Modeling of electrical manipulation in silicon spin qubits

par Léo Bourdet

Thèse de doctorat en Physique théorique

Sous la direction de Yann Michel Niquet.

Soutenue le 22-11-2018

à Grenoble Alpes , dans le cadre de École doctorale physique (Grenoble) , en partenariat avec Modélisation et exploration des matériaux (Grenoble) (laboratoire) .

Le président du jury était Hervé Courtois.

Le jury était composé de Patrice Bertet.

Les rapporteurs étaient Christophe Delerue, María José Calderón.

  • Titre traduit

    Modélisation de la manipulation électrique du spin dans les qubits silicium


  • Résumé

    Dans la course à l’ordinateur quantique, le silicium est devenu ces dernières années un matériau de choix pour l'implémentation des qubits de spin. De tels dispositifs sont fabriqués au CEA en utilisant les technologies CMOS, afin de faciliter leur intégration à grande échelle. Cette thèse porte sur la modélisation de ces qubits, et en particulier sur la manipulation de l’état de spin par un champ électrique. Pour cela nous utilisons un ensemble de techniques numériques avancées pour calculer le potentiel et la structure électronique des qubits (notamment les méthodes de liaisons fortes et k.p), afin d’être le plus proche possible des dispositifs expérimentaux. Ces simulations nous ont permis d’étudier deux résultats expérimentaux d’importance : l’observation de la manipulation par champ électrique du spin d’un électron d’une part, et la caractérisation de l’anisotropie de la fréquence de Rabi d’un qubit de trou d’autre part. Le premier résultat était plutôt inattendu, étant donné; le très faible couplage spin-orbite dans la bande de conduction du silicium. Nous développons un modèle, validé par les simulations et certains résultats expérimentaux, qui met en évidence le rôle essentiel du couplage spin-orbite inter-vallée, exacerbé par la faible symétrie du système. Nous utilisons ces résultats pour proposer et tester numériquement un schéma de manipulation électrique consistant à passer réversiblement d’un qubit de spin à un qubit de vallée. Concernant les qubits de trous, le couplage spin-orbite relativement élevé autorise la manipulation du spin par champ électrique, toutefois les mesures expérimentales d’anisotropie donnent à voir une physique complexe, insuffisamment bien décrite par les modèles actuels. Nous développons donc un formalisme permettant de caractériser simplement la fréquence de Rabi en fonction du champ magnétique, et qui peut s’appliquer à d’autre type de qubit spin-orbite. Les simulations permettent de reproduire les résultats expérimentaux, et de souligner le rôle important de la contrainte.


  • Résumé

    In the race for quantum computing, these last years silicon has become a material of choice for the implementation of spin qubits. Such devices are fabricated in CEA using CMOS technologies, in order to facilitate their large-scale integration. This thesis covers the modeling of these qubits andin particular the manipulation of the spin state with an electric field. To that end, we use a set numerical tools to compute the potential and electronic structure in the qubits (in particular tightbinding and k.p methods), in order to be as close as possible to the experimental devices. These simulations allowed us to study two important experimental results: on one hand the observation of the electrical manipulation of an electron spin, and on the other hand the characterization of the anisotropy of the Rabi frequency of a hole spin qubit. The first one was rather unexpected, since the spin-orbit coupling is very low in the silicon conduction band. We develop a model, confirmed by thesimulations and some experimental results, that highlights the essential role of the intervalley spinorbit coupling, enhanced by the low symmetry of the system. We use these results to propose and test numerically a scheme for electrical manipulation which consists in switching reversibly betweena spin qubit and a valley qubit. Concerning the hole qubits, the relatively large spin-orbit coupling allows for electrical spin manipulation. However the experimental measurements of Rabi frequency anisotropy show a complex physics, insufficiently described by the usual models. Therefore we developa formalism which allows to characterize simply the Rabi frequency as a function of the magnetic field, and that can be applied to other types of spin-orbit qubits. The simulations reproduce the experimental features, underline the important role of strain.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.