Thèse soutenue

Approche eulérienne de l'équation de Hamilton-Jacobi par une méthode Galerkine discontinue en milieu hétérogène anisotrope : Application à l'imagerie sismique

FR  |  
EN
Auteur / Autrice : Philippe Le Bouteiller
Direction : Jean VirieuxLudovic Métivier
Type : Thèse de doctorat
Discipline(s) : Sciences de la Terre et de l'Univers et de l'Environnement
Date : Soutenance le 06/12/2018
Etablissement(s) : Université Grenoble Alpes (ComUE)
Ecole(s) doctorale(s) : École doctorale Sciences de la terre, de l’environnement et des planètes (Grenoble ; 199.-....)
Partenaire(s) de recherche : Laboratoire : Institut des sciences de la Terre (Grenoble)
Jury : Président / Présidente : Emmanuel Maitre
Examinateurs / Examinatrices : Hervé Chauris
Rapporteurs / Rapporteuses : Dirk Gajewski, Jean-Marie Mirebeau

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Pouvoir déterminer la structure et la composition de l’intérieur de la Terre est un enjeu scientifique fondamental, pour la compréhension de l’organisation de la Terre profonde, des mécanismes des séismes et leur localisation en lien avec la prévention du risque sismique, pour la détection et l’exploitation des ressources naturelles telles que l’eau ou les hydrocarbures, ou encore pour toutes les activités de construction et de prévention associées au génie civil. Pour cela, les ondes sismiques sont un outil de choix. L’utilisation d’une approximation haute fréquence pour la modélisation de la propagation des ondes est avantageuse en termes de coût de calcul dès lors que plusieurs centaines, voire milliers, ou plus de longueurs d’ondes doivent être propagées. À la place de l’équation des ondes linéaire, l’approximation haute fréquence fournit trois équations aux dérivées partielles fondamentales. L’équation Eikonal, non linéaire, permet d’obtenir le temps de trajet. Une deuxième équation fournit l’angle d’émergence. L’équation Eikonal et l’équation des angles appartiennent toutes deux à la grande famille des équations de Hamilton-Jacobi. Enfin, l’équation de transport permet de calculer l’amplitude.Le tracé des rais sismiques est une technique lagrangienne qui utilise la méthode des caractéristiques pour obtenir un ensemble d’équations différentielles ordinaires à partir de ces équations aux dérivées partielles. Ces équations peuvent être intégrées facilement, donnant ainsi accès au temps de trajet et à l’amplitude le long des rais. Très largement utilisés dans la communauté géophysique du fait de leur simplicité, les outils de tracé de rais ne sont pas pour autant les plus efficaces et les plus robustes en pratique pour des applications d’imagerie et d’inversion haute résolution. En lieu et place, il peut être utile de résoudre directement les équations aux dérivées partielles par une méthode eulérienne. Durant les trois dernières décennies, une multitude de solveurs ont été développés pour l’équation Eikonal, la plupart utilisant la méthode des différences finies. Ces différents travaux visent à obtenir le meilleur compromis entre précision, coût de calcul, robustesse, facilité d’implémentation et souplesse d’utilisation.Dans cette thèse, je développe une approche différente, se basant principalement sur une méthode Galerkine discontinue. Dans le champ des mathématiques, cette méthode a été largement utilisée pour résoudre les lois de conservation et les équations de Hamilton-Jacobi. Très peu de travaux ont porté sur l'utilisation de cette méthode pour la résolution de l’équation Eikonal statique dans un contexte géophysique, et ce malgré le haut niveau de précision qu'elle apporte. C’est pourquoi, en me basant sur des travaux mathématiques, je propose un nouveau solveur Eikonal adapté au contexte géophysique. Les milieux hétérogènes complexes, anisotropes, et incluant des variations topographiques sont correctement pris en compte, avec une précision sans précédent. En y intégrant de manière robuste une stratégie de balayage rapide, je montre que ce solveur présente une très grande efficacité en deux comme en trois dimensions.J'utilise également ce solveur pour calculer l’angle d’émergence. Je développe par ailleurs un solveur voisin en volumes finis pour la résolution de l’équation de transport, permettant ainsi le calcul de l’amplitude. La variable d’état adjoint pour la tomographie sismique des temps et des pentes vérifiant une équation de transport semblable, je montre qu'on peut également la calculer à l'aide de ce solveur en volumes finis. En conséquence, je propose et analyse un ensemble consistant de solveurs pour la communauté géophysique. Ces outils devraient s’avérer utiles pour une large palette d’applications. Finalement, en guise d’illustration, je les utilise dans des schémas d’imagerie sismique, dans le but de démontrer le bénéfice apporté par une approximation haute fréquence dans ce type de schémas.