile strength of implant led to better persistence of the repair.

However, patients after implantation of heavyweight surgical meshes suffered from pain

and movement restriction. The trend in thinking about the desired properties of im-

plants changed in the 1990s when biocompatibility of implants began to be investigated

and lightweight meshes appeared [96]. Attention started to be paid to abdominal wall

mechanics and physiology. Surgeons realized that knowledge about abdominal wall me-

chanics is crucial to finding efficient solutions for hernia repair [84]. Lightweight meshes

are designed to mimic the mechanics of the abdominal wall. Their large pore size im-

proves integration with human tissue and reduces problems of reaction to a foreign body

when compared to heavy meshes with small pore size. Biocompatibility of implants in

general in many medical applications is usually focused on biological and chemical in-

teraction between prosthetic material and native tissue [182] but Mazza and Ehret [115]

emphasized importance of mechanical biocompatibility in the case of implants in contact

with soft biological tissues.

1.1.1 Mechanics based approach for ventral hernia repair

In order to improve hernia treatment it is important to understand the mechanics of

the implant, abdominal wall, connection of the implant to the abdominal wall and the

behaviour of the whole system of the abdominal wall and implant. An extensive review

of studies on the mechanical approach to ventral hernia can be found in the paper by

Deeken and Lake [41].
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1.1.1.1 Surgical mesh

Klinge et al. [93] compared different meshes in terms of various mechanical properties

such as tensile strength and stiffness after integration into the tissue. Saberski et al. [138]

investigated the anisotropy of implants and identified elastic moduli in two directions of

the implant. In [172] the effect of sample size and strain rate was tested in a uniaxial

tensile test of surgical meshes. Biaxial tests with various ratios of applied stress were

performed in [37]. Biaxial and cyclic tests on surgical meshes were performed in [42, 137].

Cyclic tests were also performed in [173], where the importance of incorporating precon-

ditioning is discussed. The long-term behaviour of implanted meshes was studied in [72],

where explanted meshes with ingrowth tissue were tested. In [136] an experiment proto-

col is proposed to simulate the behaviour of ingrown meshes. The studies above showed

that surgical meshes are characterized by nonlinearity, anisotropy, dependence on load-

ing rate and loading history, and change of mechanical behaviour after implantation (for

example - due to the in-growth of tissue or resorption of implant components), which all

make it challenging to determine the set of criteria which are important for mechanical

compatibility with soft tissues [115]. Maurer et al. [114] proposed and experimental pro-

tocol composed of a set of test addressing the aforementioned characteristics of implants

in order to compare different surgical meshes with each other.

Mechanical compatibility can also be explored by computer simulation of the abdominal

wall-implant system [106, 107, 167], which requires a material model of the surgical mesh

with identified parameters. In [97] and [174] the nonlinear behaviour of implants is ap-

proximated by a piecewise affine model. Such a simplified approach is used in the similar

problem of technical textiles, which also show a nonlinear stress-strain relationship, e.g

in [3, 191]. In [174] the implant material was modelled as orthotropic, whereas in [4, 105]

a dense net material model appropriate for textile materials [94] was used. Transverse

isotropic hyperelastic model parameters were identified for chosen surgical meshes in

[71]. In [75] an orthotropic hyperelastic model is proposed and the change of effective

porosity under deformation is investigated. Surgical meshes are usually modelled as ho-

mogenous membranes e.g. [67]. However, models of surgical mesh structure have also

been proposed [68]. A structural model of textile surgical meshes was proposed in [135],

but the study was conducted in the context of pelvic reconstruction. Coronary stents

are another example of a device in contact with soft tissues wheremechanical behaviour

is studied by numerical analysis [25].
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1.1.1.2 Abdominal wall as a structure

The frontal abdominal wall (Figure 1.1) is composed of muscles, fascias, ligaments, fat

and skin. There are four pairs of muscles. In the central part lie the rectus abdominis

and in each lateral part, a composite of the external oblique, the internal oblique and the

transversus abdominis. Muscles are covered by aponeuroses, which in the central part

form the rectus sheath (Figure 1.2) covering the rectus abdominis and meet together in

the midline creating linea alba. Therefore the abdominal wall as whole is a composite

structure. What is more, some of the above-mentioned components are also consist of

different layers, for example, linea alba is composed of 3 layers.

Figure 1.1: Scheme of human abdominal wall layers; picture inspired by [112]

Experimental measurement on biological tissues is challenging from both a practical as

well as theoretical perspective [8]. Some characteristics of soft tissues which make them

difficult to study from the mechanical point of view and to model are: nonlinearity,

anisotropy, viscoelasticy, near incompressibility, dependence on the environment, growth

and remodelling [79].

As reported in the literature, some single components of the abdominal wall were tested:

linea alba [35, 36, 51, 60, 102], rectus sheath [1, 110, 113], fascia [65, 91], and abdominal

wall muscles [22, 28, 67]. Other authors have investigated the abdominal wall as a

whole composite [84, 130, 131, 153, 176]. The aforementioned studies investigated only

passive behaviour of muscles but the active contribution has also been studied [23, 24,

59]. The literature devoted to experimental studies on abdominal wall mechanics or its

components is summarized in Table 1.1, where a very short description of each work can

be found together with information as to whether the specimen was human or animal

and whether tested in vivo. It can be seen that the majority of existing research on
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Figure 1.2: Cross-section of human abdominal wall and organization of rectus sheath,
a) upper three-quarters of the rectus sheath b) lower one-quarter of the rectus sheath,

picture inspired by [44]

abdominal wall mechanics was performed ex vivo. The issues related to ex vivo testing

are: effect of freezing on mechanical behaviour of samples, effect of dehydration and rigor

mortis, sourcing of samples mainly from aged donors in the case of human tissue where

the behaviour can vary from that of younger tissues [41]. The mechanical behaviour

of samples extracted post-mortem may not fully correspond to the behaviour of living

tissues under physiological loading. Tests performed in the literature were conducted

under different conditions, which make them difficult to compare.

tissue ref. short description material properties in

vivo

tissue

species

AW [85] In vitro multiaxial tensile test

of abdominal wall (without skin

and fat). Result: elongations in

different directions for men and

women

7 7 human

LA [60] Description of linea alba architec-

ture, in vitro uniaxial tensile test

of linea alba

Young’s modulus of

linea alba in 3 direc-

tions, in 2 areas and for

men and women

7 human

Literature about experimental works on abdominal wall mechanics. Continued on next page
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Table 1.1 – continued from previous page

tissue ref. short description material properties in

vivo

tissue

species

AW [153],

[154]

Identification of abdominal wall

stiffness during inflation of the

abdomen in patients undergoing

laparoscopic surgery

Isotropic linear elastic

model; Young modulus

of whole abdominal wall

calculated for transverse

and longitudinal plane

3 human

LA,

RS,

ST

[74] In vitro uniaxial tensile test on

linea alba, rectus sheath and scar

tissue after median laparotomy

Rupture stress of LA,

RS and ST

7 human

F [65] In vitro uniaxial relaxation tests

of fascia in two directions

model of Maxwell-

Gurevich-Rabinovich

7 human

OM [23] Study of transmission of forces

during activity of oblique muscles

7 7 rabbit

EI IO [24] Ultrasound and electromyogra-

phy measurements to study me-

chanics of abdominal wall con-

traction

7 3 human

LA [51] In vitro uni- and biaxial tensile

tests on linea alba and compari-

son with in vivo study based on

MRI images. Relation between

uni- and biaxial tests and physi-

ological loadings

Young’s moduli and hy-

perelastic material law

in 2 directions.

7 human

RA

EO

OM

[67] In vitro uni-axial tension tests of

abdominal wall muscles in 2 di-

rections

Transverse isotropic

hyperelastic (Holzapfel-

Gasser-Ogden) model

of RA, EO and compos-

ites: EO with IO, IO

with TA and composite

of all oblique muscles

(EO-IO-TA)

7 rabbit

F [91] In vitro uniaxial tension test of

fascia in 2 directions

Secant modulus, maxi-

mal stress and maximal

stretch

7 human

Literature about experimental works on abdominal wall mechanics. Continued on next page
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Table 1.1 – continued from previous page

tissue ref. short description material properties in

vivo

tissue

species

RA

EO

IO

TA

[22] Uniaxial tensile test of single

muscles fibers and bundles of

fibers

elastic modulus of single

muscles fibers and bun-

dels of fibers

7 rat

RS [113] In vitro uni-axial tension test of

anterior RS

Damage model of RS 7 human

AW [169] Measurement of displacement of

point in abdominal wall during

various movements in order to

calculate range of strains

7 3 human

RS [1] Uniaxial tensile test of anterior

RS

Secant modulus at dif-

ferent strain levels, and

failure stress and corre-

sponding strain for dif-

ferent loading rates

7 human

AW [130] In vitro study of strains in inter-

nal and external surfaces of ab-

dominal wall subjected to pres-

sure and contact loading. Study

conducted for three states of ab-

dominal wall: intact, with hernia

and repaired with implant

7 7 pig

AW [131] Methodology of [130] applied to

human abdominal wall subjected

to pressure.

7 7 human

Literature about experimental works on abdominal wall mechanics. Continued on next page
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Table 1.1 – continued from previous page

tissue ref. short description material properties in

vivo

tissue

species

AW [176] Study of contributions of abdom-

inal wall layers to abdominal wall

response. Study included in vitro

investigatons on strains in the ab-

dominal wall surfaces subjected

to pressure (similarly to [131]).

The layers are sequentially dis-

sected to investigate their influ-

ence on the global response. In

addition, ultrasonographic elas-

tography was conducted, which

enabled identification of shear

elastic modulus.

Shear modulus of RA 7 human

OM

RA

LA

[28] Uniaxial relaxation test. Viscohyperelastic mate-

rial law

7 rabbit

RS [111] Uni- and biaxial tension test. Ogden model (matrix)

and exponential power

law model (fibres)

7 pig

LA [36] Uni- and biaxial tension test. Fibre reinforced Ogden

model

7 pig

LA [141] Planar tension test. Parameters of 3 hyper-

elastic material laws of

linea alba in different ar-

eas:

• Neo-Hookean

• Ogden

• Holzapfel-Gasser-

Ogden

7 pig

Literature about experimental works on abdominal wall mechanics. Continued on next page
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Table 1.1 – continued from previous page

tissue ref. short description material properties in

vivo

tissue

species

AW [146] Study based on concept of Song

et al [153]. Deformation of ab-

dominal wall subjected to in-

traabdominal pressure.

7 3 rabbit

AW [177] Use of ultrasound to perform

elastographic measurements of

abdominal wall muscles shear

modulus and local stiffness dur-

ing selected activities.

Shear modulus of RA,

EO, IO, TA and local

stiffness of LA, RA and

lateral muscles in two

directions

3 human

RA,

EO,

OB

[59] In vitro characterisation of active

behaviour of AW muscles

Model of active be-

haviour of abdominal

wall muscles.

7 rabbit

LA [102] Tensile tests on linea alba in

two directions performed under

confocal microscope in order to

find relation between mechani-

cal properties and organisation of

collagen and elastic fibers.

7 7 human

and

pig

LA [35] Uni- and biaxial tension test. The slope of the most

linear region of average

stress-stretch curves

7 human

AW [144] Study based on [153] and [146].

Inverse identification of abdomi-

nal wall properties

Isotropic hyperlastic

two-parameter material

law; abdominal wall as

composite with spatial

variation of parameters

3 rabbit

LA,RS [7] Uniaxial tensile tests on linea

alba and anterior and posterior

rectus sheaths from the same

donors

Tangent modulus for

small and large defor-

mations, Yeoh model

parameters

7 human

Table 1.1: Literature in chronological sequence about experimental works on abdom-
inal wall (AW) mechanics and their components: linea alba (LA),rectus sheats (RS),
rectus abdominis (RA), external oblique (EO), internal oblique (IO), transversus ab-
dominis (TA), composite EO-IA-TA — oblique muscles (OM), scar tissue (ST), fascia

(F)
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Song et al. [153] identified the elasticity of the human abdominal wall in vivo by measur-

ing the displacement of points on the abdominal wall during laparoscopic repair when the

abdomen is filled with gas and internal pressure is known. Simón-Allué et al. developed

this concept on an animal example [146] and proposed method to identify in vivo param-

eters of hyperelastic model with the spatial distribution within the abdominal wall [144].

Ultrasound is another possibility for in vivo characterization. Shear wave elastography

has been used to evaluate the stiffness of muscles in vivo [45, 54]. Tran et al [177] used

ultrasound to study the elasticity of the muscles of the abdominal wall.

The composite-laminate structure of the abdominal wall is discussed by Brown [21]. Slid-

ing effects between muscles are investigated in [13] by numerical simulations with a finite

element (FE) shell model of simplified geometry and with material parameters which

are not based on any study of abdominal wall mechanical properties. Hernández-Gascón

et al. [69] created a finite element model with realistic geometry based on MRI images

with material properties based on previous ex vivo studies on animal samples. FE model

with geometry based on CT scans with material parameters taken from literature ex vivo

studies on human samples was proposed by Pachera et al. [124]. Both of the mentioned

models were composed of solid tetrahedral elements (muscles) and membrane elements

(aponeuroses). An FE solid model for purposes of identification by inverse analysis [144]

was constructed based on measurements of the external geometry of the animal with the

assumption of constant thickness. Lubowiecka et al. [109] proposed a membrane FE

model of the abdominal wall and compared its response with measurements of patients

undergoing peritoneal dialysis, during which intraabdominal pressure can be measured.

The aforementioned FE models included only passive behaviour of abdominal wall mus-

cles.

1.1.1.3 Connection of implant to abdominal wall

Recurrences of hernia are usually caused by connection failure. Therefore attention must

be paid also to the fasteners joining the surgical mesh to the abdominal wall. Capacity

of the following types of fasteners used in ventral hernia repair was identified as reported

in literature: tacks and sutures [174] and glue [157]. The mechanical behaviour of suture

connection has also been studied in order to prevent hernia as a postoperative compli-

cation by specifying sufficient closure after other abdominal operations. For example,

Cooney et al. [34] tested different suture techniques on porcine linea alba subjected to

pressure.
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1.1.1.4 The system of abdominal wall with introduced implant

The behaviour of the system composed of the abdominal wall and implanted surgical

mesh was investigated both experimentally and numerically. Ex vivo experimental work

of abdominal wall tissues with implants was performed by Tomaszewska et al. [174]

and Podwojewski et al. [130, 131]. Kahan et al. [86, 87] performed in vivo tests

of performance of implants in the living porcine abdominal wall. Simón-Allué [147]

investigated the behaviour of the rabbit abdominal wall with implanted surgical meshes in

vivo and their FE model was validated. Also physical models exist, where the abdominal

wall is replaced by artificial materials [63].

Mathematical models of the abdominal wall with a surgical mesh can be used to predict

its mechanical behaviour and can be employed in the process of optimization of ventral

hernia repair parameters (such as implant properties). Models proposed in the literature

vary with complexity starting from simplification of the membrane structure of the sur-

gical mesh to a 1-dimensional cable model [168], through FE membrane models of the

surgical mesh with boundary conditions reflecting the behaviour of the abdominal wall

[104, 105, 163] and FE models with simplified geometry of the abdominal wall [67] to

complex models of the abdominal wall with realistic geometry and only passive behaviour

of muscles and properties based on ex vivo identification in human or animal samples

[70, 145, 171].

The procedure for optimisation of the choice of implant and its orientation was proposed

by Lubowiecka et al. [106], where the objective function was to minimise the maximum

force in the fasteners. This is because hernia recurrences are usually caused by connection

failure. Szymczak et al. [167] extended the procedure to two-criterion optimisation and

introduced also a criterion related to the implant deflection, which was motivated by the

medical issues of excessive implant bulging after LVHR.

1.1.2 Need of probabilistic approach

The complexity of mechanical behaviour of both biological tissues and implants, and

their interactions is not yet fully incorporated into the modelling of implant within

the abdominal wall system. Based on the literature studies mentioned above, it can

be concluded that many uncertainties appear in the modelling of athe bdominal wall

into which a surgical mesh has been implanted. Accurate identification of soft tissues

is challenging and standards of testing of such tissues have not yet been established.

Morever existing models of the abdominal wall with hernia and implant are based on ex

vivo tests on animal or human samples which may not correspond to the behaviour of
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living human tissues. Additonally natural material such as soft tissues are characterized

by natural variability, which could be observed in some of the aferomenitoned studies, e.g.

[169]. Imposed loads, e.g. intraabdominal pressure [33] are also uncertain. Therefore,

single deterministic simulations may not be sufficient to provide reliable information to

clinicians and to predict well the required data such as the forces in the fasteners or

the displacement of the surgical mesh. In order to address these issues, in this thesis

uncertainties will be included in the modelling of the implant and abdominal wall and

their influence on the uncertainty of the output will be investigated. To do so, uncertainty

quantification and sensitivity analysis methods are employed.

1.2 Uncertainty Quantification

Real systems differ from their models. Data variability and errors as well as model and

numerical errors occur in the simulations [100]. Manufactured or constructed objects

also differ from their initial design. Therefore, uncertainties should be included in the

modelling to better understand and predict the real behaviour of physical systems.

Uncertainty quantification (UQ) can be conducted with different objectives [100, 162]:

reliability or risk analysis, validation and verification of models, inverse parameter iden-

tification and others. In this thesis, UQ methods are employed mainly to study response

variation, which can be important for further optimization and drawing of conclusions

for the surgeons. The second purpose of using UQ is sensitivity analysis, the result of

which will be used to plan further research in an efficient manner.

A widely-used approach is to treat uncertain inputs as random variables (or processes,

fields) [184]. Following [158] an uncertainty analysis flowchart is presented in Figure 1.3.

The first step (A) is to define a model with a clearly defined input and output – quantity

of interest. In the second stage (step B), inputs which are uncertain because of insufficient

knowledge (epistemic uncertainty) or their natural variability (aleatoric uncertainty) are

identified. In this step a random vector of inputs is created. Probabilistic models can be

built from data statistics. However, sometimes sufficient data is not available. In such

a case, expert judgement can be used. In step C, one of the uncertainty propagation

methods is used. In the case of this thesis, that is Monte Carlo and the polynomial chaos

expansion method. Also, sensitivity analysis can be performed (step C’). Identification

of probabilistic models in the case of many inputs may be challenging and a sensitivity

analysis is able to determine, which parameters contribute significantly to the output

variation and which are insignificant. This enables reduction of the problem to smaller

number of random variables.
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Figure 1.3: Sketch of the uncertainty analysis following the concept of [158]

Models of the abdominal wall and implant are usually nonlinear geometrically and phys-

ically. The majority of models used in this thesis are created in commercial FE software

(MSC. Marc). These models require the application of nonintrusive UQ methods, which

are easily applicable even in the case of "black-box" models. Nonintrusive methods are

based on some number of deterministic runs of the model and do not require modifi-

cations of the model code. A widely used and easily applicable non-ntrusive method is

the Monte Carlo (MC) method [50]. However, this method requires a large number of

simulations, which make it very expensive computationally and therefore sometimes in-

tractable. Methods based on creating metamodels can be used to reduce computational

cost, for example the response surface [90, 183] and polynomial chaos (PC) expansion
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[11, 55]. Metamodels substitute models containing information about physics of phenom-

ena by analytical functions. PC is a method based on approximation of a computational

model by series of multivariate polynomials. PC in a nonintrusive variant by regression

is employed in this thesis. However, the accuracy of such nonintrusive methods depends

on the number and choice of sampling points. Some error estimation methods have been

developed [29] to address the need of verification of such metamodels. Finding a univer-

sally efficient method to provide a good balance between accuracy and computational

cost is still an open question. Therefore different approaches are tested on models of the

surgical mesh in order to find an efficient approach to PC in application to hernia related

models.

Uncertainty quantification methods including PC have also already been employed in

mechanics applied to medicine. Yang et al. applied PC to bone-implant healing model in

intrusive [188] and nonintrusive way [189] with standard choice of regression points [159].

Huberts et al. [78] compared two nonintrusive approaches to PC on a cardiovascular pulse

wave propagation model.

1.3 Objectives

The aim of this thesis is to investigate uncertainties in the modelling of surgical meshes

within the abdominal wall and to evaluate the sensitivity of the response of the model

to these uncertainties.

The majority of the models considered in this work represent the implant-abdominal wall

system in the context of laparoscopic ventral hernia repair (LVHR). They have various

levels of complexity and can be divided into two groups:

local models represent only the implant. The influence of the abdominal wall is in-

cluded through boundary conditions:

1. cable model of the implant,

2. model of the membrane subjected to displacement of the supports,

3. model of the membrane subjected to intraabdominal pressure,

global models are concerned with the behaviour of the combined system of the implant

and abdominal wall:

4. Membrane model of abdominal wall with implant.

The local model outputs on which this study is focused (quantities of interest) are per-

tinent to two medical problems of LVHR:
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hernia recurrence – usually caused by connection failure. Therefore, this analysis is

focused on the force in the fasteners connecting tissue to the implant;

excessive implant bulging [143], which can be considered as a kind of pseudo-recurrence

[178]. Thus, attention is also paid to the deflection of the implant.

The force in the fasteners and the deflection of the implant were incorporated in two-

criterion optimisation of the choice of implant [167]. In the case of the global model the

quantity of interest is the difference between the displacement of the centre of the implant

and the corresponding point in a healthy abdominal wall, as a measure of compatibility.

The models Considered are nonlinear and in some cases nonsmooth, which can be chal-

lenging for PC.

Different strategies for the choice of sampling points are considered and compared for

two local models of surgical mesh. The goal is to establish a methodology for uncertainty

propagation and global sensitivity analysis, which can be efficiently used in models related

to ventral hernia. The conclusions drawn from the first examples are then used to perform

uncertainty quantification and sensitivity analysis in other local and global models.

As an addition the expertise gained on nonlinear biomechanical models with high levels

of uncertainty is applied in the context traditional timber joints. Mechanical analyses

of such joints are important owing to the need of repair and renovation of buildings

of historic value. Wood, being a natural material, exhibits natural variability of its

mechanical properties, which depend on many factor such as moisture and region of

origin. However in historic buildings full measurements of the parameter of the particular

wood used is not possible. Therefore the study of uncertainty propagation and sensitivity

analysis in the mechanical model of these joints represents a valuable contribution to

conservation efforts.

1.4 Outline

The thesis is structured as follows:

Chapter 1 introduces the medical problem of ventral hernia repair, the state of the

art of biomechanical studies in this context, the idea of uncertainty and the main

objectives of the work.

Chapter 2 presents the theoretical background on uncertainty quantification and sen-

sitivity analysis methods. Attention is focused mainly on the polynomial chaos

expansion method and Sobol indices.
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Chapter 3 introduces different approaches to choice of sampling points in the polyno-

mial chaos expansion method and contains a comparison of these methods on one

benchmark function and two local models of implants used in ventral hernia repair

with versions containing different numbers of variables.

Chapter 4 presents the results of uncertainty propagation and sensitivity analysis in

the models related to ventral hernia already presented in chapter 3. Also further

local and global models are introduced. A method to choose regression points is

chosen based on conclusions drawn in chapter 3. Additionally the propagation of

uncertainties in models of traditional timber joints is studied.

Chapter 5 summarizes the work and includes conclusions and outline of future work



Chapter 2

Uncertainty quantification and

sensitivity analysis

LetM be a computational model. M is a deterministic mapping:

y =M(x), (2.1)

where x = [x1, . . . , xM ]
> ∈ RM , with number of variables M ≥ 1, is an input and y is

the output – the quantity of interest (QoI).

To represent uncertainty, let the input be written as a random vector X(ω), ω ∈ Ω with

joint probability density function (PDF) fX, where Ω is space of random events ω. Hence

the model response is also a random variable:

Y (ω) =M(X(ω)). (2.2)

For simplicity, ω is skipped in the following text.

Since the majority of models of the implant-abdominal wall system are created in FE

commercial "black-box" software, only non-intrusive methods are considered in this work.

Non-intrusive probabilistic methods are based on a series of deterministic calculations.

These types of method are more flexible and easier to apply because they do not require

any code modification. M can be a black-box function, which is known by the outcomes

of repeated single realizations, e.g. of computer FE code [158]:

y(i) =M(x(i)) (2.3)

17
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2.1 Uncertainty quantification methods

2.1.1 Sampling-based methods

2.1.1.1 Monte Carlo method

The Monte Carlo (MC) method [50] is one of the most widely-used methods. It is based

on repeated evaluations of the deterministic model M done for NMC sampling points

generated with a given PDF. On the basis of these calculations, statistical information can

be obtained. Let Xn = [X1n, X2n, . . . , XMn]> be n-th sample point, n = 1, 2, . . . NMC .

The meanM0 can be estimated by:

M0 ≈MMC
0 =

1

NMC

NMC∑
n=1

M(Xn) (2.4)

and the variance D by

D ≈ DMC =
1

NMC

NMC∑
n=1

(
M(Xn)

)2 − (MMC
0 )2. (2.5)

MMC
p% is the estimator of the p-th percentile, where p% of NMC realizations are such

thatM(Xn) ≤Mp%.

Usually, very high NMC is required because of slow convergence. Thus despite the flex-

ibility and power of MC, applying it can be sometimes intractable computationally, for

example in the case of complex FE models, where one simulation is already computa-

tionally expensive. On the other hand, convergence of MC is independent of the number

of variables [184].

2.1.1.2 Improved sampling strategies

In order to decrease computational cost some methods to accelerate convergence have

been developed, for example:

Latin hypercube sampling (LHS) [116] – sample points drawn by LHS are better

distributed in the sample space. The method consists of firstly dividing the PDF

into NLHS disjoint intervals with equal probability and then randomly drawing

from each subset one value. The samples are then permuted to obtain points in

M -th space. This method has been shown to be superior to simple sampling when

certain monotonicity conditions of functions are satisfied.
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Quasi Monte Carlo sampling (QMS) [122] – the concept behind QMC is to use low-

discrepancy sequences [120] instead of random draws to provide better uniformity.

2.1.2 Spectral methods

Spectral methods represent the response as a series expansion [100] enabling the full PDF

of the output to be obtained. The recent popularity and advancement of the spectral

approach in uncertainty quantification in the field of mechanics started with work by

Ghanem and Spanos, where the Stochastic Finite Element Method was proposed [55].

2.1.2.1 Karhunen-Loève expansion

The Karhunen-Loève expansion [89, 103] is one of the methods of random field (or

process) discretization and dimension reduction.

Let F (Z, ω) be a random field (or process), where Z is a spatial (or time) variable in

domain D. The Karhunen-Loève expansion of the F (Z, ω) is:

F (Z, ω) = F0(Z) +
∞∑
i=1

√
λiξi(ω)ϕi(Z), (2.6)

where F0(Z) is the mean value of the field (or process) and the ξi are a set of uncorrelated,

zero mean and unit variance random variables. When the field is Gaussian, the ξi are also

independent. The λi, where i = 1, 2, ...,∞, (λ1 ≥ λ2 ≥ ...) and ϕi(Z) are eigenvalues

and orthogonal eigenfunctions respectively:

∫
D

C(Z1,Z2)ϕ(Z)dZ1 = λϕ(Z2), (2.7)

where C is covariance function.

The infinite expansion can be truncated to a finite number NKL of terms

F (Z, ω) ≈ F0(Z) +

NKL∑
i=1

√
λiξi(ω)ϕi(Z) (2.8)

A review of random field discretization methods can be found in [156, 161].
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2.1.2.2 Polynomial chaos expansion

The polynomial chaos expansion (PC) method was proposed in the field of mechanics

by Ghanem and Spanos [55]. The method was inspired by the Wiener-Hermite theory

[181]. In order to improve convergence of PC in the case of non-Gaussian problems,

Xiu and Karniadakis [185] proposed using polynomials from the Askey scheme which

are orthogonal with respect to a given distribution measure. In the beginning [55], PC

coefficients were computed in an intrusive manner by the Galerkin method. Later, non-

intrusive approaches were also proposed: nonintrusive projection [101] and the regression

method [11, 82].

The following description of PC is based on [14, 15, 38, 99, 159, 160].

The assumption is that the input variables Xi in X of the model M are independent.

Therefore the joint PDF is the product of the marginal distributions fX =
∏M
i=1 fXi ,

where fXi is the marginal distribution of variable Xi. The general framework allowing

arbitrary distributions, also with dependent random variables, can be found in [152].

Some methodologies of PC for dependent variables have also been proposed [121, 175]. A

widely used approach is transformation of dependent random variables into independent

ones, e.g. by the Nataf or Rosenblatt transforms or the Karhunen-Loève expansion.

The model output Y is expanded via the polynomial chaos expansion as follows:

Y =M(X) =
∑

α∈NM

aαΦα(X), (2.9)

where aα are coefficients to be computed, and Φα is a multivariate polynomial basis

constructed by multiplying univariate polynomials φαi of order αi:

Φα1,...,αM (X) =

M∏
i=1

φ(i)
αi

(Xi). (2.10)

The multi-index α = [α1, . . . , αM ] in (2.9) refers to the polynomial orders of the univari-

ate components of each variable in the construction of the multivariate basis.

Orthonormal polynomials are used to construct the PC basis:

〈φi, φj〉 =

∫
HX

φi(X)φj(X)fX(X)dX = δij , (2.11)

where δij is the Kronecker symbol δij =

1, if i = j,

0, if i 6= j.
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The input random variables are transformed into reduced variables:

X = T (ξ). (2.12)

For example:

• if Xi is a normal variable Xi ∼ N (µi, σi), where µi is the mean and σi is the

standard deviation, the transformation is:

Xi = µi + σiξi, (2.13)

where ξi is a standard normal variable ξi ∼ N (0, 1)

• if Xi is a uniform variable Xi ∼ U([ai, bi]) with support [ai, bi], the transformation

is:

Xi =
ai + bi

2
+
bi − ai

2
ξi, (2.14)

where ξi ∼ U([−1, 1])

• if Xi is a lognormal variable Xi ∼ LN (µlni, σlni), where µlni and σlni are the mean

and standard deviation, respectively, of the variable’s natural logarithm, it can be

transformed into a standard normal variable ξi ∼ N (0, 1)

Xi = eµlni+σlniξi . (2.15)

The model response is then expressed as a function of the reduced variables:

Y =M(X) =M◦ T (ξ) =
∑

α∈NM

aαΨα(ξ). (2.16)

In computational practice the infinite expansion needs to be truncated. Let A be a

truncation set – a finite subset of NM . The classic method of truncation is applied in

this work, which is to use all M -dimensional polynomials of a degree equal to or smaller

than the established PC degree p:

AM,p = {α ∈ NM :
M∑
i=1

αi ≤ p}. (2.17)

Some remarks on practical implementations of the construction of multivariate polyno-

mials with respect to this truncation rule can be found in the appendix section A.2.
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The cardinality of such a truncation set A is P = |AM,p| = (M+p)!
M !p! . This is number of

coefficients which have to be computed. The method can be intractable in case when

M is high. PC suffers from the so-called curse of dimensionality. In order to decrease

number of coefficients and consequently computational cost, some adaptive sparse PC

algorithms have been proposed in the literature [14, 77].

Finally, the response can be approximated as:

Y ≈ Y PC =MPC(ξ) =
∑
α∈A

aαΨα(ξ). (2.18)

MPC can be considered to be a metamodel or surrogate model.

The polynomials used should be orthonormal (2.11). This can be achieved by employing

polynomials from the Askey scheme in which the weighting function corresponds to the

applied distribution [185]. Examples for popular distributions are presented in Table 2.1.

Distribution PC Polynomial basis Support
Gaussian Hermite (−∞,∞)
Gamma Laguerre [0,∞)
Beta Jacobi [a, b]

Uniform Legendre [a, b]
Poisson Charlier {0, 1, 2, . . . }

Table 2.1: Distributions and corresponding polynomials. Adapted from [184]

In this work uniform, normal and lognormal, which can be transformed into normal,

distributions are used. Therefore Hermite and Legendre polynomials are employed.

Hermite polynomials can be generated using recurrence equations:

H0(x) = 1

H1(x) = x (2.19)

Hn−1(x) = xHn(x)− nHn−1(x)

They are orthogonal with respect to the Gaussian probability measure:

〈Hm, Hn〉 =

∞∫
−∞

Hm(X)Hn(X)w(X)dX = n!δnm, (2.20)

where the weight function is:

w(x) =
1√
2π

e−x
2/2. (2.21)
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To obtain an orthonormal basis, the normalized polynomials Hn(x)/
√
n! should be used.

Hence, for example H2(x) = (x2 − 1)/
√

2, H3(x) = (x3 − 3x)/
√

6.

Legendre polynomials are orthogonal with respect to the uniform distribution. They can

also be generated by recurrence equations:

L0(x) = 1

L1(x) = x (2.22)

(n+ 1)Ln+1(x) = (2n+ 1)xLn(x)− nLn−1(x)

They are also orthogonal:

〈Lm, Ln〉 =

1∫
−1

Lm(X)Ln(X)dX =
2

2n+ 1
δnm. (2.23)

When the uniform U(−1, 1) distribution is assumed, the weight function is a constant

w(X) = 1/2

〈Lm, Ln〉 =

1∫
−1

Lm(X)Ln(X)w(X)dX =
1

2n+ 1
δnm. (2.24)

The basis function after normalization is

Ln(x)/

√
1

2n+ 1
(2.25)

The convergence rate of the Legendre approximation depends on the function smooth-

ness [184]. The convergence of discontinuous functions especially is problematic. The

Gibbs phenomenon concerns numerical artefacts related to approximation of discontin-

uous functions by smooth polynomials. Figure 2.1 illustrates this problem and shows

the PC Legendre expansion of the sign function for different polynomial orders (with

regression points equal to the roots of the Legendre polynomial of order p+ 1):

sgn(x) =


−1, x < 0

0, x = 0

1, x > 0

Methods to compute coefficients can be divided into two main groups.

Intrusive methods require code modification. One such method – Galerkin projection

– which requires implementation in FE code, was used by Ghanem and Spanos in

their pioneering book on Stochastic Finite Elements [55].
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Figure 2.1: Legendre PC approximation of sign function for different PC orders p

Non-intrusive methods are based on deterministic computations, so the model can

be given in black-box form. The two widely used methods in this category are:

• Non-intrusive spectral projection(NISP) [101]

• the regression approach [11]

The methodology established in this work will later be applied to complex models in

biomechanics and structural mechanics. Therefore, owing to the greater feasibility of

their application to more complex models, only non-intrusive methods are considered

here. On the one hand these methods are easier to apply but on the other hand their

accuracy depends on the choice of sampling points. The choice of points is discussed in

chapter 3.

Non-intrusive spectral projection uses the orthogonality of the PC basis. For simplicity

of notation M(ξ) will be written in the following text, since X is a function of ξ. The

k-th coefficient ak can be obtained from

ak =
〈M(ξ),Ψk(ξ)〉
〈Ψk,Ψk〉

, (2.26)
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where the inner product (numerator) is defined as

Ik = 〈M(ξ),Ψk(ξ)〉 =

∫
Hξ

M(ξ)Ψk(ξ)fξdξ1 . . . dξM , (2.27)

where Hξ is the support of ξ and fξ is joint PDF. The exact values of the denomina-

tors are known for classic probability distributions and PC polynomials. Integration to

calculate Ik can be done numerically.

Deterministic integration by quadrature is based on model realizations on NQ nodes:

Ik ≈
NQ∑
i=1

M(ξ(i)) Ψk(ξ
(i))w(i) (2.28)

where the w(i) are weights and the ξ(i) are integration points.

Different integration methods can be considered such as Monte Carlo Sampling, QMC

sampling, full tensorization of one-dimensional quadrature formula, and cubature for-

mulas based on the Smolyak method. QMS and Smolyak cubature are less computa-

tionally expensive but their performance depends on the smoothness. Huberts et al.

[78] compared NISP with Smolyak cubature and the regression-based approach, with

the same sampling points. They obtained generally better results when the regression-

based method was used. This was explained by possible non-smoothness of the output

and the high number of variables. Therefore, since some of the considered QoI are non-

smooth (Rmax), the regression-based approach will be used in the work, owing to its

lower sensitivity to non-smoothness.

The response of the model can be expressed as a sum of a truncated series and a residual:

Y =M(X) =
∑
α∈A

aαΨα(ξ) + ε. (2.29)

In order to perform regression, N regression points are chosen in the space of reduced vari-

ables Ξ = [ξ(1), . . . , ξ(N)]. A vector of exact solutions Yex = [M(X(1)), . . . ,M(X(N))]>

is obtained by computation of the model M on these N regression points after their

isoprobabilistic transformation. The coefficients aα are collected into a vector a =

[aα0 , . . . , aαP−1 ]>. Let Aij = Ψαj (ξ
(i)), i = 1, . . . , N ; j = 1, . . . , P . The coefficients

a can be computed by solving the least squares problem minimizing ε:

a = (A>A)
−1

A>Yex. (2.30)
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The matrix A>A is called an information matrix and (A>A)−1 is a dispersion matrix,

e.g. after [40].

The diagonal matrix W with weights w(ξ(i)) on the diagonal may be introduced into the

regression:

A>WA = A>WYex. (2.31)

After computation of coefficients, a MPC is ready. The calculations even for a large

number of sampling points can be conducted with a negligible computational cost with

use of metamodel. It can be used to obtain response PDF. Some statistics, e.g. the mean

M0 and the variance D, can be approximated directly from the PC coefficient:

M0 ≈MPC
0 = a0, (2.32)

D ≈ DPC =
∑

α∈A\{0}

a2
α. (2.33)

2.2 Sensitivity analysis

Sensitivity analysis (SA) is a tool which is widely used in modelling practice. According

to the proposed definition of Saltelli et al. [139], SA studies the relationships between

information flowing into the model and out of it. SA provides knowledge on how the

variation of the model output depends on that of the model input. This information can

be used in many ways. For example, SA can be employed to identify the most significant

factors which consequently require further, more detailed study. SA can also be helpful

in model reduction, when the number of variables is decreased but the model is still

satisfactorily approximated.

Different sensitivity measures exist. Choosing the proper method depends on the problem

at hand, the intended purpose of its solution and the complexity of the model used, in

terms of, for example, its nonlinearity or monotonicity [81]). The methods are classically

divided into two groups ([159, 162] among others):

Local SA – studies sensitivity of the output to small variations of the input around a

particular base point [166] (section 2.2.1);

Global SA – studies sensitivity of the output to variations of the input across the

domain [140] (section 2.2.2);

Sometimes screening methods are distinguished as a third group [139]. However, these

methods can be also classified as local or global. Screening is based on a qualitative
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ranking of variables without quantification of their relative importance. It is often used

to identify which variables, out a large number, have a negligible effect.

In the literature other classifications of SA methods can also be found, for example:

Quantitative and qualitative methods [129]. The former quantify the effects of in-

puts through sensitivity measures (sensitivity indices) whereas in the latter, quali-

tative evaluation of importance is based on visualisation, e.g. scatter plots. Qual-

itative methods are usually used as a screening technique.

One-At-a-Time (OAT) and All-At-a-Time (AAT) methods [129]. In the OAT

method only one model parameter is varied while others remain fixed. In AAT all

parameters are varied at the same time. This enables the effects of interaction be-

tween parameters to be captured. Local SA methods are generally OAT. According

to Pianosi et al. [129] global SA methods can be both OAT and AAT. However,

this is not in agreement with the statement of Saltelli et al. [139] that varying

all parameter at the same time is one of the properties of global SA methods (see

section 2.2.2). Skowronek [148] gives an example of an OAT method dealing with

probability distributions and allowing changes in the whole domain.

Mathematical, statistical and graphical [52]. Mathematical methods are based on

deterministic analysis and estimate local influence of parameters around base points.

They belong to the local SA group of methods. Statistical methods involve inputs

with a given probability distribution and deal with the distribution of the output,

which is also a property of global SA. Graphical methods are based on visualisation

of sensitivity in the form of graphs etc. These methods can also be classified as

qualitative methods.

Screening, sampling-based methods, metamodel-based methods [80, 81]. The

screening family of methods aims only to give a qualitative ranking of variables.

A quantitative measure can be obtained based on samples of input and output

(sampling-based) or, if this is too computationally expensive, an approach based

on metamodels can be used. For example, polynomial chaos expansion can be used

as a metamodel to efficiently compute sensitivity indices.

2.2.1 Local sensitivity analysis

Local SA is usually based on derivatives and is applied in deterministic studies. The

first-order local sensitivity measure [66] can be defined as follows:
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Slocali =
xi
y

∂y

∂xi
, (2.34)

where xi/y is introduced to normalize the sensitivity coefficient.

Higher order sensitivity measures can also be defined in a similar way. Nevertheless,

usually only linear sensitivity analysis is conducted.

Many methods have been developed to address the case, where analytical differentiation

is not possible. One of the easiest is the brute-force method, also called the indirect

method, which involves the use of finite differencing to approximate derivatives:

• one-sided forward difference

∂y(x)

∂xi
≈ y(x + h)− y(x)

h
(2.35)

• central differencing
∂y(x)

∂xi
≈ y(x + h)− y(x− h)

2h
(2.36)

where h is a finite difference step and h is a vector of zeros of length M where the i-th

element equals h. The latter method is believed to be more accurate, but requires more

evaluations of the model. Accuracy depends on the size of h and can be degraded by

numerical errors in the FEM model.

The other methods are the direct method, the variational method and the polynomial

approximation method [179].

It should be noted that local sensitivity analysis studies the influence of small variations

around a particular base point. To be able to estimate the sensitivity of more significant

input changes corresponding to high uncertainties in non-linear models, global methods

should be considered.

2.2.2 Global sensitivity analysis

Global methods can be characterized by two properties [139]:

1. They deal with variations over the whole domain of the PDF,

2. They deal with estimation of sensitivity indices by varying all factors at the same

time.
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Global SA methods are usually probabilistic and deal with random inputs and conse-

quently random outputs [179].

The main quantitive global methods can be divided into two groups [159]:

Regression based – based on linear regression of the output on the input;

Variance based – based on variance decomposition according to the contributions of

each variable.

The former do not give satisfactory results in the case of non-linear non-monotonic models

[159] but Sobol’ indices (section 2.2.2.2) – a variance based method – can be used in this

case because they do not need any a priori assumptions about the model’s properties

[81]. However, this method can be very expensive computationally. To deal with this

problem, it can be preceded by a screening method [80]. The computational cost can

be also decreased by employing metamodels like PC or Gaussian processes [99]. Section

2.2.2.1 briefly introduces scatter plots – one the simplest graphical methods, which will

be used in some examples for visualisation of importance of variables.

2.2.2.1 Scatter plots

Scatter plots [52, 139] are one the easiest qualitative global SA methods to visualise

importance of variables. Points obtained from each simulation (e.g. from MC) are

presented on a plot showing the relation between the input variable and the value of

the output and consequently indicating the influence of the input variable in question.

Scatter plots can be used for screening purposes to identify inputs whose uncertainty

has negligible effect, to rank variables according to their importance [140] or to aid the

decision as to which quantitative method should be used (e.g. because of linear or non-

linear dependence)[52]. Nevertheless, in some particular cases scatter plots can lead to

classification of important variables as non-influential (error type II, whereas error type

I is to classify non-influential variable as important) [140].

For an illustration of this graphical method, let us use a simple example adopted from

[140]. Let the model be:

Y =
4∑
i=1

Xi, (2.37)

where Xi is a random normal variable Xi ∼ N (0, σXi) and i = 1, . . . , 4. Let σXi = i.

Figure 2.2 shows scatter plots obtained from 1000 MC iterations. Comparison of the

patterns obtained leads to the conclusion that X4 is the most influential variable and

the rank of variables from the most influential to least influential is X4, X3, X2, X1. It
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Figure 2.2: Scatterplots of Xi vs Y for model ( 2.37) following [140]

is interesting to note that local sensitivity shows the same sensitivity of Y on the all

variables (∂Y/∂Xi = 1).

Scatter plots can be useful, but conclusions rely on the subjective judgement.

2.2.2.2 Sobol’ sensitivity analysis

Sobol’ indices are known to be good measures of sensitivity, since they do not require

any assumptions about linearity or monotonicity [159]. The following description is

based on [15, 150, 151, 159]. Similarly to the PC case, the assumption is again that

all the variables Xi, . . . , XM are independent, so fX(X) =
M∏
i=1

fXi(Xi). Some studies

on sensitivity analysis of models with correlated variables can be found in the literature

[98, 186].



2. Uncertainty quantification and sensitivity analysis 31

The method is based on the ANalaysis of VAriance (ANOVA) decomposition of the model

M (2.1). The representation:

M(X) =M0 +

M∑
i=1

Mi(Xi) +
∑

1≤i<j≤M
Mij(Xi, Xj) + · · ·+M1,2...M (X). (2.38)

is an ANOVA decomposition and is unique if:∫
HXk

Mi1...is(Xi1 , . . . , Xis)fXk
(Xk)dXk = 0

for 1 ≤ i1 < · · · < is ≤M, k = i1, . . . , is

(2.39)

and

M0 =

∫
HX

M(X)fX(X)dXi . . . dXM , (2.40)

where HX is the support of the random input vector X. HXk
and fXk

are the support

and the marginal PDF, respectively, of random variable random variable Xk.

The one-dimensional terms Mi(Xi) can be obtained by integration of formula (2.38)

with respect to the probability measure over all variables except Xi over an associated

domain HX\Xi
: ∫

HX\Xi

M(X)
∏
k 6=i

fXk
dXk =M0 +Mi(Xi). (2.41)

The two-dimensional terms, Mij(Xi, Xj) can be calculated by integration of formula

(2.38) over all variables except xi and xj over an associated domain HX\{Xi,Xj}:∫
HX\{Xi,Xj}

M(X)
∏
k 6=i,j

fXk
dXk =M0 +Mi(Xi) +Mj(Xj) +Mi,j(Xi, Xj) (2.42)

and so on, to get higher dimension terms.

D is the total variance:

D =

∫
HX

M(X)2fXdX1 . . . dXM −M2
0. (2.43)

After squaring and integrating 2.38, the variance decomposition is obtained:

D =
M∑
i=1

Di +
∑

1≤i1<j≤M
Dij + · · ·+D1,2,...,M (2.44)
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where the Di1...is are the partial variances, defined as:

Di1...is =

∫
HXi1

,...,Xis

M2
i1...is(Xi1 , . . . , Xis)fXi1,...,is

dXi1 . . . dXis (2.45)

The Sobol’ sensitivity indices are defined as the ratios of variances:

Si1,...,is =
Di1,...,is

D
, (2.46)

It can be noted, that all sensitivity indices are nonnegative and

M∑
i=1

Si +
∑

1≤i1<j≤M
Sij + · · ·+ S1,2,...,M = 1 (2.47)

The Sobol’ index Si1,...,is conveys information as to how much of the total ouput variance

is due to each of the input variables {i1, . . . , is}. The first order indices Si contain

information about the influence of each variable taken alone, whereas their influence in

combination is given by the higher order indices.

A more detailed analysis may require use of a total global sensitivity index, which is

the sum of all sensitivity indices including the mixed terms that correspond to the i-th

variable:

SToti =
∑

i⊂{i1,...,is}

Si1,...,is . (2.48)

Alternatively:

SToti = 1− S∼i, (2.49)

where S∼i is a sum off all partial indices which do not include the i-th variable.

It can be noted, that 0 ≤ Si ≤ SToti ≤ 1. The extreme cases are:

• Si = SToti = 0 which means that the modelM does not depend on Xi

• Si = SToti = 1 which means that model M does not depend on variables other

than Xi.

The Sobol’ indices can be estimated by the Monte Carlo method.

Two sets of NMC sampling points are generated independently and denoted with su-

perscripts (1) and (2). The sets are then mixed and sampling points as follows are

constructed:
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• X̃
(1)
i n = [X

(1)
1n , X

(1)
2n , . . . , X

(1)
(i−1)n, X

(2)
i n , X

(1)
(i+1)n, . . . , X

(1)
M n]> is the n-th sampling point

from the set (1), where X(1)
i n is replaced by X(2)

i n from the set (2)

• X̃
(2)
i n = [X

(2)
1n , X

(2)
2n , . . . , X

(2)
(i−1)n, X

(1)
i n , X

(2)
(i+1)n, . . . , X

(2)
M n]> is the n-th sampling point

from the set (2), where X(2)
i n is replaced by X(1)

i n from the set (1).

The partial variance can be estimated by:

DMC
i =

1

NMC

NMC∑
n=1

M(X(1)
n )M(X̃

(2)
i n )− (MMC

0 )2. (2.50)

The partial Sobol’ index computed by MC is:

SMC
i =

DMC
i

DMC
. (2.51)

The total Sobol’ index can be obtained without the necessity of using all the required

partial indices:

STot,MC
i = 1− DMC

∼i
DMC

, (2.52)

where:

DMC
∼i =

1

NMC

NMC∑
n=1

M(X(1)
n )M(X̃

(1)
in )− (MMC

0 )2. (2.53)

Estimation of Sobol’ indices by MC is very expensive computationally, especially when

M is high. To obtain all indices one has to compute the model for 2M MC sets. Since

very often computing a single set of MC computations is already expensive (usually more

than 104 model evaluations), calculating even just the complete set of total sensitivity

indices can be intractable by crude MC.

In order to reduce the huge computational cost of Sobol’ index calculation, metamodel-

based approaches can be used. Sudret [159], Crestaux et al. [38] have shown, that Sobol’

indices can be calculated with use of PC coefficients. In such a case, the computational

cost is barely greater than the cost of obtaining PC coefficients. This is very attractive

when compared to crude MC.

Let Ai1,...,is be a set of α-tuples in A, such that only indices i1, ..., is are non-zero:

Ai1,..,is = {α ∈ A : αk 6= 0⇔ k ∈ {i1, . . . , is}}. (2.54)

In other words, these are α-tuples corresponding to polynomials Ψα depending only on

all the input variables Xi1 , ..., Xis .



34 2. Uncertainty quantification and sensitivity analysis

The truncated polynomial chaos expansion can be expressed as follows:

MPC(ξ) = a0 +

M∑
i=1

∑
α∈Ai

aαΨα(ξi) +
∑

1≤i1<i2≤M

∑
α∈Ai1,i2

aαΨα(ξi1 , ξi2) + ..+

+
∑

1≤i1<...<is≤M

∑
α∈Ai1,...,is

aαΨα(ξi1 , ..., ξis) + ...+
∑

α∈A1,...,M

aαΨα(ξ).

(2.55)

Since the employed PC basis is orthonormal, the properties (2.39) and (2.40) are fulfilled.

Hence, the terms in (2.55) can be identified as summands in (2.38):

Mi1,..,is(ξi1 , ..., ξis) =
∑

α∈Ai1,...,is

aαΨα(ξis , ..., ξis). (2.56)

The sensitivity indices SPCi1,..,is can be obtained with use of PC coefficients:

SPCi1,..,is =
1

DPC

∑
α∈Ai1,...,is

a2
α. (2.57)

Let AToti be a set that contains all α-tuples with the non-zero i-th index:

AToti = {α ∈ A : αi 6= 0}. (2.58)

The total sensitivity indices can be obtained with the use of PC coefficients:

STot,PCi =
1

DPC

∑
α∈ATot

i

a2
α. (2.59)



Chapter 3

Comparison of regression point

choice methods

3.1 Methods to choose regression points in non-intrusive

polynomial chaos expansion

The accuracy of non-intrusive PC depends on the number and location of sampling

points. A good balance between computational cost and satisfactory accuracy is needed.

Finding an effective universal way to choose points is still an open question not only in PC

but also in other non-intrusive uncertainty quantification methods, sensitivity analysis

methods etc. The choice of points can be regarded as the design of an experiment

(DoE). Techniques of DoE were originally developed for planning physical experiments.

The main difference between a physical and computational experiment is that when

we run a computer simulation twice we obtain the same result without the random

noise that occurs in a physical experiment. Nevertheless, DoE has been extended to the

computational field. Some authors call DoE of physical experiments classic DoE, whereas

DoE of deterministic computational experiments is called modern DoE [57]. The general

aim of both classic and modern DoE is the same, which is to obtain accurate information

with a limited number of experiments.

Different approaches exist in the literature. An overview of methods of DoE used in the

computational field can be found in [57], which concluded that there is no universally

applicable way of determining which technique of DoE is preferable. Some methods were

also compared by [30], where recommendations are given for functions with different

properties (e.g. many local minima, rapid changes). Comparison of methods in the least

squares polynomial approximation was done by [53]. They noticed better convergence

35
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Figure 3.1: Simple random choice of uniformly distributed 1000 points in range from
0 to 1, 2 variables

of sparse grid points for very low dimensional problems, whereas QMS was believed to

be better for higher dimensional problems in terms of convergence. Nevertheless, there

are not many studies on the choice of sampling points in regression-based PC. Recently,

Hadigol and Doostan [64] have investigated DoE methods in least square polynomial

chaos expansion and have also proposed a new approach. The adaptive DoE approach

was proposed for global sensitivity analysis in [27].

DoE methods widely used in PC can be divided into two main groups:

Random and quasi-random – regression points are drawn according to a distribution

(section 3.1.1);

Based on optimality criteria – a deterministic choice based on optimization criteria,

which will be discussed in more detail in section 3.1.2.

Some combined approaches are also considered in this work (section 3.1.3), which use

both the optimality criteria and random choice elements.

3.1.1 Random and quasi-random choice

In the random and quasi-random methods, regression points are drawn in the following

ways:

• pure randomly – (e.g. [53]) This is a simple and widely-used method in PC. DoE

points are drawn randomly with respect to a distribution (Figure 3.1);

• by one of the improved sampling strategies (already described in section 2.1.1.2):

– LHS – also widely used in PC [31] (Figure 3.2);
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Figure 3.2: 1000 points generated by LHS, two variables
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(a) Sobol’ sequence
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(b) Halton sequence

Figure 3.3: 1000 points generated by QMS, two variables

– QMS [16, 53], e.g. Halton and Sobol’ sequences (Figure 3.3). Sobol’ sequences

were shown to be the most efficient in a study [16] where the NISP method was

used. With metamodels other than PC, Sobol’ sequences, were also shown to

be superior (in terms of the projection property over optimal latin hypercube

design, centroidal Voronoi tessellation and Halton and Hammersley sequences)

especially in case of higher dimensional problems [30].

3.1.2 Optimality criteria

The following optimality criteria are taken from the theory of optimal design of physical

experiments [48].

Widely-used criteria in classic DoE are based on the information matrix (or, equivalently,

its inverse – the dispersion matrix). It can be noted that the information matrix A>A is

determined by the DoE and does not depend on the model solution (observations Yex)

[49].
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The most widely-used criterion is D-optimality. In classic DoE, the assumption is made

of independent normal random error with constant variance var(Yex) = Iσ2 [47, 190].

Under such an assumption, minimisation of the variance of the estimated coefficients

leads to maximisation of the information matrix A>A determinant:

det(A∗>A∗) = max
Ξ

((det(A>A)), (3.1)

where A∗ij = Ψαj (ξ
(i)∗), i = 1, . . . , N ; j = 1, . . . , P .

This is equivalent to minimisation of the determinant of the dispersion (A>A)−1 ma-

trix. Geometrically, coefficients and their errors are represented as an ellipsoid, which

shows the confidence interval of each coefficient. Maximisation of the determinant of the

information matrix corresponds to minimising the volume of the ellipsoid [40].

The D-criterion was firstly proposed by Smith [149]. Efficient algorithms for finding D-

optimal design have been proposed in the literature, e.g. the Fedorov exchange algorithm

[48].

In PC application, construction of DoE based on D-optimal design was proposed by

Isukapalli [82] and today may be considered as one of the most widely-used approaches

[27, 133, 159, 190]. The concept of D-optimality is part of recently developed methods

of efficient sampling for the PC method, e.g. [43, 64].

Other criteria common in classic DoE, but not in PC, are:

A-optimality maximization of the trace of the dispersion matrix (A>A)−1 which cor-

responds to minimization of the average variance of the coefficients [40].

E-optimality maximization of the least singular value of the information matrix A>A,

G-optimality minimization of the largest diagonal term of A(A>A)−1A>

3.1.2.1 Univariate case

The D-optimal solution is known for some univariate polynomials of order p with an

appropriate weight function (information matrix in form A> WA (2.31)), [5]:

For Hermite polynomials: the roots of the Hermite polynomial of order p+ 1, when

w(x) = exp(−x2) is applied (Figure 3.4),

For Legendre polynomials: the roots of the polynomial (1− x2)L′p(x), for w(x) = 1,

where Lp is the Legendre polynomial of order p.
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Figure 3.4: Roots of Hermite polynomials of different orders

It can be seen, that the D-optimal points of the Legendre polynomials are different from

those of the Hermite polynomials. Nevertheless, in the application of PC, sometimes the

roots of polynomial order p + 1 are taken as a general rule for constructing a DoE for

other PC bases, e.g. Legendre [159].

Let us consider the univariate problem M = 1, with the Hermite basis, PC order p = 1

and the minimum required number of regression points which in this case is two. The

points are denoted ξ1 and ξ2. Then, A is in the following form:

A =

[
1 ξ1

1 ξ2

]
. (3.2)

For this simple case it is easy to draw the change of the determinant of the information

matrix as a function of positions of the points ξ1 and ξ2 (Figure 3.5).

It should be noted, that including the weight w = 1√
2π
e−ξ

2/2 changes the shape of

the relation between the determinant of the information matrix and the position of the

regression points. The maximum of det(A>WA) (Figure 3.5b) is indeed at the roots of

the second-order Hermite polynomial ξ2−1. Where no weight function is applied (w = 1)

(Figure 3.5a) the maximum of det(A>A) is on the border. If the support of ξ1, ξ2 is the

range from -1 to 1, which corresponds to the Legendre polynomial (information matrix
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Figure 3.5: Determinant of information matrix (3.2) as a function of 2 sampling
points, M = 1, p = 1

is the same form, since first-order Hermite and Legendre polynomials are the same), the

maximum would be at points (−1, 1), which are the roots of (1− x2)L′p(x).

3.1.2.2 Multivariate case

Multivariate DoE can be constructed by a combination of D-optimal points of univariate

polynomials [82]. However, there are (p+ 1)M such combinations, which is usually com-

putationally intractable but good accuracy can be achieved for a much smaller number

of regression points. The classic approach [11, 82] is to take points that are closest to

the origin. This method will be denoted M1. The main disadvantage of M1 is that a

rank-deficient information matrix can be easily obtained. This problem can be solved by

adding more points into the DoE, but this unfortunately increases computational cost.

Although the D-optimal points of the univariate Legendre polynomials are not roots of

the Legendre polynomial of order p+ 1, as in case of Hermite polynomial, a combination

of such ponts is often used as a DoE, e.g. in [159]. That is why method M1 in the case

of the Legendre basis will be investigated in two variants of the grid:

• of D-optimal points of the univariate polynomial (roots of (1− x2)L′p(x)),

• roots of the Legendre polynomial of order p+ 1.

The solution obtained by method M1 is not exactly D-optimal. Another method consists

of finding the D-optimal set from combinations of roots of the polynomial of order p+ 1

[190]. This method will be denoted M2. Works, where such an approach is proposed, do

not contain information about the inclusion of the weight function in case of the Hermite
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PC basis, e.g. [190]. Figure 3.6 shows a DoE chosen by method M1 (Figure 3.6a) and

D-optimal solutions found amongst combinations of roots of Hermite polynomial of order

p+1. Different solutions are obtained depending on whether a weight function is applied

(Figure 3.6c) or not (Figure 3.6b). In this case M1 is closer to the D-optimal solution

with a weight function. The variant of method M2 without weight will be denoted M2a

and with weight M2b.
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(a) Points chosen by
method M1 proposed by
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(c) points chosen by
method M2a - D-Optimal
choice from a set of can-
didate points composed of
the combination of poly-
nomial roots of order p+1,
information matrix with
weight function w(x) =

exp(−x2)

Figure 3.6: Choice of points in the case of Hermite basis, M = 2, p = 7. Small circles
denote combinations of roots of 1-D Hermite polynomial of order p + 1. Black circles
denote those of the points which are chosen for the DoE. The blue circle shows the
range of the points closest to the origin, which are used for the DoE in the M1 method

3.1.3 Combined approach

In method M3, the DoE will be randomly drawn from a grid of D-optimal points of

univariate polynomials.

The solution obtained by method M2 may be not D-optimal generally. Different can-

didate sets that contain combinations of roots of polynomials of order p + 1 are to be

considered. Figure 3.7 shows D-optimal solutions for a grid of points which is denser

than a grid of the roots of the polynomial of order p+1. Again, the cases are shown with

and without the weight function w(x) = exp(−x2). Although combinations of roots of

polynomials of order p+ 1 are included in the denser and wider candidate set of points,

they were not included in the D-optimal final set. Therefore, other candidate sets of

points will be also considered in this work. Candidate sets of points will be generated

simply randomly (method M4) or by LHS (method M5). In the case of the Hermite ba-

sis, both methods will be considered (a)without a weight function and (b)with a weight
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form range from −1.5 to 1.5 with a step
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Figure 3.7: D-optimal points compared to the c-method M1, Hermite basis (M = 2,
p = 1). Empty circles denote combination of roots of polynomial p+1 and black circles

denote D-optimal solutions from a denser grid of candidate points

function w(x) = exp(−x2). Figure 3.8 shows an example of such a solution in these two

variants. The difference can be clearly seen.

3.1.4 Summary of methods

To sum up, the following methods are compared within this work:

S1 - Sobol’ sequence [16];

S2 - Halton sequence [16];
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Figure 3.8: Example of D-optimal set from the candidate set drawn by the LHS
method when D-optimality is conducted without (M5a) and with (M5b) weight function

w(x) = exp(−x2), Hermite basis, M = 2, p = 2

M1 - the closest to the origin from combination of roots of polynomial of order p + 1

[159]. Also method M1b is investigated, which is a combination of D-optimal points

in the case of the uniform distribution instead of roots;

M2 - D-optimal design from D-optimal points of univariate polynomials (e.g. in case of

normal distribution roots of Hermite polynomials or order p + 1). In the case of

normal distribution in variants:

• without a weight function - M2a [190];

• with a weight function - M2b;

M3 - randomly drawn subset of univariate D-optimal points;

M4 - D-optimal design chosen from a random candidate set of points. In the case of

normal distribution in variants:

• without a weight function - M4a ;

• with a weight function - M4b;

M5 - D-optimal design chosen from candidate set sampled by LHS method. In the case

of normal distribution in variants:
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• without a weight function - M5a [26];

• with a weight function - M5b.

Also the number of regression points should be appropriately chosen. The number of

points depends on the size of the PC basis P (which depends on M and p). The recom-

mendations in the literature vary, e.g 2P , P (M − 1) [11], 2(P + 1) [82].

3.2 Comparison of methods on numerical examples

The results presented in this chapter were partially published in [165] (comparison

of methods in multivariate models) and [164] (choice of regression points in the 1-

dimensional case and D-optimality)

In order to evaluate and compare solutions obtained by the PC method, the following

error measures are introduced:

• The reference error Err% is defined as:

Err% =
|V ref − V PC |
|V ref |

· 100, (3.3)

where V is one of the quantities: mean, standard deviation, percentile or sensitiv-

ity index, the superscript PC denotes that the quantity is estimated by PC and

the superscript ref denotes the reference solution obtained analytically or by MC

method.

• The error in calculating the Sobol’ indices can be measured by Errs:

Errs =

√√√√ M∑
i=1

(STot,refi − STot,PCi )2, (3.4)

where STot,refi is the reference value of the i-th random variable, obtained analyt-

ically or by MC.

• In some examples in order to evaluate the PC metamodel the root mean square

error is calculated as:

RMSE =

√√√√ 1

N

N∑
i

(M(ξi)−MPC(ξi))
2, (3.5)

where ξi is sampling point



3. Comparison of regression point choice methods 45

or as the normalized RMSE (in chapter 4)

NRMSE =
RMSE

1
N

∑N
i M(ξi)

, (3.6)

• The error of the PC metamodel at a given point ξi relative to the exact solution

as a percentage is

ErrPC% =

∣∣M(ξi)−MPC(ξi)
∣∣

|M(ξi)|
· 100. (3.7)

In this work only the error due to the PC approximation is studied.

3.2.1 Examples

PC is firstly applied to 1D examples (section 3.2.2) and then to multivariate problems

(section 3.2.3).

The methods will be compared on the Sobol’ function which is widely used in the liter-

ature concerning global sensitivity analysis:

Y =
M∏
i=1

|4Xi − 2|+ di
1 + di

, (3.8)

where Xi, i = 1, . . . ,M are uniformly distributed random variables over [0, 1] and di

are non-negative constants. In this work, M is set to 1 or 4 and the constants are

d = [1, 2, 5, 10]> following [15]. This function is especially interesting in comparison

with the implant models (e.g. model 2, section 3.2.1.2) because its nonsmoothness is

similar to that of the maximum of reaction forces in the membrane model of an implant.

The methods described above will also be compared on two local models of implants

used in hernia repair in the following variants:

1. Cable model of the implant (section 3.2.1.1):

(a) one random variable E;

(b) one random variable L0;

(c) four random variables X = [E,L0, H0,∆p]
>;

2. Model of the membrane subjected to displacement of the supports (section 3.2.1.2):

(a) with one random variable t1;
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Figure 3.9: Scheme of the surgical mesh covering the hernia orifice with one strip
for the cable model in top view (A) and lateral view (B), (C) scheme of cable model,

adapted from [168]

(b) with one random variable t4;

(c) with three random variables X = [ti]
>; i = 1, 2, 3;

(d) with ten independent random variables X = [ti]
>; i = 1, 2, . . . 10.

3.2.1.1 Model 1: cable model of the implant

The simplest model of the implant-tissue system is a cable model (Figure 3.9). The

model was proposed by Szymczak et al. [168] and the following description is based on

that work [168]. The aim of this study was to develop a simple model and perform local

sensitivity analysis in order to identify the most influential parameters and outline the

direction of future studies. The one-dimension cable model refers to a strip of surgical

mesh between two fasteners on the opposite sides of the hernia orifice that is tightened

the most.

The cable is subjected to a uniformly distributed load g which simulates intraabdominal

pressure. Because connection failure is one of the main reasons for hernia recurrence,

the QoI is the horizontal reaction H. It can be found from the equilibrium equation.

The width of the overlap of the mesh onto the fascia is denoted by ls. The fact that

the hernia orifice is not stiff is also taken into account by introducing ∆p, which is the

displacement of the cable edges resulting from the fascia elasticity. The final form of

equation to be solved is:
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parameter unit value

A m2 1.35e-5
g N/m 148.8
l m 0.1
ls m 0.04

Table 3.1: Values of cable model constants (3.9)

Variable unit when assumed constant lower limit upper limit

E MPa 10.77 5.385 16.155
L0 m 0.105 0.0945 0.1155
H0 N 1 0 4
∆p m 0.005 0.0025 0.0075

Table 3.2: Uniform random variables of model 1 and parameters of their distribution

H3(1 +
ls
L0

) +H2(−H0 + ∆p
EA

L0
)− EA

L0

g2l3

24
= 0, (3.9)

where E is the elastic modulus of the cable material representing the implant material,

L0 is the initial length of the cable, H0 is the initial force in the cable originated by

tightening of the mesh, A is the cross sectional area of the cable and l the cable span.

For clearer derivations of the local sensitivity indices (section 4.1), let the equation (3.9)

be expressed as:

H3c1 +H2c2 − c3 = 0, (3.10)

where c1 = 1 + ls
L0

, c2 = −H0 + ∆p
EA
L0

and c3 = EA
L0

g2l3

24 .

The values of the constant parameters are presented in Table 3.1.

In [168] variations of E, L0, H0 and ∆p were studied with deterministic local sensitivity

analysis. When one parameter changes, the others remain fixed. Different base points

were considered because each may have a different local sensitivity index. Table 3.2

presents values of the parameters for the case where they were held fixed and, for the

case in which they were varied, the range over which they did so. The same ranges are

taken as limits of a uniform distribution in UQ and global SA analysis of the model.

Firstly, univariate analyses are conducted when only E is a random uniform variable

(model 1a) or only L0 is a random uniform variable (model 1b). The purpose of these

examples is that it is easy to show the relations between DoE and the error of the PC

estimation in the univariate case. The main example (model 1c) has all four variables

drawn from indepedent random uniform distributions. In this case, the outcomes of

global SA can be compared with local SA results.
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Figure 3.10: Scheme of model 2
.

3.2.1.2 Model 2: model of membrane subjected to displacement of the sup-

ports

The implant is modelled as a membrane structure. A finite element membrane model of

a surgical mesh was proposed in [108] and also in [67, 147]. Lubowiecka [104] proposed

subjecting the implant to forced displacements of its supports, which simulate displace-

ments of the fasteners during daily movements of the torso. In that work values of these

displacements were taken from the study of Szymczak et al. [169], where the strains of

the external abdominal surface were identified. Podwojewski et al. [130] found that the

ratio between the strains on the surfaces of the external and internal abdominal walls

was 2.6 so the values of Szymczak at el. were reduced by this factor. Next, the model

with some modifications was applied to the procedure of optimising implant choice and

orientation of implant within an anisotropic abdominal wall [106]. A model in the same

form is applied in this thesis.

The scheme of model is shown in Figure 3.10. It is assumed that the hernia orifice radius

is equal to 2.5 cm. The overlap of the implant over human tissue according to surgical

practice is 4 cm. Therefore, the total span of the implant is equal to 13 cm. It is assumed

that the implant is connected to the fascia by 10 fasteners (tacks), which are modelled

by 10 supports fixing all translations.
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Figure 3.11: Finite Element mesh of model 2
.

The MSC.Marc commercial system was used. The FE model is composed of quadrilateral

eight-node isoparametric membrane elements with three translational degrees of freedom

at each node. A membrane has no bending stiffness. Figure 3.11 shows FE mesh, which

was tested by convergence analysis. The mesh is finer next to the model supports. Static

non-linear (large displacement and large strain) analysis was performed.

The material of the implant is assumed to be piecewise affine orthotropic. The parameters

correspond to the commercial implant DynaMeshR©-IPOM (Figure 3.12) surgical implant

(FEG Textiltechnik mbH, Aachen, Germany and are taken from [174]. This is a knitted

mesh made of polypropylene and polyvinylidene fluoride. The elastic modulus in the first

(stiffer) direction of the implant E1 is equal to 6.4 N/mm if the strain is smaller than

0.15 and 14 N/mm otherwise. In the perpendicular direction the elastic modulus E2 is

equal to 0.36 N/mm. The high orthotropy ratio (E1/E2) of this material can be seen:

18 for strain lower than 0.15 and 39 otherwise. Since the abdominal wall is anisotropic,

the orientation of the orthotropic implant is significant as shown in [106]. αorient (Figure

3.10) is the angle between the cranio-caudal axis and the first direction of the implant.

In this chapter αorient = 0, which means that the first direction of implant is parallel to

the cranio-caudal axis. In chapter 4 simulations have been done also for αorient in the

range from 0 to 180 degrees (if not stated, αorient = 0).
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Figure 3.12: DynaMesh surgical mesh

support t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

µ [cm] 0.575 0.2 0.225 0.4 0.45 0.45 0.4 0.225 0.2 0.575
σ [cm] 0.115 0.343 0.123 0.793 0.215 0.215 0.793 0.123 0.343 0.115

Table 3.3: Mean and standard deviation of displacement of supports ti ∼ N (µi, σi)
in the model 2

It is assumed that the hernia is located in the central part of abdominal wall, which has

consequences for the values of the forced displacements.

Due to uncertainties resulting, e.g., from the natural variability of the mechanical prop-

erties of the abdominal wall and difficulties in accurate in vivo measurement in humans,

the values of the forced displacements (ti, where i = 1 . . . n and n is the number of

supports, Figure 3.10) are assumed to be normal random variables. Their means and

standard deviations (Table 3.3) are based on [104, 169].

Examples with different numbers of independent random variables are considered: with 1

random variable (t1 in model 2a) and t4 in model 2b), with 3 random variables X = [ti]
>;

i = 1, 2, 3 (model 2c). Support displacements that are not assumed to be random are

constant and equal to their mean from Table 3.3. Also an example with random forced

displacements in all supports is considered X = [ti]
>; i = 1, 2, . . . 10 (model 2d).

Since hernia recurrences are usually caused by connection failure, the quantity of interest

Y is the maximum reaction force, Rmax, which corresponds to the maximum force in the

implant-abdominal wall connection. Two approaches for calculating Rmax are examined:

Approach 1 : one metamodel is created based directly on the outcomes of the maxi-

mum reaction

Y = Rmax; (3.11)
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Although this approach is straightforward, it can be problematic since Rmax may be

a nonsmooth function, which can be challenging for PC approximation by smooth

polynomials.

Approach 2 : firstly create a separate metamodel for each reaction Ri. The maximum

Rmax is calculated as the maximum of values obtained from each metamodel Yi.

Yi = Ri (3.12)

Y = max(Yi) for i = 1, . . . , nfas. (3.13)

The number of realisations of the metamodels which are carried out for random

sampling points in order to calculate Y is 105. In this approach, calculating Sobol’

sensitivity indices does not consist of straightforward post-processing of PC coef-

ficients. Nevertheless, they can be still calculated with negligible computational

cost by employing the metamodels of each reaction to perform the MC procedure

for calculating sensitivity indices (2.50–2.52).

3.2.2 Results on 1D-dimensional examples

Firstly, some methods are compared in the univariate cases of the Sobol’ function and

univariate implant models (models 1a, 1b, 2a, 2b).

3.2.2.1 Position of regression points when p = 1

The aim of this section is to check the relation between errors and positions of sampling

points in simple univariate cases. The quantity of interest optimality can be defined as

minimisation of errors of the mean, standard deviation, etc., of the quantity of interest.

Its correspondence to classic D-optimal choice is checked.

WhenM = 1 and p = 1 and the minimum number of points is taken (two points denoted

ξ1, ξ2) the matrix A for both Hermite and Legendre PC takes the form (3.2). Such a low

order and number of points can be considered insufficient, especially in the case of model

response which is nonsmooth and non-linear. However the case with only two regression

points enables simple visualization of the change of error with the position of regression

points.

Figures 3.13–3.29 show Err% of the mean and standard deviation in relation to the

position of the two regression points denoted ξ1 and ξ2. The colour scale shows the value

of Err%. The results can be compared with the graph of the determinant (Figure 3.5)
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(a) mean (b) standard deviation

Figure 3.13: Err% of H (3.9) in relation to the positions of regression points ξ1, ξ2,
model 1a

of the information matrix as a function of the position of the points, which refers to the

D-optimality criterion. On each figure the minimum of Err% is marked by a white circle

and the D-optimal points by a black circles. In the case of the uniform distribution, the

roots of the polynomial of order p + 1 (gray circle) are also marked. Figures 3.13–3.16

showing examples with uniformly distributed random variables were created with a pitch

(distance between points) of 0.05 x 0.05. Examples with the normal distribution (Figures

3.18– 3.29), were performed in a wider range (from -3 to 3) with pitch 0.1 x 0.1.

Figure 3.13a shows the relation between Err% and the position of regression points for

the cable model (3.9) when E is a uniformly distributed random variable (model 1a). It

can be seen that the shape obtained is similar to the shape of the determinant of the

information matrix (Figure 3.5a). The minimum of Err% is placed at the maximum of

the determinant of the information matrix in the range <-1,1>. In contrast, the shape

of the graph obtained for the standard deviation (Figure 3.13b) does not reproduce the

shape of the determinant and its minimum is far from the D-optimal points.

When we choose L0 as a random variable (model 1b), the relation between Err% of the

mean and the position of points (Figure 3.14) is different and is not as close to Figure 3.5a

as in the previous example. Furthermore the position of neither the D-optimal points

nor the roots of the polynomial of order p+ 1 coincide with the minimum of the mean.

Nevertheless, although they are not at the exact minimum of Err%, they can be still

considered a good choice from the point of view of the error of the standard deviation,

because they are in the area of relatively low error Err% when compared to the rest of

domain. However, it should be noted that in this example Err% of the mean is very

small for for all pairs of ξ1 and ξ2.
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(a) mean (b) standard deviation

Figure 3.14: Err% of H (3.9) in relation to the positions of regression points ξ1, ξ2,
model 1b

(a) mean (b) standard deviation

Figure 3.15: Err% of mean of Sobol’ function value Y (3.8) in relation to positions
of regression points ξ1, ξ2, model 2a with uniform random variables

Figure 3.15 shows the results for the 1D Sobol’ function (3.8), which is nonsmooth in a

way similar to Rmax of the membrane problem. In this case, the use of D-optimal points

leads to a very large error. The roots of p + 1 order Legendre polynomials are better

from the point of view of the mean, but lead to a huge error in the standard deviation.

The example of model 2a is carried out using both normal and uniform distributions.

The outcomes obtained for the uniform distribution are presented in Figure 3.16. It can

again be seen that in this example neither D-optimal points nor roots of p + 1 order

are optimal when the objective is to minimise errors of the mean or standard deviation.

Furthermore in this example an improper choice of points leads to quite large errors.

Figures 3.18a and 3.19a show results where t1 is a normal random variable. From the



54 3. Comparison of regression point choice methods

(a) mean (b) standard deviation

Figure 3.16: Err% of standard deviation of Rmax in relation to the positions of
regression points ξ1, ξ2, model 2a with uniform random variables
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Figure 3.17: Reaction forces in the membrane model 2a

point of view of the mean, the position of D-optimal points is closer to the area of low

Err% than in the example with the uniform distribution.

Figure 3.17 shows the change of individual reactions and Rmax with a change of the

standard normal random variable corresponding to t1. The nonsmoothness of Rmax can

be challenging, so two approaches are considered as described in section 3.2.1.2. Maps
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(a) approach 1 (b) approach 2

Figure 3.18: Err% of the mean of Rmax in relation to the position of the regression
points ξ1, ξ2, model 2a with normal random variables

(a) approach 1 (b) approach 2

Figure 3.19: Err% of the standard deviation of Rmax in relation to the position of
the regression points ξ1, ξ2, model 2a with normal random variables

of Err% of the mean (Figure 3.18), standard deviation (Figure 3.19) and 95th percentile

(Figure 3.20) of Rmax when t1 is the random variable (model 2a) are shown obtained by

the two approaches of calculating Rmax . The minimum values of Err% and values at

D-optimal points are also presented in Table 3.4. It can be seen that in model 2a, when

t1 is a normal random variable, the minima of Err% as well as the values of Err% at D-

optimal points are lower when the QoI is calculated by the second approach (3.13) than

by the first one (3.11). The maxima of Err% of the mean and standard deviation obtained

by the first approach are also higher than those obtained by the second. However, the

maximum of Err% of the 95th percentile is higher in the case of second approach (Figure

3.20).

Cases where the QoI is a single reaction are also presented for the following reactions
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(a) approach 1 (b) approach 2

Figure 3.20: Err% of the 95th percentile of Rmax in relation to the position of the
regression points ξ1, ξ2, model 2a

(a) mean (b) standard deviation

Figure 3.21: Err% of the mean and standard relation of the single reaction R1 in
relation to the position of the regression points ξ1, ξ2, model 2a

R1 (Figure 3.21), R2 (Figure 3.21), R3 (Figure 3.21) R4 (Figure 3.21), R5 (Figure 3.21).

For these simpler QoIs, D-optimal points are a better choice in the case of the standard

deviation than for Rmax as QoI. The D-optimal points even coincide with the minimum

of Err% where R3 (Figure 3.23b) is the QoI and are very similar to the minimum in case

of R5 (Figure 3.25b).

Maps of Err% of the mean (Figure 3.27), standard deviation (Figure 3.28) and 95th

percentile (Figure 3.29) of Rmax, when t4 is the random variable (model 2b) are shown

for the two approaches of calculating Rmax. The graph of Rmax and the random variable

t4 is more strongly nonlinear(Figure 3.26). The obtained Err% is higher than in the case

of model 2a. As in the case of model 2a, application of second approach leads to lower

errors, which is also shown in Table 3.4.
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(a) mean (b) standard deviation

Figure 3.22: Err% of the mean and standard relation of the single reaction R2 in
relation to the position of the regression points ξ1, ξ2, model 2a

(a) mean (b) standard deviation

Figure 3.23: Err% of the mean and standard deviation of the single reaction R3 in
relation to the position of the regression points ξ1, ξ2, model 2a

(a) mean (b) standard deviation

Figure 3.24: Err% of the mean and standard relation of the single reaction R4 in
relation to the position of the regression points ξ1, ξ2, model 2a
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(a) mean (b) standard deviation

Figure 3.25: Err% of the mean and standard relation of the single reaction R5 in
relation to the position of the regression points ξ1, ξ2, model 2a
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Figure 3.26: ξ corresponding to t4 vs reaction forces in the membrane model 2b

The results showed that first creating separate metamodels for each reaction force leads

to smaller errors in the cases considered. The D-optimal points in the majority of cases

do not overlap with the minimum of the error. Nevertheless, the choice of these points

as the DoE yields a relatively low error in the estimation of the mean values.
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(a) approach 1 (b) approach 2

Figure 3.27: Err% of the mean in relation to the position of the regression points ξ1,
ξ2, model 2b

(a) approach 1 (b) approach 2

Figure 3.28: Err% of the standard deviation in relation to the positions of regression
points ξ1, ξ2, model 2b

(a) approach 1 (b) approach 2

Figure 3.29: Err% of the 95th percentile in relation to the positions of the regression
points ξ1, ξ2, model 2b
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variable approach points mean standard deviation 95th percentile

t1 1 D-optimal 2.681 29.304 7.526

minimum 0.018 0.026 0.000

2 D-optimal 0.020 4.839 0.956

minimum 0.000 0.006 0.000
t4 1 D-optimal 0.723 48.699 31.555

minimum 0.058 0.150 0.014

2 D-optimal 2.620 41.661 22.046

minimum 0.071 0.000 0.014

Table 3.4: Err% at the D-optimal points and the minimum Err%, model 2 (a and b)

3.2.2.2 Higher order examples - two approaches for calculating Rmax in the

membrane model

The nonsmoothness of Rmax can be challenging for PC. Rmax can be directly chosen as

the quantity of interest (3.11) or can be defined as the maximum of values calculated

using PC metamodels created for each support individually (3.13). These approaches

are called respectively approach 1 and approach 2.

Figure 3.30 shows metamodels of Rmax obtained by PC of different orders p from 0 to

10 by approach 1 in model 2a. Figure 3.31 shows the same but in a narrower range of ξ.

Metamodels were created using the roots of polynomial order p+ 1 as regression points.

The fit of the metamodel to the exact solution obtained for 105 sampling points is poor

for low orders of PC and this is also indicated by RMSE value presented in Figure

3.33. RMSE of metamodels with high order polynomials is lower. Nevertheless it can

be observed in Figure 3.30 that in the range of standardized variables ξ is far from the

zero value of metamodel predictions. Y PC is far from the exact solution Y .

RMSE (Figure 3.33) is lower when the second approach is applied (with the exception

of order 0, when both approaches lead to the same metamodel). Metamodels obtained

by the second approach are presented in Figure 3.32.

The histogram of Rmax obtained in model 2a by the MC method is presented in Figure

3.34. It can be compared with the distribution obtained by the PC approximation

of different polynomial orders (Figures 3.35–3.44). Calculating Rmax by the second

approach leads to better agreement with the MC solution even when p is low, whereas

the distribution obtained by approach 1 is further from the MC solution for low (e.g.

Figure 3.35) and very high orders (e.g. Figure 3.44). The mean, standard deviation and
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Figure 3.30: Metamodels obtained by approach 1 for different polynomials orders
(form 0 to 10) compared with model solution Y , Model 2a
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Figure 3.32: Metamodels obtained by approach 2 – Model 2a
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Figure 3.34: Histogram of Rmax obtained by the MC method, model 2a

(a) approach 1 (b) approach 2

Figure 3.35: Normalized histograms of Rmax obtained for PC order p = 1 compared
with the MC solution, model 2a

95th percentile approximated by PC in the two approaches are compared in Figure 3.45.

Convergence with increase of PC order can be observed.

A similar comparison of approaches is carried out for model 2b. Figure 3.46 and Figure

3.47 show metamodels obtained by PC of different orders by approach 1 and 2, respec-

tively. A comparison of RMSE is presented in Figure 3.48. In this case, the difference

between approaches is smaller. Nevertheless, the accuracy of the metamodel obtained

by the second approach is higher in this case as well. It is also visible in the histograms

of Figures 3.49 –3.58 in which the MC solution is compared with the PC result in model
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(a) approach 1 (b) approach 2

Figure 3.36: Normalized histograms of Rmax obtained for PC order p = 2 compared
with the MC solution, model 2a

(a) approach 1 (b) approach 2

Figure 3.37: Normalized histograms of Rmax obtained for PC order p = 3 compared
with the MC solution, model 2a

(a) approach 1 (b) approach 2

Figure 3.38: Normalized histograms of Rmax obtained for PC order p = 4 compared
with the MC solution, model 2a
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(a) approach 1 (b) approach 2

Figure 3.39: Normalized histograms of Rmax obtained for PC order p = 5 compared
with the MC solution, model 2a

(a) approach 1 (b) approach 2

Figure 3.40: Normalized histograms of Rmax obtained for PC order p = 6 compared
with the MC solution, model 2a

(a) approach 1 (b) approach 2

Figure 3.41: Normalized histograms of Rmax obtained for PC order p = 7 compared
with the MC solution, model 2a
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(a) approach 1 (b) approach 2

Figure 3.42: Normalized histograms of Rmax obtained for PC order p = 8 compared
with the MC solution, model 2a

(a) approach 1 (b) approach 2

Figure 3.43: Normalized histograms of Rmax obtained for PC order p = 9 compared
with the MC solution, model 2a

(a) approach 1 (b) approach 2

Figure 3.44: Normalized histograms of Rmax obtained for PC order p = 10 compared
with the MC solution, model 2a
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Figure 3.45: Err% with change of polynomial order for approach 1 and 2, model 2a
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Figure 3.46: Metamodels obtained by approach 1—Model 2b

2b. Figure 3.59 shows the mean, standard deviation and 95th percentile obtained by the

two approaches. Err% is high when 1st order PC is applied for both approaches, but

improved significantly when the order is higher.
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Figure 3.47: Metamodels obtained by approach 2—Model 2b
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Figure 3.48: RMSE between PC metamodel and the exact solution for different
polynomial orders, model 2b
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(a) approach 1 (b) approach 2

Figure 3.49: Normalized histograms of Rmax obtained for PC order p = 1 compared
with the MC solution, model 2b

(a) approach 1 (b) approach 2

Figure 3.50: Normalized histograms of Rmax obtained for PC order p = 2 compared
with the MC solution, model 2b

(a) approach 1 (b) approach 2

Figure 3.51: Normalized histograms of Rmax obtained for PC order p = 3 compared
with the MC solution, model 2b
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(a) approach 1 (b) approach 2

Figure 3.52: Normalized histograms of Rmax obtained for PC order p = 4 compared
with the MC solution, model 2b

(a) approach 1 (b) approach 2

Figure 3.53: Normalized histograms of Rmax obtained for PC order p = 5 compared
with the MC solution, model 2b

(a) approach 1 (b) approach 2

Figure 3.54: Normalized histograms of Rmax obtained for PC order p = 6 compared
with the MC solution, model 2b
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(a) approach 1 (b) approach 2

Figure 3.55: Normalized histograms of Rmax obtained for PC order p = 7 compared
with the MC solution, model 2b

(a) approach 1 (b) approach 2

Figure 3.56: Normalized histograms of Rmax obtained for PC order p = 8 compared
with the MC solution, model 2b

(a) approach 1 (b) approach 2

Figure 3.57: Normalized histograms of Rmax obtained for PC order p = 9 compared
with the MC solution, model 2b
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(a) approach 1 (b) approach 2

Figure 3.58: Normalized histograms of Rmax obtained for PC order p = 10 compared
with the MC solution, model 2b
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Figure 3.59: Err% with a change of polynomial order for approach 1 and approach
2, model 2b

3.2.3 Results of comparison on multivariate examples

In the multivariate case it is possible also to compare sensitivity index values.

3.2.3.1 Sobol’ function

Firstly, the Sobol’ function is used with 4 random uniformly distributed variables. Ad-

ditionally to the methods listed previously, the choice of combination of optimal points

for 1D – Legendre polynomials is compared with the classic choice of roots of Legendre

polynomials order p + 1. All methods are tested with the same number of regression

points as used in [159], where the M1 method was applied on the present example of
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the Sobol’ function. The number of points was determined there by the necessity of

obtaining a full rank information matrix. Despite the fact that the use of other methods

is also possible for a smaller number of points, the same number is used here to exclude

its influence on the results. Where a method included random drawing (M3, M4 and

M5) it was performed repeatedly in order to arrive at a statistically valid average value.

The variables can be ranked by their importance, which is determined by SToti value.

All methods give the same result as in the analytical solution variable ranking according

to SToti . In addition, none of the methods lead to a large relative error Err% for the

most significant variables (SToti ≥ 0.1, in this case STot1 and STot2 ). Figure 3.60 shows

the value of the sensitivity indices for each variable for different orders. In the case of

methods M3, M4 and M5, the mean results from the repeated process of drawing are

shown. The sequence of methods in respect of their closeness to the analytical solutions

changes with the order of PC and depends on the variable. For example, method M1 is

the worst for even orders. However, its modification by means of the use of D-optimal

points for Legendre polynomial instead of roots of polynomial order p + 1 results in a

smaller distance to the analytical solution. Errs is presented in Figure 3.61. It can be

observed that choosing the D-optimal points of the Legendre polynomial is superior to

choosing the roots of p+ 1 polynomial for method M1 but inferior for method M2. The

standard deviation of the results obtained by methods including random draw (M3-M5)

decreases with order and is quite low for each model (Table 3.5).

3.2.3.2 Cable model

Figure 3.62 show Errs for all methods in the cable model with 4 random variables (model

1c). It should be noted, that the reference Sobol’ sensitivity indices are approximated by

MC. In this case taking combinations of roots of Legendre polynomial order p+ 1 gives

better results than a combination of D-optimal points of univariate Legendre polynomials

in the case of methods M1, M2 and M2.

3.2.3.3 Model of membrane subjected to forced displacement with 3 random

variables (model 2c)

Figure 3.63 shows scatter plots obtained for MC (only every tenth value is shown for

better clarity of the diagram). The low significance of t3(ξ3) can be observed, whereas

t1(ξ1) appears to be important. The significance of t2(ξ2) changes. These conclusions

were confirmed by calculation of Sobol’ indices by the MC method: STot1 = 0.9173,

STot2 = 0.1326, STot3 = 9.05E − 04. STot3 is omitted in the analysis of Err% due to its

small value.
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Figure 3.60: Values of total sensitivity indices of Sobol’ function obtained for different
methods and PC order

Method M1, which can be considered as the classic method, has been tested for different

orders and approaches to calculating Rmax. Figure 3.64 presents Err% of the mean,

standard deviation and 95th percentile of Rmax obtained by approach 1 (3.11) and ap-

proach 2 (3.13). The difference between these two approaches is not as important as in

the 1-dimensional case, shown in the previous section. For some orders approach 1 yields

even better results. Figure 3.65 shows the relation between Errs and order p for the two

approaches. In the 3-dimensional case it is not clear which approach is better. In further

simulations of other examples, only approach 1 is employed.

The infuence of the number of regression points is presented in Figures 3.66 and 3.67,

which contain the results obtained by method S2 for different orders and number of

points c · P proportional to the size of PC basis P .

However in this case increasing the order can lead to an increase in error. The order

which minimizes the error is different for different quantities (mean, standard deviation,
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Figure 3.61: Errs obtained for different methods, Sobol’ function

95th percentile). It can also be seen, that above a certain threshold, further increases

in the number of points do not significantly improve the accuracy of approximation of

these statistics. This is inline with observations, which have already been made in the

literature [11]. However, when Errs is considered, such an observation can be made only

for low orders. In case of high orders the situation is less stable.

The methods M2, M4 and M5 are considered in two variants:

(a) not including a weight function,

(b) including a weight function w = 1√
2π
e−ξ

2/2.

Methods M2a and M2b, M4a and M4b, M5a and M5b were applied on the same initial

candidate sets of points. Table 3.6 shows a comparison of results obtained by 3rd order

PC, where in the case of methods involving random sampling, mean values are presented.

In the majority of cases, the variant including weight leads to higher accuracy. Only in
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STot1 STot2 STot3 STot4

analytical value 0.6342 0.2945 0.0756 0.0227

method order mean st. dev. mean st. dev. mean st. dev. mean st. dev.

3 0.6142 0.025 0.2894 0.0212 0.0819 0.012 0.0302 0.008
M3a 4 0.6395 0.0142 0.2959 0.0126 0.079 0.0073 0.0271 0.0044

5 0.6339 0.0052 0.2942 0.0047 0.0767 0.0026 0.024 0.0014
6 0.6414 0.0044 0.2976 0.0038 0.0772 0.0022 0.0242 0.0013
7 0.6365 0.0015 0.2957 0.0014 0.0763 0.0008 0.0231 0.0004
3 0.5922 0.0249 0.2973 0.0209 0.0878 0.0113 0.0323 0.0079

M3b 4 0.6387 0.0206 0.2914 0.018 0.0766 0.0105 0.0263 0.0058
5 0.6316 0.0062 0.2926 0.0054 0.0758 0.0028 0.0232 0.0016
6 0.6433 0.0068 0.2982 0.006 0.0772 0.0031 0.0241 0.0017
7 0.6361 0.0018 0.2956 0.0017 0.0763 0.0008 0.0231 0.0005
3 0.5707 0.0258 0.3002 0.0248 0.0972 0.0157 0.0444 0.0155
4 0.6218 0.0176 0.3014 0.0147 0.0757 0.0136 0.0256 0.004

M4 5 0.6361 0.0102 0.2952 0.0079 0.0744 0.0058 0.0236 0.004
6 0.6333 0.0068 0.2957 0.0053 0.0813 0.0039 0.0273 0.0031
7 0.6389 0.0048 0.298 0.0059 0.0803 0.003 0.0251 0.0015
3 0.5726 0.0255 0.3020 0.0238 0.0893 0.0198 0.0463 0.0158
4 0.6341 0.0280 0.2877 0.0269 0.0777 0.0119 0.0246 0.0041

M5 5 0.6408 0.0181 0.2871 0.0188 0.0747 0.0043 0.0251 0.0038
6 0.6327 0.0148 0.2995 0.0127 0.0818 0.0044 0.0262 0.0023
7 0.6388 0.0045 0.2968 0.0043 0.0807 0.0032 0.0258 0.0020

Table 3.5: Mean and standard deviation of results obtained by methods including
random sampling, Sobol’ function

the case of method M2 is the error of the 95th percentile smaller in the variant without

weight. The superiority of the approach with weight can be also seen in the case of a

single pair of calculations taken from the same set performed for the same candidate

points. However, cases where some of the Err% are lower without the weight can be

found for some random draws and quantities.

Figures 3.68, 3.69, 3.70 show the error obtained using methods M2 and M5, respectively,

for higher orders. The relation between variants with and without weight differs with the

order of PC. Including the weight in creation of the D-optimal set seems to be a better

choice when a low PC order is used.

A comparison of all methods for model 2c is given in Table 3.6. The sensitivity to

the second variable is small, so the value of the relative error seems to be high. The

Halton sequence (S2) outperforms the Sobol’ sequence (S1) for all investigated quantities.

This was also observed in previous examples. In the case of methods involving random

sampling, variability with subsequent throws was not high, especially in the case of

method M3.
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Figure 3.62: Errs obtained for different methods, model 1c

Method M1 is the least convenient due to the rank deficiency problem because it requires

a larger number of regression points. The D-optimal choice seems to work in both

variants, but is generally better when weight is included. Therefore, in an example with

10 random variables (model 2d) the variants without weight in method M5 and M6

were excluded owing to the size of the problem leading to higher number of required

simulations.

3.2.3.4 10 dimensional case

In this section methods will be compared on the 10-dimensional case of the model of the

membrane subjected to forced displacement (model 2d).

In the case of 10 variables, the computational cost is higher owing to the larger size of

P and also to the higher cost of a single simulation caused by the higher complexity

of the problem. Furthermore, when the classic method M1 is applied to 10 variables,

the rank deficient problems force the use of more variables (M − 1) · P than suggested

in the literature [11]. Table 3.7 shows the number of points which have to be taken to

obtain the full rank matrix in comparison with size of PC basis P and the number of

regression points (M−1)·P recommended in the literature. Errors of the mean, standard
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Figure 3.63: Scatter plots of model 2c with standardized variables ξi related to forced
support displacement ti

Err% Errs
Mean Standard deviation 95th percentile STot1 STot2

S1 0.63 30.21 3.1 9.09 82.53 0.1416
S2 0.09 20.36 0.93 7.62 49.02 0.1037
M1 4.14 11.19 0.19 5.68 75.07 0.1208
M2a 1.36 16.55 3.84 2.22 49.31 0.0742
M2b 0.96 13.19 3.29 0.21 24.65 0.0357
M3 1.43 17.82 3.96 1.59 42.42 0.0636
M4a 6.42 12.84 5.58 41.12 174.26 0.47
M4b 0.23 1.66 2.17 2.07 25.09 0.04
M5a 1.49 8.08 3.84 18.16 67.24 0.2
M5b 0.16 2.39 2.14 1.4 30 0.05

Table 3.6: Errors in model 2c, p = 3, 40 regression points (2P ). Calculations for the
M1 method were carried out for 49 points because of the rank deficiency problem

.
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Figure 3.64: Err% of the mean, standard deviation and 95th percentile of Rmax using
method M1 and two approaches to creating a metamodel of Rmax, model 2c

order 1 2 3 4

P 11 66 296 1001
(M − 1)P 99 594 2574 9009

number of points 258 147 7674 12693

Table 3.7: Number of simulations needed (regression points) in method M1 in the
case M = 10 due to the rank deficient problem in comparison to P and recommended

number of points (M − 1)P

deviation, 95th percentile obtained by 3rd order PC are equal to 3.57%, 8.05%, 0.29%

and 2.09% for the sensitivity index of random variable 4. The rank deficiency problem

did not appear in the rest of the considered methods.

The comparison of methods is presented in Table 3.8. Calculations were made on a

small (2P ) number of points. The method M1 is not presented in this table because of

its computational cost. Quasirandom sequences and especially the Halton sequence (S2)

out-perform other methods in terms of mean, 95th percentile and sensitivity index of the

most significant variable STot4 . Method M3 leads to lowest error of standard deviation

and a relatively low error of other quantities.
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Figure 3.65: ErrS obtained by two approaches to creating a metamodel of Rmax in
model 2c

method Mean Standard deviation 95th percentile STot4

S1 1.36 6.41 0.35 1.13
S2 0.87 7.41 0.96 1.24
M3 3.36 2.31 1.67 2.58
M4b 2.15 6.92 1.94 3.79
M5b 4.51 33.78 6.84 24.12

Table 3.8: Err% for methods for model 2d (10 dimensional)

3.3 Conclusions

PC was applied to one analytical function and local models of the surgical mesh. Different

methods of choosing regression points were compared and the error compared to the

analytical or MC solution was calculated. The aim of this section was to find the DoE

method that will be effective in application to hernia-related problems.

Despite nonlinearity and nonsmoothness of some of the quantities of interest, it was

possible to obtain sufficient accuracy by regression-based PC.

The relation between errors and the position of sampling points is dependent on the stud-

ied problem, which makes it difficult to draw general conclusions about the most efficient
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Figure 3.66: Error obtained by method S2 for different orders and number of regres-
sion points N = c · P , model 2c

DoE method. Nevertheless, some conclusions can be drawn from the perspective of the

application of PC to similar models e.g a model with forced displacements corresponding

to another hernia location or different surgical mesh types. Further examples will be

presented in the next chapter.

All methods lead to low error in the case of the cable model (model 1) for polynomial order

p > 2. Therefore conclusions are drawn mainly from the more demanding membrane

model (model 2). Based on the results presented, the following observations can be

made:

• PC constructed on DoE based on D-optimality can lead to relatively low error.

Nevertheless, the accuracy depends on the initial candidate set.

• Method M1 leads to higher computational cost in the case of the higher dimensional

problem owing to the rank-deficiency problem, which make it less attractive in

comparison to other methods.
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Figure 3.67: Errs obtained by method S2 for different orders and number of regression
points N = c · P , model 2c
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Figure 3.68: Errs, when method M2 was applied in variants without (a) and with
(b) weight for different orders, example 2-3D)

• When a method incorporates the choice of D-optimal design of experiment (M2,

M4, M5) in the case of normal distribution and low PC order it is beneficial to

include a weight function corresponding to a Gaussian measure in the construction

of the information matrix, the determinant of which will be maximized;

• Sobol’ (S1) and Halton (S2) sequences are a better choice in the case of higher
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Figure 3.70: Errs, when method M5 was applied in the variant without (a) and with
(b) weight for different orders (mean result from a couple of drawn LHS candidate sets

of points, example 2-3D)

(M = 10) dimensional models , but lead to a large error in the standard deviation

in the lower (M = 3) dimensional case (this will be also shown in the example of

the reduced model in chapter 4), which is in line with conclusions drawn by Cho

et al. [30] and Gao et al. [53] on the superiority of QMS when M is high.

• In the lower dimensional case (M = 3) and normal distribution, methods based on

the D-optimal set founded on a random candidate set with weight function (M4b,

M5b) lead to the lowest error. However, for the higher M (M = 10) method M5b

with a candidate set drawn by LHS leads to a large error of the standard deviation

and sensitivity index when compared to other methods including method M4b.

• Method M3 (random choice from D-optimal 1D cases) leads to the lowest error

of the standard deviation in the case of the model with 10 variables and also a

satisfactory error of the other quantities.
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• Approach 2 (3.11) to calculate metamodels of Rmax was usually superior to ap-

proach 1 (3.13) in terms of the error of the statistical values and RMSE of the

metamodel but not in the case of estimation of the total sensitivity indices.

In the case of all considered methods, the choice of DoE is made regardless of model

response, which make it impossible to incorporate problem dependence. In further re-

search some adaptive methods can be considered. However, the question of choice of

criteria then occurs.

In the examples shown in the next chapter, the decision on the DoE is based on the

number of variables.



Chapter 4

Results of uncertainty propagation

and sensitivity analysis

In this chapter the results of uncertainty quantification and sensitivity analysis are pre-

sented. The results are shown for the models already introduced in chapter 2. UQ and

SA is also performed on other models, where the DoE choice is based on expertise gained

in chapter 2.

The following models are considered in this chapter:

1. local cable model of the implant with four random variables X = [E,L0, H0,∆p]
>

(model 1c);

2. local model of the membrane subjected to displacement of the supports:

• model 2d with 10 independent random variables X = [ti]
>; i = 1, 2, . . . 10;

• model 2e with a reduced number of random variables based on the global SA

outcome of model 2d;

• model 2f with 10 correlated random variables X = [ti]
>; i = 1, 2, . . . 10 ;

3. local model of the membrane subjected to intraabdominal pressure:

• model 3a with uncertain pressure and stiffness of the fascia and abdominal

wall;

• model 3b with imperfections;

4. Gloabl membrane model of abdominal wall with implant.

Both the local and global models are concerned with the period shortly after repair. No

tissue overgrowth is taken into account.

85
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In addition to the examples from the implant-abdominal wall system, an example is

considered which addresses a topic from the civil engineering field (section 4.5). A model

of corner joints in historic log houses is introduced together with a description of the

background of the study and a brief account of the state of the art of historic timber

structures.

4.1 Cable model (model 1)

This model has already been presented in section 3.2.1.1, where the choice of DoE was

also discussed. In the following section attention will be paid to the outcome of sensitivity

analysis.

Firstly, the local sensitvity is considered following [168]. The local sensitivity in the case

of the cable model can be calculated by analytic differentiation. The derivation of the

local sensitivity indices performed by [168] is briefly presented here. Let s be parameter,

which can be one of the cable model parameters: L0, H0, ∆p or E. The derivative of

the left side of equation 3.10 with respect to s is

3H2 dH

ds
c1 +H3 dc1

ds
+ 2H

dH

ds
c2 +H2 dc2

ds
− dc3

ds
= 0, (4.1)

Therefore:
dH

ds
=
−H3 dc1

ds −H
2 dc2

ds + dc3
ds

3H2c1 + 2Hc2
(4.2)

Then the local sensitivity index Slocals (2.34) with respect to parameter s is

Slocals =
s

H

dH

ds
(4.3)

The local sensitivity indices are then given by:

SlocalL0
=

H3ls +H2∆pEA− EAg2l3

24

L0H2
[
3H
(

1 + ls
L0

)
+ 2

(
−H0 + ∆p

EA
L0

)]
SlocalH0

=
H0

3H
(

1 + ls
L0

)
+ 2

(
−H0 + ∆p

EA
L0

)
Slocal∆p

=
−EA
L0

∆p

3H
(

1 + ls
L0

)
+ 2

(
−H0 + ∆p

EA
L0

)
SlocalE =

−H2∆pEA+ EAg2l3

24

L0H2
[
3H
(

1 + ls
L0

)
+ 2

(
−H0 + ∆p

EA
L0

)]

(4.4)
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Figure 4.1: Local sensitivity indices Slocali for different base points (model 1c)

variable E L0 H0 ∆p

STot 0.6460 0.0059 0.0942 0.2746

Table 4.1: Total sensitivity indices STot obtained for model 1c by MC

The local sensitivity indices (4.1) vary with change of base point [168], Figure 4.1). The

base point is only changed for one variable at a time while the other variables remain

fixed at their initial base point. The ranking of variables in terms of local sensitivity

varies as the base point considered is varied. For example, when ∆p is at the beginning

of its considered range, the magnitude of its sensitivity is lower than of E and L0, but

when ∆p is at the end of its considered range it is the most influential variable. ∆p

results from elasticity of the fascia, which as a human soft tissue is characterized by

natural variability so limitation of the analysis to a particular base point may not be

sufficient.

Global sensitivity analysis is also performed to investigate the global effect of variations

in the domain performed all at once. Table 4.1 presents the total sensitivity Sobol’

indices obtained by MC for model 1c.

Figure 4.2 shows scatter plots obtained by the MC method for 4 variables. Ranking of
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Figure 4.2: Scatter plots of model 1c

variables in terms of their significance as obtained from Sobol’ indices (Table 4.1) is also

visible in the plots.

Globally, E is the most significant. ∆p is in second place in terms of the sensitivity

index. Despite the relatively high local sensitivity index of L0 around some base points,

the variance of L0 has a minimal effect on the variation of H. Nevertheless, it should

be noted that the input variation of L0 was also low when compared to other variables,

which affects its global sensitivity index.

4.2 Model of membrane subjected to forced displacement

of supports

The model of the implant subjected to forced displacement has already been presented

in section 3.2.1.2 together with a discussion on the DoE. In the following section the

outcome of sensitivity analysis will be presented in more detail for the case with 10

variables.
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i 1 2 3 4 5 6 7 8 9 10

SToti 0.01 0.0036 0.0009 0.5156 0.0063 0.0055 0.491 0.001 0.0038 0.0106

Table 4.2: Total sensitivity index in model 2d, 3rd order PC with (M − 1)P point
from Sobol’ sequence

4.2.1 10-D problem with independent variables

Firstly, as in section 3.2.1.2 all variables are assumed to be independent. Figure 4.3

shows scatter plots obtained for this model by MC (only every tenth point is shown for

better clarity of the graph). The strong influence of ξ4 is visible. Nevertheless, it can

be seen that this influence changes over the domain and is greater for higher ξ4. The

displacements of the 4th and 7th supports are also much more influential on the variance

of the QoI according to the total Sobol’ indices obtained by PC method (Table 4.2). This

can be explained by the higher input variation of these two variables when compared to

the others.

4.2.2 Reduction of number of variables

The total sensitivity indices are very small for variables other than the 4th (t4) and

7th (t7) and indicate that the influence of the uncertainty of the displacement of other

supports is negligible in comparison to these two.

This analysis has been repeated for other orientations of the implant that may affect the

importance of the variables (Figure 4.4). However, at least one of the two aforementioned

variables is always dominant and the sum STot4 + STot7 is close to 1 for all considered

orientations. The influence of other variables on the variation of the output is very small

for all considered orientations of the implant.

Therefore for any orientation of the implant the model can be reduced to a model of just

2 variables.

PC metamodels for the model with a reduced number of variables were constructed with

different methods of DoE creation. However, since only 2 variables are taken into account,

the M2 and M3 methods were not considered because the number of combinations of

roots of 5 order is smaller than 2P in case of p = 4. In this case method M1 consists of

taking all possible combinations of D-optimal points of univariate polynomials.

Table 4.3 shows Err% between the statistics obtained for PC constructed with different

approaches for the 2 random-variable model (t4 and t7). M5b leads to the highest

accuracy in the case of the 2-D problem. It is interesting to compare it with Err%
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Figure 4.3: Scatter plots of model 2d of standardize variables ξi related to forced
support displacement ti

obtained for 10D PC (Table 3.8), where in contrast to the reduced 2D problem, the

accuracy of M5b was the worst in terms of Err% of the standard deviation and STot4 .

Gao and Zhou [53] showed that the best method of DoE in least square polynomial

approximation is dependent upon the number of dimensions. They noticed that QMC

points are better for high-dimensional problems in terms of convergence and stability.

In the model considered of the membrane subjected to forced displacement of supports

Sobol’(S1) and Halton(S2) sequences are more efficient in case of 10-D problem than in

the reduced model. In this 2D case and also in the 3D model (model 2c, Table 3.6)

choosing Sobol’ and Halton sequences leads to high Err% of the standard deviation.
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Figure 4.4: Total global sensitivity indices vs orientation of implant αorient, model
2d, PC order 3, 2P regression points,

method Mean Standard deviation 95th percentile

S1 4.51 49.99 10.73
S2 9.09 26.97 0.79

M1 (25 points) 7.75 3.17 4.91
M5b 2.67 2.85 0.62

Table 4.3: Err% between the solution of the reduced 2D model (model 2e) and the MC
solution obtained for the 10D model (model 2d), PC order p = 4, 2P = 30 regression

points (for method M5b mean Err% is shown

4.2.3 Correlated variables

Some other analyses have been carried out where a correlation is introduced between

the displacements of the supports. Due to lack of a sufficiently large set of experimental

data, the correlation matrix is defined based on judgement.

The classic autocorrelation function is based on the distance between points. The corre-

lation matrix in this example corresponds to the positions of the 10 fasteners and is in

the form :

CA = e−
‖Z−Z′‖

l , (4.5)
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(a) matrix CB (b) matrix CC (c) matrix CD (d) matrix CE

Figure 4.5: Graph representation of correlation. The thicker line, the stronger the
correlation. However, no line does not mean no correlation, but only weaker then

between other variables (matrices are given in appendix A.3)

where l is the span of the implant and Z is the position of support. Matrix entry (i,j) is

the correlation coefficient between i-th and j-th variable. This is a reasonable approach

in many applications. However, the abdominal wall (Figure 1.1) is anisotropic and it

is composed of layers with different architectures and orientations of fibres. Linea alba,

a tissue playing a key role in ventral hernia problem, is also anisotropic and composed

of fibers aligned in different directions [60]. The construction and properties of the

abdominal wall affect the values of the displacements of the supports and therefore their

level of correlation may depend not only on their distances, but also on their arrangement

within the fibres. Therefore, four more correlation matrices are introduced, CB, CC ,

CD and CE (appendix A.3). Figure 4.5 shows the levels of correlations between forced

displacements of the supports for the new matrices.

However, a matrix created manually may not be positive semi-definite and therefore may

not fulfill the requirements necessary to be a correlation matrix. This problem is solved

by applying the algorithm of finding the nearest semi-definite matrix with elements on

the diagonal equal to 1 [73].

4.2.3.1 Results - reduction of number of variables

An example was calculated with the correlation matrix CB for all variables (NNK = 10).

Figure 4.6 shows on the left axis eigenvalues corresponding to each variable and on the

right axis the total sensitivity indices STot to all variables of the maximum reaction force.

This calculation was done for polynomial order p = 5. Both curves have similar shapes.

Starting from the 5th variable, the value of STot is smaller than 0.1. Therefore, although

the 5th eigenvalue has a similar value to the 4th, truncation at the 4th variable can be

considered as reasonable. The influence of truncation for the mean, standard deviation

and 95th percentile is presented in Figure 4.7 for different polynomial orders p. The

difference between the results obtained for different p is high when only one variable is

taken into consideration. These graphs confirm that good accuracy can be obtained for
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Figure 4.6: Eigenvalues and corresponding total sensitivity indices to all variables of
the maximum reaction force

truncation at the 4th variable. Global sensitivity analysis can be useful in finding the

truncation point efficiently when PC is applied and performing such calculations does

not require additional model runs. Based on these results, in further calculations PC of

order 2 was applied and 4 variables were taken into account.

4.2.3.2 Results - influence of implant orientation

The orientation of the orthotropic implant within the anisotropic abdominal wall was

shown to be important in [106], where the optimal orientation in terms of minimisation

of Rmax was found for different hernia locations and implants. An analysis of implant

orientation was also conducted by Hernández-Gascón et al [70] using an FE model of

the whole abdominal wall and one hernia location. The conclusion presented there was

similar to that obtained in [106], namely that at the hernia location considerd in this

thesis, the most compliant axis of the mesh should coincide with cranio-caudal direction

of the body. Simón-Allué et al. [145] confirmed this for large hernia defects, but noted

that the superiority of any given orientation is not so clear when small and medium

hernia defects are considered. All the aforementioned studies were deterministic and

conducted for single specific sets of abdominal wall properties.

The influence of the orientation on some quantities obtained by the probabilistic approach

has been investigated. The orientation of the implant αorient was modified in the example

with 10 independent variables. Figures 4.8 and 4.10 show the mean and 95th percentile
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Figure 4.7: Mean (a), standard deviation (b) and percentile 95% (c) with a number
of variables for different polynomial orders p from 1 to 5, model 2f
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obtained, respectively, of Rmax. Figure 4.9 shows the change of the standard deviation

with orientation. The 95th percentile of Rmax increases with the orientation angle (0◦

means that a specified direction of the implant is parallel to the cranio-caudal axis and 90◦

that is perpendicular), which is in contrast to the solution obtained deterministically for

mean input values of the forced displacement [106]. The results as a function of αorient
obtained for the model with 10 independent variables do not reproduce the relation

obtained by deterministic studies.

The situation is different when correlation between the forced displacements of the sup-

ports is introduced. In the same Figures (4.8–4.10) it can be seen, that both mean

and 95th percentile decrease with increase of orientation angle. The differences between

the mean values obtained from all the considered correlation matrices are small when

compared to much higher values obtained for the case with 10 independent variables.

The results obtained for the 95th percentile differ more, but the shape of its dependence

on αorient is similar for all the matrices considered. It can be seen that the mean and

95th percentile obtained from the calculation with 10 independent variables are higher

than the statistics obtained from all the considered correlation matrices. Calculation

with independent variables can provide a broader scope of situations, which results in

higher variability of Rmax and can be considered safer, especially when the form of the

correlation is not well known. However in such a case, the relation between forced dis-

placements of different supports can change more easily, which may affect conclusions

about the proper orientation. The introduction of correlation between the displacements

of the supports leads to a change in the shape of the dependency of the quantities con-

sidered on the orientation of the implant. Nevertheless the actual choice of correlation

matrix does not seem to be important when studying the influence of orientation on the

quantity of interest.

4.3 Model of membrane subjected to intraabdominal pres-

sure

4.3.1 Deterministic model

The membrane model of the implant is taken from [105] (Figure 4.11). In place of

the overlap of the implant over the fascia, an elastic foundation with elasticity kaw

representing the elasticity of the abdominal wall is assumed. In place of the tacks,

supports are modelled with springs of elasticity kf corresponding to the elasticity of

the fascia tissue. An impulse of pressure of pia simulating the intraabdominal pressure

during coughing is imposed dynamically. The implicit single-step Houbolt algorithm is
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Figure 4.8: Mean of QoI obtained from different correlation matrices and the example
with independent variables for different orientations of the implant αorient. Additionally
the value of the QoI obtained by a single deterministic calculation for mean input is
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Figure 4.9: Standard deviation of QoI obtained from different correlation matrices
and the example with independent variables for different orientations of the implant

αorient. Model with forced displacement of the supports
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Figure 4.10: 95th percentile of QoI obtained from different correlation matrices and
the example with independent variables and deterministic results obtained for mean
input values for different orientations of the implant αorient. Model with forced dis-

placement of the supports

used. Rayleigh damping is assumed with the damping parameters estimated in [105].

The geometric dimensions, the material model and its parameters are the same as in

model 2. The FE model is composed of quadrilateral four-node isoparametric membrane

elements [2]. The mesh (Figure 4.12 was chosen based on convergence analysis of the

quantities of interest (maximum reaction and deflection of the implant) [105]. The model

was validated in [105] by comparison of the simulation with an experiment in a pressure

chamber. In that experiment [174] an implant connected to the porcine abdominal wall

with hernia was subjected to the impulse of pressure. Displacements were measured by

laser sensors and were compared with numerical results obtained from the use of the

model.

The quantities of interest are:

• the maximum reaction force Rmax related to the force in the tacks. The maximum

over time and all the supports is found.

• the maximum deflection over time of the center of the implant umax, which is

related to problem of excessive mesh bulging.

Two cases of random variables are considered:

• X = [pia, kf , kaw]>, (model 3a, section 4.3.2);
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Figure 4.11: Scheme of the model of the implant subjected to intraabdominal pressure
with the load function

Figure 4.12: FE mesh of the model of the implant subjected to the intraabdominal
pressure

• random imperfections in the positions of the tacks (model 3b, section 4.3.3).

4.3.2 Uncertainties in pressure and elasticity of the abdominal wall
tissues

4.3.2.1 Model

Three independent random variables are assumed X = [pia, kf , kaw]>.
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variable lower limit upper limit

pia [mmHg] 40 127
kf [kN/m] 0.6 15.5
kaw [kPa] 17 38.5

Table 4.4: Limits of uniform distribution, model 3a

Cobb et al. [33] measured the values of intraabdominal pressure during various human

activities. They found that the value is correlated with body mass index (BMI) and can

also be elevated in people with a chronic cough. The variations in outcome among the 20

subjects reported in that study can be considered high, e.g. for the case of a cough, the

relative standard deviation of intraabdominal pressure is 31%. Therefore, the value of

the pressure during coughing pia is assumed to be a uniform random variables in a range

taken from [33], where the minimum and maximum values of the pressure was measured

in 20 subjects.

kaw and kf are taken to be uniform random variables because of the uncertainties of

the mechanical properties of the abdominal wall tissues. The range of kaw is based on

the results reported by Song et al. [153], where the elasticity of abdominal wall was

measured in vivo in humans. Ranges of kf are taken from [170], where fascia elasticity

was determined.

Table 4.4 presents the ranges of the uniform distribution of each random variable.

4.3.2.2 Results

Monte Carlo simulation was conducted in this example. Polynomial chaos of order 3

was performed with 2P points from a Sobol’ sequence as the DoE. Figure 4.13 presents

normalized histograms obtained by MC and PC of order 3 for two QoI, which shows that

PC constructed in this way produces good predictions.

Table 4.5 shows the total Sobol’ indices obtained by use of PC coefficients for two QoIs.

The uncertainty of pia has the greatest influence on the variance of the QoIs, whereas

the uncertainty of kaw has a negligible one. Figure 4.14 presents scatter plots obtained

for model 3a by the PC method. The influence of pia and lack thereof of kaw are also

visible in these graphs.

The results imply that a more detailed study should be performed on intraabdominal

pressure in humans. Although the coefficient of variation of kf was the highest, the

significance of kf variation was much lower than that of pia so the number of variables

in such a study could be reduced to one, namely pia.
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(a) Rmax (b) umax

Figure 4.13: Normalized histograms obtained by MC and PC methods for two con-
sidered quantities of interest (Rmax and umax) in the case of model 3a

Quantity of interest Rmax umax

pia 0.9503 0.9222
kf 0.0514 0.0781
kaw 0.0013 0.0011

Table 4.5: STot obtained by PC for model 3a

4.3.3 Model of membrane subjected to pressure with fixation imper-
fections

4.3.3.1 Model

Imperfections in fixing can be investigated by using a probabilistic approach. For

example, geometric imperfections of shell structures were described by random fields

[12, 58, 183, 183]. Here imperfections in discrete fasteners position are covered.

Let the position of the supports referred to their ideal placement be a random variable

accounting for the possible imperfection in fixation of the implant under laparoscopic

conditions. It is assumed that position of three supports varies (Figure 4.15), which

will disturb symmetry. Six independent normal random variables are assumed X =

[r1, r2, r3, θ1, θ2, θ3]>: the first three describing the radial change ri ∼ N (0, 6.4) [mm]

and the next three the angular change δi ∼ N (0, 0.08), where i = 1, 2, 3 is the support

number. The quantities of interest are the same as in the model 3a (Rmax and umax).

In this example, kaw = 2.775 MPa (value after [105]), kf = 1500 N/m and pia = 11132.4

Pa. The orientation direction of orthotropic material model is presented in Figure 4.15

(αorient = 0).
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Figure 4.14: Scatter plots of model 3a obtained by PC

4.3.3.2 Results

Sobol’ sequence points are used to construct the DoE in this model. (M−1)P regression

points were chosen.

MC was not performed here because of the high computational cost. Nevertheless in

order to estimate the accuracy of the PC metamodel, 100 additional points were taken

from a Sobol’ sequence to compare their exact solution with the PC prediction. Figure

4.16 shows the normalized root mean square error, NRMSE, (3.6) calculated at these
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Figure 4.15: Scheme of imperfections in model 3b
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Figure 4.16: NRMSE of PC metamodel of Rmax of order p obtained for 100 extra
points for verification purposes, model 3b

additional points. It can been seen to decrease with polynomial order p. Small differences

in the values of the mean, standard deviation and 95th percentile of the QoIs (Figure

4.17) with change of order can be seen for p ≥ 2. There are no significant differences

between solutions of STot when the QoI is umax (Figure 4.19). The situation is different in

the case of the total sensitivity indices of Rmax as the QoI (Figure 4.18), where a greater

difference between results obtained for different PC orders can be observed, especially

for the first variable (STot1 ) although by the 4th and 5th orders the relative difference

between values of SToti obtained is already low (< 3%).

Figure 4.20 shows scatter plots obtained for Rmax generated with points from a Sobol’

sequence. The higher sensitivity to ξ4 (the angular change of the placement of the first

support) can be seen, which is confirmed by total Sobol’ indices (Figure 4.18). ξ1 is the

second variable in terms of significance. Owing to the orientation of the stiffer direction

of the implant, greater importance of the ξi positions is expected. The angular change
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Figure 4.17: Mean, standard deviation and 95th percentile of Rmax and umax ob-
tained by PC of order p, model 3b
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Figure 4.18: Total sensitivity indices of Rmax obtained by PC of order p, model 3b

has a higher impact on Rmax and umax. For the case of implant orientation considered,

imperfections of the second and third fastener have negligible influence on the outcome.

It is interesting to note the large influence in this example of mixed PC terms. The sum

of all total indices
∑M

i=1 S
tot
i = 1.3240 (in the case of p = 5) indicates quite high levels

of interaction. Figure 4.21 shows the comparison between total and first order partial

Sobol’ indices of the two most influential variables (1 and 4) where Rmax is the QoI.

Such large differences between first order and total indices do not appear when umax is

the QoI (Figure 4.22). In the case of umax the influence of mixed terms is small as seen

from the fact that the sum of total indices barely exceeds 1 (
∑M

i=1 S
tot
i = 1.0466 in case

of p = 5).
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Figure 4.19: Total sensitivity indices of umax obtained by PC of order p, model 3b
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Figure 4.20: Scatter plots of Rmax versus standard random variables in model 3b

The relative standard deviations obtained in models of the system subjected to intraab-

dominal pressure are presented in Table 4.6. It can be seen that the variation of the QoI

for model 3b, the case of imperfections, is low when compared to variation of the QoI

caused by the variation of variables considered in the model 3a.
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Figure 4.21: Total sensitivity indices and first order partial sensitivity indices e of
Rmax obtained by PC of order p, model 3b
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Figure 4.22: Total sensitivity indices and first order partial sensitivity indices e of
umax obtained by PC of order p, model 3b

Rmax umax

model 3a 0.2234 0.1023
model 3b 0.0614 0.0075

Table 4.6: Relative standard deviation of Rmax and umax in models 3a and 3b
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4.4 Membrane model of abdominal wall with implant

4.4.1 Model

Two global FE models of the abdominal wall are considered:

• healthy abdominal wall,

• abdominal wall with hernia repaired with implant.

The geometry of the healthy abdominal wall is taken from the study [169]. Figure 4.23a

presents the FE mesh. The model is composed of quadrilateral four-node isoparametric

membrane elements. Prediction of abdominal behaviour obtained by the model was

compared with displacements of real human abdominal wall acquired in in vivo tests

and presented in [109].

The thickness of abdominal wall is 3 cm. Translation of the nodes on the edge of the

model is fixed. The abdominal wall is subjected to intraabdominal pressure pia. The

material model is taken as linear orthotropic [153]. The model is divided into three zones

with different orientations of the material (Figure 4.23b):

• the middle area corresponds to the area of linea alba, rectus abdominis muscle and

rectus sheath, where first direction of the material is transverse to the abdominal

wall;

• two lateral zones corresponds to the lateral muscles on each side with orientations

±αaw.

The model of the abdominal wall with a hernia repaired with an implant (Figure 4.24)

is based on the model of healthy abdominal wall. A hernia orifice was created (Figure

4.24a) and the implant was added (Figure 4.24b) as a membrane structure with the same

properties as in the local model 2. The stiffer direction of the implant is in the transverse

direction of abdominal wall.

The elasticity moduli of the abdominal wall Eaw1 , Eaw2 and Gaw12 and the value of the

intraabdominal pressure pia are assumed to be independent uniform random variables

(Table 4.7). The ranges of the distribution are based on a literature study: Eaw1 and

Eaw2 on [153], Gaw12 on [177] and pia on [33]. Since the orientation of the composite of

lateral muscles and their aponeuroses with different arrangement of fibres is not clear,

αaw is assumed to be a uniform random variable as well.
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(a) FE model of a healthy abdominal
wall 4 with boundary condition

(b) Orientation of material in the de-
scribed areas of abdominal wall

Figure 4.23: FE model of healthy abdominal wall (model 4)

(a) Abdominal wall with hernia (b) Hernia covered by implant

Figure 4.24: FE model of herniated abdominal wall (model 4)

Variable a b

Eaw1 [Pa] 22000 64000
Eaw2 [Pa] 16000 29000
Gaw12 [Pa] 3000 40000
pia [Pa] 4800 18625
αaw 0 π

Table 4.7: Limits of uniform distribution U(a, b) for each of the independent variables
in model 4
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QoI Variable
Eaw1 Eaw2 Gaw12 pia αaw
1 2 3 4 5

uaw 0.0756 0.0527 0.0573 0.7534 0.0979
ui 0.0493 0.0507 0.0795 0.7282 0.1413

uaw − ui 0.5493 0.0507 0.0353 0.3293 0.0786

Table 4.8: Total Sobol’s indices SToti for different QoI, p = 3, model 4

In the ideal case, the behaviour of the repaired abdominal wall should be the same as

that of a healthy one. The quantity of interest in the case of this model is the difference

between the displacements of the centre of the implant ui and the corresponding point

in the healthy abdominal wall uaw.

4.4.2 Results

PC metamodels were created with (M − 1)P Sobol’ sequence points as the DoE. The

MC simulation was not performed in this case owing to the high computational cost

caused by the necessity of computing two models. In order to evaluate PC accuracy,

PC metamodels were created with different orders p. As in model 3b, the models were

computed for 100 extra points from a Sobol’ sequence and the exact value of the QoI was

compared with the PC prediction. Figure 4.25a shows the normalized root mean square

error, NRMSE, (3.6) obtained for different orders for three QoI: the main QoI uaw−ui
and additionally uaw and ui. PC estimation of the mean, standard deviation and 95th

percentile hardly change with order p (Figure 4.25b). Differences between sensitivity

indices obtained for different orders become relatively small for order p > 2. Therefore

PC order 3 has been chosen for the remaining results.

The total Sobol’ indices SToti are presented in Table 4.8 for the main QoI (uaw − ui)
and additionally for the displacements uaw and ui. It can be seen that similarly to the

case of model 3a, the uncertainty of pia has the greatest influence on the uncertainty of

the displacement of the centre of the implant ui. However, when the difference between

displacements on healthy and repaired abdominal walls is considered as the QoI, Eaw1

becomes the most influential variable. The influence of other material parameters is

much smaller and can be considered negligible. pia is in second place in terms of the

global sensitivity index. Despite the very wide input variation of αaw in the case of

the investigated model, this variable is not important compared to the most significant

factors. Similar conclusions can be made based on scatter plots performed for 1000 points

of a Sobol’ sequence (Figure 4.26).
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Figure 4.25: PC results for different order p, model 4

The relative standard deviation of uaw − ui is equal to 25%. Figure 4.27 shows the

histogram of uaw − ui for the point selected in the study. For this implant material,

uaw − ui is relatively low (the maximum obtained value is 0.0145m). This material has

already been shown to have satisfactory compatibility with the abdominal wall in terms

of stiffness [106] according to an evaluation based on reaction forces in local model 2.

4.5 Civil engineering application: corner joints in historic

log houses

4.5.1 Background

Methods of uncertainty propagation and global sensitivity analysis can also be useful in

civil engineering problems. The study addresses the topic of timber joints used in log

houses and is partially included in a research paper [95].
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Figure 4.27: Histogram of uaw − ui [m]
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In the past, wood was a commonly used construction material owing to its good mechan-

ical properties, high availability and convenience. Log houses were a typical construction

in many regions of Europe and beyond. They were usually built not by professionals but

by the owners themselves with the help of neighbours. Building traditions were typically

transmitted orally to the next generations and written documentation is nowadays hard

to come by [92].

One of the main issues in the construction of these buildings is the joints which connect

the elements into one structure and ensure the transfer of forces. Many types and variants

of joints have evolved over centuries. Some of them are quite complicated and currently

it is not clear what was the motivation of such modifications [32]. Employing mechanics

can help to satisfy curiosity as to which solutions are the most effective, and what is more,

assist conservation works. These days many historical log buildings require renovation or

reinforcement. Some of them have been acknowledged as an important part of cultural

heritage which should be preserved. Therefore, analysis of timber joints is necessary in

order to support the proper conservation of these kinds of buildings.

Some guidelines to assess historic timber structures have already been proposed [39]. The

majority of research, both experimental [125] and numerical [180], on joints in timber

structures has been focused on roof trusses. However, some experimental and numerical

studies on the behaviour of log walls and corner joints have also been performed [9, 62].

The distribution of stresses in corner joints of historic log buildings was studied by

[95, 119].

Wood is a natural material, a consequence of which is the high variability of its mechanical

properties. They are known to depend on moisture, temperature and age [128]. What

is more, wood defects like knots etc. and defects related to fungi or insects increase

heterogeneity of the material [39, 123]. The properties of the material are one of the

sources of uncertainty in the modelling and design of timber structures. In order to

investigate these uncertainties, a probabilistic method has been employed in the design

of timber structures and the analysis of robustness [155] and reliability [19]. MC is

also an ideal non-intrusive method in this application [19]. PC and the perturbation

method have been employed in an application concerned with laminated timber in order

to facilitate cost reduction. [88]. Sobol’ indices have been calculated to measure the

importance of micromechanical parameters for macroscopic properties of wood [76] with

the use of a Gaussian process emulator in order to reduce computational cost.

This study is focused on two widely-used historical joints which are typical in southern

Poland and western Ukraine: short-corner dovetail (Figure 4.28a) and saddle notch (Fig-

ure 4.28b). The aim of this section is to supplement the stress distribution analysis that
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(a) Short-corner dovetail joint (b) Saddle notch joint

Figure 4.28: Log carpentry joints

has already been carried out for historic corner joints [95] with a stochastic framework

in order to examine uncertainties and study their influence on the mechanical response.

4.5.2 Model

4.5.2.1 Deterministic FE models

The FE models are taken from [95, 119]. The geometry of the joints was at scale 1:2 to

be compatible with planned experimental works with joints at this scale. The length of

the logs is 1000 mm in the case of dovetail joints and 1075 mm in the case of the saddle

notch because of protrusions. The cross-sectional dimensions of a single log are 75x135

mm.

The model is created with the MSC.Marc commercial FE system. The models are built

of 4-node linear isoparametric 3-dimensional tetrahedral elements. The dovetail model is

composed of 60 847 and the saddle notch of 100 997 elements, respectively. The mesh is

finer in the connection area than in the rest of logs (Figure 4.29). The assumed boundary

conditions are presented in Figure 4.30. The joint is subjected to forced displacement

of 0.05 m in the X direction on the surface marked by the pink colour. Contact is

introduced between the logs.

It is assumed that joints are made from pinewood, which is a widely-used material. An

orthotropic material model was assumed. The material properties of pinewood in relation

to EL are based on [61] and presented in Table 4.9, where the subscript R denotes the

radial, T tangential and L longitudinal direction. EL was determined in [95, 118] by

4-point bending test of pinewood samples.
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(a) Short-corner dovetail joint model

(b) Saddle notch connection model

Figure 4.29: FE meshes of carpentry joint models

Figure 4.30: Assumed boundary conditions in carpentry joints models
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ET /EL ER/EL GRT /EL GTL/EL GLR/EL νRT νTL νLR

0.068 0.102 0.005 0.046 0.049 0.469 0.024 0.316

Table 4.9: Material parameters of pinewood [61]

4.5.2.2 Random variables

Owing to the variability of properties of the natural material – wood – EL is assumed to

be a lognormally distributed variable following the recommendations of [83]. The param-

eters of the distribution were obtained with the probability distribution fitter toolbox in

MATLAB. Two cases of the variability of EL are considered:

A – lognormal distribution fitted to the pinewood data presented in [118].

EAL ∼ LN (23.01, 0.290);

B – lognormal distribution fitted only to data taken from dry samples of pinewood [95]

which leads to a narrower range of humidity when compared toA and consequently

lower variation of EBL ∼ LN (23.18, 0.23).

A second variable is related to the uncertainty of the coefficient of friction µcj . The

coefficient of friction between timber elements depends on humidity, roughness, wood

grain, age etc. [117, 127, 187]. Values of µcj reported in the literature for wood-on-

wood friction differ significantly and what is more, the coefficient of friction is not only

material- but also system- depenent [17]. Grossi et al. [62] investigated friction in corner

joints with very similar geometry made from hard wood and showed the high influence

of the tolerance of mounting e.g. initial gaps. The coefficient of friction µcj is assumed

to be a uniform random variable µcj ∼ U([0.1, 0.7]).

To sum up, two random variables are considered in two variants

(A) X = [EAL , µcj ]
>;

(B) X = [EBL , µcj ]
>.

4.5.2.3 Quantity of interest

Attention is focused on the principal stresses. In each type of joint, areas of high max-

imum and minimum principal stress are found (Figure 4.31). More about stress distr-

bution in the types of joints considered can be found in [95]. nmax and nmin chosen

elements (Figures 4.32 and 4.33) from these areas are assigned to sets Imax and Imin,
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Figure 4.31: Areas of high principal stresses in the carpentry joint models (A) σmin
in dovetail joint, (B) σmin in saddle notch connection, (C) σmax in dovetail joint, (D)

σmin in saddle notch joint

respectively. The chosen quantities of interest are the mean values of the maximum and

minimum principal stresses in these elements :

σ̄max =
1

nmax

nmax∑
i=1

σimax, (4.6)

σ̄min =
1

nmin

nmin∑
i=1

σimin, (4.7)

where σimax and σimin are the values of the maximum and minimum principal stress at

the integration point of the i-th element from the Imax and Imin sets.
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Figure 4.32: Elements considered in short-corner dovetail joint

Figure 4.33: Elements considered in saddle notch joint
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Figure 4.34: Normalized histograms of σ̄min and σ̄min obtained by MC and PC of
order 3 in dovetail connection model in variant A

Additionally, some results are also presented for the extreme values of the principal

stresses in the areas considered:

maxσmax = max
i∈Imax

σimax (4.8)

minσmin = min
i∈Imin

σimin (4.9)

PC is employed to propagate uncertainties and compute Sobol’ indices in the models of

timber joints. D-optimal selection from set of random candidate points (method M4)

was chosen as the DoE. This was based on its efficiency in the example of the implant

membrane model with a low number of random variables. The PC order p = 3 and

2P = 20 regression points were used. Nevertheless, since efficiency of DoE in PC is

problem-dependent, the accuracy of PC of this order is checked against the MC solution

in one of the cases (variant A, dovetail joint). However, 104 points were used in MC

because 105 would be intractable for sensitivity analysis. Scatter plots are also used to

confirm the evaluation of the random variables’ importance.

4.5.3 Results

4.5.3.1 Variant A

MC was performed for the model of the dovetail joint. Figure 4.34 shows the comparison

of histograms of σ̄max and σ̄min obtained by MC and PC of order 3. Table 4.10 contains

the statistics of these distribution. Err% between the reference MC solution and PC

result is very low (< 1%).
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MC [Pa] PC [Pa] Err% [%]
V σ̄max σ̄min σ̄max σ̄min σ̄max σ̄min

mean 2.51E+07 -2.41E+08 2.51E+07 -2.41E+08 0.12 0.01
standard deviation 7.58E+06 7.17E+07 7.58E+06 7.17E+07 0.00 0.06
95th percentile 3.92E+07 -1.44E+08 3.91E+07 -1.43E+08 0.15 0.24
5th percentile 1.48E+07 -3.73E+08 1.48E+07 -3.75E+08 0.14 0.40

Table 4.10: Statistics of σ̄max and σ̄min in model of dovetail joint in variant A obtained
by MC and PC of order 3 and the relative difference between them Err%

Method Variable σ̄max σ̄min maxσmax minσmin

MC EL 1.0174 1.0494 0.8514 1.055
µcj 0.0538 0.0075 0.2388 0.0032

PC EL 0.96 0.9907 0.8112 0.9956
µcj 0.0416 0.01 0.2083 0.005

Table 4.11: SToti obtained by MC and PC order 3 for different quantities of interest
for dovetail connection model in variant A

σ̄max σ̄min maxσmax minσmin

EL 0.9998 0.9929 0.9909 0.9994
µcj 0.0002 0.0076 0.0101 0.0007

Table 4.12: Total sensitivity indices SToti obtained for different QoI by PC in the
model of the saddle notch joint in variant A

Table 4.11 presents total sensitivity indices SToti obtained by MC and PC of order 3 for

different quantities of interest in the case of the dovetail joint model in variant A. Indices

obtained by both methods indicate that sensitivity of all QoI to the variation of EL is

much higher than to the variation of µcj . Only in case of maxσmax do both methods

show a non-negligible effect of µcj .

Figure 4.35 shows scatter plots of the variables considered against quantities of interest

based on MC solution. The shapes of the plots confirm higher sensitivity to EL uncer-

tainty than to that of µcj and slightly higher influence of µcj variation on maxσmax than

on other QoI.

PC of the same order (p = 3) and the same DoE was used in the approximation of the

response of the saddle notch joint. Figure 4.36 shows the comparison of distributions

obtained for 2 types of connection. Sensitivity indices related to the variation of µcj are

negligibly small for all considered QoI (Table 4.12).
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Figure 4.35: Scatter plots obtained by MC for short-corner dovetail connection model,
variant A
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Figure 4.36: Normalized histograms of σ̄max and σ̄min obtained by PC of order p = 3
for the short-coner dovetail joint and the saddle notch joint in variant A

Type of joint Short-corner dovetail Saddle notch
Quantity of interest σ̄max σ̄min σ̄max σ̄min

Mean 2.95E+07 -2.83E+08 8.12E+07 -2.52E+08
Standard deviation 7.16E+06 6.70E+07 1.90E+07 5.91E+07

5th percentile 1.93E+07 -4.05E+08 5.40E+07 -3.59E+08
95th percentile 4.25E+07 -1.88E+08 1.16E+08 -1.67E+08

Table 4.13: Statistics obtained by 3rd order PC for both types of timber joints [Pa],
variant B

4.5.3.2 Variant B

The same DoE was used for calculations in variant B with PC of order 3. Figures 4.37 and

4.38 present histograms of σ̄max and σ̄min, respectively. Table 4.13 shows some statistics

of the distribution obtained. It can be seen that the results of σ̄max differ between the

types of joint much more than values of σ̄min. The mean and 95th percentile of σ̄max are

higher in case of the saddle notch joint. Nevertheless, σ̄min, which is higher than σ̄max
in absolute value, does not differ so significantly between the two types of joint. The

coefficient of variation is similar for both quantities of interest and is equal to 24% in

the case of the dovetail joint and 23% in the case of the saddle notch joint.

For each type of joint, Table 4.14 shows the Sobol’ indices with respect to EL and µcj
of the mean principle stresses and the extrema of the principal stresses. Although the

assumed coefficient of the variation of the input µcj is higher than of EL, STot1 is much

higher than STot2 . In the case of the saddle notch and short-corner dovetail joints with

quantities of interest related to σmin, STot1 is very close to 1 and effect of µcj is negligibly

small (STot2 < 0.02). In the case of the short-corner dovetail joint related to σmax, STot2

is higher, but only where the quantity of interest is maxσmax, STot2 > 0.1 ( In fact,

STot2 = 0.3104) . The coefficient of friction µcj has aleading role in work of some types of

carpentry joint [126, 127]. Nevertheless, in the case of the joints studied, the uncertainty
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Figure 4.37: Normalized histograms of σ̄max obtained by PC of order p = 3 for the
short-coner dovetail joint and the saddle notch joint, variant B

Short-corner dovetail Saddle notch
σ̄max σ̄min maxσmax minσmin σ̄max σ̄min maxσmax minσmin

STot1 0.937 0.9851 0.7101 0.9931 0.9998 0.9886 0.9859 0.999
STot2 0.0641 0.0156 0.3104 0.0075 0.0003 0.0119 0.0151 0.0011

Table 4.14: Total Sobol’ sensitivity analysis in timber joints models, variant B

of EL is mostly responsible for variance of the studied quantities of interest (4.6, 4.7).

In the light of these results, detailed identification of µcj is not a priority.

Conclusions obtained for the two variants of the EL distribution are similar and even for

lower variability of EL, the contribution of the variation of EL to the total variation of

the output is much higher than contribution of µcj . Values σ̄max in the both joints are

similar.

4.6 Conclusions

The polynomial chaos expansion method was applied to local and global models of the

implant-abdominal wall system in order to propagate uncertainties and measure their

effect on the uncertainty of model outputs. The following conclusions can be drawn:
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Figure 4.38: Normalized histograms of σ̄min obtained by PC order p = 3 for two
types of carpentry joints, variant B

1. Based on global and local sensitivity analysis of the simplified cable model, it can

be concluded that:

• Young’s modulus is the most influential variable in both the local and global

senses of sensitivity analysis. In further study, its input uncertainty should

be characterized in more detail e.g. the significance of load history, ingrowth

etc.

• Despite a low local sensitivity index around some base points, the second most

important variable is the displacement of the hernia edges which is related to

fascia elasticity. This confirms that proper measurement of the properties of

the abdominal wall tissue should not be neglected.

• Despite high input variability, the uncertainty of the initial force has a low

contribution to the variance of the horizontal reaction. This is convenient

since it is difficult to introduce a specific value of the initial force in surgical

practice, as also concluded in the local sensitivity study by Szymczak et al.

[168].

• The initial length of the cable has negligible effect, but its input variation was

also very low.
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2. The outcomes of the global sensitivity analysis performed in the membrane model

indicate that:

• The high variability of strains in oblique directions observed by Szymczak

et al. [169] leads to high variability of the maximum force in the fasteners

connecting the implant to the abdominal wall.

• The model with 10 random variables (each variable corresponding to a dis-

placement of a support) can be reduced to only 2 variables, which can greatly

reduce the computational cost of further analysis.

• Although the reduced and full models are close to each other, comparison

of methods for choosing regression points in the reduced problem lead to

different conclusions than for 10 variables. This supports the conclusions

made in chapter 3.2 that superiority of methods depends on the number of

variables.

• Treating displacements of all supports as independent is safer owing to the

possibilities of wider ranges of scenarios. The mean, standard deviation and

95th percentile are higher in that case than in the examples with correlated

variables. However including correlation gives a different relation between the

statistics of the maximum force in the fasteners and orientation of the im-

plant. The orientation of the orthotropic surgical mesh within the anisotropic

abdominal wall was shown to be important both numerically [106] and exper-

imentally [6]. For the location of hernia considered in this thesis, the stiffer

direction of the implant should be placed in the transverse direction of the

abdominal wall (αorient = 90 deg) according to deterministic studies [70].

Further studies of global models of the abdominal wall with random stiffness

and including uncertainties in mechanical properties can help to judge optimal

orientation.

3. Uncertainty quantification and sensitivity analysis performed on the local model

of the membrane subjected to intraabdominal pressure have shown that:

• Uncertainty in the intraabdominal pressure was the main contribution to the

variance of the quantities of interest. When compared to the influence of

intraabdominal pressure, the uncertainty of the stiffness of the abdominal

wall and of the fascia are not important. The model could be reduced to

only one variable. More detailed studies on intraabdominal pressure and its

distribution should be performed.

• Although relatively large imperfections were imposed on the model, the vari-

ance obtained is low when compared to variance obtained in the model with

uncertain pressure and stiffness of the abdominal wall and fascia.
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• Amongst the considered imperfections in the position of the fasteners, the

most influential is the angular change in the support that is closest to the ori-

entation of the stiffer direction of the implant. Imperfections in the positions

of the other fasteners have a negligible effect on the variance of the quantities

of interest (maximum force in fastener and deflection of the implant).

4. Global sensitivity analysis performed on the global model of the abdominal wall

with an implanted surgical mesh lead to the conclusion that although the un-

certainty of intraabdominal pressure has the highest influence on the variance of

the displacement of the centre of the implant and the displacement of the corre-

sponding point in the abdominal wall, Eaw1 is the most influential variable when

the difference between the displacements in healthy and repaired abdominal walls

is considered. Detailed measurement of Eaw1 and intraabdominal pressure values

would be beneficial. In the case of this hernia location and this quantity of interest,

the orientation of the composite of lateral muscles is not important.

The uncertainty quantification and sensitivity analysis framework was also applied to

models of timber joints in which the uncertainty of Young’s modulus EL and the friction

coefficient was propagated. The variation of the mean of the principal stress in elements

located in the high stress zone is large, 30% in case of variant A (higher input variability)

and 23–24% in case of variant B. The effect on the variance of the studied quantities of

interest of the uncertainty of the friction coefficient was found negligible, whereas the

influence of uncertainty of the Young’s modulus dominates the variance of the mean

principal stress. Therefore, detailed measurement of the friction coefficient is not of high

importance.
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Conclusions

The background of these studies was ventral hernia repair by means of an implanted mesh.

One of the issues in computer simulation of the abdominal wall with such a mesh is the

uncertainties, which are related for example to the natural variability of the mechanical

properties of the abdominal wall, physiological loading and inaccuracies in modelling.

However the influence of the high dispersion of results regarding the mechanical behaviour

of the abdominal wall on the variability of model outcomes has not been yet studied.

The aim of this research was to study these uncertainties and investigate their influence

on outcomes of the model.

In this thesis, a probabilistic approach has been proposed to incorporate uncertainties

in the modelling of the abdominal wall with an implanted surgical mesh. These uncer-

tainties have been propagated in order to study the variability of the model response.

The influence of input uncertainties on the uncertainty of the model outputs has been

investigated and influential and non-influential variables have been identified based on

global sensitivity analysis outcomes.

Regression-based polynomial chaos expansion method was used to propagate uncertain-

ties and compute Sobol’ sensitivity indices. However, the accuracy of such non-intrusive

methods depends on the number and choice of regression points. Approaches based on

the D-optimal criterion, random approaches and combined ones were amongst the meth-

ods of choosing points tested. The methods were firstly tested on univariate examples

and then on multivariate examples. The chosen approaches were subsequently applied

to another examples. Models with different levels of complexity were studied: from local

models of implants such as the simplified cable model and membrane models with various

boundary conditions, to global models of the abdominal wall. The methods were also

applied to a model of construction made of wood, another natural material exhibiting
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high variability. The context here was historic timber joints, where the uncertainties

appear in the properties of the wood and in the friction coefficient.

To sum up, the contribution of this thesis is:

• a proposition of methodology to incorporate uncertainties in models related to

ventral hernia repair which can be used in further research;

• a comparison of approaches to choosing sampling points for regression-based poly-

nomial chaos expansion from the point of view of their accuracy in the case of

ventral hernia-related models;

• an investigation of the influence of uncertainties on the variation of the model out-

put that is important from the point of view of ventral hernia repair optimisation.

The following conclusions can be drawn:

• uncertainties can be incorporated in the modelling of the abdominal wall with an

implanted surgical mesh;

• non-intrusive polynomial chaos can be applied to decrease the computational cost

of global sensitivity analysis and uncertainty quantification in models related to

ventral hernia repair;

• despite nonlinearity, nonsmoothness and high input variability, it is possible to

achieve sufficient accuracy by the polynomial chaos expansion method;

• the accuracy of PC depends on the number and position of sampling points. The

position which minimises the approximation error is problem dependent. The out-

comes obtained can be useful in the choice of the design of experiment (DoE) in

similar models of surgical mesh - tissue system:

– the number of variables should be included in the choice of the DoE. The

D-optimal choice from randomly chosen candidate set of points can be recom-

mended for low-dimensional examples, whereas low discrepancy sequences or

random choice from univariate polynomials of higher order can be considered

in the case of higher dimensional problems;

– a weight function corresponding to the distribution measure should be in-

cluded in the D-optimality procedures;

• the global sensitivity and Sobol’ indices can be used to efficiently reduce the number

of random variables and consequently significantly reduce computational cost;
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• an obstacle in correctly performing uncertainty quantification, especially in hy-

dromechanics where experiments usually have to be conducted on a small number

of samples/objects, is the lack of sufficient knowledge of the distribution of the

input variables. Nevertheless, the output of global sensitivity analysis can help

to determine the importance of variables and identify variables of which proper

identification of the distribution is not so important.

• global sensitivity analysis can be considered useful in the nonlinear examples stud-

ied which have a high input variability since conclusions drawn from local sensitivity

may vary with change of base point;

• uncertainty quantification, global sensitivity and Sobol’ indices can be used to

draw conclusions about the importance of uncertainties and establish priorities for

further numerical and experimental studies:

– uncertainties related to the variability of the properties of the abdominal wall

are very influential, which confirms the strong need for proper identification

of the mechanical properties of the abdominal wall;

– a patient-specific approach should be considered in the modelling of the ab-

dominal wall with implanted surgical mesh in order to reduce input variablity.

In vivo measurement of important parameters can be considered in order to

construct patient-specific models. However, uncertainty propagation may be

still needed due to challenges of in vivo measurement, e.g. uncertain bound-

ary conditions. Studies reported in the literature in vivo studies [177] have

shown variability amongst results obtained for a single patient.

– study of imperfections in the connection of the implant to the abdominal wall

is less important than incorporating uncertainties related to abdominal wall

mechanics;

– wider studies on intraabdominal pressure and its distribution should be per-

formed;

– the uncertainties related to friction coefficients are much less influential than

uncertainties related to the material properties of wood.

The approach established in this thesis of uncertainty propagation can be used in further

studies on the mechanics of the herniated abdominal wall repaired with surgical mesh.

The directions of planned research are as follows:

• application of other truncation schemes of PC including an adaptive one in order

to reduce computational cost and the issue of the so-called curse of dimensionality;
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• consideration of an adaptive method to DoE;

• application of the established methodology to a more detailed model of abdominal

wall with surgical mesh. Work on an FE model based on MRI images is planned.

• incorporation of random fields of material parameters of the abdominal wall and

timber joints.

• incorporation of uncertainties into the procedures for optimization of ventral hernia

repair parameters like choice of surgical mesh [106, 167].

• it is planned to investigate uncertainties in inverse identification of abdominal wall

properties based on measurements described in [109].



Appendix A

Technical information on

implementation of probabilistic

models and sensitivity analysis

A.1 Used tools

Non-intrusive Polynomial Chaos expansion and sensitivity analysis methods have been

implemented in MATLAB. MATLAB random number generator was used to generate

all needed random numbers. In fact, there were actually only pseudo-random, since

there were generated with deterministic algorithms. However, for the simplicity, in the

text such generated number are called just random. In the context of sampling methods

(section 3) when numbers were generated simply with a given distribution using standard

function are called "purely" random to distinguish them from methods which improve

uniformity of distribution, e.g. using low-discrepancy sequences which are called pseudo-

random methods.

Marc (MSC.Software) commercial system was used in case of Finite Element models of

implant with abdominal wall (models 2, 3, 4) and models of timber joints. PowerShell

scripts were written to automatise process of running simulation in MSC.Marc for many

random variables and collecting values of considered quantity of interest. Scripts allowed

to perform a few simulation in parallel which reduced total time of computations. General

scheme of relation is presented in Figure A.1.
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analysis

Figure A.1: Workflow in case of FE models

A.2 Multivariate polynomials

To create multivariate polynomials, practical implementation (as described in [161]) is

to generate univariate polynomials and then create a list of degrees of polynomials cor-

responding to each variable. On the basis of this list, multiplications of univariate poly-

nomials are constructed. For each degree q = 1, .., p list of all non-negative integers

of sum equals q is searched. This is equivalent to the problem of filling (M + q − 1)

boxes with (M − 1) balls. Integer is the number of empty boxes between the balls.

Initially, all balls are in the first (M − 1) boxes. In the next step, a ball, which is

the furthest to the right is shifted to the next place to the right. If the ball is already

at the end, then the next furthest to the right ball is shifted and balls which were

at the end are brought back to the right side of the ball which has been just shifted.

For example, if M = 3, q = 2, the number of balls is 2 and the number of boxes is

4. Then, the creation of multivariate summands of expansion looks like in Figure A.2.

So, if for example polynomial chaos expansion of maximum degree p = 2 is searched,

|A| = 10 summands are created and the whole expansion with Hermite polynomials is:

Y PC = a0,0,0 + a0,0,1ξ3 + a0,1,0ξ2 + a1,0,0ξ1 + a0,0,2(ξ2
3 − 1)/

√
2 + a0,1,1ξ2ξ3 +

+ a0,2,0(ξ2
2 − 1)/

√
2 + a1,0,1ξ1ξ3 + a1,1,0ξ1ξ2 + a2,0,0(ξ2

1 − 1)/
√

2.

A.3 Correlation matrices

Figure A.3 presents correlation matrices, which where used in model 2f (section 4.2.3).
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Balls sequence 

Variable order Polynomial basis jΨ  

(normalised Hermite 

polynomial) 

1ξ  2ξ  3ξ  

    
 

0 0 2 2
3( 1) / 2ξ −  

    
 

0 1 1 2 3ξ ξ  

    
 

0 2 0 2
2( 1) / 2ξ −  

    
 

1 0 1 1 3ξ ξ  

    
 

1 1 0 1 2ξ ξ  

    
 

2 0 0 2
1( 1) / 2ξ −  

 

Figure A.2: Example of creating multivariate elements of polynomial chaos expansion
of order q = 2 and number of variables M = 3
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Figure A.3: Correlation matrices in model 2f





Appendix B

Résumé en français

La motivation de cette étude est la nécessité d’une compréhension mécanique, pour venir

en soutien aux chirurgiens dans le traitement de la hernie ventrale, notamment dans le

cas de récidives de hernie. Des modèles mécaniques sont créés pour prédire le com-

portement mécanique du système implant-paroi abdominale et peuvent être utilisés dans

l’optimisation des paramètres de réparation des hernies ventrales. Cependant, des défis

tels que l’incertitude liée à la variabilité naturelle de la mécanique du tissu abdominal

ainsi que les difficultés de mesures précises des paramètres du modèle de matériaux vien-

nent interagir avec la modélisation. Cette étude porte donc sur l’application de méthodes

de quantification de l’incertitude dans les modèles du système implant-paroi abdominale.

Le but de cette thèse est d’étudier les incertitudes dans la modélisation des maillages

chirurgicaux au sein de la paroi abdominale et d’évaluer la sensibilité de la réponse du

modèle à ces incertitudes.

Dans cette thèse, une approche probabiliste a été proposée pour introduire les incertitudes

dans la modélisation de la paroi abdominale à l’aide de l’implant d’un filet chirurgical.

La propagation des incertitudes a été menée afin d’étudier la variabilité de la réponse du

modèle. L’influence des incertitudes d’entrée sur l’incertitude des quantités d’intérêt de

sorties du modèle a été étudiée. Les variables influentes ont été identifiées sur la base

des résultats de l’analyse de sensibilité globale. L’approximation par expansion sur le

chaos polynomial, basée sur la régression, a été utilisée pour propager les incertitudes

et calculer les indices de sensibilité de Sobol. Toutefois, l’exactitude de ces méthodes

non intrusives dépend du nombre et du choix des points de régression. Les approches

basées sur le critère de D-optimalité, les approches aléatoires ainsi que des approches

mixtes ont été testées. Les méthodes ont d’abord été testées sur des exemples simples,

puis sur des exemples multivariables. Les approches retenues ont ensuite été appliquées

à d’autres exemples. Différents niveaux de complexités ont été étudiés : des modèles
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locaux d’implants tels que le modèle de câble simplifié, des modèles de membrane avec

différentes conditions limites mais aussi des modèles globaux de la paroi abdominale. Les

méthodes ont également été appliquées à un modèle de construction en bois, un matériau

naturel présentant également une grande variabilité. Le contexte était dans ce cas les

assemblages historiques ou le bois est omniprésent. Des incertitudes apparaissent dans

les propriétés intrinsèque du bois et dans le coefficient de frottement.

Les contributions de cette thèse sont :

• une proposition de méthodologie pour introduire les incertitudes dans les modèles

liés à la réparation de la hernie ventrale qui peuvent être utilisés dans d’autres

domaines d’application ;

• une comparaison des approches pour choisir les points d’échantillonnage utilisés

dans la construction de l’approximation par chaos polynomial basé sur la régression.

L’étude de l’erreur liée à ce choix quant à l’exactitude des résultats du modèle de

hernie ventrale ;

• une étude de l’influence des incertitudes sur la variation des réactions aux appuis,

ce qui est primordial du point de vue de choix effectués lors de la réparation de la

hernie ventrale.

Les conclusions suivantes peuvent être tirées :

• Les incertitudes peuvent être introduites dans la modélisation de la paroi abdomi-

nale avec le filet chirurgical installé ;

• Le chaos polynomial non intrusif peut être mis en oeuvre pour diminuer le coût de

calcul de l’analyse de sensibilité globale ainsi que la quantification de l’incertitude

dans les modèles liés à la réparation de la hernie ventrale ;

• malgré la non-linéarité et une variabilité d’entrée élevée, il est possible d’obtenir

une précision suffisante par la méthode d’expansion du chaos polynomial ;

• la précision du chaos dépend du nombre et de la position des points de régres-

sion. La position qui minimise l’erreur d’approximation dépend du problème. Les

résultats obtenus peuvent être utiles dans le choix de plan d’expérience dans des

modèles similaires d’implant chirurgical - tissu humain :

– le nombre de variables influe sur le choix du plan d’expérience. Le choix

de points D-optimaux à partir d’un ensemble de points pris au hasard est

recommandé pour des exemples à faible dimension. Alors qu’un choix aléatoire



2. Résumé en français 135

basé sur des polynômes d’une seule variable d’ordre élevé peuvent être utilisé

dans le cas de problèmes de dimensions plus élevées ;

– il est intéressant d’introduire une fonction de pondération correspondant à la

mesure de distribution dans la mesure de D-optimalité ;

• la sensibilité globale et les indices Sobol peuvent être utilisés pour réduire efficace-

ment le nombre de variables aléatoires et, par conséquent, réduire significativement

les coûts de calcul ;

• Le manque de connaissances suffisantes sur la distribution des variables d’entrée

constitue un obstacle à la quantification correcte de l’incertitude, en particulier en

biomécanique, où les expériences doivent généralement être menées sur un petit

nombre d’échantillons ou d’objets. Néanmoins, les résultats de l’analyse de sensi-

bilité globale peuvent aider à déterminer l’importance des variables et à identifier

les variables dont connaissance parfaite de la distribution n’est pas très importante.

• l’apport de l’analyse de sensitivité globale peut être considéré comme utile sur les

exemples nonlinéaires étudiés où les variables d’entrée sont très variables ; étant

donné que les conclusions tirées de l’analyse de sensibilité locale varient énormément

avec le choix des points effectué.

• La propagation d’incertitude ainsi que l’analyse globale de sensibilité par les indices

de Sobol peuvent être utilisées pour tirer des conclusions sur l’importance des incer-

titudes et établir des priorités pour d’autres études numériques ou expérimentales

:

– Les incertitudes des propriétés de la paroi abdominale sont très influentes sur

le résultat, ce qui confirme la nécessité d’identifier correctement les propriétés

mécaniques de la paroi abdominale ;

– une approche spécifique par patient devrait être envisagée dans la modélisation

de la paroi abdominale avec implant chirurgical afin de réduire les variabilités

d’entrée. Des mesures In vivo de paramètres importants peuvent être prises

en compte pour construire des modèles spécifiques par patient. Cependant, la

propagation de l’incertitude restera sans doute nécessaire car la mesure in vivo

reste un challenge, par exemple pour les conditions aux limites incertaines. Les

études rapportées dans la littérature in vivo ont montré une grande variabilité

des résultats obtenus, et ce, même pour un seul et même patient.

– L’étude des imperfections de la connexion de l’implant à la paroi abdominale

est moins importante que l’intégration des incertitudes liées à la mécanique

de la paroi abdominale ;
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– Des études plus larges sur la pression intra-abdominale et sa distribution de-

vraient être effectuées ; Les incertitudes liées aux coefficients de frottement

ont beaucoup moins d’influence que les incertitudes liées aux propriétés du

bois.

L’approche établie dans cette thèse pour étudier la propagation des incertitudes pourra

être utilisée dans d’autres études sur la mécanique de réparation de hernie abdominale

par filet chirurgical.
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 Katarzyna SZEPIETOWSKA 

MISE EN OEUVRE DU CHAOS POLYNOMIAL EN 
BIOMECANIQUE ET EN MECANIQUE DES 

STRUCTURES 

 

 
Cette thèse présente une approche probabiliste de la modélisation de la mécanique des matériaux et des 
structures.  Le dimensionnement est influencé par l'incertitude des paramètres d'entrée. Le travail est 
interdisciplinaire et les méthodes décrites sont appliquées à des exemples de biomécanique et de génie civil. La 
motivation de ce travail était le besoin d'approches basées sur la mécanique dans la modélisation et la simulation 
des implants utilisés dans la réparation des hernies ventrales. De nombreuses incertitudes apparaissent dans la 
modélisation du système implant-paroi abdominale. L'approche probabiliste proposée dans cette thèse permet de 
propager ces incertitudes et d’étudier leurs influences respectives. La méthode du chaos polynomial basée sur la 
régression est utilisée dans ce travail. L'exactitude de ce type de méthodes non intrusives dépend du nombre et 
de l'emplacement des points de calcul choisis. Trouver une méthode universelle pour atteindre un bon équilibre 
entre l'exactitude et le coût de calcul est encore une question ouverte. Différentes approches sont étudiées dans 
cette thèse afin de choisir une méthode efficace et adaptée au cas d’étude. L'analyse de sensibilité globale est 
utilisée pour étudier les influences des incertitudes d'entrée sur les variations des sorties de différents modèles. 
Les incertitudes sont propagées aux modèles implant-paroi abdominale. Elle permet de tirer des conclusions 
importantes pour les pratiques chirurgicales. À l'aide de l'expertise acquise à partir de ces modèles 
biomécaniques, la méthodologie développée est utilisée pour la modélisation de joints de bois historiques et la 
simulation de leur comportement mécanique. Ce type d’étude facilite en effet la planification efficace des 
réparations et de la rénovation des bâtiments ayant une valeur historique. 
Mots-clés : Propagation d'incertitudes,  Analyse de sensibilité globale, Réparation de l'hernie ventrale; Choix des 
points de regression 

 
 POLYNOMIAL CHAOS EXPANSION IN BIO- 

AND STRUCTURAL MECHANICS 
 

This thesis presents a probabilistic approach to modelling the mechanics of materials and structures where the 
modelled performance is influenced by uncertainty in the input parameters. The work is interdisciplinary and the 
methods described are applied to medical and civil engineering problems. The motivation for this work was the 
necessity of mechanics-based approaches in the modelling and simulation of implants used in the repair of ventral 
hernias. Many uncertainties appear in the modelling of the implant-abdominal wall system. The probabilistic 
approach proposed in this thesis enables these uncertainties to be propagated to the output of the model and the 
investigation of their respective influences. The regression-based polynomial chaos expansion method is used 
here. However, the accuracy of such non-intrusive methods depends on the number and location of sampling 
points. Finding a universal method to achieve a good balance between accuracy and computational cost is still an 
open question so different approaches are investigated in this thesis in order to choose an efficient method. Global 
sensitivity analysis is used to investigate the respective influences of input uncertainties on the variation of the 
outputs of different models. The uncertainties are propagated to the implant-abdominal wall models in order to 
draw some conclusions important for further research. Using the expertise acquired from biomechanical models, 
modelling of historic timber joints and simulations of their mechanical behaviour is undertaken. Such an 
investigation is important owing to the need for efficient planning of repairs and renovation of buildings of historical 
value. 
Keywords: uncertainty quantification, global sensitivity analysis, ventral hernia repair; regression points choice    
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