Structural studies of the Roundabout protein family

par Francesco Bisiak

Thèse de doctorat en Biologie structurale et nanobiologie

Sous la direction de Andrew Mccarthy.

Soutenue le 05-02-2018

à Grenoble Alpes , dans le cadre de Chimie et Sciences du Vivant , en partenariat avec European Molecular Biology Laboratory. Grenoble (laboratoire) .

Le président du jury était Carlo Petosa.

Le jury était composé de Joanna Timmins.

Les rapporteurs étaient Elena Seiradake, Valérie Castellani.

  • Titre traduit

    Etudes structurales de la famille des protéines Roundabout


  • Résumé

    Les systèmes neuronaux et vasculaires nécessitent un réseau complexe pour exécuter correctement leurs fonctions. Les processus impliqués dans la création de ce réseau s'appuient sur des voies coordonnées, souvent activées par des systèmes protéine/récepteur communs, qui conduisent au remodelage du cytosquelette.En général, les cellules neuronales et vasculaires répondent aux stimuli extracellulaires sous forme de protéines solubles sécrétées, qui interagissent avec les récepteurs de surface pour favoriser l'attraction ou la répulsion vers la source des protéines sécrétées. Ce processus, appelé guidage, est régulé par sept familles de récepteurs et leurs ligands respectifs, qui s'influencent les uns sur les autres et peuvent agir sur le système neuronal, le système vasculaire ou les deux ensembles.Cette étude est centrée sur deux récepteurs transmembranaires à passage unique, les membres des familles de protéines Roundabout et UNC5 qui sont principalement impliquées dans l'angiogenèse: Robo4 et UNC5B.L'information structurelle sur la région extracellulaire de plusieurs de ces récepteurs, et comment le signal est relayé à travers la membrane, fait défaut.La déglycosylation enzymatique a confirmé que les domaines extracellulaires de Robo4 et UNC5B sont largement glycosylés avec des glycanes liés en azote du complexe type. La mutagenèse dirigée des sites de glycosylation prédits de Robo4 perturbe son expression, indiquant que ces résidus sont nécessaires pour la stabilité de la protéine et que leur glycosylation, ou leur passage dans la voie de glycosylation, pourrait être nécessaire pour un repliement correct. Les données MALS et SAXS montrent qu'en solution, Robo4 ecto est un monomère flexible de forme allongée. Les domaines ne présentent pas des caractéristiques distinctes dans le modèle construit à partir des données SAXS. Plusieurs Fabs se liant au domaine extracellulaire de Robo4 ont été caractérisés, avec l'espoir d'identifier les Fab qui pourraient inhiber l'interaction Robo4 / UNC5B rapportée pour une caractérisation plus poussée. La formation du complexe a été vérifiée par SEC-MALS et SAXS, et les constantes d'interaction ont été déterminées en utilisant SPR. Des cristaux de certains complexes domaine Fab / domaine extracellulaire Robo4 ont été produits, bien que la structure du complexe n'ait pas pu être résolue à l'heure actuelle.Les expériences de pull-down, SEC-MALS et SPR montrent que Robo4 ecto et UNC5B ecto n'interagissent pas entre elles, malgré une étude par un autre groupe montrant le contraire. Étant donné que différentes lignées cellulaires ont été utilisées, des modèles de glycosylation spécifiques, ou une tierce partie non détectée, pourraient être nécessaires pour l'interaction. En raison de leur implication avec les récepteurs extracellulaires, les héparanes sulfates sont un candidat probable, mais d'autres partenaires devraient être envisagés.La structure cristallographique de l'UNC5B ecto est similaire aux structures existantes de UNC5A et UNC5D. Le haut degré de conservation des domaines del’Ig pourrait être une indication de l'importance de cette région, qui est responsable de la liaison à Netrin. Bien que la région de liaison de Netrin soit connue pour être dans les domaines Ig, le site de liaison précis n'a pas encore été déterminé, mais il pourrait être situé à proximité ou à l'intérieur des surfaces chargées négativement présentes sur les domaines Ig observées dans la structure d’UNC5B.Le travail présenté ici devrait servir de base à une meilleure caractérisation biochimique et structurale des récepteurs extracellulaires Robo4 et UNC5B.


  • Résumé

    Neuronal and vascular systems require a complex network to properly perform their functions. The processes involved in creating this network rely on coordinated pathways, often activated through common protein/receptor systems, which lead to cytoskeletal remodelling. In general, neuronal and vascular cells respond to extracellular stimuli in the form of soluble secreted proteins, which interact with surface receptors to mediate attraction or repulsion towards the source of the secreted proteins. This process, called guidance, is regulated by seven families of receptors and their respective ligands, which influence each other and can act on the neuronal system, the vascular system or both.Structural information about the extracellular region of many of these receptors, and how signal is relayed across the membrane, is lacking.This study is focused around the extracellular domain of two single-pass transmembrane receptors of the Roundabout and UNC5 protein families that are majorly involved in angiogenesis: Robo4 and UNC5B.Based on the findings of this study, the Robo4 and UNC5B extracellular domains are extensively glycosylated with N-linked glycans of the complex type. Site-directed mutagenesis of the predicted Robo4 glycosylation sites disrupts protein expression, indicating that they are necessary for protein stability and passage through the glycosylation pathway might be necessary for correct folding. MALS and SAXS data show that in solution the Robo4 extracellular domain is a flexible monomer with extended shape. Several Fabs binding to the extracellular domain of Robo4 were characterised, with the expectation to identify those Fabs that could inhibit the reported Robo4/UNC5B interaction for further characterisation. Complex formation was verified by SEC-MALS and SAXS, and interaction constants were determined using SPR. Crystals of some Robo4 extracellular domain/Fab complexes were produced, although the structure of the complex could not be solved at the present time.Despite a study by another group showing otherwise, pull-down, SEC-MALS and SPR experiments show that the Robo4 and UNC5B extracellular domains do not interact with each other. It is proposed that the difference may be caused by different glycosylation patterns specific to the cell lines used for each study, or by an undetected third party necessary for interaction. This, however, still requires further study. SEC-MALS analysis showed that the UNC5B extracellular domain is a monomer in solution and its crystal structure was solved at 3.4 Å resolution. Comparison to the existing structures of human UNC5A and rat UNC5D shows striking similarities and a high degree of evolutionary conservation of the Ig domains might be indication of the importance of this region, which is responsible for binding to the guidance cue Netrin. Although the Netrin binding region is known to be within the Ig domains, the precise binding site has not yet been determined, but it might be located in proximity, or within, the negatively charged surfaces present on the Ig domains which are observed in the UNC5B structure.It is hoped that the work presented here will give the basis for better biochemical and structural characterisation of these two receptors.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Service Interétablissement de Documentation. LLSH Collections numériques.
  • Bibliothèque : Service interétablissements de Documentation. STM. Collections numériques.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.