

THÈSE

Pour obtenir le grade de

DOCTEUR DE LA COMMUNAUTE UNIVERSITE
GRENOBLE ALPES

Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Estelle DIRAND

Thèse dirigée par Bruno RAFFIN, Directeur de Recherche, Inria
Grenoble Rhône-Alpes
codirigée par Laurent COLOMBET, Chargé de Recherche, CEA
DAM Île de France

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
Technologies de l'information, Informatique

Développement d'un système in situ à base
de tâches pour un code de dynamique
moléculaire classique adapté aux machines
exaflopiques

Integration of High-Performance Task-Based
In Situ for Molecular Dynamics on Exascale
Computers

Thèse soutenue publiquement le 6 novembre 2018,
devant le jury composé de :

Monsieur Bruno RAFFIN

Directeur de Recherche, Inria Grenoble Rhône-Alpes, Directeur de thèse
Monsieur Laurent COLOMBET

Chargé de Recherche, CEA DAM Île de France, Co-directeur de thèse
Monsieur Gabriel ANTONIU

Directeur de Recherche, Inria Rennes - Bretagne Atlantique, Rapporteur
Monsieur Hank CHILDS

Associate Professor, University of Oregon, Rapporteur
Monsieur Christophe CALVIN

Chargé de Recherche, CEA Saclay, Examinateur
Madame Violaine LOUVET

Ingénieur de Recherche, GRICAD - Grenoble Alpes Recherche -
Infrastructure de Calcul Intensif et de Données, Examinateur
Monsieur Raymond NAMYST

Professeur, Université de Bordeaux, Président du jury

Doctoral Thesis of

Communauté Université Grenoble Alpes

Integration of High-Performance Task-Based
In Situ for Molecular Dynamics on Exascale

Computers

Estelle Dirand

Under the supervision of
Laurent Colombet and Bruno Raffin

Commissariat à l’énergie atomique et aux énergies alternatives (Cea)
Centre Dam-Île de France – Bruyères-le-Châtel, 91297 Arpajon Cedex

Département de Physique Théorique et Appliquée
� +33 (0)1 69 26 40 00

Pour Papa, qui m’a donné la force de continuer
malgré les di�cultés

Remerciements

Il y a trois ans je suis arrivée au CEA pour commencer cette grande aventure qu’est la thèse
et maintenant que la soutenance est passée, il est grand temps de prendre quelques lignes pour
remercier toutes les personnes que j’ai croisées en chemin et qui ont contribué de près ou de loin
à l’aboutissement de cette aventure.

Je voudrais tout d’abord remercier les membres du jury pour avoir accepté de juger mon
travail : Raymond Namyst pour avoir accepté d’être le président du jury, Gabriel Antoniu et
Hank Childs pour avoir accepté la lourde tâche de rapporteurs et pour leurs commentaires plus
que positifs sur mon manuscrit et Christophe Calvin et Violaine Louvet pour avoir accepté le rôle
d’examinateurs et pour leurs questions intéressantes et leurs commentaires positifs. Une petite
pensée pour Frédéric Desprez qui n’a �nalement pas pu être présent à cause de la SNCF.

Une thèse n’est rien sans les encadrants qui l’accompagnent, c’est pourquoi je voudrais re-
mercier Bruno Ra�n et Laurent Colombet de m’avoir suivie durant ces trois années et de m’avoir
poussée à aller toujours plus loin. J’ai beaucoup appris grâce à vous pendant cette thèse, à la fois
sur les aspects techniques mais aussi sur les aspects transverses tels que la rédaction, la présen-
tation orale et aussi et surtout sur comment prendre du recul sur mon travail. Je vous en suis
évidemment très reconnaissante. Merci aussi à Bruno pour m’avoir fait con�ance et m’avoir re-
commandée pour le poste chez Total. Et promis Laurent, je n’oublie pas qu’il faut que je sois
plus optimiste et plus �ère de mon travail. Mais par contre, j’attends toujours les madeleines
avec une belle bosse ! Je tiens aussi à remercier Thierry Carrard pour tous ses conseils pendant
les derniers mois de thèse. Tu m’as beaucoup apporté d’un point de vue technique et tu as su
me motiver pour commencer la rédaction de ce manuscrit au moment où je n’arrivais pas à m’y
mettre. Et je n’oublierai pas non plus les heures de débugage à rajouter des accolades partout
dans le code.

Je voudrais ensuite remercier les physiciens du service pour avoir accueilli une informati-
cienne parmi vous. Un grand merci à Laurent Soulard pour les cours de physique des chocs, de
l’écaillage et du micro-jetting et à Nicolas Pineau, Olivier Durand et Jean-Bernard Maillet pour
les brainstormings de début de thèse sur les besoins en in situ. Une mention particulière pour
Claire Lemarchand avec qui je n’ai pas eu beaucoup l’occasion de travailler directement mais qui
a su m’écouter au moment où la thèse était un peu dure. Merci aussi à François Jollet de m’avoir
accueillie dans le service et un énorme merci à Brigitte Flouret et Sandra Boullier pour avoir
grandement facilité tous les aspects administratifs.

7

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Pour tous leurs conseils et leurs idées durant cette thèse, je souhaite remercier mes collègues
de Paratools, Jean-Baptiste Besnard, Julien Adam et Antoine Capra. J’ai aimé les réunions que
nous avons faites pour faire émerger les idées, les expérimentations git avec Julien et les séances
de débugage avec Jean-Baptiste.

L’heure est maintenant venue de remercier les stagiaires, thésards et post-docs qui ont par-
tagé leur quotidien avec moi pendant une partie ou l’intégralité de ces trois ans. Je voudrais donc
remercier Ahmed, Aloïs, David, Emmanuel, Gérôme, Giovanni, Ioannis, Jean, Jean-Baptiste, Jean-
Baptiste, Jean-Charles, Jordan, Loïc, Luc, Lucas, Luis, Nils, Paul, Quentin, Raphaël, Richard, Sami,
Théo, Thibaud, Tristan, Xavier et tous ceux que j’ai oublié de citer. Une mention spéciale pour
Paul, Thibaud, Jean-Baptiste, Hugo et Hugo, mes compagnons de thèse, à qui je souhaite une
bonne �n de thèse pour ceux qui n’ont pas encore soutenu et une bonne continuation pour ceux
qui sont déjà de l’autre côté du tunnel. Durant cette thèse, j’ai eu l’occasion d’avoir deux super
co-bureau, Jean-Charles pendant la première année et Raphaël (HippopoRaph ?) pour les deux
années d’après. J’ai vraiment apprécié partager mon bureau avec vous et je vous remercie cha-
leureusement pour les discussions techniques et un peu moins techniques. Une petite dédicace
à Gérôme et Lucas pour les soirées et après-midi jeux, à David pour les paris et les gâteaux qui
allaient avec et à Jordan qui n’était pas un non-permanent mais qui a toujours fait partie de notre
groupe et à qui je souhaite tout le meilleur pour sa nouvelle vie en Belgique.

Finalement, je voudrais remercier mes amis, ma famille et ma belle-famille. Merci à Céline
et Léa d’être mes amies depuis le collège et la primaire respectivement et d’avoir toujours été là
pour les moments durs et les moments moins durs. Céline, je ne te remercierai jamais assez pour
toutes nos conversations remontage de moral et évacuation de stress. Merci aussi aux amis de
l’ENSTA, en particuliers Pauline, Catherine et Marie. Et un grand merci à Jacky, Michèle, Riri,
Jacky, Margot et Mamie qui ont fait le déplacement depuis la Haute Saône et l’Alsace pour venir
m’écouter présenter ma thèse en anglais.

Je tiens à remercier de tout mon cœur Maman pour avoir été là depuis toujours et pour
m’avoir toujours soutenue même quand il a fallu pour cela que je parte loin de la maison. Je ne
te remercierai jamais assez pour tout ça. Et aussi un énorme merci pour être venue m’aider à
préparer le pot de thèse et pour avoir passé plus de 10h avec moi dans la cuisine à couper des
patates et à faire des kougelhopf. Sans toi, j’aurais été beaucoup plus stressée par la préparation !

Richard, je garde un paragraphe spécialement pour toi. Comme promis, je te remercie pour
m’avoir aidé à préparer le pot et surtout pour le kilo de comté que tu as râpé (presque pour rien)
pour les salades. Mais bien entendu tu as fait beaucoup plus que ça. Je te remercie du fond du
cœur d’être rentré dans ma vie il y a maintenant deux ans et de me combler de bonheur depuis
ce jour. Tu es à la fois mon meilleur ami, mon con�dent et l’homme de ma vie et je ne pourrais
jamais assez te remercier pour tout le soutien que tu m’as apporté pendant ces deux années et en
particuliers pour les derniers mois de la thèse. Merci d’avoir relu mon manuscrit et de m’avoir
aidé à l’améliorer, merci pour ton aide pour la préparation de la soutenance et merci d’avoir été
là et de l’être toujours pour me soutenir, me conseiller et me faire rire.

8

Abstract

The exascale era will widen the gap between data generation rate and the time to manage their
output and analysis in a post-processing way, dramatically increasing the end-to-end time to
scienti�c discovery and calling for a shift toward new data processing methods. The in situ
paradigm proposes to analyze data while still resident in the supercomputer memory to reduce
the need for data storage. Several techniques already exist, by executing simulation and analyt-
ics on the same nodes (in situ), by using dedicated nodes (in transit) or by combining the two
approaches (hybrid). Most of the in situ techniques target simulations that are not able to fully
bene�t from the ever growing number of cores per processor but they are not designed for the
emerging manycore processors. Task-based programming models on the other side are expected
to become a standard for these architectures but few task-based in situ techniques have been
developed so far.

This thesis proposes to study the design and integration of a novel task-based in situ frame-
work inside a task-based molecular dynamics code designed for exascale supercomputers. We
take bene�t from the composability properties of the task-based programming model to imple-
ment the TINS hybrid framework. Analytics work�ows are expressed as graphs of tasks that can
in turn generate children tasks to be executed in transit or interleaved with simulation tasks in
situ. The in situ execution is performed thanks to an innovative dynamic helper core strategy
that uses the work stealing concept to �nely interleave simulation and analytics tasks inside a
compute node with a low overhead on the simulation execution time.

TINS uses the Intel® TBB work stealing scheduler and is integrated into ExaStamp, a task-
based molecular dynamics code. Various experiments have shown that TINS is up to 40% faster
than state-of-the-art in situ libraries. Molecular dynamics simulations of up to 2 billions particles
on up to 14,336 cores have shown that TINS is able to execute complex analytics work�ows at a
high frequency with an overhead smaller than 10%.

9

Résumé

L’ère de l’exascale creusera encore plus l’écart entre la vitesse de génération des données de si-
mulations et la vitesse d’écriture et de lecture pour analyser ces données en post-traitement. Le
temps jusqu’à la découverte scienti�que sera donc grandement impacté et de nouvelles tech-
niques de traitement des données doivent être mises en place. Les méthodes in situ réduisent
le besoin d’écrire des données en les analysant directement là où elles sont produites. Il existe
plusieurs techniques, en exécutant les analyses sur les mêmes nœuds de calcul que la simulation
(in situ), en utilisant des nœuds dédiés (in transit) ou en combinant les deux approches (hybride).
La plupart des méthodes in situ traditionnelles ciblent les simulations qui ne sont pas capables
de tirer pro�t du nombre croissant de cœurs par processeur mais elles n’ont pas été conçues pour
les architectures many-cœurs qui émergent actuellement. La programmation à base de tâches est
quant à elle en train de devenir un standard pour ces architectures mais peu de techniques in situ
à base de tâches ont été développées.

Cette thèse propose d’étudier l’intégration d’un système in situ à base de tâches pour un code
de dynamique moléculaire conçu pour les supercalculateurs exa�opiques. Nous tirons pro�t des
propriétés de composabilité de la programmation à base de tâches pour implanter l’architecture
hybride TINS. Les work�ows d’analyses sont représentés par des graphes de tâches qui peuvent
à leur tour générer des tâches pour une exécution in situ ou in transit. L’exécution in situ est
rendue possible grâce à une méthode innovante de helper core dynamique qui s’appuie sur le
concept de vol de tâches pour entrelacer e�cacement tâches de simulation et d’analyse avec un
faible impact sur le temps de la simulation.

TINS utilise l’ordonnanceur de vol de tâches d’Intel® TBB et est intégré dans ExaStamp, un
code de dynamique moléculaire. De nombreuses expériences ont montrées que TINS est jusqu’à
40% plus rapide que des méthodes existantes de l’état de l’art. Des simulations de dynamique
moléculaire sur des système de 2 milliards de particles sur 14,336 cœurs ont montré que TINS est
capable d’exécuter des analyses complexes à haute fréquence avec un surcoût inférieur à 10%.

11

Contents

1 Introduction 17
1.1 On the Path Toward Exascale Supercomputers 17
1.2 Need for In Situ Processing of Simulation Data 18
1.3 Thesis Objectives . 19
1.4 Thesis Contributions and Organization . 20

I Molecular Dynamics and I/O Challenges for Exascale 21

2 Background on Data Analytics on Supercomputers 23
2.1 Architecture of Supercomputers . 23

2.1.1 Evolution of the Compute Node Architecture 23
2.1.2 Node Interconnect . 29
2.1.3 Filesystem and I/O . 31

2.2 In Situ Processing . 33
2.2.1 Synchronous In Situ . 33
2.2.2 Over-Subscription of the Cores . 35
2.2.3 Core Separation . 36

2.3 In Transit and Hybrid Processing . 38
2.3.1 In Transit Processing . 38
2.3.2 Hybrid Processing . 40

2.4 In Situ Work�ows Control . 42
2.5 Chapter Summary . 44

3 Task-Based Molecular Dynamics for Exascale Computers 45
3.1 Intel® TBB, a Task-Based Runtime . 45

3.1.1 Task Creation with TBB API . 46
3.1.2 TBB Resource Management . 49
3.1.3 Tools to Control the Task Execution . 52

3.2 ExaStamp, a Molecular Dynamics Code for Material Sciences 53
3.2.1 Molecular Dynamics for Material Sciences 54
3.2.2 ExaStamp Architecture . 54

13

Task-Based In Situ for Molecular Dynamics on Exascale Computers

3.3 Challenges for the Integration of an In Situ Framework Inside ExaStamp 58
3.3.1 Target Architectures . 59
3.3.2 ExaStamp Performance . 60
3.3.3 Ideas for the Implementation of a Task-Based Hybrid Framework 61

II Toward a Task-Based In Situ Technique 63

4 Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ 65
4.1 Integration of Analytics for Synchronous Execution 65

4.1.1 Integration of Synchronous In Situ in ExaStamp 66
4.1.2 Implementation of Analytics Routines inside ExaStamp 66
4.1.3 Comparison of the Synchronous In Situ and the File Output Approaches 68

4.2 Highlighting Periods of Unused Resources . 70
4.2.1 Implementation of a Task Monitoring System 70
4.2.2 Measure of the Thread Usage in the Synchronous Approach 70

4.3 Derivation of a Task-Based Asynchronous IN Situ Approach (TINS) 71
4.3.1 Spawning of an Analytics Task . 73
4.3.2 Evaluation of TINS compared to a Synchronous Execution 75

4.4 Chapter Summary . 76

5 Implementation of a Thread Isolation to Improve TINS Performance 77
5.1 Evaluation of TINS compared to the Goldrush Process-Based Approach 77

5.1.1 Usage of Goldrush on the Cobalt Supercomputer 77
5.1.2 Instrumentation of ExaStamp with Goldrush API 78
5.1.3 Comparison of TINS and Goldrush . 80

5.2 Evaluation of TINS compared to the Damaris Static Helper Core Approach . . . 81
5.2.1 Instrumentation of ExaStamp with Damaris API 81
5.2.2 Comparison of TINS and Damaris . 85

5.3 Implementation of a Thread Isolation Mechanism in TINS 86
5.3.1 Separation of the Tasks into Disjoint Arenas 87
5.3.2 Implementation of an Analytics Master Thread 87
5.3.3 Comparison of the Two Versions of TINS and Damaris 91
5.3.4 Highlighting the Limitations of the Static Helper Core Approach 93

5.4 Chapter Summary . 95

6 Implementation of a Dynamic Helper Core Strategy with Automatic Sizes 97
6.1 Implementation of an Adaptive Static Helper Core Approach 97

6.1.1 Design of the Algorithm . 97
6.1.2 Highlighting the Limitations of the Approach 99

6.2 Implementation of a Dynamic Helper Core Strategy with a Temporary Isolation 100
6.2.1 Designing a Temporary Thread Isolation with TBB 100
6.2.2 Implementation of the Temporary Thread Isolation in TINS 102
6.2.3 Evaluation of the Dynamic Helper Core Approach 105

6.3 Implementation of an Adaptive Dynamic Helper Core Approach 109
6.3.1 Design of the Algorithm . 110

14

CONTENTS

6.3.2 Validation of the Approach . 111
6.3.3 Highlighting the Limitations of the Approach 112

6.4 Chapter Summary . 113
6.5 Part Summary . 114

III Toward an Evolutive Task-Based Hybrid Framework 115

7 Design of a Framework to Automatically Orchestrate Analytics Execution 117
7.1 Orchestration of Simulation and Analytics Codes 117

7.1.1 Integration of TINS Architecture in the Simulation Code 118
7.1.2 Development of Analytics Outside of the Simulation as TINS Plugins . . 119
7.1.3 Compilation and Loading of TINS Plugins 121

7.2 Automatic Creation of a Graph of Plugins . 122
7.2.1 De�nition of the Analytics Work�ow . 122
7.2.2 Construction of a Graph of Plugins . 123
7.2.3 Management of Simulation and Analytics Data 126

7.3 Extension of TINS with an In Transit Mode . 129
7.3.1 Design of an In Transit Mode . 129
7.3.2 Implementation of a Prototype and Preliminary Results 130
7.3.3 Execution of Analytics Plugins in a Standalone Mode 132

7.4 Chapter Summary . 133

8 Validation of TINS on a Production Run 135
8.1 Description of the Physics and the Analytics Work�ow 135

8.1.1 Computation of the Steinhardt Parameters 136
8.1.2 De�nition of the Analytics Work�ow . 139

8.2 Limitations of the Tera-1000-2 Supercomputer 141
8.2.1 Disabling of the OS Scheduler on the KNL Nodes 141
8.2.2 Temporary Absence of the MPI_THREAD_MULTIPLE Threading Level 141

8.3 Validation of TINS . 142
8.3.1 Numerical Validation . 142
8.3.2 Preliminary Performance Measurements 144
8.3.3 Gain of TINS for the Physicists . 148

8.4 Chapter Summary . 149

9 Conclusion and Perspectives 151
9.1 Contributions . 151
9.2 Perspectives . 153
9.3 Towards Advanced Uses of TINS . 154

IV Additional Content 157

10 Résumé de la Thèse en Français 159
10.1 Introduction . 159
10.2 Organisation du Manuscrit . 161

15

Task-Based In Situ for Molecular Dynamics on Exascale Computers

10.3 Conclusion . 164

Bibliography 165

16

1 Introduction

1.1 On the Path Toward Exascale Supercomputers

To understand physical phenomena, physicists design models and perform physical or numerical
experiments to validate, invalidate or re�ne their models. Physical experiments are performed
in laboratories where the environment of the physical phenomena at stake is reproduced. For
example, extreme conditions can be reproduced by lasers or energetic environments by particle
accelerators. Physical experiments help the physicist understand �nely the physics at stake but
they have limitations. The �rst limitation is �nancial, the use of advanced facilities and advanced
monitoring tools making physical experiments very expensive. In the car industry for example,
performing one crash test can cost from hundred of thousands to millions dollars, which limits
the number of crash tests that a manufacturer can perform within a given envelope. The second
limitation is the reproducibility of some physical phenomena. Indeed, some phenomena cannot
be reproduced in a laboratory, as this is the case for example when studying the movement of
planets or galaxies in astrophysics or the interaction of oceans and the atmosphere in climate
science.

During the past few decades, the use of numerical simulations has been democratized to
complement physical experiments. Physical phenomena are modeled by mathematical equa-
tions solved by scienti�c simulations running on high performance supercomputers. A simu-
lation usually alternates two phases: a computing phase where the computing resources of the
supercomputer are used to solve the numerical equations and a writing phase where the state of
the system is periodically extracted and sent through high performance networks to persistent
storage. Simulation data are written into �les that are later read back by analytics codes in a
post-processing step necessary for converting raw simulation data into metrics that can be used
by physicists to understand the physical phenomena at stake.

The desire to have more and more accurate simulations in a reasonable time has driven the
development of high performance supercomputers into complex architectures with di�erent lev-
els of memory and parallelism. Several nodes are interconnected into a distributed memory ar-
chitecture and the nodes are in turn composed of several cores sharing memory. The number of
cores per node has increased over the years, from the multicore nodes with a few number of cores
to manycore nodes with several dozens of cores. In June 2018, the most powerful supercomputer,

17

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Summit1, was composed of more than 4,000 nodes for a total of 2 millions cores, reaching 1017

�oating point operations per seconds (namely one hundred million billions �oating point oper-
ations per second). This trend towards more computing resources is not likely to stop and the
supercomputers manufacturers have already begun a race toward the exascale with 1018, namely
one billion of billions, �oating point operations per second. The �rst exascale supercomputers
are expected to be released around year 2020.

By accessing more computing resources, physicists are able to simulate more complex phe-
nomena. In the �eld of molecular dynamics applied to material sciences, the study of the phase
transition of a material under shock has been until now limited to systems of a few million par-
ticles. With the advance of supercomputers, the systems can now have hundreds of millions of
particles, leading to a better understanding of the phenomenon. However, this also leads to an
increase in the size of the data produced by numerical simulations. While the exascale era will
bring more computational capabilities, recent studies have shown that the rate at which �les will
be written and read will not keep up the rate at which they will be produced [8]. Simulations
will produce more and more data because they will be able to increase the sizes of their systems,
but the supercomputers networks will not be able to follow the data generation rate, which will
greatly impact simulation performance and the end-to-end time to scienti�c discovery.

The end-users of current peta�op supercomputers are already facing this Input/Output (I/O)
bottleneck and they often get around the problem by simply decreasing the output frequency.
This way, the pressure of I/O on the simulation performance is reduced but this has a critical im-
pact in the scienti�c discovery process. The frequency of data output should be chosen according
to the physics at stake, some physical phenomena occurring on a few iterations while others need
a large number of iterations. When the frequency of output is reduced for performance reasons,
the physicists are likely to miss physical phenomena and to re-execute the simulation to catch
it. This increases the time until scienti�c discovery and the number of allocated resources.

1.2 Need for In Situ Processing of Simulation Data

To perform data analytics at a higher frequency without saving more data into the �lesystem, the
in situ paradigm proposes to complement the post-processing approach by analyzing data while
still resident in the compute node memory. Analytics are executed on-line with the simulation,
reducing the need to write data into the storage system. Analytics are either executed on the
same nodes than the simulation (in situ), on distinct nodes (in transit) or on a combination of the
two (hybrid).

The more direct way to perform in situ analytics is called synchronous and consists in pe-
riodically stopping the simulation to execute analytics instead. Analytics codes are most often
integrated into the simulation and can directly access simulation data. However, the end-to-
end execution time is the addition of simulation and analytics times and heavy analytics have
a signi�cant impact on the end-to-end execution time. This end-to-end execution time of in
situ analytics can be reduced thanks to asynchronous in situ techniques that optimize the re-
source usage on a compute node. One asynchronous approach relies on time sharing. Simulation
and analytics codes are executed on the same cores and coarse-grained scheduling approaches
are used to alternate between simulation and analytics executions more e�ciently than syn-

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

18

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Chapter 1 | Introduction

chronous approaches. Another asynchronous approach adopts a space sharing strategy where
analytics codes are executed concurrently with the simulation on dedicated cores called helper
cores. While these approaches have proved their performance for multicore architectures and
for simulation codes that are not able to fully bene�t from all the cores of the nodes, they are
not designed for manycore architectures and they do not target simulation codes optimized for
these architectures. Indeed, they rely on coarse-grained scheduling approaches that do not allow
e�cient execution of analytics codes during the short periods when the simulation does not use
all the cores, leaving an opportunity for further performance improvements.

With the advanced of manycore processors, task-based programming models [22] are cur-
rently emerging as a standard for the future exascale supercomputers. They propose high levels
tools for the programmers to describe their programs as a set of tasks. The tasks are then executed
on the compute cores in a transparent way thanks to �ne-grained schedulers. This approach is
designed so that simulation codes can fully bene�t from multi and manycore processors and it
provides good composability properties. It is indeed possible to create tasks without taking care
of other portions of codes or libraries that could create tasks simultaneously, the scheduler being
in charge of transparently executing the di�erent tasks. Task-based programming models can
thus allow to have analytics tasks created concurrently with simulation tasks and interleaved on
the same resources thanks to a shared scheduler. However, the potential of task-based program-
ming for in situ processing has been seldom investigated so far.

1.3 Thesis Objectives

In this thesis, we study the integration of a task-based in situ framework inside a task-based
molecular dynamics code designed for exascale supercomputers. The target code of our study is
ExaStamp [29], a molecular dynamics code developed at CEA for the last 5 years. ExaStamp is
designed for manycore processors and uses several levels of parallelism to achieve very good per-
formance on modern architectures. It uses the Intel® Threading Building Blocks (TBB) library [5]
that provides a task-based programming model for the creation of simulation tasks and a work
stealing scheduler to e�ciently balance the tasks execution on multi and manycore processors. A
simulation like ExaStamp cannot take advantage of existing in situ techniques, either because it
exhibits short sequential regions di�cult to harvest or because removing cores to dedicate them
to analytics has a signi�cant impact on simulation performance.

The challenges of this thesis are multiple. As a �rst goal, we need to propose task-based in situ
methods that create and execute analytics tasks concurrently with the simulation. We will there-
fore need to �nd the best instant in the simulation execution to integrate in situ analytics and to
design in situ methods that use the work stealing concept to e�ciently interleave simulation and
analytics tasks with a low overhead on the simulation execution time. More generally, the goal
of this thesis is to implement a task-based hybrid framework where complex analytics work�ows
can be executed transparently in situ, in transit or in an hybrid way. We will therefore need, as a
second goal, to design a generic, intuitive and evolutive tool that uses a task-based programming
model so that the users can easily develop analytics work�ows as if they were post-processing
codes and deploy them in situ or in transit transparently.

19

Task-Based In Situ for Molecular Dynamics on Exascale Computers

1.4 Thesis Contributions and Organization

This thesis is organized as follows. Chapter 2 recalls the basic concepts behind supercomputers
and gives an overview of the existing tools developed for in situ, in transit and hybrid processing.
Chapter 3 introduces in more details the TBB library and the ExaStamp molecular dynamics
code and highlights the challenges of implementing a task-based in situ framework for such a
simulation code.

Chapters 4, 5 and 6 detail the di�erent steps toward the implementation of a dynamic task-
based in situ strategy. Chapter 4 shows how a synchronous in situ approach can be turned into a
more e�cient task-based asynchronous approach. Chapter 5 shows how an isolation mechanism
leads to the implementation of a task-based static helper core strategy equivalent or even better
than the traditional helper core approach. Chapter 6 shows how the isolation mechanism can
be adapted to implement a dynamic helper core strategy more e�cient than the static helper
core approach and than existing middleware. We will show in particular that the dynamic helper
core strategy reduces the end-to-end time of in situ analytics compared to two state-of-the-art
approaches and that the overhead of the approach is kept under 10% for high frequency analytics
of large scale simulations on more than 14,000 cores. These results led to the publication of a
paper in an international conference [37].

Chapters 7 and 8 detail the implementation and usage of a task-based hybrid framework.
Chapter 7 shows how a graph-based plugin system separates simulation and analytics codes for
the intuitive creation of task-based analytics work�ows that can be executed in situ or in tran-
sit transparently. Chapter 8 validates the task-based framework on a production run. We will
show in particular that this framework is robust, evolutive and generic and that the synchro-
nizations between simulation and analytics are completely hidden by the framework to ease the
development of analytics and the deployment of complex analytics work�ows in a production
environment and by non-expert developers.

Chapter 9 �nally summarizes the contributions of this thesis and draws perspectives of this
study.

20

Part I

Molecular Dynamics and
I/O Challenges for

Exascale

21

2 Background on Data Analytics on
Supercomputers

Simulations usually alternate two phases: a computing phase where the computing resources
are used to solve the mathematical equations and a writing phase where data are extracted from
the computing resources to be saved in persistent storage system. These output data aim at
being later analyzed and visualized to get insights into the physical process at stake. The desire
to have more and more accurate simulations in a reasonable time has led to the development
of high performance supercomputers with di�erent levels of computing resources and e�cient
storage systems (Section 2.1). However, a growing gap between data generation rate and the time
necessary to write data into the storage system has been observed for the last decades. Novel in
situ techniques emerge to reduce the amount of data stored into persistent storage systems. They
propose to analyze and visualize simulation data while still resident in the supercomputers, by
creating middleware that use the resources of the simulation (Section 2.2) or dedicated resources
(Section 2.3) to execute analytics. At a higher level, methods are also proposed to analyze or
visualize simulation data with the smallest end-to-end execution time (Section 2.4).

2.1 Architecture of Supercomputers

A supercomputer is organized around a compute and memory hierarchical model. Several nodes
are interconnected to form a distributed memory model and each node is in turn composed of
several cores in a shared memory model. The compute nodes are then connected to a parallel
�lesystem through a network. The goal of this section is to present the di�erent components of
a supercomputer and the associated vocabulary: the compute node and the shared memory pro-
gramming model (Section 2.1.1), the connection between the nodes and the distributed memory
model (Section 2.1.2) and the way data are output to the �lesystem (Section 2.1.3).

2.1.1 Evolution of the Compute Node Architecture

In the past decades, the compute node architecture has evolved from monocore processors with
one core to multi and manycore architectures with several cores and a complex memory hierar-
chy. We explain in this section the compute node evolution and the tools that exist to make use
of the node architecture.

23

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Monocore Processors

A traditional monocore Central Processing Unit (CPU) can be represented schematically by the
Figure 2.1. It is composed of a microprocessor (hereafter called processor) in charge of the com-
putation, a volatile main memory such as Random Access Memory (RAM) to store the data and
devices to handle Input/Output (I/O) operations to non volatile memories for example. These
di�erent components communicate with each other thanks to communication buses. The pro-
cessor is itself composed of di�erent elements. An Arithmetic and Logic Unit (ALU) performs the
elementary computation operations. Registers and caches are di�erent levels of memory inside
a processor.

Monocore

Processor

ALU Reg.

Cache

Memory

I/O devices

Figure 2.1 | Schematic view of a monocore processor.

The registers are used for the arithmetic operations. They have the fastest access but they
are also the smallest in capacity. Some speci�c registers are also used for the Single Instruction
Multiple Data (SIMD) paradigm or vectorization. In a loop iteration, instead of performing the
same operation on di�erent data one after the other, the SIMD paradigm proposes to pack data
elements into arrays and to perform the operation on the array, hence performing the same
operation on di�erent data at the same time. Several extensions exist with di�erent register
sizes: SSE (128 bits), AVX (256 bits) and more recently AVX-512 (512 bits) that allows to perform
vector operations on 8 double precision �oating points at the same time.

Caches are fast memories used as an intermediate when it comes to access the main memory.
When the processor needs to access data stored in the main memory, it �rst looks into the caches
to see if these data are available at this level. If this is the case, a cache hit occurs and the processor
directly uses data from the cache. Otherwise, a cache miss occurs and data need to be loaded into
the caches. The latency is a measure of the speed of a cache and corresponds to the elapsed time
between a data request and the time when data arrive. Because it is di�cult to build caches that
have both a large storage capacity and a low latency, the caches are decomposed in di�erent
levels (usually L1 to L3), the fastest level (L1) being the smallest in size and the slowest level
(L3) being the largest in size (Table 2.1). When looking for data, the processor thus checks the
presence of these data in every cache level before loading data from the main memory.

During the last three decades, the processors manufacturers have improved the processor
performance thanks to three factors: the increase of the processor frequency, the increase of the
size of the caches and several optimizations such as the instruction pipelining. Increasing the

24

Chapter 2 | Background on Data Analytics on Supercomputers

Table 2.1 | Typical sizes and latencies for the di�erent cache levels compared with an order of magnitude of size and
latency of traditional RAM1.

Level Size Latency
L1 32 KB 1 ns
L2 256 KB 4 ns
L3 8 MB or more 40 ns

RAM Several GB 80 ns

processor frequency was made possible by decreasing the size of the transistors that compose
them. Gordon Moore observed in 1965 that the number of transistors in an integrated circuit dou-
bles approximately every two years [88]. The Moore’s law proved accurate for several decades
and the simulation codes could directly bene�t from the processor technology advances, gaining
performance without any code modi�cations. However, the Moore’s law is less and less appli-
cable because of power consumption and heat dissipation issues. Herb Sutter declared in 2005
that free lunch is over [107] and that new technologies have to be found for achieving higher per-
formance. He put forward multi-threading and multicore processors as approaches to get there.
From that point, we observe an increase in the number of cores per processors on leadership
supercomputers (Figure 2.2).

1995 2000 2005 2010 2015
Year

0

20

40

60

80

N
um

be
ro

fc
or

es

Mean
Min and max

Figure 2.2 | Evolution of the number of cores per socket for the Top500 supercomputers [6]. The peak in 2014 denotes
the use of manycore processors and the peak in 2015 shows the democratization of GPU usage with 260 cores per
socket (truncated here for readibility issues).

Multicore Processors

The �rst step to multicore processors is the Symmetric MultiProcessing (SMP) where two or more
processors are connected to a single and unique main memory (Figure 2.3). In this case, the
processors are called cores and the term processor refers to the combination of the cores. The
higher levels of caches are likely to be shared by several cores while there is often one L1 cache
per core. The connection of the cores and the memory is made through a crossbar switch. This
technology, also called Uniform Memory Access (UMA) technology, guarantees that all the cores

1https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell

25

https://software.intel.com/en-us/articles/memory-performance-in-a-nutshell

Task-Based In Situ for Molecular Dynamics on Exascale Computers

have a direct access to the main memory but the approach proved to be ine�cient for large
number of cores [31].

SMP

Core 0 Core 1 Core 2 Core 3

Cache Cache Cache Cache

Memory

Figure 2.3 | Schematic view of a SMP multicore processor where 4 cores share the same memory.

An alternative is the Non-Uniform Memory Access (NUMA) approach where the processor is
composed of two or more SMP-like nodes (Figure 2.4), called the NUMA nodes. The cores still
share a common main memory but the memory is divided into blocks, one block per NUMA
nodes. The cores of one NUMA node can access both the memory located in their NUMA node
and the memory located in other NUMA nodes. However, the access is direct on their NUMA
node while it goes through an interconnection network otherwise, leading to longer access times.
Compared to a UMA approach, this technology reduces the number of cores that need to connect
to the unique main memory. It increases the number of cores per processor but distant memory
accesses are more expensive. The access to distant NUMA nodes is transparent to the users
although several tools allow the users to control the data locality of an application to reduce
NUMA e�ects. Speci�c protocols, such as cache coherent NUMA (ccNUMA), also exist to ensure
that a modi�cation of data in a particular cache is transmitted to the other cores so that they
always work on the same data.

NUMA

Core 0 Core 1 Core 2 Core 3

Cache Cache Cache Cache

Memory Memory

Interconnection

Figure 2.4 | Schematic view of a NUMA multicore processor where the 4 cores are split into 2 NUMA nodes with a
block of the memory associated to each NUMA node. An interconnection network links the two blocks of memory.

Manycore Processors

The use of Graphics Processing Units (GPU) for general-purpose computing began popular in
the 2000s, in particular to solve matrix-based problems. GPUs and CPUs highly di�er in their
architectures. The GPUs provide way more cores than the CPUs and they extensively use the

26

Chapter 2 | Background on Data Analytics on Supercomputers

SIMD paradigm: the cores are grouped into warps and the cores of a warp execute the same
instructions at the same time. GPU processing proved to be e�cient for many algorithms [92]
but requires speci�c algorithms and data management that limit its adoption in the scienti�c
community.

Parallel e�ort to the development of GPUs has been the development of manycore processors
with a large number of classical CPUs. In contrast to multicore processors that are designed to be
e�cient for both sequential and parallel applications, manycore processors have simpler cores
running at a lower frequency and providing a high degree of parallelism for parallel applications
but poorer performance for sequential applications. The idea of these architectures is that codes
parallelized for multicore processors should bene�t from manycore processors at (nearly) no cost.
As an example, Intel® released in 2016 the Knights Landing (KNL) composed of 72 cores divided
into 36 tiles (Figure 2.5). A tile corresponds to 2 cores with a shared cache, the cores being similar
to classical cores but with a reduced frequency. The memory is composed of two parts, a large
classical RAM memory and a MCDRAM memory that can be used as a cache or as a high speed
extension of the RAM. The tiles are connected through a 2-dimension grid and the KNL can be
con�gured to expose 1, 2 or 4 NUMA nodes.

Manycore

MCDRAM

MCDRAM

R
A

M

R
A

M

Figure 2.5 | Schematic view of a manycore processor.

Thread Programming

To take advantage of the cores available in multi and manycore processors, application develop-
ers can adopt a thread-based programming model. In this case, several threads execute on the
cores of the processors. The threads are sequences of operations that are executed concurrently
on the cores and that share the memory of the processor. Several tools exist to manage the ex-
pression of threads. The most low-level tool is Posix Thread, usually known as pThreads, that
provides an API for thread creation, control execution and destruction [25]. While pThread pro-
vides numerous tools to manage the life of the threads, explicit creation and management of a
pool of threads is complex and other higher level tools are often preferred for parallel program-
ming.

27

Task-Based In Situ for Molecular Dynamics on Exascale Computers

OpenMP [32, 3] is an extension of Fortran, C and C++ codes that provides compiler directives
mainly for loop parallelization. The strength of OpenMP is that the programmer adds pragma

directives on top of the loops that need to be parallelized and OpenMP manages a pool of worker
threads with their creation, destruction and synchronization in a transparent way. OpenMP
codes often work according to a fork-join pattern [82]. During sequential regions, only one
thread, called the master thread is active. When reaching a parallel region, work is distributed
among the master thread and the pool of worker threads.

Task-Based Programming Models and Work Stealing Concept

Instead of managing threads, task-based programming models [22] propose to describe the par-
allelism of an application at a higher level. The programmer describes tasks that are functions
associated with data. Tasks can have dependencies: a task may need the completion of other
tasks before being executed. An application is therefore described as a Directed Acyclic Graph
(DAG) where the nodes are the tasks (computation and input data) and the edges dependencies
between them. A scheduler is in charge of distributing the tasks on a set of worker threads cre-
ated at the beginning of the application. With the advance of manycore processors, task-based
programming models are likely to become a standard for the future supercomputers [81].

One of the scheduling techniques used in a task-based programming model is the work steal-
ing scheduling [23]. Intel® Cilk [22] and Intel® Threading Building Blocks (TBB) [99, 5] are task-
based programming models that implement such scheduling. In a work stealing context, the
threads are �rst assigned a set of tasks that they have to execute. When a thread has executed all
of its tasks, it invokes a stealing mechanism. It selects a victim thread and steals a task from the
the victim’s set of tasks if available. Otherwise, it tries with another victim until it has found one
victim to steal or until the scheduler puts it to sleep. The main advantage of the work stealing
scheduling is that it o�ers load balancing between the threads. If a thread has been assigned less
work than another thread, it can steal work of other threads instead of being idle, hence reducing
the thread idleness periods and the execution time of the parallel region. Many e�orts have been
dedicated to reduce the work stealing costs. In particular, the threads are supposed to steal old
tasks that are more likely to generate local work than newest ones, reducing the number of times
a thread has to steal.

Scheduling a task is not always easy, in particular on NUMA machines where data locality
is very important. Without careful tuning, a task may be executed on a core that does not be-
long to the NUMA node where necessary data are stored leading to costly data transfers. More
evolved runtimes exist to handle these kinds of issues. For example, StarPU [15] is a C library
that provides advanced scheduling strategies to assign tasks to the computing units based on task
dependencies, priorities and data locality, and XKaapi [53] is a runtime system that implements
a work-stealing strategy to execute applications parallelized with the task-based programming
model introduced in OpenMP in the 3.0 and 4.0 updates. Virouleau et al. [112] propose several
heuristics to control data placement on NUMA nodes at di�erent levels (initialization or appli-
cation execution) based on the architecture topology and tasks data dependencies.

In multithreaded applications, the e�ciency is a metric that shows the capacity of the ap-
plication to use the cores of the processor. An application is 100% e�cient when it provides
enough parallelism so that all the cores of the processor are active during the makespan of the

28

Chapter 2 | Background on Data Analytics on Supercomputers

application. Parallel applications are almost never 100% e�cient, especially because of sequential
regions where only the master thread is active.

Simultaneous Multi-Threading

Usually, existing tools create at most one thread per core because traditional cores can only exe-
cute one thread at a time. It is possible to over-subscribe the cores by creating more threads than
the number of cores. In this case, the processor Operating System (OS) is in charge of schedul-
ing the threads on the cores. One current strategy is the time slicing where the OS alternates
between several threads. To do so, the OS performs a context switch by frequently saving and
restoring the state of the threads to suspend and resume them. However, core over-subscription
has a cost and must often be avoided unless carefully tuned, as we will see in Section 2.2.2.

A way to improve the performance of a processor is to use Simultaneous Multi-Threading
(SMT), or hyperthreading to use the term introduced by Intel®. It enables simultaneous execution
of multiple threads on a core by assigning to each physical core two or several logical cores. Each
logical core has its own registers but the ALU and the caches of the physical core are shared by
the logical cores. The main purpose of hyperthreading is to hide the memory latency that is to
say the time a thread has to wait before data are available in the caches. When a thread needs to
use data that are not available, another thread can use the ALU of the core and the performance
of the simulation code should increase. However, it has been shown that the performance gain
of hyperthreading highly depends on the application [72].

2.1.2 Node Interconnect

A supercomputer is composed of several compute nodes for achieving a high degree of paral-
lelism. For example, the largest supercomputer in June 2018, Summit2, is composed of 4,608
nodes [6]. In order to achieve high performance, the nodes need to be interconnected by a fast
network and distributed programming models should be used to parallelize applications on mul-
tiple nodes.

Network Interconnection

When using several compute nodes, the program is separated into several processes, each of
them executing on a compute node. Each node has its own memory and simulation data are
distributed among the di�erent nodes. However, processes may need data that are not on their
own node to progress and the di�erent processes have to exchange data. According to Amdahl,
the execution of a program is led by thee factors: the computations that are intrinsically sequen-
tial, the computations that are parallel and the computations related to the communications and
synchronizations. While methods allow to overlap computations and communications, data ex-
change still corresponds to a signi�cant part of the total execution time and high performance
networks are necessary to reduce the synchronization times.

When looking at the Top500 supercomputers in June 2018, we observe that many intercon-
nect networks exist (Figure 2.6) but 3 systems are mostly used: Ethernet with rates between 10
and 100 GB/s, Intel® Omni-path with rates up to 100 GB/s and Intel® In�niband with rates up to
200 GB/s.

2https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

29

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Figure 2.6 | Repartition of the network interconnect for the June 2018 Top500 supercomputers [6].

Distributed Memory Programming

When an application is composed of several processes distributed among several nodes, tools
must be used to exchange data between the processes. Di�erent tools exist but the predomi-
nant model in high performance computing is the Message Passing Interface (MPI) [100]. MPI is
a standardized protocol for message-passing operations. The processes share a communicator,
most often the default MPI_COMM_WORLD communicator and the programmer explicitly describes
the communication scheme of the processes inside the communicator by using send and receive
functions. The communications can be between two processes (point-to-point) or between all
the processes (collective). In the �rst versions, the communications were always blocking, the
processes waiting for the data exchange completion before resuming to the simulation compu-
tation. Non-blocking communications are now widely used to reduce the communication costs.
In this case, a transfer request is created and handled by speci�c hardware. The process resumes
whenever the request has been issued, enabling overlapping between computations and com-
munications. The programmer can check the status of the request at any time in the program
and they must manually check that data have been received before using them. In blocking and
non-blocking communications, a synchronization is necessary between processes involved in
the communication. One-sided communications propose to reduce this synchronization. Each
process exposes a part of its memory to the other processes so that they can directly access it to
write and read data.

On multicore processors, it is possible to run several MPI processes per node. In this case,
the processor memory is split between the di�erent processes and a process cannot access the
memory of another process, even if they are located on the same node. Data sharing can be made
by using shared memory segments and MPI proposes services so that intra-node communications
are faster than inter-node communications. With the advance of manycore processors where
the cores have a smaller frequency, using only MPI for the intra-node parallelization is more and
more di�cult and many codes are now switching to MPI+X programming models where MPI is
used for the inter-node parallelization and communications and a multithreaded programming
language (OpenMP, TBB, . . .) is used for intra-node parallelization. This is called hybrid program-
ming. Usually, one MPI process is launched per NUMA node to limit the NUMA e�ects. Each
MPI process is composed of a master thread and a set of worker threads managed by a scheduler,
with one distinct scheduler per MPI process. To handle hybrid programming, MPI provides four

30

Chapter 2 | Background on Data Analytics on Supercomputers

levels of thread safety:

• MPI_THREAD_SINGLE: only one thread is used in each MPI process. This is the default
mode for MPI only applications;

• MPI_THREAD_FUNNELED: there may be multiple threads per MPI process but only the mas-
ter thread is allowed to perform MPI calls;

• MPI_THREAD_SERIALIZED: there may be multiple threads per MPI process and several
threads are allowed to perform MPI calls but only one at a time;

• MPI_THREAD_MULTIPLE: there is no restrictions, all the threads in a MPI process are al-
lowed to perform MPI calls simultaneously. This is the most constraining threading level
for the MPI implementations and all the vendors do not include it in their library due to
overheads in the execution times [108].

Distributed Task-Based Programming

To use the term from Hoque et al [60], MPI+X programming encourages the practice of hero-
programmers where the developer needs to express the parallelism, map it to the available re-
sources and manage the data transfer between the nodes. New distributed programming models
try to extend the task-based programming model presented in the previous section to a dis-
tributed memory context. StarPU has been extended to distributed memory environment by
explicitly [14] or implicitly [7] specifying MPI communications. Legion [20] is an asynchronous
many-task model that supports distributed memory architectures. A Legion program is decom-
posed into a task hierarchy where each task declares which parts of the data it needs to access
or modify. Task execution is transparent for the developer. Task dependencies are deduced by
the runtime based on these declarations and the runtime performs the necessary data movement
operations. PaRSEC [60] is a task-based runtime for distributed architectures capable of tracking
and moving data from di�erent nodes. Dependencies between tasks are explicitly described by a
domain speci�c language. HPX [65, 66] proposes a programming model based on the interfaces
de�ned by the C++ standards. The user can use C++ like functions to write asynchronous codes
that can be executed in shared or in distributed memory. The goal of these programming models
is to provide an alternative to MPI+X programming. However, shifting to these programming
models requires numerous code modi�cations and MPI is still mostly favored by application de-
velopers.

2.1.3 Filesystem and I/O

Large-scale simulations create a large amount of data that need to be stored to later be analyzed in
a post-processing phase. E�ciently outputting data is a major challenge for the exascale era [13].
We present in this section the storage system of supercomputers and the I/O libraries used to
e�ciently output data.

Parallel Filesystems

High performance software programmers rely on parallel �lesystems to store the large amount of
data produced by their programs. Data are split into blocks distributed on a set of disks distinct

31

Task-Based In Situ for Molecular Dynamics on Exascale Computers

from the compute nodes and connected thanks to a high performance interconnection network.
The programmer does not need to know the location of the di�erent data blocks to open a �le.
Indeed, the parallel �lesystem hides the underlying complexity and the programs query �les as
if data were stored on a unique �lesystem with a large capacity. The most common parallel
�lesystem is Lustre [40].

I/O Libraries

Several I/O libraries exist to output simulation data into the �lesystem. MPI-IO [109] is part of
the MPI standard. It provides an API similar to the standard MPI API to open one �le per iteration
and let all the MPI processes write into the same �le. A MPI-IO �le is a binary �le composed of a
header with metadata information and a body where each MPI process writes its corresponding
data at a speci�c o�set location in the �le. The o�set guarantees that the MPI processes write their
data in distinct locations. Parallel NetCDF [73] and Parallel HDF5 [50] are parallel libraries that
use hierarchical �le formats enriched with metadata to ease data manipulation. Hercule [111] is
a tool developed by CEA to store data into a database-like format.

The Adaptable IO System (ADIOS) [76] is an I/O library that provides a generic interface to
use transparently di�erent I/O transport layers. The observation of the ADIOS team is that the
performance of I/O libraries and the optimal �le format signi�cantly di�ers from a supercom-
puter to another. However, it is not the role of the application developer to modify the I/O layer
of a simulation code every time the simulation is deployed on another architecture. ADIOS there-
fore provides a generic and simple API that simulation codes use to output data. The strength of
ADIOS relies in its external XML data �le where the di�erent variables produced by the simula-
tion are described with their dimensions, units and so forth. The simulation just needs to provide
a pointer to the corresponding variables to the ADIOS API and ADIOS handles the data output.
The XML �le also allows to choose I/O methods and �le formats, by using for example MPI-IO,
NetCDF or HDF5. Once a simulation has been instrumented with the ADIOS API, any changes
in the I/O method is made without any code recompilations, by just modifying the XML data
�le. To reduce the cost of writing data, ADIOS provides asynchronous I/O layers that overlap
simulation computation and data output.

I/O Bottleneck

I/O has been recognized as a major challenge for exascale computing. Studies show in particular
that the gain in I/O performance will not follow the gain in computation performance. For ex-
ample, a factor change of 500 in the number of �oating point operations per seconds is expected
between peta�opic and exa�opic supercomputers while the factor change is expected to be 10
- 30 only for the I/O rate [8]. This is called the I/O bottleneck and it leads to a major limita-
tion for the post-processing approach. Indeed, large-scale simulations generate data at a much
higher rate than the �lesystem can actually manage and simulation performance is signi�cantly
degraded in case of frequent �le outputs. This poses a major issue for scienti�c discovery be-
cause the end-user is likely to reduce the output frequency to limit the impact on simulation
performance [21].

There are di�erent ways to enable scienti�c discoveries at a higher frequency with lower
impacts on the simulation performance. Works have �rst been focused on creating I/O libraries
that enable asynchronous data output to overlap simulation computation and �le writing [76, 64].

32

Chapter 2 | Background on Data Analytics on Supercomputers

However, �les still need to be read for the scienti�c discovery process and this is still very costly
in term of time and memory consumption. To reduce the need to write data into the persistent
storage, simulation-time visualization and data analytics paradigms [113] propose to visualize
and analyze data while still resident in the supercomputer memory. Research have �rst been
focused on real-time rendering of simulation data by saving periodically screenshots of the state
of the system [114] instead of writing data into the �lesystem but it proved to be ine�cient for
scientists because it was not explorable enough. Many works have focused on improving the
visualization of such systems [9] and on simulation-time data analytics in a broader range. In
the following, the word analytics is used to design both data analytics and data visualization.
We distinguish two kinds of simulation-time analytics and we follow the terminology employed
by Bauer et al. [18]. In the in situ paradigm, simulation and analytics are executed on the same
nodes while they are executed on di�erent sets of nodes in the in transit paradigm. The next two
sections aim at introducing the concepts of in situ (Section 2.2) and in transit (Section 2.3) data
processing.

2.2 In Situ Processing

In the in situ paradigm, simulation and analytics are executed on the same nodes. In the syn-
chronous approach (Section 2.2.1), the simulation is periodically stopped to execute analytics
instead. It is possible to achieve better performance by executing simulation and analytics con-
currently. This is called asynchronous in situ and we can distinguish two main techniques: sim-
ulation and analytics can be interleaved on the same cores (Section 2.2.2) or use distinct sets of
cores (Section 2.2.3).

2.2.1 Synchronous In Situ

In a synchronous in situ processing, simulation is periodically stopped to execute analytics or
visualization routines (Figure 2.7). The simulation is �rst executed on the cores of the nodes.
When the simulation reaches an iteration of analytics, the simulation stops and the cores are
used to execute analytics instead. The simulation resumes to the next iteration when the analytics
ends.

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

S

S

S

S

S

S

S

S

Figure 2.7 | Synchronous execution of in situ analytics on a processor with 8 cores. The cores are �rst used to execute
the simulation. When reaching an analytics iteration, the simulation is stopped and the cores are used to execute the
analytics instead.

The more direct way to perform synchronous in situ processing is to directly embed the ana-
lytics or visualization routines inside the simulation code. Many leadership scienti�c applications
have embedded analytics [97, 56, 104] that can be used at di�erent levels. Lightweight analytics
are used to periodically monitor the evolution of a parameter of interest. Often these lightweight

33

Task-Based In Situ for Molecular Dynamics on Exascale Computers

analytics are executed at a high frequency to check the status of the simulation. Heavier ana-
lytics are used to determine physical properties [105] and are executed at a lower frequency to
reduce the end-to-end execution time. The main advantage of this approach is that the analytics
are aware of the simulation data structure and can directly work on simulation data without a
copy to be performed. The main drawback is that these techniques are application dependent
and cannot be easily reused for other codes.

ParaView [16] and VisIt [27] are both well-known visualization applications relying on the
VTK visualization library [102] and that provide general purpose libraries to integrate visualiza-
tion routines inside the simulations.

ParaView Catalyst [19] has originally been designed to run synchronously with the simula-
tion, the analytics and visualization routines directly using simulation data. The library makes a
link between the simulation and the tools provided by ParaView. The instrumentation of a simu-
lation with Catalyst requires the de�nition of an adaptor to convert the simulation data structures
into VTK data structures understandable by ParaView. This adaptor allows an isolation between
the simulation code and the VTK library but often a copy is necessary to map between the two
data structures. The interface between the simulation and Catalyst is then made thanks to three
functions: an initialization call initializes the adaptor and Catalyst, a co-processing call converts
the simulation data into VTK data structures and executes the analytics and/or visualization rou-
tines and a �nalization call cleans Catalyst states. Catalyst also proposes an interface to connect
with ParaView sessions to enable live exploration of the data.

VisIt Libsim [68] was originally developed to ease the interactive connection between a run-
ning simulation and the VisIt GUI. Simulation data can therefore be explored interactively, of-
fering a powerful tool for debugging and for computational steering. With the advance of in
situ processing, Libsim was enhanced with a batch mode. The library provides functions to save
complex visualizations and plots and to export data in an in situ way. An adaptor is also needed
to make the link between the simulation and the VTK data structures used by VisIt. The adaptor
functions create Libsim objects that store pointers to simulation data, enabling Libsim to use data
in a zero-copy way. Libsim consists in a control library and a runtime library. The simulations
is only linked to the control library. This way, simulations instrumented with VisIt grow or use
additional memory only when they perform in situ processing.

To integrate a general purpose library into a simulation code, the simulation code must be
instrumented with the library API. Moreover, custom analytics have to be implemented with
the library requirements. Each library proposes its own API and requirements, which leads to
interoperability problems. To address this issue, SENSEI [17] proposes a generic in situ interface
so that the user can easily switch between Catalyst, Libsim and the ADIOS library. The data
model of SENSEI is built on a variant of the VTK data model. In particular, VTK was enhanced
to support multi component arrays such that structures of arrays and arrays of structures. It
enables to map most of the simulation data into VTK data structure in a zero-copy way. The
user can then instrument the simulation code with the SENSEI API and choose the analytics and
visualization routines as well as the I/O library that execute them in an XML �le.

When executing analytics synchronously with the simulation, the end-to-end execution time
is the addition of the simulation and analytics time, plus some possible overheads due to resource
sharing. Executing analytics synchronously can therefore highly increase the end-to-end exe-
cution time. Moreover, the synchronous approach does not take into account the fact that sim-
ulations are almost never 100% e�cient. Indeed, simulations present sequential regions where

34

Chapter 2 | Background on Data Analytics on Supercomputers

the cores are idle (MPI communications for example) or portions of codes that are not e�cient
enough to use all the available cores. This is all the more true with the current increase of the
number of cores in modern processors. One idea to increase the performance of in situ analytics
is to harvest these CPU cycles to execute analytics. This is called asynchronous in situ and it aims
at reducing the end-to-end execution time compared to synchronous in situ. Asynchronous in
situ methods can fall into two categories that are the subjects of the next two sections: simulation
and analytics can run on the same cores (Section 2.2.2) or on distinct sets of cores (Section 2.2.3).

2.2.2 Over-Subscription of the Cores

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

Figure 2.8 | Asynchronous execution of in situ analytics with core over-subscription on a processor with 8 cores.
Simulation and analytics processes can use the 8 cores for their computations, leading to core over-subscription.

The �rst technique to asynchronously run simulation and analytics on the same nodes is to
over-subscribe the cores of the nodes (Figure 2.8). Simulation and analytics are usually two dis-
tinct processes that can use all the cores of the nodes. The simulation process is usually set with
a higher priority than the analytics process and the OS scheduler is in charge of co-scheduling
the two processes. In an asynchronous execution of in situ analytics, it is necessary to guarantee
that the simulation does not overwrite the data used by the analytics. A copy of the relevant
data is often necessary and simulation data are made available to the analytics process either via
sockets or thanks to shared memory segments. E�ciently co-scheduling simulation and analyt-
ics processes on the same cores is di�cult because of contentions on shared resources (caches,
memory buses, . . .). It is therefore a potential source of interference for the simulation [86] and
the OS scheduler has been proved to be insu�cient to e�ciently co-schedule simulation and
analytics. Zheng et al. [119] have demonstrated the limitations of the OS scheduler for six rep-
resentative simulation codes and �ve analytics benchmarks that stress di�erent subsystems of
the machines (computations, caches, memory, network, . . .). They show that the co-scheduling
of simulation and analytics by the OS scheduler can lead to a simulation slowdown of up to 57%
compared to the execution time of the simulation alone. In particular, they highlight that the
OS scheduler only focuses on core idleness while the analytics may also induce contentions on
shared resources as the last level cache or the memory controller.

In the same study, Zheng et al. have measured the proportions of sequential regions in six
representative MPI+OpenMP applications. These sequential regions can come from MPI com-
munications and I/Os for example and correspond to portions of codes where only the master
thread is active, the other threads being idle. They show that the cumulative sequential peri-
ods can represent up to 65% of the total execution time and that the percentage of sequential
regions increases when running the simulation on more nodes. These sequential regions are of-
ten short (less than 1ms) and often too short to schedule analytics without impacting simulation
performance. They therefore propose the Goldrush middleware to run analytics process dur-

35

Task-Based In Situ for Molecular Dynamics on Exascale Computers

ing long enough simulation sequential regions. Simulation and analytics processes are launched
simultaneously but the analytics process is initially suspended. When the simulation reaches
a sequential region, Goldrush determines if the sequential region is long enough based on an
history of previous iterations saved by the middleware. If the sequential region is predicted to
be long enough (more than 1ms), the analytics process is resumed with a SIGCONT signal. It is
suspended again with a SIGSTOP signal when the simulation reaches the next OpenMP parallel
region. Goldrush also monitors hardware counters to check the impact of the analytics on shared
resources and throttles the execution rate of the analytics if the contention on shared resources
is too important. Goldrush can be used in a simulation either by instrumenting the simulation
code with the Goldrush API or without any code modi�cations by directly instrumenting the
OpenMP runtime library. Goldrush is shown to be up to 42% faster than the OS scheduler and
the asynchronous execution of analytics can be performed with an overhead of 1.7% on average
compared to the execution time of the simulation running alone. This solution is well adapted
for simulations that use a fork-join model that alternates between sequential and parallel regions
and requires to instrument the simulation code or the multithreaded runtime library. However,
we will see in Chapter 5 that it is more di�cult to take advantage of Goldrush capacities when
the simulation has short sequential regions. Moreover, Goldrush only focuses on the simula-
tion sequential regions and does not harvest the analytics sequential regions nor the ine�cient
parallel regions.

Mondragon et al. [87] propose a more general kernel-based approach to the co-location of
simulation and analytics processes on the same nodes by over-subscribing the cores. For sev-
eral simulation and analytics codes, they measure the overhead on the simulation code when
co-locating analytics codes on the same cores using di�erent scheduling strategies. They show
that advanced OS scheduling policies can e�ciently co-schedule simulation and analytics pro-
cesses. These scheduling policies are intended to be more general than Goldrush but they are
not always available in HPC operating systems and the appropriate scheduling policy is often
analytics dependent.

2.2.3 Core Separation

S

S

S

S

S

S

A

A

S

S

S

S

S

S

A

A

Figure 2.9 | Asynchronous execution of in situ analytics with a helper core strategy on a processor with 8 cores.
Simulation process runs on 6 cores and analytics process uses the remaining 2 cores.

Because of the negative impact of core over-subscription on the simulation performance and
because of the advance of multi and manycore processors, a second technique to asynchronously
run simulation and analytics on the same node is to execute them on distinct sets of cores (Fig-
ure 2.9). On each node, a set of cores is dedicated to analytics while the remaining are in charge of
simulation processing. These dedicated cores are commonly named helper cores and we call this
approach the static helper core approach in contrast with the dynamic helper core approach that

36

Chapter 2 | Background on Data Analytics on Supercomputers

we will present in Chapter 6. Usually, a small amount of cores are con�scated to the simulation
so that the simulation always run on more threads than the analytics. The simulation runs on
less cores but the performance loss is generally less than the ratio of con�scated cores because
the simulation is usually not 100% e�cient [41, 117].

Several works use the static helper core approach to dedicate cores for non-computational
tasks. Li et al. [74] start from the observation that simulation codes do not scale well enough to
use all the cores of a manycore architecture. Moreover, they also assume that future HPC systems
are likely to be equipped with solid-state disks (SSDs) as an intermediate storage system to miti-
gate the pressure on storage system. They therefore design a functional partitioning runtime en-
vironment to dedicate cores to non-computational tasks (checkpointing, data transformation, . . .)
and to use SSDs to improve the I/O throughput. Ma et al. [78] propose the active bu�ering ap-
proach where the compute cores transfer data to dedicated I/O cores that are in charge of writing
them into the �lesystem. The method hides the writing and data migration costs by executing
asynchronously simulation and I/O tasks. GepPSea [103] also implements a helper core strategy
to o�oad application-speci�c tasks such as communication services, dynamic load distribution
and network protocol processing.

Dorier et al. [41] use the dedicated core approach to hide the I/O jitters coming from two
standard �le output techniques: the �le-per-process approach where each process writes a �le
and the collective I/O approach where the processes synchronize to open one share �le per it-
eration. They introduce the Damaris middleware where one core on each node is dedicated to
I/O management. Damaris uses a process-based approach. The middleware separates at runtime
the simulation MPI communicator in two: one for the simulation and one for Damaris, which
corresponds to the helper cores. The data exchange between simulation and analytics is made
possible thanks to a shared memory segment managed by the Boost library [1]. The middleware
also proposes a plugin system to allow the end-user to de�ne transformations to be applied to the
data prior to the output, as compression or indexing. Damaris is con�gured at runtime thanks
to an XML �le that describes the plugins that need to be loaded by the middleware and that de-
scribes simulation data (names, descriptions, dimensions, . . .) in order to reduce the data needed
to be stored in the shared memory segment. Damaris is then used to create one �le per node and
it was shown that �le output with the middleware is 35% faster than �le-per-process approach
and 3.5 times faster than collective I/O.

Damaris/viz [42] extends the Damaris middleware so that helper cores are used to execute
in situ analytics. Zero-copy sharing of data in the shared memory segment is made possible for
simulations that use a double bu�ering technique. In this case, the simulation updates the data
at iteration i + 1 based on a copy of the data made at iteration i . If the simulation allocates its
data structures directly in the shared memory segment, simulation and analytics can work si-
multaneously on the data of iteration i . At the end of the iteration, the simulation does not need
the bu�er of iteration i anymore and lets the analytics destroy it. User-de�ned analytics can be
executed thanks to the plugin system. Damaris XML �le is also enhanced to describe mesh infor-
mation so that VisIt and ParaView can be used asynchronously thanks to the middleware [43].
More details about the Damaris middleware will be given in Chapter 5. In particular, we will
see that the main drawback of the static helper core strategy relies on the choice of the number
of helper cores. The optimal number of helper cores allows to take bene�t from the analytics
parallelization without removing too much cores from the simulation. We will see that a wrong
choice in this parameter may lead to signi�cant performance penalties.

37

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Performance gain of the static helper core approach are usually signi�cant compared to syn-
chronous or core over-subscription approaches but the simulation and analytics are isolated on
distinct subsets of cores and the static helper core strategy does not allow the analytics to harvest
the sequential regions of the simulation. Even if they have not been used in the in situ context,
current works focus on methods to dynamically assign disjoint sets of cores for processes running
on the same nodes. Cho et al. [28] propose to adapt the core resources according to the perfor-
mance characteristics of parallel and sequential code sections of running applications. Moore
et al. [89] and Grewe et al. [55] compute the best number of threads for OpenMP applications
when executed concurrently with other multithreaded applications. Raman et al. [98] propose a
runtime to monitor parallel task execution and adjust the number of threads iteratively to �nd an
optimal number of threads. Hugo et al. [61] extend the StarPU runtime with the context feature
that allows an application to run on a subset of the available processing units. An hypervisor is
then used to dynamically resize the di�erent contexts executed in a node based on resource usage
and computation progress to minimize the application execution times. Harris et al. [57] propose
the Callisto prototype to dynamically vary the number of cores of co-located applications. When
two applications run on the same nodes, the cores are split into two distinct groups with equal
size. When an application enters a sequential region or when it does not need all the dedicated
cores, the second application can use these otherwise idle cores for its own computations. To our
knowledge, no publications mention the use of these techniques for in situ processing but they
may be used in the in situ world to prevent the resource loss induced by the static helper core
approach and we will see in Chapter 6 how to implement a dynamic helper core approach using
the TBB work stealing scheduler.

2.3 In Transit and Hybrid Processing

The in situ approach has proved to have many advantages. In particular, simulation data are
available on the nodes where the analytics and visualization take place, reducing the need for data
movement between the nodes. Frameworks are implemented so that the analytics can directly
access simulation data, without a copy to be performed. However, a copy is most often necessary
to transform the data into a format understandable by the in situ framework. Moreover, the
presence of an analytics process on the nodes of the simulation tends to disturb the simulation
execution because of contentions on shared resources. Finally, the memory available to run in
situ analytics is often constrained by the memory already used by the simulation. To reduce
the impact of analytics processes on the simulation execution, several works focus on in transit
processing, where simulation and analytics run on distinct nodes (Section 2.3.1) and on hybrid
processing where lightweight computations are performed in situ and heavier analytics in transit
(Section 2.3.2). Despite the data movements between nodes and data redistribution costs induced
by these methods, in transit and hybrid processing are proved in some cases to have advantages
compared to in situ processing [67].

2.3.1 In Transit Processing

In an in transit paradigm, the simulation and analytics processes are executed on distinct sets of
nodes (Figure 2.10). The nodes where the analytics run are called the staging nodes and there are
usually less staging nodes than compute nodes. In this section, we use the term analytics to en-

38

Chapter 2 | Background on Data Analytics on Supercomputers

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

S

S

S

S

S

S

S

S

A

A

A

A

A

A

A

A

Figure 2.10 | In transit execution of analytics on two processors with 8 cores each. Simulation process runs on one
node and analytics process on the second node.

capsulate user-de�ned data processing, visualization routines or �le writing into the �lesystem.
When the simulation reaches an iteration of analytics, data are sent to the staging nodes where
they are processed by the analytics processes. Di�erent tools are developed to enable in transit
processing.

Zheng et al. [116] propose the PreDatA middleware to prepare the data to be stored, inspected
or analyzed. They start with the observation that the �le writing phase has to be optimized to
reduce the writing time and hence reduce the impact on the simulation execution time but that
it is also important to optimize the reading phase for later post-processing. The PreDatA mid-
dleware algorithm is decomposed in three steps. First, data are extracted from the simulation by
the ADIOS library. Lightweight user-de�ned processings can eventually be executed on the sim-
ulation nodes. The simulation data are then packed into bu�ers and transmitted to the staging
nodes thanks to ADIOS. The data chunks are �nally processed by the staging nodes in a stream-
ing manner using an approach close to the MapReduce paradigm [34]. By de�ning their own
functions in the MapReduce paradigm, the end-user can plug their own data operations. Each
staging node corresponds to one MPI process and the processing algorithms are multithreaded
to use all the cores of the staging nodes.

DataSpaces [39] implements a distributed in-memory storage system on staging nodes. It
works in a client server mode where DataSpaces is the server hosted on the staging nodes and
the simulation is one of the clients. Simulation data are extracted from the simulation, indexed
and stored in the shared space. The data extraction is made thanks to DART (Decoupled and
Asynchronous Remote Transfers) [38], an asynchronous communication and data transport layer
using Remote Direct Memory Access (RDMA) and one-sided communications. Once the data
are indexed and stored, a query engine is provided to extract information based on a key-value
system. Several applications can dynamically register as clients of DataSpaces. They can use the
query engine to access simulation data stored in the staging nodes. DataSpaces implements a
data redistribution mechanism and the storage is transparent to the clients: they query data to
DataSpaces that is in charge of forwarding the request to the staging nodes holding the data and
to provide to the clients the required data.

39

Task-Based In Situ for Molecular Dynamics on Exascale Computers

S

S

S

S

S

S

A

A

A

A

A

A

A

A

A

A

S

S

S

S

S

S

A

A

A

A

A

A

A

A

A

A

Figure 2.11 | Hybrid execution of analytics on two processors with 8 cores each. On the �rst node, a simulation
process runs on 6 cores and an analytics process uses the remaining 2 cores. On the second node, an analytics process
uses the 8 cores.

2.3.2 Hybrid Processing

The in transit paradigm enables to extract simulation data and to send them to staging nodes
where they can be processed, �ltered and written asynchronously to the �lesystem. It enables to
reduce the perturbations of the analytics and I/O processes on the simulation execution time that
occur when simulation and analytics processes share the same nodes. To go one step further,
some works propose the hybrid paradigm where lightweight analytics are performed on the
compute nodes and heavier analytics and I/Os are executed on the staging nodes (Figure 2.11). It
allows for example to reduce the data movement from the compute nodes to the staging nodes
by �ltering the data in situ before sending them to the staging nodes.

GLEAN [113] is an hybrid framework where analytics can run either in situ synchronously
with the simulation or in transit on dedicated staging nodes. GLEAN can be used through its
API inserted in the simulation code or more transparently thanks to calls to I/O libraries such as
Parallel NetCDF or HDF5. When running in situ, GLEAN is embedded into the simulation code
and share the same address space than the simulation, providing user-de�ned analytics with
zero-copy. In situ analytics include data transformation, data reduction or I/O optimizations.
The simulation is blocked to copy data from the compute node to the staging nodes but analytics
and simulation processing are performed asynchronously. On the staging nodes, GLEAN runs as
an MPI job that communicates with the compute nodes. It then uses I/O libraries such as MPI-IO
to write data to the �lesystem.

The data staging frameworks presented so far use the staging nodes mostly for storing the
data and pre-process or transform them to be e�ciently written into the �lesystem. However,
these techniques do not fully use the cores in the staging nodes. Bennett et al. [21] propose a
hybrid framework to use the available computing capabilities. Well-parallelized analytics codes
are executed in situ to reduce the size of the data sent to the staging nodes and less-parallelized
or even sequential analytics are executed on the staging nodes. They show that a large class of
algorithms used for scienti�c visualization or data analytics can be modi�ed to have in situ and
in transit parts and they rewrote three commonly used algorithms. The framework is built on
DART for the data movement and on DataSpaces to share data between the simulation and the
analytics.

Zheng et al. [117] tackle the issue of analytics placement. For each simulation-analytics

40

Chapter 2 | Background on Data Analytics on Supercomputers

data�ow, the question is to know where to run analytics: synchronously with the simulation,
asynchronously on the same node than the simulation, asynchronously on staging nodes or in a
post-processing way. Data placement has indeed been identi�ed as critical for the performance
of simulation and analytics coupling [118]. They identi�ed that most of the existing in situ and
in transit frameworks have �xed data placements and are not �exible enough to allow di�erent
placement strategies. They propose the FlexIO middleware that o�ers �exible data movement
to enable analytics to be launched either in situ or in transit. FlexIO relies on ADIOS for the
extraction of data from the simulation, shared memory segment for intra-node data movement
and RDMA for inter-node data movement. The end-user can use di�erent placement strate-
gies without any changes in simulation or analytics codes thanks to the ADIOS layer used by
FlexIO. Codelets can be executed along the I/O path to perform on-the-�y lightweight process-
ings. FlexIO provides �exible data transport but the user still has to choose the data placement.
To help them �nd an optimal data placement, the middleware proposes two placement policies:
a holistic placement policy reduces data movement costs and a node topology aware policy takes
into account the cache topology and deep memory hierarchy.

Dreher et al. [44] propose to execute simulation and analytics in a data�ow model. The an-
alytics form a pipeline where the output of one analytics code is the input of another one. They
propose a �exible framework to describe and execute simulation and analytics data�ows as a
graph where the nodes, called modules, are the parallel or sequential applications and the edges
are the communication channels between the nodes. They redesign the FlowVR middleware,
originally designed for large-scale virtual reality [10], to allow in situ and in transit executions
of analytics. The simulation and analytics applications have to be turned into modules that are
processes with input and output ports. Transforming an application into a module is made possi-
ble thanks to the FlowVR API that consists in three main functions: wait to suspend the module
until data are available in its input ports, get to get the data from the input port and put to put the
data in the output port. The modules are compiled as di�erent executables and a Python script is
used to create the graph by de�ning where and on how much resources the executables should
run as well as the input and output ports of the di�erent modules. FlowVR then launches the
di�erent applications on the required resources. On each node, a daemon is in charge of transmit-
ting the messages between the applications. When the applications are on the same node, data
exchanges are made through shared memory segments. When the applications are on distinct
nodes, data transfers are made thanks to MPI. FlowVR provides redistribution modules when the
simulation and analytics do not have the same MPI splitting. FlowVR also supports processes
and shared memory segments binding to reduce the interferences between the applications.

Decaf [46] is also a middleware that supports the hybrid approach. Its design is close to the
design of FlowVR where multiple executables are linked into data�ows to form a graph. The
graph de�nition is simpli�ed and the execution does not rely on daemons. Decaf relies on the
MPMD (Multiple Program Multiple Data) capability of MPI. All the executables are launched in
the same MPI context, sharing the MPI_COMM_WORLD communicator. A Decaf data�ow is com-
posed of a producer, a consumer and a link that corresponds to an intermediate parallel program
that transforms the data between the producer and the consumer. The links are inspired of the
PreDatA codelets except that they have dedicated resources. Decaf creates �ve communica-
tors for each data�ow: one for each producer, consumer and link, one for the communications
between the producer and the link and one for the communications between the link and the
consumer. The link can be located on the producer node, on the consumer node or on dedicated

41

Task-Based In Situ for Molecular Dynamics on Exascale Computers

nodes. Data are transferred from producer to link, processed in the link and transferred from link
to consumer thanks to MPI and the Bredala [45] library that provides a data model and a redis-
tribution pattern when the producer and consumer are not executed on the same number of MPI
processes. To be executed within Decaf, the applications must be instrumented with the Decaf
API that corresponds to a few functions with a put/get model. The work�ow is then described
as the combination of several data�ows in a Python script.

The in situ approaches presented so far apply to MPI or MPI+X codes, where X is mostly
OpenMP. As seen in Section 2.1, task-based programming models are alternatives to MPI+X
approaches and in situ processing techniques also emerge in this context. Pebay et al. [94] have
identi�ed asynchronous many-task model to be well adapted to in situ processing because it only
requires to describe which data are shared by simulation and analytics and not when, where and
how this sharing must occur. Moreover, the analytics tasks are likely to be interleaved between
simulation gaps. Indeed, the application is decomposed into simulation and analytics tasks with
input data. Tasks being executed when inputs become available, analytics tasks can be scheduled
during simulation sequential regions. Heirich et al. [58] have reported early experiments using
Legion for in situ visualization. They show in particular that the Legion runtime manages to
interleave simulation and analytics tasks without reducing the simulation throughput. Using
these results for legacy MPI+X codes is still an issue because subsequent code modi�cations are
required to switch an MPI application into a Legion application.

Larsen et al. [69] propose ALPINE, a �yweight hybrid infrastructure that supports synchronous
in situ analytics and visualization and that can send data to staging nodes thanks to ADIOS [76]
for example. ALPINE is the production version of the Strawman mini-app [70] with more data
transformation and a distributed memory model. They implement VTK-h, a library that adds a
distributed memory layer to VTK-m [90], this distributed memory layer being based either on
MPI or on DIY [95]. Data are described thanks to the Conduit library [2]. ALPINE enables three
kinds of actions: making one or several pictures, extracting data to write simulation data into
the �lesystem or to send data to other nodes thanks to ADIOS and transforming the data thanks
to VTK-h �lters.

2.4 In Situ Work�ows Control

More generally, in situ processing can be seen as a work�ow system [35]. A work�ow system
is composed of several distinct applications that need to share data. For example, multi-physics
work�ows can link several codes that do not compute the same physics. The work�ows are
generally described as graphs where the nodes are the di�erent applications and the edges data
dependencies between the applications [75]. Many scienti�c work�ow management systems
have been developed [12, 36, 84, 115] but they often rely on �les to exchange data between the
codes. In situ processing relies on a tighter coupling for improved performance. A simulation
produces data and a set of analytics and visualization codes are connected to the simulation to
process or visualize simulation data. In situ processing does not rely on �les to pass data to
analytics codes but it is a sub-part of work�ow systems because it leads to complex work�ows
for analyzing and visualizing simulation data [51, 44, 35].

E�ciently managing in situ work�ows is a di�cult problem because it deals with the interac-
tion of di�erent components that do not show the same behavior. For example some applications
may be very quick and the others very slow. All the components of a work�ow have to be taken

42

Chapter 2 | Background on Data Analytics on Supercomputers

into account to optimize the end-to-end execution time, that is to say the elapsed time between
the moment the simulation begins and the moment the analytics of the last iteration ends.

One idea to reduce the end-to-end time is to choose the analytics frequency so that the ana-
lytics execution time can be overlapped by the simulation. Choosing the work�ow components
frequency is �nding a balance between the scienti�c discovery process and the end-to-end exe-
cution time. To have more insights in the simulation, the user is likely to set a high frequency
for data analytics but this may lead to high end-to-end execution times. On the contrary, reduc-
ing the analytics frequency may reduce the end-to-end execution time but can be detrimental to
the scienti�c discovery process. Malakar et al. [80, 79] propose an analytical model for optimal
execution of analytics given a memory and time budget. They take into account the simulation
and analytics execution times, the available memory on compute and staging nodes, the network
bandwidth, the importance of analytics and a minimum analytics frequency to determine the op-
timal analytics frequencies that optimize the end-to-end execution time. Because they take into
account a minimum frequency for the analytics, their method ensures that analytics are at least
executed according to the end-user choice but they can be executed more often.

The nodes of a work�ow are likely not to have the same execution times. When the consumer
takes longer than the producer, data are often bu�ered by the producer so that it can resume to
the next iteration without waiting for the consumer to be ready. The data are then read or sent
through the network in a FIFO (First In First Out) way. Dreher et al. [47] identify this as a
bottleneck of in situ middleware. In particular in the case of visualization algorithms, it may be
preferable to visualize the more recent data instead of the older ones to have better insights of
what is going on in the simulation. They therefore propose the Manala library that allows the
end-user to modify the data exchange policy between the producer and the consumer.

Fu et al. [52] make a comparison study of several state-of-the-art libraries that create in situ
work�ows, including Decaf and DataSpaces. They identify synchronizations and interlocks be-
tween the applications as a limitation of the approaches. In particular, the copy of large data
sets from the simulation to the staging nodes induces large overheads on the simulation exe-
cution time. They propose the Zipper runtime where several helper threads in both simulation
and analytics sides are used to send and receive blocks of data through a low latency network
and eventually to the parallel �lesystem if the analytics application is too slow. Zipper is based
on asynchronous task parallelism to process blocks of data as they are made available by the
simulation instead of sending large blocks of data, hence reducing the synchronization between
simulation and analytics.

Traditionally, large blocks of data are sent to analytics processes because a conservative ap-
proach is often chosen for the data copy. In situ middleware provide a generic interface for the
design and deployment of in situ work�ows whose policy is to instrument the simulation code
only once and to create in situ work�ows without any code recompilations. Therefore, the sim-
ulation output is often not specialized for a particular analytics but rather left to be general: the
simulation outputs all useful data and the analytics is in charge of �ltering the data and using only
what is necessary for them. This conservative approach leads to unnecessary data sent through
the network and hence time and memory wasting. Mommessin et al. [85] propose a contract
system between a producer and a consumer. The producer describes the data it can provide, the
consumer describes what data it needs for its processing and the comparison between the two
contracts tells what data �elds have to be sent from the producer to the consumer.

43

Task-Based In Situ for Molecular Dynamics on Exascale Computers

2.5 Chapter Summary

The evolution of supercomputer has led to a growing gap between the data generation rate and
the capacity to store and analyze these data in the traditional post-processing approach. The
in situ paradigm proposes to analyze data while still resident in the compute node memory to
reduce the need to store data into the storage system. Many techniques have been developed to
analyze and visualize data in situ on the same nodes than the simulation or in transit on dedicated
nodes and to minimize the end-to-end execution time of simulation-time analytics.

The in situ techniques were mostly developed for multicore processors with a few number of
cores per processors. In particular, simulation and analytics run on di�erent processes in most
of the cases. With the advance of manycore processors, task-based programming models are
currently emerging as a standard for the future exascale supercomputers and few techniques
have been developed with this emergent programming model in mind. In particular, the work
stealing concept o�ers a good opportunity for in situ processing because it can be used to harvest
the sequential and the ine�cient regions of a simulation to run analytics tasks instead. In the
next chapter, we will introduce in more details the Intel® TBB library that implements the work
stealing concept and the ExaStamp molecular dynamics code that uses the TBB library for its
intra-node parallelization and we will identify the challenges of implementing a task-based in
situ system within the simulation code.

44

3 Task-Based Molecular Dynamics for
Exascale Computers

With the advance of multi and manycore processors, the simulation codes have to be optimized to
take the best of the di�erent levels of parallelism, the hierarchical memory and the vectorization
capacities of the architectures. To that end, most of the modern codes are currently parallelized
with a MPI+X programming model where MPI is used for the inter-node parallelization and
a multithreaded programming language is used for the intra-node parallelization. Task-based
programming model is envisioned to become a standard for the future supercomputers and is
therefore a good candidate for being combined with MPI in modern codes. In particular, the
work stealing concept provides load balancing capacities to enhance the thread e�ciency of
parallel applications. Intel® TBB is a library that provides a task-based programming model and
a work stealing scheduler for the high level creation of tasks. Its code composability features
make it a good candidate for the implementation of a task-based in situ framework (Section 3.1).
In the context of molecular dynamics, ExaStamp is a simulation code developed with three levels
of parallelism: inter-node with MPI, intra-node with Intel® TBB and explicit vectorization with
Intel® intrinsics (Section 3.2). The code is optimized for modern supercomputers and o�ers a
good opportunity for the study of the integration of a task-based in situ framework (Section 3.3).

3.1 Intel® TBB, a Task-Based Runtime

Task-based programming models propose a high level interface for programmers to describe
their program as a set of dependent tasks and a scheduler to distribute e�ciently the tasks to
a set of worker threads it created. As summarized in Figure 3.1, a task-based program can be
decomposed in three levels, the scheduler being the link between the di�erent levels. The pro-
grammer only needs to express the potential parallelism of their program and the scheduler
handles transparently the di�cult part of distributing tasks to the worker threads and mapping
the threads to the available cores given criteria such as task dependency and data locality for
example. Intel® Threading Building Blocks (TBB) is an example of libraries to express task-based
parallelism. It is implemented in modern C++ and it proposes parallel loop constructs based on
lambda functions. Sequential lambda functions are written by the programmer and are trans-
parently transformed into parallel algorithms by the TBB library. In this section, we describe
the three levels of the task-based programming model of TBB. We �rst describe the TBB API to
create tasks in the higher level (Section 3.1.1). We then explain how worker threads are created
and how the tasks are distributed among the worker threads (Section 3.1.2). We �nally describe

45

Task-Based In Situ for Molecular Dynamics on Exascale Computers

tools that help the task execution and in particular the mapping between the threads and the
available cores (Section 3.1.3).

Tasks

Threads

Cores

Scheduler distributes
tasks to the

worker threads

Scheduler maps
threads to the
available cores

Figure 3.1 | Three di�erent levels of the task-based programming model: the program is composed of a set of tasks
distributed to a set of worker threads and mapped to the available cores by the scheduler.

3.1.1 Task Creation with TBB API

TBB provides di�erent ways to create tasks, either implicitly thanks to prede�ned templated
functions, or explicitly by spawning tasks or by creating task graphs with dependencies. The
di�erent methods have advantages and drawbacks and will be used throughout the manuscript
for the implementation of our task-based in situ framework.

Implicit Task Creation

Scienti�c simulations are mostly organized around a main timeloop where variables are up-
dated at each iteration based on the previous con�guration. These variables are often stored
as arrays (positions of particles in molecular dynamics, mesh elements in computational �uid
dynamics, . . .). Thus, one of the easiest way to parallelize an application is to parallelize its iter-
ation loops. While OpenMP proposes to parallelize the loops thanks to pragma directives read
by the compiler, TBB proposes templated C++ functions where the user describes the loops us-
ing TBB objects and lambda functions. The two most common patterns are parallel_for and
parallel_reduce.

The parallel_for function is used to parallelize a loop that iterates on the elements of an
array. For example, Figure 3.2 shows a sequential code to apply a function foo to all the ele-
ments of the array tab and the equivalent version with a TBB parallel_for. TBB provides

46

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

an object, blocked_range, that represents the interval on which the task applies. In the ex-
ample, the task 0 corresponds to the computation of the 4 �rst elements of tab, the associated
blocked_range being therefore composed of the interval [0,N/4[. The blocked_range of a
task is found recursively during the execution of the parallel for loop (see Section 3.1.3) in a
transparent way. The programmer just needs to de�ne the function applied on the elements
contained in the blocked_range thanks to a lambda function. The parallel_reduce function
is used to parallelize a loop that performs a reduction on the array elements. For example, it can
be used to compute the summation of the elements of an array. A blocked_range object is also
used to retrieve the interval of indices on which a task applies but the programmer de�nes two
lambda functions, one for de�ning the task as in the parallel_for pattern, and one to de�ne
what operations to perform for the reduction of two tasks.

1 double tab[N];
2
3 // Sequential version
4 for (int i=0; i<N; ++i)
5 tab[i] = foo();

1 // Parallel version
2 parallel_for(blocked_range <int >(0, N),
3 [&](const blocked_range <int >& r)
4 {
5 for (int i=r.begin (); i<r.end();

++i)
6 tab[i] = foo();
7 }
8);

tab

Task 0 Task 1 Task 2 Task 3

Figure 3.2 | Sequential for loop (left) and equivalent version with TBB parallel_for (right). The array is implicitly
decomposed into 4 tasks by the TBB scheduler.

One of the advantages of the TBB library is that the programmer can easily de�ne parallel
algorithms thanks to the lambda functions. It is for example possible to apply complex reduction
patterns or to manipulate several arrays together in the same task. The parallel patterns create
tasks implicitly and the call to a parallel region is blocking: all the tasks created during a parallel
region have to be executed before proceeding to the next computations.

Explicit Task Creation

Tasks can also be created explicitly, the programmer being in charge of de�ning the task, submit-
ting it and waiting for its completion if necessary. In Figure 3.3, a task is spawned by the master
thread (line 16). The master thread can spawn a task and perform computations asynchronously
with the task execution. A call to the wait_for_all function (line 22) indicates when the mas-
ter thread needs the task to be completed and this call guarantees that the task is executed. The
declaration of the computation inside a task is made by de�ning a class that derives from the
tbb::task class and by overloading the execute function. A task may create other tasks im-
plicitly or explicitly and the programmer de�nes if the task should wait for the completion of
children tasks thanks to the wait_for_all function.

When explicitly spawning tasks that will in turn spawn other tasks, TBB is in charge of
maintaining a Directed Acyclic Graph (DAG) with the dependencies between the tasks. The pro-
grammer is not responsible for the DAG generation. The advantage of this explicit task creation
is that the programmer has the control over what is inside a task and when it is created. More-

47

Task-Based In Situ for Molecular Dynamics on Exascale Computers

1 class HelloTask: public tbb::task
2 {
3 HelloTask () {};
4 tbb::task* execute ()
5 {
6 std::cout << "Hello World!" << std::endl;
7 wait_for_all ();
8 return NULL;
9 }

10 };
11
12 int main()
13 {
14 // Spawn the task
15 HelloTask* t = new(tbb::task:: allocate_root ()) HelloTask ();
16 task::spawn (*t);
17
18 // Perform computations that do not need the task completion
19 ...
20
21 // Wait for task completion
22 t->wait_for_all ();
23 }

Figure 3.3 | Explicit task creation thanks to the TBB task API.

over, contrarily to the implicit task creation, the task spawning is not blocking and it is possible
to execute several portions of code asynchronously.

Flow Graph

It is also possible to explicitly describe an application as a set of dependent tasks linked thanks
to a DAG. This is the �ow graph feature of TBB. Figure 3.4 shows the de�nition of a simple
�ow graph G. First, the nodes are created thanks to lambda functions (lines 3 and 9) and the
dependency between the two nodes is expressed with the make_edge function (line 15). The
nodes communicate with each other through messages that contain data or just synchronization
information. A node is executed upon reception of the messages of its predecessors. In particular,
the execution of the graph begins with the try_put function (line 16) that gives a message to the
�rst node in the graph. TBB provides the continue_msg empty class when data are not explicitly
passed. A node that receives a continue_msg knows that its predecessor has completed. The
whole graph execution is �nished after the wait_for_all call (line 17).

TBB provides di�erent kinds of nodes depending on what they need as inputs, what they
need to output and what kind of computations they perform. For example, source_node are
used to generate data for their consumers, continue_node are used when no explicit data is
required from the predecessors and function_nodes are used when data are consumed in input
ports and produced in output ports. The computations performed by the nodes may also include
implicit and explicit task creation and TBB is in charge of scheduling the graph given the explicit
de�nition of the dependencies.

48

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

1 int main() {
2 tbb::flow:: graph G;
3 tbb:: flowcontinue_node < tbb::flow:: continue_msg >

hello(G,
4 [](const tbb::flow:: continue_msg &)
5 {
6 cout << "Hello";
7 }
8);
9 tbb::flow:: continue_node < tbb::flow:: continue_msg >

world(G,
10 [](const tbb::flow:: continue_msg &)
11 {
12 cout << " World\n";
13 }
14);
15 make_edge(hello , world);
16 hello.try_put(continue_msg ());
17 G.wait_for_all ();
18 return 0;
19 }

"Hello"

"World"

Figure 3.4 | De�nition of a TBB �ow graph composed of two nodes. The nodes do not exchange data but synchronize
through a continue_msg message.

3.1.2 TBB Resource Management

TBB provides a task-based programming language and also comes up with a scheduler for the
task execution. At the beginning of the program, an object task_scheduler_init is initialized
with a number of threads, n. TBB creates n−1 worker threads so that the total number of threads
running concurrently (worker threads and the master thread that initialized the TBB scheduler)
will never exceed n. By default, the number of threads is set to the number of logical cores in
the processor, N , but it is possible to set a smaller number of threads. It is also possible to set
n > N but TBB will not create more worker threads than the number of logical cores to avoid
core over-subscription. Since TBB 3.0, the scheduler implements a lazy thread creation. The
threads are not created during TBB initialization but when the �rst task is spawned. This way,
the worker threads are actually created when they are necessary. The worker threads created by
the scheduler are destroyed only at the end of the program. They are kept during the lifetime of
the parallel program, even if they do not have tasks to execute.

Work Stealing

TBB uses a work stealing scheduler to execute the tasks. The work stealing concept has already
been presented in Chapter 2 and we detail here the way this concept is implemented in TBB.
Each thread has its own deque of spawned tasks ready to be executed. When the tasks come
from templated functions (parallel_for or parallel_reduce for example), the threads get
chunks of work corresponding to the interval of the loop indices on which it should work. When
a thread gets a chunk of work (see Figure 3.5), it divides it into two sub-chunks twice as small
as the �rst chunk. It places one of the sub-chunks at the beginning of its own deque (Task 0 in
Figure 3.5) and divides again the other sub-chunk into two smaller chunks. One of the chunk is
inserted at the end of the thread deque (Task 1) while the other is again sub-divided and so forth

49

Task-Based In Situ for Molecular Dynamics on Exascale Computers

until the task granularity speci�ed by the programmer has been reached. More details about the
task granularity will be given in Section 3.1.3. At that point, the thread deque is composed of
large tasks at the beginning and small tasks at the end.

Initial chunk

Task 0

Task 1

Task

2

Task

3

thread
deque

Tasks stolen
by thieves

Tasks executed
by owner

Figure 3.5 | Sub-division of a chunk of data by a thread to �ll its deque of ready tasks.

The thread begins the task execution with a task popped at the end of the thread deque. After
completing the execution of the task, the thread chooses the next task to be executed according
to several rules. If the task returns another task or if the task has a successor, the thread executes
the successor task. If there is no successor, the thread executes the task at the end of its deque.
When all the tasks of its deque have been executed, the thread invokes the stealing mechanism
on a random thread [63] and steals a task from the beginning of the deque of the victim. The
execution strategy adopted by TBB minimizes the cost of the stealing operations in two ways.
First, the stealing occurs only when necessary, that is to say when the deque of a thread is empty.
Secondly, the threads steal at the beginning of their victim’s deque, where large chunks of work
are stored. These large chunks are likely to generate local work, preventing the threads to steal
often.

Code Composability

Over the years, TBB has been enhanced with new features to improve the composability of TBB
applications. In particular, TBB team wanted to add features to enable the e�cient execution
of programs where several threads explicitly created by the programmer co-exist in the same
application. In this case, we use the term master thread to refer to the application main thread
and to the threads explicitly created by the programmer.

Before TBB 3.0, the di�erent master threads shared the same pool of worker threads and
submitted tasks in the same task queues. In this implementation, master threads could execute
tasks submitted by another master thread. However this approach showed limitations because a
master thread could get stuck in another master thread task execution instead of performing its
own computations. This is why TBB 3.0 introduced new concepts and in particular the creation of

50

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

arenas associated to each master thread so that the work published by a master thread is invisible
to the other master threads.

Node
RML

Worker threads

Market

Arena 1 Arena 2 Arena 3

Market as-
signs workers

Arena concur-
rency levels

Master threads

Figure 3.6 | TBB inner structure. The RML and the market are shared by the master threads and master threads
submit tasks in their own arena. The RML contains here 6 worker threads and the market assigns to each arena a
number of threads proportional to their requirement because the total number of threads requested by the masters (9
here) is greater than the number of worker threads in the RML.

TBB inner structures can be schematized by Figure 3.6. When a master thread initializes TBB
for the �rst time (by a call to task_scheduler_init), a Resource Management Layer (RML) and
a Market are created. The RML hosts the pool of TBB worker threads and the market assigns the
worker threads to the di�erent master threads. The limit of the total number of worker threads
managed by the market is set to one less than the maximum between the argument passed to
the task_scheduler_init object and the number of logical cores seen by TBB. An arena is
then created for the calling master thread. A master thread submits tasks inside its own arena
and the arena concurrency level determines the maximum number of tasks that can be executed
simultaneously. Each arena is therefore assigned a number of slots corresponding to the number
of worker threads that can take part in the tasks execution. The number of slots of an arena is
set to one less than the minimum between the argument passed to the task_scheduler_init

object and the number of workers allowed in the RML. When another master thread initializes a
task_scheduler_init object, another arena is created for this master thread and the RML and
market objects are shared by the master threads. This way, the master threads share the same
worker thread pool but their tasks are submitted to distinct arenas. When the total number of
worker threads requested by the di�erent master threads is greater than the number of worker
threads hosted by the RML, the market allots to each arena a number of worker threads propor-
tional to each arena request. The library provides mechanisms to migrate threads from one arena
to the other during the code execution to ful�ll the arena concurrency levels.

The code composability feature of TBB makes it a good candidate for the implementation
of a task-based in situ framework. Simulation and analytics tasks can be created concurrently
in arenas of di�erent concurrency levels, which allows to control the number of threads that

51

Task-Based In Situ for Molecular Dynamics on Exascale Computers

executes the di�erent codes. Moreover, the mechanisms to migrate the threads from one arena
to the other makes it possible to load balance simulation and analytics tasks during the code
execution, hence reducing the thread idleness periods. These features will be the building blocks
of the implementation of a dynamic helper core strategy more �exible than the static helper core
strategy and will be discussed in Chapter 6.

3.1.3 Tools to Control the Task Execution

TBB provides di�erent tools to control the task execution. We explain here two features of TBB,
the partitioners and the observer to de�ne the task execution policy and to give hints for the
thread placement.

Partitioners

As explained above, when a thread gets a chunk of work, it splits it until it reaches the task gran-
ularity set by the programmer. This is done automatically by TBB thanks to the blocked_range

object. It represents a half-open range that can be recursively split until reaching the sub-ranges
corresponding to the task granularity. Special care must be taken when setting the task granular-
ity to minimize the overhead of the task creation and scheduling. Setting a too small granularity
will lead to a lot of small tasks and the overhead of the task creation and execution will be more
visible. On the contrary, a too large granularity leads to large tasks for which the stealing mech-
anism cannot be used e�ciently because the large tasks cannot be further split and the work
cannot be shared by the threads.

TBB provides heuristics to automatically �nd the best task granularity but the programmer
can also control the granularity by themselves. To do so, two parameters can be used: a grainsize
д can be set in the blocked_range object and a partitioner can be used in the parallel_for or
parallel_reduce functions. Three partitioners exist and have di�erent behavior, in particular
for the task granularity:

• auto_partitioner is the default partitioner of TBB whose goal is to minimize the num-
ber of sub-divisions while still allowing load balancing. The threads initially get the same
amount of work, the range being split in a number of sub-ranges proportional to the num-
ber of threads. The sub-ranges are subdivided again only when load balancing is necessary.
When the programmer has set a grainsize д, the auto_partitioner guarantees that the
task granularity is not smaller than д/2. The advantage of the auto_partitioner is that
the overheads of the task creation are small because the task granularity is kept high most
of the time but load balancing is still possible because the task granularity can be reduced
to enable load balancing;

• simple_partitioner speci�es that the range should be sub-divided until it cannot be
sub-divided further. In this case, the granularity is such that д/2 ≤ granularity ≤ д and
the grainsize chosen by the user has a great importance. This partitioner should be used
when the developer wants to choose the task granularity and wants to have a control
over the TBB scheduler. However, it must be used with care because of the impact of the
grainsize choice on the code performance;

• affinity_partitioner is used to take better bene�t from the caches. The partitioner
tries to assign the same tasks to the same threads from one iteration to the other to opti-

52

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

mize for cache a�nity. The granularity is set automatically by the partitioner. When the
programmer sets a grainsize д, the affinity_partitioner just guarantees that the task
granularity is always greater than д/2. This partitioner is used when the same functions
are executed from one iteration to the other, as this is the case for most of the simulation
codes.

Observer

TBB provides a high-level interface for the task creation and hides the low-level thread manage-
ment. However, it is sometimes helpful to have information about thread execution or to give
information to the scheduler for thread placement or priority for example. The task_scheduler

_observer (observer in the following) can be used for that purpose.
An observer is an object that detects when a thread starts or ends taking part in the task

scheduling. The on_scheduler_entry method is called when the thread enters for the �rst
time a parallel region. By de�ning a class that derives from task_scheduler_observer, and
by implementing the on_scheduler_entry method, it is possible to execute codes when the
threads are �rst created. This can be used to set the thread a�nity as we will see in Chapter 8.
TBB also provides a preview mode that allows to de�ne observers bound to di�erent arenas.
When using these observers, the threads call the on_scheduler_entry method when they enter
an arena and the on_scheduler_exit method when they leave this arena. It can be used to
monitor when a thread enters and leaves an arena or to apply a�nity masks to the arenas, as it
will be discussed in Chapters 5 and 6.

Intel® TBB is a C++ library that provides a task-based programming model and a work steal-
ing scheduler. It provides di�erent ways to create tasks, implicitly or explicitly, and good code
composability properties that make it a good candidate for the implementation of a task-based
in situ framework. In particular, its arena system can be used to create concurrently simulation
and analytics tasks and to dynamically balance the number of threads that execute them. In the
following section, we will present ExaStamp, a molecular dynamics code that uses the TBB li-
brary for its intra-node parallelization and that will be our target code for the integration of a
task-based in situ framework.

3.2 ExaStamp, a Molecular Dynamics Code for Material Sciences

Classical molecular dynamics is a computational method to describe the evolution of a set of
particles over time. The main principle behind molecular dynamics is the iterative integration
of Newton’s equations of motion for a set of particles, the force on one particle depending on
its interaction with all other particles [11]. Molecular dynamics applications are widely used in
three areas: material sciences, chemistry and biology. We introduce in this section ExaStamp, a
molecular dynamics code dedicated to material sciences and in particular shock physics. Exa-
Stamp targets manycore architectures and has been designed with three levels of parallelism to
achieve high performance on these architectures. We �rst brie�y explain the use cases of Exa-
Stamp (Section 3.2.1) before going more in depth into ExaStamp architecture (Section 3.2.2).

53

Task-Based In Situ for Molecular Dynamics on Exascale Computers

3.2.1 Molecular Dynamics for Material Sciences

ExaStamp [29] is a modern molecular dynamics code developed at CEA since 2012. It is dedi-
cated to material sciences and is especially used for shock physics [49]. Shock physics aims at
understanding the behavior of matter under extreme conditions such as high pressure and high
temperature. This kind of physics is present in di�erent areas, from cosmology to understand
meteorite impacts [96] to industrial �elds for semiconductor research and for the design of new
materials. One of CEA �eld of studies is the material deformation under shocks propagation. It
can be used to study micro-jetting [48], micro-spallation [104] or phase transition for example.
To understand �nely the underlying physics, this kind of simulation requires a high number of
particles, in the order of several billions, during times up to the nanosecond, corresponding to
more than one million iterations.

Figure 3.7 | Shock propagation inside a metallic crystal that leads to the generation of micro-jetting.

Molecular dynamics for material sciences di�ers from chemical and biological simulations
in two ways. Biological and chemical simulations require fewer particles, usually around a few
million particles, and the interactions between the particles are long-ranged. It means that the
movement of a particle depends on all the particles of the simulation, which leads to complex
interactions and parallelization. On the other hand, material sciences require hundreds of mil-
lions to billions particles but the interactions are most of the time short-ranged interactions, the
interactions between the particles being neglected for particles that are distant from more than
a cuto� distance. The parallelization of such a short-ranged system is highly simpli�ed because
it allows to divide the domain into blocks, as will be seen in the following section.

3.2.2 ExaStamp Architecture

ExaStamp is written in modern C++11 and uses three levels of parallelism: MPI for inter-node
parallelism, Intel® TBB for intra-node parallelism and explicit vectorization. It uses a domain-
decomposition approach (Figure 3.8) where the global domain is split on as many sub-domains
as the number of MPI processes and each MPI process is assigned to a sub-domain. Each MPI
process thus holds a portion of the particles and the particles are split into a hierarchical data
structure composed of four main objects (implemented as C++ classes). Each MPI process holds
a Node which is in turn composed of one or several Domains. The Domain is itself composed of
a Grid of Cells where the particles are stored.

54

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

. . .Node

Domain – Grid

Mpi

Cell

TBB

Figure 3.8 | ExaStamp architecture (adapted from [29]). Each MPI process holds a Node composed of one or several
Domains (only one Domain depicted here). A Domain is in turn composed of a Grid of Cells.

Hierarchical Data Structure

The Node is the highest object of ExaStamp and corresponds to the highest interface with the
developer. In particular, it de�nes the doComputeWork function that describes the sequence of
operations to be performed to compute an iteration (Figure 3.9). After an initialization phase,
the function enters a while loop that ends when reaching the desired number of iterations. The
computation of an iteration is decomposed in three steps. First, an integration scheme is used to
update the positions of the particles based on the particles con�guration of the previous iteration
(oneStep, line 12). A load balancing step is then performed if necessary (balance, line 15).
Finally, data are output into the �lesystem at a user-de�ned frequency (writeIO, line 18). The
Node also holds a communication manager in charge of MPI communications. The di�erent MPI
communication patterns (point-to-point and collective) are encapsulated in methods managed
by the communication manager. In particular, the programmer can de�ne their own custom
types and does not need to care about the size of their messages, everything being hidden by the
communication manager.

A Node is composed of a Domain that sits on top of a multi or manycore processor. The
parallelization inside a Domain is made thanks to Intel® TBB. ExaStamp has been designed so
that a Node may be comprised of several Domains. Thus, there would be one Node per compute
node and one Domain on each NUMA node, inter Node communications being replaced by copies
to reduce the communications. However, this feature has not been implemented yet and we use
ExaStamp with one Domain per Node.

A traditional iteration in molecular dynamics consists in a loop over the particles and for each
particle, a second loop on the particles to compute the force on this particle, the force depending
on the other particles. As we have already seen above, ExaStamp is designed for material sciences

55

Task-Based In Situ for Molecular Dynamics on Exascale Computers

1 void Node:: doComputework ()
2 {
3 initialization ();
4 // Time loop
5 while(!time ->isFinished ())
6 {
7
8 // increment time
9 ++(* time);

10
11 // One iteration
12 oneStep ();
13
14 // Load balancing
15 balance ();
16
17 // end of iteration
18 writeIO ();
19 }
20 }

Figure 3.9 | Timeloop de�nition in the Node class.

where the interactions between the particles are most of the time short-ranged interactions. To
illustrate this, let us consider the purple particle in Figure 3.8. The particles that interact with
this purple particle are the ones in the blue circle of radius the cuto� distance. Instead of looping
over all the particles in the Domain, ExaStamp organizes the particles into a Grid of Cells. A
Cell is composed of a few particles and the size of a Cell is a bit greater than the cuto� radius
so that the neighbors of the purple particle are searched in the cell that holds this particle and in
the 8 neighboring cells (26 in 3D).

The particles are therefore stored according to an AOSOA (array of structures of arrays)
scheme. Each Domain is composed of an array of Cell objects. A Cell object is in turn a
structure of arrays composed of several arrays. Their size is the number of particles in the Cell

and they correspond to the attributes of the particles. There are mostly 11 important attributes:
the global indexes, the types, and the positions, velocities and forces along the three axes. This
AOSOA structure makes the retrieval of particles attributes complicated. Indeed, an attribute is
not seen as a contiguous array of size the number of particles but as several contiguous arrays
of sizes the number of particles in each cell.

Because the particles depend on the positions of their neighbors for the force computation,
each Grid also holds a layer of ghost cells that correspond to the cells hold by other Domains.
The ghost update is made after each iteration thanks to MPI communications. For each Cell,
the Grid also stores a list of neighboring cells, some being Cells actually hold by the Grid and
some other belonging to the ghost layer.

Time Integration

ExaStamp proposes several integration schemes. The most widely used is called verlet integration
scheme and is described in Figure 3.10. The positions of the particles at iteration i + 1 are �rst
updated based on the positions, velocities and forces of the particles at iteration i . The velocities
are then updated of half an iteration, the velocities at iteration i+1/2 requiring the velocities and

56

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

forces at iteration i . The forces of iteration i+1 are then computed using the positions at iteration
i+1. The velocities of iteration i+1 are �nally updated thanks to the velocities at iteration i+1/2
and the forces at iteration i + 1. The main advantage of this approach is that the code does not
need to use a double bu�ering technique where two copies of the particles states are maintained,
one re�ecting the state of iteration i and the other using data at iteration i to compute the state at
iteration i+1. Here, we do not need to maintain two copies of the data because the modi�cations
of the i + 1th iterations can be made in place without overwriting necessary data.

update positions (i+ 1)

update velocities (i+ 1/2)

compute force (i+ 1)

update velocities (i+ 1)

Figure 3.10 | ExaStamp iteration computation using a verlet integration scheme.

ExaStamp uses Intel® TBB for the intra-node parallelization by using parallel_for func-
tions to implement a fork-join pattern. The code alternates between sequential regions where the
master thread is the only one to execute and parallel regions where master and worker threads
share the tasks execution. The parallelization is made over the Cells of the Grid, each task
corresponding to the update of the particles in a set of Cells. The loops are parallelized given
an a�nity partitioner whose goal is to assign tasks in a way that optimizes cache a�nity. This
way, ExaStamp can run with one MPI process per node, the TBB scheduler being in charge of
optimizing data locality on the NUMA nodes.

I/Os

ExaStamp is parametrized thanks to a text input �le. The end-user indicates parameters for the
potential, the number of iterations, the MPI splitting and so forth thanks to a key-value �le read
at initialization by the simulation code.

ExaStamp provides di�erent data formats for output data: a binary MPI-IO and Hercule data
format to use analytics tools developed by CEA [104], ASCII XYZ �les to be used with molecular
dynamics software (VMD [62], Ovito [106], . . .) or VTK data format for data visualization with
ParaView. The �le format as well as the output frequency are chosen by the user prior to the
simulation in the input �le. When the simulation reaches an iteration of output, the attributes of
the particles (index, type, positions and velocities) are copied into a temporary bu�er and written
in the desired �le format. The copy is necessary for two reasons. First, data output is managed by
the Node object but data are actually stored in the Cell object. Secondly, the particles attributes
are stored as arrays of pointers managed by the Grid object. It is therefore not possible to simply
pass a pointer to the necessary data to the functions that write the �les.

57

Task-Based In Situ for Molecular Dynamics on Exascale Computers

File output is natively performed synchronously with the simulation, without overlapping
between computation and output. The frequency of output therefore has a great impact on the
total execution time. Figure 3.11 shows the total execution time of 1,000 iterations of ExaStamp,
writing a MPI-IO �le at di�erent frequencies: a �le is output every 1,000 iterations for the left
bar while a �le is output every 10 iterations for the right bar. We see that the time to write
the �les every 10 iterations corresponds to 41% of the total execution time. The frequency of
output should be chosen based on the physics at stake: the more the system evolves rapidly,
the more frequent the data analytics should be performed. However, data output has a cost and
ExaStamp is also an example of a code where the user needs to �nd a balance between physical
and computational properties.

1/1000 1/500 1/100 1/50 1/10
I/O frequency

0

1000

2000

3000

4000

Ti
m

e
(s)

I/O
Simulation

Figure 3.11 | Total execution time of ExaStamp when increasing the I/O frequency on a simulation of 1,000 iterations
with 256,000,000 particles on 64 MPI Broadwell processes (1,792 cores). The output is a unique MPI-IO �le per iteration.

ExaStamp is a new code and does not provide in situ capacities yet. In particular, no analytics
have been developed inside the simulation code and no framework has been developed to execute
analytics synchronously or asynchronously with the simulation. This makes it a good candidate
for studying the integration of a task-based in situ framework inside a molecular dynamics code.
In particular, we can study di�erent task-based approaches, from the explicit spawning of ana-
lytics tasks by the simulation to more advanced dynamic helper core strategy where simulation
and analytics codes are decoupled. However, the integration of in situ capacities inside the simu-
lation code remains a challenge in particular because of the performance of ExaStamp on modern
supercomputers, as it will be discussed in the following section.

3.3 Challenges for the Integration of an In Situ Framework Inside
ExaStamp

ExaStamp has been designed for exascale supercomputers and in particular for architectures
that provide a large number of cores per processor. We brie�y present in this section the two
supercomputers that ExaStamp targets (Section 3.3.1) and the performance of ExaStamp on these
architectures (Section 3.3.2). We conclude by proposing ideas for the integration of a task-based
in situ framework inside ExaStamp (Section 3.3.3).

58

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

3.3.1 Target Architectures

During this thesis, we use two supercomputers hosted by CEA and the French CCRT research
center: Cobalt, a Broadwell supercomputer and Tera-1000-2, a KNL supercomputer.

Cobalt Supercomputer

Cobalt is a supercomputer hosted by the CCRT (French Research and Technology Center) since
2016. In June 2018, it was ranked 153th in the Top500 list and reaches 1,500 TFlop/s. The super-
computer is composed of 1,419 nodes for a total of 39,732 cores. The nodes are interconnected
thanks to a EDR In�niBand network. Each node of Cobalt has a total of 128GB of memory and is
composed of two Intel® Xeon Broadwell processors running at 2.40GHz. Each Broadwell proces-
sor is composed of 2 NUMA nodes with 7 physical cores each. Figure 3.12 shows the composition
of a NUMA node. Each physical core can host two logical cores that share the L1 and L2 caches.
The L3 cache of 18MB is shared by the 7 physical cores and the NUMA node has 32GB of memory.
A Broadwell node is therefore composed of a total of 28 physical cores. ExaStamp is compiled
on Cobalt using icpc compiler (version 17.0.4.196) and is launched with Intel® MPI (version
2017.0.4.196) that supports MPI_THREAD_MULTPLE.

Figure 3.12 | Composition of the NUMA node 1 of a node of the Cobalt supercomputer.

Tera-1000-2 Supercomputer

Tera-1000-2 is a supercomputer hosted by CEA since 2017. In June 2018, it was ranked 14th in
the Top500 list and reaches 25 PFlop/s. The supercomputer is composed of 8,256 nodes for a total
of 561,408 cores. The nodes are interconnected thanks to a Bull BXI 1.2 network. Each node of
Tera-1000-2 is composed of one Intel® Xeon Phi Knight Landing (KNL) processors running at
1.4GHz. Each KNL processor is composed of 68 physical cores and 4 physical cores are dedicated
to the system. Figure 3.13 shows the arrangement of the 4 �rst physical cores of a KNL. The
cores are organized into tiles with one L1 cache per physical core and one L2 cache shared by
two physical cores. Each physical core can host 4 logical cores. The node has a RAM memory
of 96GB and a MCDRAM of 16GB used as a fast cache and seen by the application as a second
NUMA node in the processor. The cores are organized in a quadrant mode where the KNL can

59

Task-Based In Situ for Molecular Dynamics on Exascale Computers

be seen as one SMP node. ExaStamp is compiled on Tera-1000-2 using icpc compiler (version
17.0.4.196) and is launched with Bull MPI that does not support MPI_THREAD_MULTPLE.

Figure 3.13 | 4 �rst physical cores of a KNL processor of the Tera-1000-2 supercomputer.

3.3.2 ExaStamp Performance

Figure 3.14 shows ExaStamp performance for two sets of measurements on the Cobalt super-
computer. For each experiment, we launch one MPI process per node and we use TBB for the
intra-node parallelization on the 28 physical cores. We �rst measure in Figure 3.14 (left) the
strong scaling of the code when using di�erent numbers of threads with one MPI process on
one node. The number of particles is set to 4,000,000 for all the measurements and we show the
speedup Sn = T1/Tn whereTi denotes the time to execute the code on i threads. We then measure
in Figure 3.14 (right) the weak scaling of the code when using di�erent numbers of nodes. On
each node we run one MPI process and the total number of particles is 4,000,000n where n is the
number of MPI processes. We show the e�ciency En = 100 ·T1/Tn . Figure 3.15 shows the strong
scaling of ExaStamp on one KNL node when varying the number of threads from 1 to 256.

1 4 64 256 512
Number of nodes

0

20

40

60

80

100

E�
ci

en
cy

(%
)

Weak scaling

ExaStamp
Reference

1 8 28 56
Number of threads

1

8

28

56

Sp
ee

du
p

Strong scaling

Figure 3.14 | Scaling of ExaStamp on the Cobalt supercomputer: strong scaling on one node with di�erent numbers of
threads (left) and weak scaling when varying the number of nodes (right). The green area in the left �gure highlights
the number of threads from which we pass into the hyperthreading area.

60

Chapter 3 | Task-Based Molecular Dynamics for Exascale Computers

1 16 64 128 256
Number of threads

1

16

64
128
256

Sp
ee

du
p

Strong scaling

ExaStamp
Reference

Figure 3.15 | Strong scaling of ExaStamp on one KNL node with di�erent number of threads. The green area highlights
the number of threads from which we pass into the hyperthreading area.

The performances of ExaStamp are very good on both architectures. The strong scaling is
quasi-linear on the KNL processor, the speedup reaching 61 on 64 threads. The strong scaling
is a bit less impressive on the Broadwell processor, the speedup reaching 22 on 28 threads. This
is certainly due to the presence of NUMA nodes on the Broadwell processor. For both proces-
sors, the performances of ExaStamp reach a plateau in the hyperthreading area, demonstrating
that hyperthreading cannot enhance the simulation performance. Regarding the e�ciency, it is
greater than 84% on a simulation of 2 billions atoms on 512 Broadwell nodes. The e�ciency is
very good but shows the impact of MPI communications at large scale.

The in situ techniques presented in Chapter 2 mainly focus on harvesting the wasted cycles
of the simulation to execute analytics tasks instead. They either take bene�t from the sequential
regions of the simulation code (Goldrush approach) or use the fact that the simulation code is not
e�cient on a high number of cores (Damaris approach). ExaStamp is therefore not a target code
for these approaches because it exhibits a quasi-linear speedup on a high number of cores and
presents only small sequential regions. As we will see in more details in Chapter 5, approaches
such as Goldrush does not manage to execute analytics during the short sequential regions of the
code and approaches such as Damaris are very sensitive to the number of helper cores because
of the e�ciency of ExaStamp on a high number of cores. This calls for the integration of high
performance in situ strategies inside the molecular dynamics code.

3.3.3 Ideas for the Implementation of a Task-Based Hybrid Framework

ExaStamp is a MPI+TBB code designed for exascale supercomputers and in particular for proces-
sors with a large number of cores. It uses Intel® TBB to create simulation tasks inside each MPI
process using a fork-join model where tasks are implicitly created by the TBB library. ExaStamp
shows very good performance on multi and manycore processors, its speedup reaching 22 on 28
Broadwell cores and 61 on 64 KNL cores. However, its synchronous �le output makes di�cult
to output �les at a high frequency without degrading simulation performance. While the good
performance of ExaStamp make it di�cult to take the best of traditional in situ techniques, the
fork-join model used by the simulation still induces sequential regions that could be harvested
to execute in situ analytics. Moreover, the simulation code is parallelized with TBB that provides

61

Task-Based In Situ for Molecular Dynamics on Exascale Computers

good code composability properties and a work stealing scheduler that may enable the e�cient
balance between simulation and analytics tasks execution.

As already explained in Section 1.3, the goal of this thesis is to study the implementation of a
task-based in situ framework inside a task-based molecular dynamics code designed for exascale
supercomputers. With its task-based programming model and its good performance on modern
architectures, ExaStamp is a good candidate for this study. To solve the issues of traditional in
situ techniques on a code such as ExaStamp, our idea is to leverage the work stealing sched-
uler and the good composability properties of TBB to implement a task-based dynamic helper
core strategy more �exible than the state-of-the-art static helper core strategy. Instead of perma-
nently dedicating resources to analytics execution, the idea is to dedicate resources to analytics
only when simulation and analytics tasks exist concurrently and to remove this restriction when
the simulation or analytics enter a sequential region or when all the analytics tasks have been
executed. This way, we expect to bene�t from the sequential regions of both simulation and ana-
lytics to execute in situ analytics with a low overhead on the simulation execution time. The idea
is then to go one step further and to use the task-based programming model to express analytics
work�ows in the form of graphs of tasks. Each task corresponds to an analytics that can in turn
create children tasks to be interleaved with simulation tasks in situ or to be executed alone in
transit. This way, we expect to provide an intuitive and �exible environment for the development
and deployment of complex analytics work�ows by non-expert users.

The remaining of this document aims at presenting the di�erent steps toward the integration
of this hybrid framework inside the simulation code. Chapters 4, 5 and 6 are dedicated to the
task-based in situ methods and Chapters 7 and 8 to the task-based hybrid framework.

62

Part II

Toward a Task-Based In
Situ Technique

63

4 Turning a Synchronous In Situ into an
Asynchronous Task-Based In Situ

Simulation codes usually output data periodically into the �lesystem and these data are later
read back for a post-processing step. However, �le outputs lead to large amounts of data stored
into the �lesystem and have a negative impact on the simulation performance, limiting the high
frequency of analysis of data at large scale. ExaStamp is an example of simulation code that
exhibits very good performance on multi and manycore processors. However, its performances
are severely impacted by the synchronous �le output that it implements. As a new code, Exa-
Stamp does not provide any features to analyze data in situ with the simulation. In this chapter,
we propose to �rst integrate a synchronous approach in ExaStamp, to show the relevance of in
situ processing compared to the traditional �le output and to be used as a comparison point for
the di�erent task-based in situ modes we will develop in the following (Section 4.1). Although
the simulation exhibits good performance on multicore processors, we show that it still presents
periods where resources are unused, showing that the code could bene�t from an asynchronous
approach (Section 4.2). We �nally implement a �rst task-based asynchronous method where an
analytics task is spawned by the simulation (Section 4.3). This chapter aims at implementing
a �rst task-based approach but also at introducing the tools that will be used throughout the
manuscript to evaluate the di�erent in situ techniques.

4.1 Integration of Analytics for Synchronous Execution

Synchronous in situ is an intuitive �rst step toward the integration of an in situ framework inside
a simulation and most of the simulation codes already have some analytics coded inside [56,
97]. For example, in molecular dynamics, the pressure and the temperature are periodically
computed and output to log �les. These quantities are not necessary for the progress of the
simulation itself but are useful for the end-user to check the status of the simulation and to
know if something went wrong with the execution. We integrate in this section a synchronous
in situ framework inside ExaStamp (Section 4.1.1) and we present a set of analytics developed
inside the simulation (Section 4.1.2). The goal of this synchronous in situ implementation is
twofold. First, we want to show that writing �les at a high frequency has a larger impact on the
simulation performance than synchronous in situ processing for various analytics (Section 4.1.3).
Secondly, the synchronous approach will serve as a comparison point to evaluate the di�erent
in situ approaches presented in this manuscript.

65

Task-Based In Situ for Molecular Dynamics on Exascale Computers

MPI Process

Simulation Thread

Initialization

Compute a sim-
ulation iteration

if output iteration

Output data

MPI Process

Simulation Thread

Initialization

Compute a sim-
ulation iteration

if in situ iteration

Run analytics

if output iteration

Output data

Figure 4.1 | ExaStamp main loop with �le writing only (left) and with �le writing and synchronous analytics (right).
Synchronous analytics are executed with a higher frequency than �le writing.

4.1.1 Integration of Synchronous In Situ in ExaStamp

As already seen in Chapter 3, ExaStamp can be schematized by Figure 4.1 (left). Inside each MPI
process, a simulation master thread �rst performs an initialization phase. After this step, the
simulation master thread enters an iteration loop where the particles positions, velocities and
forces are updated at each iteration based on the con�guration of the particles at the previous
iteration. When the simulation reaches an output iteration, data are written into the �lesystem
in the �le format asked by the user.

A synchronous in situ execution can be obtained by interleaving a call to an analytics routine
between the end of the iteration and the �le output (Figure 4.1 right). We propose to use in
situ analytics as a complement of the post-processing approach: data are still written into the
�lesystem but with a lower frequency such that the impact on simulation performance is low
while analytics are executed with a higher frequency. The main advantage of this synchronous
approach is that the analytics can directly use ExaStamp data structures without a copy to be
performed by the simulation. If the analytics are parallelized with TBB, they can also be executed
by the worker threads instantiated by the scheduler. The main drawbacks are that the analytics
need to be coded inside ExaStamp and that they need to know ExaStamp data structure.

4.1.2 Implementation of Analytics Routines inside ExaStamp

In this manuscript, we will describe the di�erent steps toward the implementation of a task-
based in situ processing framework. To validate the di�erent approaches, we need to have a set
of analytics benchmarks that are representative of computational physics and that show di�erent
patterns in term of parallelization, MPI communications and memory e�ects. We have chosen
the four analytics summarized in Table 4.1 and described below. The analytics are used for in
situ processing, using the same resources than the simulation. We therefore choose analytics
that use the same MPI splitting than the simulation and whose execution times are smaller or

66

Chapter 4 | Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ

equivalent to an ExaStamp iteration. We make this choice because more time consuming analyt-
ics are more adapted to in transit processing because they would have access to more computing
resources without removing computing resources from the simulation. In transit processing will
be discussed in Chapter 7.

Table 4.1 | Analytics benchmarks to evaluate in situ methods. The analytics are representative of computational
physics and show di�erent patterns in term of parallelization, communication and memory e�ects.

Analytics Description Speci�city
statistics_seq Compute the mean of the positions for

the particles inside each MPI process
- Sequential analytics

- Memory intensive
statistics_par Compute the mean of the positions for

the particles inside each MPI process
- Local parallel computa-
tions: 1 TBB parallel reduc-
tion
- Memory intensive

radial Compute a local radial distribution
function for the particles inside each
MPI process

Local parallel computations:
2 nested TBB parallel for

histogram Compute a global histogram of the x-
positions

- Local parallel computa-
tions: 2 TBB parallel reduc-
tions
- Global parallel computa-
tions: 2 MPI reductions

The two statistics routines perform local computations without any MPI communications.
They both compute the mean of the positions of the particles that belong to the MPI process
where the analytics is executed. We implemented a sequential version (statistics_seq) and
a version parallelized with TBB (statistics_par) thanks to a parallel reduction. The goal of
statistics_seq is to evaluate our system on a sequential analytics because the analytics are
often not as parallelized as the simulation code used to produce the data [83, 26]. This analytics
scans the three positions of each particle and makes only a few summations on them, making it a
memory intensive analytics. The statistics computations are thus very sensitive to cache e�ects
and in particular to NUMA e�ects. To stress even more the memory accesses, it is possible to run
this analytics several times at each in situ iteration. If not stated otherwise, the mean is computed
1,000 times at each in situ iteration.

The histogram analytics provides two levels of parallelization: internally with TBB and
between the processes with MPI. This analytics counts how many particles have a position in
intervals of the form [xi ,xi + ∆x]. Histograms are often used in molecular dynamics [62, 83].
Here, we count the number of particles inside intervals of the form [xi ,xi + ∆x] but computing
the mean velocity of these particles instead allows to follow the propagation of wave fronts.
These generalized histograms will be used in Chapter 8 for the study of a tin phase transition
under shock. The algorithm is in three steps:

1. Determine the global bounds of the domain: each MPI process computes its own mini-
mum and maximum positions with a TBB parallel reduction. The global bounds are then

67

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Figure 4.2 | Radial distribution function for di�erent types of matter1.

computed thanks to a collective MPI_Allreduce;

2. Compute a local histogram: the global domain is split in intervals of the form [xi ,xi + ∆x].
With a TBB parallel reduction, each MPI process can count how many of its particles belong
to the di�erent intervals;

3. Compute the global histogram: the global histogram is obtained by summing all the local
histograms thanks to a collective MPI_Reduce.

The histogram is computed on 1,000 intervals. To inspect the in�uence of MPI communica-
tions, we can arti�cially increase the size of the arrays sent through the second MPI_Reduce. If
not stated otherwise, the size of the array is set to 100,000,000 integers.

Finally, the radial analytics computes a local radial distribution function (RDF). The radial
distribution function д (r) is a commonly used function in molecular dynamics [120] and de-
scribes the probability of �nding a particle at a distance r from a reference particle. The RDF is
a measure of the microscopic structure of the matter and can be used for example to determine
if the matter is a solid, a liquid or a gas, because they present distinct patterns (Figure 4.2). The
computation of the RDF is straightforward if all the data are available in a single MPI process.
Indeed, it consists in computing an histogram of the distances between all the pairs of atoms.
However, a distributed version of the algorithm requires a lot of data exchanges and makes it
an analytics way longer than an ExaStamp iteration. Because we already have the histogram

to measure the in�uence of MPI communications, we extract from this analytics a kernel that
only computes a local radial distribution function and does not perform MPI communications.
This kernel as such does not have a physical meaning and corresponds to the computation of an
histogram of all the pairs of atoms present in each MPI process. The kernel is multithreaded with
two nested for loops and uses the blocked_range2d feature of TBB. This algorithm is used to
show the e�ect of a compute intensive analytics.

4.1.3 Comparison of the Synchronous In Situ and the File Output Approaches

For an ExaStamp simulation of 1,000 iterations, Figure 4.3 compares the total execution times
of ExaStamp with �le output only (ExaStamp-file) and ExaStamp with �le output and syn-
chronous in situ (ExaStamp-insitu) for di�erent frequencies and for two analytics (histogram
and statistics_seq). In the �rst case, we look at the execution time when increasing the �le

1https://en.wikibooks.org/wiki/Molecular_Simulation/Radial_Distribution_Functions

68

https://en.wikibooks.org/wiki/Molecular_Simulation/Radial_Distribution_Functions

Chapter 4 | Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ

output frequency, as it was done in Figure 3.11. In the second case, a �le is output every 500
iterations and we look at the execution time when increasing the in situ analytics frequency.

1/1000 1/500 1/100 1/50 1/10
Analytics rate

2000

3000

4000

Ti
m

e
(s)

histogram

1/1000 1/500 1/100 1/50 1/10
Analytics rate

2000

3000

4000

Ti
m

e
(s)

statistics_seq

File output (freq 500) Simulation Analytics ExaStamp (�le output)

Figure 4.3 | Comparison of the total execution time of ExaStamp with �le output only (green curve) and ExaStamp
with �le output and synchronous in situ analytics (bars) for two analytics: histogram (left) and statistics_seq
(right). For ExaStamp with �le output only, the �le output frequency increases in abscissa. For ExaStamp with �le
output and synchronous in situ processing, a �le is written every 500 iterations and the in situ analytics frequency
increases in abscissa. ExaStamp simulation of 256,000,000 particles on 64 Broadwell nodes (1,792 cores) for 1,000
iterations.

For low frequencies (analytics every 500 and 1,000 iterations), ExaStamp-insitu has a longer
execution time than ExaStamp-file. This is expected because a �le is output every 500 itera-
tions and synchronous computations are added in the �rst case while a �le is output every 500 or
1,000 iterations without any extra computation in the second case. When the output frequency
increases, the total execution time increases very quickly when writing �les. If a �le is output
every 10 iterations, the time to write the �les corresponds to 41% of the total execution time. On
the other hand, the execution time of the synchronous analytics increases more slowly and the
time to perform synchronous execution of analytics never exceeds 15% of total execution time.

Another aspect is not shown here: the disk memory needed to store the �les. The simulation
is composed of 256,000,000 particles and one MPI-IO �le corresponds to 41GB. Storing a �le every
10 iterations on a simulation of 1,000 iterations therefore requires approximately 4TB of data to
be stored. On the other hand, the synchronous in situ approach allows analytics execution with
only 82GB of data stored because data are output every 500 iterations only.

Notice that we did not measure here the time necessary to read the data �le and to run the
analytics in a post-processing way. Even without this measurement, we can see the bene�t of
the synchronous in situ approach compared to the post-processing approach, both in term of
computation time and of memory usage.

In this section, we have implemented a set of analytics inside ExaStamp and we have executed
them synchronously with the simulation to see the bene�t of in situ processing compared to
traditional �le output. We will see in the following section that both simulation and analytics
exhibit regions of unused resources, leaving the opportunity for more e�cient in situ techniques.

69

Task-Based In Situ for Molecular Dynamics on Exascale Computers

4.2 Highlighting Periods of Unused Resources

The total execution time is a good metric to evaluate the performance of an in situ method but
looking into more details into the execution of the code enables to �nd ways to improve the
methods. The goal of this section is to propose a system to monitor and visualize the thread usage
(Section 4.2.1). This system is useful to study the thread usage and to understand the performance
of multithreaded applications. Graphs from this tool will be used in this manuscript to illustrate
limitations of some in situ techniques. We use this tool in this section to highlight the sequential
regions induced by the synchronous execution (Section 4.2.2).

4.2.1 Implementation of a Task Monitoring System

As already seen in Chapter 3, ExaStamp uses the Intel® TBB library that has a task-based pro-
gramming model. To monitor the thread usage, we need to know when the di�erent threads
execute tasks and when they are idle. We thus propose to measure for each task, the beginning
date, the end date and the thread that executes it. This way, we can create Gantt diagrams (as in
Figure 4.5 for example) to visualize the tasks execution on each thread along the time. We rely
here on the Pajé trace �le format [33] that describes the code execution as a set of events. An
event is de�ned with three variables:

• the starting time of the event measured with respect to the starting date of the program;

• the identi�er of the thread that starts this event;

• the type of the event. We distinguish three types: start of a simulation task execution, start
of an analytics task execution and start of an idle period (i.e. end of a task execution).

Figure 4.4 gives a code snippet of the instrumentation of a TBB parallel region. We de�ne an
array of events as a thread local storage so that each thread can update it without data race. The
parallel region is de�ned with a lambda function (line 7) that represents a task. At the beginning
of the task, a reference to the thread local storage is retrieved and we store the event with the
starting time of the task, the ID of the thread executing it and an integer to tell the type of the
task (1 for a simulation task, 2 for an analytics task). At the end of the lambda function, we store
the event with the ending time of the task, the ID of the thread that executed it and the 0 integer
to tell that the thread now starts an idle period.

The instrumentation of ExaStamp requires only a few code modi�cations because the TBB
functions are encapsulated in ExaStamp functions and the code itself does not make direct calls to
TBB. We just need to distinguish when a function was called for a simulation task or an analytics
task. For sequential analytics, we de�ne two events at the beginning and the end of the analytics
execution respectively. At the end of the program, the simulation master thread goes through
the thread local storage of all the threads and writes a Pajé �le with all the events information.
The visualization is then made possible thanks to the ViTE software [30].

4.2.2 Measure of the Thread Usage in the Synchronous Approach

Figure 4.5 shows the traces of the synchronous in situ execution of statistics_par and statis-

tics_seq on a Broadwell node for two iterations of ExaStamp. The blue (resp. orange) areas

70

Chapter 4 | Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ

1 // Thread local vector to store the different events
2 typedef std::vector <std::tuple <double , int , int > > eventVector;
3 tbb:: enumerable_thread_specific <eventVector > threadTiming;
4
5 template <class I, class J, typename Lambda >
6 tbb:: parallel_for(tbb:: blocked_range <J>(begin , end),
7 [&](const tbb:: blocked_range <J>& r)
8 {
9 // Store the beginning of the task in the thread local

storage
10 tbb:: enumerable_thread_specific <eventVector >:: reference
11 myTimer = Global :: threadTiming.local();
12 myTimer.push_back(std:: make_tuple(startTime , gettid (), 1));
13
14 // Lambda execution
15 lambda(r.begin(), r.end());
16
17 // Store the end of the task in the thread local storage
18 myTimer.push_back(std:: make_tuple(endTime , gettid (), 0));
19 }
20);

Figure 4.4 | Instrumentation of a TBB parallel region to monitor the task execution. The events are stored in a
thread-local storage. An event is added to the event list at the beginning and at the end of a task execution.

show the execution of simulation (resp. analytics) tasks and purple areas highlight thread idle-
ness periods. The tool highlights the idle periods of the simulation. Even if ExaStamp shows a
good scaling on the 28 Broadwell cores, the fork-join model that it implements induces sequential
regions. The analytics parallelized with TBB also presents sequential regions, where the threads
are idle. Obviously, we see that the sequential analytics leads to a lot of resource wasting because
only one thread is running during the analytics. This is a major drawback of the synchronous
approach: when the analytics is not parallel or not enough parallelized, several threads may not
be used and resources are lost.

The visualization tools lets us highlight the unused resources of the synchronous in situ.
These periods are inherent to the simulation and analytics code parallelization. The use of these
idle resources could increase the performance of the in situ system. We therefore show in the next
section how to transform the synchronous approach into a task-based asynchronous framework
in a �rst attempt to use the otherwise wasted resources.

4.3 Derivation of a Task-Based Asynchronous IN Situ Approach
(TINS)

In the previous section, we have shown that the synchronous in situ approach induces idle peri-
ods due to the parallelization of the simulation and the analytics. These idle periods establish the
potential to implement a more e�cient in situ system. We show in this section how to transform
the synchronous execution into a task-based asynchronous execution (Section 4.3.1). We then
show that the asynchronous approach leads to a smaller execution time than the synchronous

71

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Figure 4.5 | Visualization traces for synchronous in situ execution of two analytics during two iterations of a simu-
lation with 4,000,000 particles: statistics_par (top) and statistics_seq (bottom). The traces were measured
on the 28 cores of one Broadwell node. Blue and orange areas correspond respectively to simulation and analytics
tasks execution. Purple areas highlight thread idleness periods. Thread 0 (top) corresponds to the simulation master
thread.

72

Chapter 4 | Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ

approach on a set of analytics (Section 4.3.2). This is the �rst step toward TINS, our Task-based
asynchronous IN Situ approach integrated in the simulation code.

4.3.1 Spawning of an Analytics Task

Analytics Task Creation

In the synchronous approach presented in Figure 4.1 (right), the simulation master thread runs
the analytics and waits for its completion before resuming to the next iteration. A �rst step
toward an asynchronous approach is to make the simulation master thread spawn an analytics
task and resume to the next iteration without waiting for the task completion (Figure 4.6). Trans-
forming the analytics into a task is made possible with the TBB API as described in Chapter 3
and detailed in Figure 4.7. First, we need to de�ne a class AnalyticsTask that derives from the
tbb::task class. This class has methods and data members and it musts override the execute

method to de�ne the task execution. Here we call the runAnalytics function that can itself
create tasks via TBB parallel regions for example. The execute method returns when all the
tasks in the runAnalytics function have completed. The simulation creates the analytics task
(line 17), spawns it (line 18) and resumes to the next iteration. This way, analytics and simula-
tion tasks are created concurrently and we let TBB schedule the di�erent tasks on the worker
threads. This is the �rst version of TINS, our Task-based IN Situ approach that we will enhance
throughout the manuscript.

MPI Process

Simulation Thread

Initialization

Compute a sim-
ulation iteration

if in situ iteration

Wait for
analyticsDone

Copy data

Spawn
analytics task

if output iteration

Output data

Run analytics

Notify
analyticsDone

Figure 4.6 | ExaStamp main loop where the simulation spawns an analytics tasks at the end of the iteration and
resumes without waiting for its execution. The double arrow highlights the synchronization between the simulation
master thread and the analytics task: the simulation cannot copy data into the temporary bu�er if the analytics is still
executing.

73

Task-Based In Situ for Molecular Dynamics on Exascale Computers

1 // Definition of the analytics task
2 class AnalyticsTask : public tbb::task
3 {
4 AnalyticsTask(MyData* data) : m_data(data) {};
5 tbb::task* execute ()
6 {
7 runAnalytics(m_data); // launch analytics
8 this ->wait_for_all (); // wait for completion
9 notify(analyticsDone);

10 return 0;
11 }
12
13 MyData* m_data;
14 };
15
16 // Creation and spawn of the analytics task
17 AnalyticsTask* t = new(tbb::task:: allocate_root ()) AnalyticsTask(data);
18 tbb::task:: spawn(*t);

Figure 4.7 | Creation of the analytics task by the simulation.

Data Copy

A question arises here: how can an analytics task work on ExaStamp data while ExaStamp is
computing the next iteration on the same data? As we have seen in Chapter 3, ExaStamp does not
use a double bu�ering technique to update the particle attributes at each iteration. In particular,
the positions are directly modi�ed when the simulation begins an iteration, which gives a very
short time for the analytics to use the simulation data. Fortunately, molecular dynamics codes
do not need all the available memory of the processors to run the simulation and we can rely
on data copies to enable asynchronous executions of analytics. For example, when running a
simulation of 4,000,000 particles per MPI process, ExaStamp data structures require roughly 4GB
of memory per node, which is signi�cantly less than the 128GB of RAM available on a Broadwell
node. Copying one iteration of the data and working on two sets of particles attributes is thus
not critical in term of memory usage.

When the simulation reaches an in situ iteration, it copies the data into a temporary bu�er,
spawns the analytics task and resumes to the next iteration. The analytics task works on the
data copied by the simulation to prevent data race issues. To reduce the size of the copied data,
we introduce the ParticleInSitu structure of arrays de�ned in Figure 4.8. We only copy the
indices, types, positions and velocities of the particles, because they are the most used parameters
for molecular dynamics data analytics [110, 97]. We will explain in Chapter 7 how the TINS
framework is designed to allow more attributes to be shared from the simulation to the analytics.
Making a copy of the data can also have another advantage: the analytics do not need to be
aware of ExaStamp complex data structure anymore. This will be the �rst step for externalizing
the analytics from ExaStamp code, as we will see in Chapter 7.

To have only one copy of the data at every time, TINS adds a synchronization between the
simulation and the analytics task. The simulation can indeed not overwrite the data in the tem-
porary bu�er until the task has completed its work. When dealing with 4,000,000 particles per
MPI process, copying the particles attributes in the ParticleInSitu structure requires 224MB
of data, which is signi�cantly less than the 128GB of memory of a Broadwell processor and it

74

Chapter 4 | Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ

1 struct ParticleInSitu
2 {
3 int nbPart; // number of particles
4 int* id; // array with the particles indices
5 int* type; // array with the particles types
6 double *rx , *ry, *rz; // arrays with the particles positions along x, y, z
7 double *vx , *vy, *vz; // arrays with the particles velocities along x, y, z
8 };

Figure 4.8 | ParticleInSitu data structure. The simulation copies data in this structure when reaching an in situ
iteration and the analytics task uses this copy of the data for its computations. The structure attributes correspond to
the most used parameters for molecular dynamics data analytics.

could be possible to store several copies of the data in order for the simulation not to wait for the
analytics task completion. However, we are interested in this work in the end-to-end execution
time from the beginning of the simulation to the end of the analytics. While having multiple
copies of the data prevents the simulation to wait for the analytics completion, it does not have
a great impact on the total execution time because all the tasks will be executed after the end
of the simulation. Moreover, it would require a mechanism to free data when they are not used
anymore, given more work to the simulation. We therefore decided to keep only one copy at a
time, even if this means for the simulation to wait for the analytics task completion.

MPI Communications

The analytics tasks can be executed by any of the worker threads. In the case where the analytics
need to perform MPI communications, these later may occur concurrently with MPI communi-
cations performed by the simulation master thread. Two aspects have to be taken into account
here. First, we need to use a MPI thread level support that enables several threads to perform MPI
communications simultaneously, that is to say MPI_THREAD_MULTIPLE. We make here the hy-
pothesis that the approach is used with a version of MPI that supports MPI_THREAD_MULTIPLE.
In the case where this threading support is unavailable, TINS framework can be adapted but
requires extra developments, as it will be explained in Chapter 8. Secondly, simulation and ana-
lytics must use distinct MPI communicators in order for global communications not to be mixed.

4.3.2 Evaluation of TINS compared to a Synchronous Execution

Table 4.2 shows the total execution times of the synchronous and asynchronous approaches on
an ExaStamp simulation on 64 Broadwell nodes for the four analytics. The execution times are
expressed as percentages of the execution time of ExaStamp alone without in situ analytics and
without �le output. The analytics are executed after each iteration. Analytics are usually not
performed as frequently because the physics of the system does not evolve that fast but we
decided to stress the system to make the overheads more visible.

We observe that TINS is faster than the synchronous approach, the performance boost de-
pending on the proportion of sequential regions in the analytics. The gain of TINS is low on
parallelized analytics (5% faster for statistics_par, 3% faster on radial) because they only
have a few sequential regions to harvest. The di�erence is more important in the histogram

analytics (14% faster) because the MPI collective communications of this analytics are blocking.

75

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Table 4.2 | Comparison of the synchronous approach and TINS on a simulation of 32 iterations with 256,000,000
particles on 64 Broadwell nodes. For each test, analytics are executed after each iteration. The total execution times
are expressed in percentages with respect to the execution time of ExaStamp alone without in situ analytics and
without �le output.

statistics_seq statistics_par histogram radial

synchronous 317.43 % 110.30 % 120.93 % 154.59 %
asynchronous 193.78 % 104.84 % 103.47 % 150.17 %

They therefore induce large sequential regions where the worker threads can switch to simu-
lation execution in the asynchronous case instead of being idle in the synchronous one. The
e�ect is all the more visible on the statistics_seq analytics where TINS is 39% faster than
the synchronous execution. In this sequential analytics, all the worker threads were idle in the
synchronous case while they can execute simulation tasks in TINS.

The overhead with respect to the simulation alone depends on the analytics size. statis-

tics_seq and radial analytics can be considered as heavy analytics because their asynchronous
execution induces an overhead on ExaStamp of 94% and 50% respectively while statistics_par

and histogram are more lightweight analytics with overheads of 5% and 3% respectively. The
analytics are performed after each iteration to stress the system and even with this, TINS has
overheads of less than 5% for lightweight analytics, showing good potentials to use TINS for
high frequency data analytics.

We have seen in this section how to transform a synchronous execution into a task-based
asynchronous execution thanks to the TBB task API. We have shown that TINS can be up to 39%
faster than the synchronous approach on various analytics. We have also shown that TINS has
an overhead of less than 5% when executing lightweight parallel analytics after each iteration,
proving that TINS can be used for high frequency data analytics.

4.4 Chapter Summary

In this chapter, we have developed analytics inside ExaStamp and we have compared their in
situ execution times either synchronously or with TINS, our task-based asynchronous approach
where the simulation spawns an analytics task. We have shown that TINS can be up to 39%
faster than the synchronous approach. It allows the high frequency execution of lightweight
analytics within an overhead of 5% over ExaStamp but TINS performance is sensitive to the size
and parallelization of the analytics. In the following chapter, we will compare TINS with state-
of-the-art in situ middleware, Goldrush [119] and Damaris [42], and show how we can improve
the performance of TINS with thread isolation.

76

5 Implementation of a Thread Isolation to
Improve TINS Performance

In the �rst version of TINS, the simulation master thread spawns an analytics task at a given in
situ frequency and resumes to the next iteration without waiting for the task completion. This
approach enables to take bene�t from some of the wasted cycles of the simulation to execute
analytics with a reduce end-to-end execution time compared to the synchronous approach and
with a low overhead on the simulation execution time for some analytics. In this chapter, we
compare TINS with state-of-the-art middleware to validate the task-based approach compared
to process-based approaches. We show that TINS outperforms Goldrush [119] on analytics par-
allelized with TBB (Section 5.1) and Damaris [42] on lightweight analytics but that Damaris has
better performance on heavy analytics (Section 5.2). We �nally implement a thread isolation
mechanism thanks to TBB arenas and we show that TINS with this isolation competes with
Damaris on heavy analytics (Section 5.3).

5.1 Evaluation of TINS compared to the Goldrush Process-Based
Approach

In our approach, simulation and analytics run inside the same process and we let the TBB sched-
uler interleave simulation and analytics tasks on the same resources. As already seen in Chap-
ter 2, in situ processing is often seen as a co-scheduling problem [57, 87]. Simulation and analytics
run on two distinct processes on the same cores by over-subscribing the compute nodes resources
or by dedicating resources to the analytics. In the Goldrush approach, simulation and analytics
processes are executed in a way that minimizes the core idleness periods without degrading sim-
ulation performance. TINS and Goldrush share a similar problematic and solve it at a di�erent
level (OS level for Goldrush and task level for TINS). We compare in this section the two solu-
tions. We �rst present how Goldrush is used on the Cobalt supercomputer (Section 5.1.1). We
then instrument ExaStamp and develop analytics with the Goldrush API (Section 5.1.2). Finally,
we compare TINS and Goldrush on three analytics (Section 5.1.3).

5.1.1 Usage of Goldrush on the Cobalt Supercomputer

Goldrush [119] is a C library that can be schematized by Figure 5.1. Simulation and analytics
run on two di�erent processes and they share monitoring data through a shared memory seg-
ment managed by System V. The principle of the middleware is the following. Simulation and

77

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Node

Simulation
process

Analytics
process

Shared memory segment

SIGCONT

SIGSTOP

Figure 5.1 | Schematic view of in situ analytics with Goldrush. Simulation and analytics run on their own processes
inside the same compute node and share data via a shared memory segment. The cores of the node are over-subscribed:
both processes can use all the cores of the node. The simulation process can resume and stop the analytics process
by sending SIGCONT and SIGSTOP signals.

analytics processes are launched simultaneously on the node but the analytics process is initially
suspended. When the simulation reaches a sequential region, it predicts if the region will be
longer than a given threshold. If this is the case, it sends a SIGCONT signal to the analytics pro-
cess to resume. At the end of the sequential region, the simulation sends a SIGSTOP signal to the
analytics process to suspend it.

Goldrush proposes two scheduling policies: a greedy policy where the analytics process runs
during simulation sequential regions and a more complex interference aware policy where Gol-
drush also monitors performance counters and determines if the analytics causes interference in
the simulation execution. In this situation, PAPI hardware counters [91] are stored in the shared
memory segment and Goldrush slows down the analytics execution rate if it causes too much in-
terference to the simulation. Unfortunately, we were not able to access PAPI hardware counters
on the Cobalt supercomputer and we decided to use only the greedy policy for our comparisons.

We launch the two processes as a MPMD MPI program on one Broadwell node. Each process
can use all the cores of the node and the two codes share the same MPI_COMM_WORLD communica-
tor. At initialization, the simulation code creates the shared memory segment and sends contact
information to the analytics process so that it can attach it. The MPI_COMM_WORLD communicator
is split so that the codes can work with distinct communicators.

The transfer of data from the simulation to the analytics is not natively supported by Gol-
drush. It is made possible by the FlexIO [117] transport in the ADIOS [77] system. Unfortunately,
Goldrush is not an open source work and the version of the middleware provided by its authors
did not include the necessary functions to use FlexIO. We therefore developed a simple data
transfer thanks to the shared memory segment.

5.1.2 Instrumentation of ExaStamp with Goldrush API

To integrate the Goldrush library into ExaStamp, we directly insert the Goldrush API inside the
simulation code (see Figure 5.2). The middleware has been developed for MPI+OpenMP appli-
cations but it is not bound to any multithreaded programming language because it just needs
to know when the simulation enters and leaves sequential regions. When gr_phase_start is
called, the library identi�es the sequential region based on the name of the �le and the line num-
ber where the function is called. If this sequential region is met for the �rst time, Goldrush stores
the duration of the region as the elapsed time between gr_phase_start and gr_phase_end. If

78

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

the region has already been encountered, the library predicts the duration of the sequential re-
gion based on the measurements performed during previous iterations. If the sequential region
is predicted to be long enough (more than 1ms), the analytics is resumed. When the simula-
tion calls the gr_phase_end function, the analytics process is stopped again. If the sequential
region is not predicted to be long enough, Goldrush only monitors the elapsed time between
gr_phase_start and gr_phase_end. The instrumentation of ExaStamp is straightforward ex-
cept that sequential regions cannot be identi�ed by the �le name and the line number. Indeed,
some sequential regions are de�ned once in ExaStamp code but called several times with di�erent
inputs. We therefore use a global identi�er to di�erentiate the sequential regions.

1 // Initialize Goldrush
2 gr_init(MPI_COMM_WORLD);
3
4 // Begin timeloop
5 gr_mainloop_start ();
6 for (int i=0; i<imax; ++i)
7 {
8
9 parallel_region(...);

10
11 // Sequential region
12 gr_phase_start(__FILE__ , __LINE__);
13 sequential_region(...);
14 gr_phase_end(__FILE__ , __LINE__);
15
16 parallel_region(...);
17
18 // Sequential region
19 gr_phase_start(__FILE__ , __LINE__);
20 sequential_region(...);
21 gr_phase_end(__FILE__ , __LINE__);
22
23 }
24 // End timeloop
25 gr_mainloop_end ();
26
27 // Finalize Goldrush
28 gr_finalize ();

Figure 5.2 | Instrumentation of ExaStamp with the Goldrush API.

To compare TINS with the Goldrush approach, we keep the same bu�ering technique ex-
plained in Section 4.3.1. When the simulation reaches an in situ iteration, it copies the data into
the shared memory segment in the ParticleInSitu data structure and resumes to the next
iteration. The data of the shared memory segment can be overwritten only when Goldrush has
completed the execution of the analytics for this iteration. It means that parts of the analytics
are executed during ExaStamp sequential regions and the remaining are executed synchronously
with the simulation if the sequential regions are not long enough between two in situ iterations.

The statistics_seq and statistics_par analytics are adapted by extracting them from
ExaStamp. In the analytics side, we only need to call the gr_init and gr_finalize functions.
The two analytics are also adapted to read data from the shared memory segment.

79

Task-Based In Situ for Molecular Dynamics on Exascale Computers

5.1.3 Comparison of TINS and Goldrush

Table 5.1 shows the total execution time of TINS and Goldrush approaches on an ExaStamp
simulation on one Broadwell node. We run three analytics: the parallel statistics performed 100
and 1,000 times after each iteration (stat_par_100 and stat_par_1000) for small and medium
analytics parallelized with TBB and the sequential statistics computed 1,000 times at each in situ
iteration (stat_seq_1000) for a long analytics without TBB.

Table 5.1 | Comparison of Goldrush and TINS on a simulation of 32 iterations with 4,000,000 particles on 1 Broad-
well node. For each test, the analytics are executed after each iteration. The total execution times are expressed in
percentages of the total execution of ExaStamp alone without in situ analytics and without �le output.

stat_par_100 stat_par_1000 stat_seq_1000

Goldrush 108.25 % 122.56 % 173.84 %
TINS 100.05 % 107.30 % 172.79 %

Goldrush and TINS present similar execution times for the long sequential analytics, with a
relative end-to-end execution time of 173%. When executed synchronously, the stat_seq_1000

relative execution time alone on a Broadwell core was around 170%. For the two approaches, the
total execution time is dominated by the analytics execution time and both approaches show a
good overlapping of analytics and simulation. In particular, parts of the analytics run during
simulation sequential regions, while the remaining are executed at the end of the simulation
iteration.

The results are di�erent for the parallel analytics. For both parallel analytics, the overhead
of TINS is under 7%, being even negligible for stat_par_100. On the other hand, Goldrush has
an overhead of 8% (resp. 22%) when computing the statistics 100 (resp. 1,000) times after each
iteration. Goldrush can execute several analytics processes concurrently with a multithreaded
simulation but it has not been tested with multithreaded analytics [119]. It seems here that there
are side e�ects when running multithreaded analytics. We identi�ed several possible causes to
these side e�ects. A longer context switching for the worker thread or a delay in the moment
where the worker threads get the SIGCONT and SIGSTOP signals may lead to a smaller portion
of analytics executed during simulation sequential regions. Moreover, the TBB scheduler of the
analytics sees N cores in the system and therefore creates N − 1 worker threads. When the
analytics process is resumed, the analytics master thread and N − 1 threads execute analytics
task and the simulation master thread computes sequential regions. There are therefore N + 1
threads on N cores, leading to core over-subscription and potential performance loss.

For the parallel analytics, TINS manages to interleave simulation and analytics tasks more
e�ciently than Goldrush. In particular, there is a unique TBB scheduler with N − 1 worker
threads. There is therefore no need for context switching and there is no core over-subscription.
Moreover, both simulation and analytics sequential regions can be exploited, while Goldrush
only exploits simulation sequential regions. TINS also exploits the periods when ExaStamp is
not e�cient enough on the 28 Broadwell cores by adding more tasks to execute. Finally, TINS
is easier to use because there is no parameter to use and tune, while the user needs to choose
the threshold for the sequential region duration and the size of the shared memory segment in
Goldrush.

80

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

We have seen in this section that TINS can be up to 12% faster than the Goldrush approach on
multithreaded analytics and we suspect that a limitation of the process-based approach proposed
by Goldrush may come from the over-subscription of the cores by multithreaded processes that
do not share the same TBB scheduler. Another traditional technique of in situ is the static helper
core approach, which is for example implemented in the Damaris [42] middleware. The cores are
in this case split into two groups and each process executes on its own group of cores. We will
show in the next section that the process-based static helper core approach of Damaris shows
competitive performance that our TINS approach.

5.2 Evaluation of TINS compared to the Damaris Static Helper
Core Approach

Another approach to co-schedule simulation and analytics processes on the same resources is to
dedicate a set of cores for the analytics process. In this situation, cores are not over-subscribed
and the OS scheduler does not have to handle priorities between the two processes. This approach
is implemented in the Damaris middleware for example. We compare in this section TINS where
we let TBB schedule simulation and analytics tasks on all the cores of a node and Damaris where
the cores are split into two groups. We �rst instrument ExaStamp and develop analytics plugins
with the Damaris API (Section 5.2.1) and we compare TINS and Damaris on our set of analytics
benchmarks (Section 5.2.2).

5.2.1 Instrumentation of ExaStamp with Damaris API

Damaris is a MPI-based C++ library where simulation and analytics belong to two distinct sets of
MPI processes. Each compute node holds a simulation and an analytics MPI processes. Inside a
node, data are transferred from the simulation process to the analytics process thanks to a shared
memory segment managed by Boost. Damaris architecture is summarized in Figure 5.3.

The instrumentation of ExaStamp is done in two steps. First, we need to initialize Damaris
after MPI initialization (see Figure 5.4 left). Damaris splits the MPI_COMM_WORLD communicator
in two, one for the simulation and one for Damaris server where analytics are executed. Exa-
Stamp thus needs to call the damaris_client_comm_get function to get the simulation MPI
communicator where it will work. Damaris initialization requires an XML �le that gives infor-
mation for the execution of Damaris, for example the size of the shared memory bu�er. This �le
also describes the data structure used between the simulation and the analytics (Figure 5.5). The
XML �le also lists the di�erent plugins that can be launched by Damaris upon the reception of
events.

The second step of ExaStamp instrumentation is done during the simulation iteration loop.
Damaris proposes di�erent ways for the simulation to expose data to the analytics. A double
bu�ering technique allows the simulation to allocate its data structures directly inside the shared
memory segment. The simulation works inside the shared memory segment and tells when
data are ready to be processed and when it does not use the data anymore. This way, no copy
is performed when the iteration is over and simulation and analytics can work simultaneously
on the same data. This technique proved e�cient for simulations that use a double bu�ering
technique [42]. However, as explained in Chapter 3, ExaStamp does not use this double bu�ering
technique. Moreover, due to ExaStamp complex data structure, modifying the code such that it

81

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Node

Simulation process

C1

C5

C2

C6

C0

C4

Analytics process

C3

C7

Shared
memory
segment

data data

Event queue
event

Plugin

XML file

Figure 5.3 | Schematic view of in situ analytics with Damaris on a node composed of 8 cores. The cores are split
into two groups: one group of 6 cores for the simulation MPI process and one group of 2 cores for the analytics MPI
process. An XML �le describes the data that are exchanged in the shared memory segment. An event queue enables
to run plugins on the analytics process.

1 int err , is_client;
2
3 // Initialize Damaris
4 damaris_initialize("exastamp.xml",

MPI_COMM_WORLD);
5 damaris_start (& is_client);
6
7 // If simulation process
8 if ((err == DAMARIS_OK || err ==

DAMARIS_NO_SERVER) && is_client
)

9 {
10 runSimulation ();
11
12 // Finalize Damaris
13 damaris_stop ();
14 damaris_finalize ();
15
16 }
17 else
18 {
19 // Finalize Damaris
20 damaris_finalize ();
21 }

1 ParticleInSitu part;
2 int nbPart = getNbParticles ();
3
4 // Set number of particles in the

MPI process
5 damaris_parameter_set("nbPart", &

nbPart , sizeof(int));
6
7 // Allocate the fields of part in

the shared memory segment
8 damaris_alloc("timestep/rx", (void

**)(& particles.rx));
9

10 // Fill the buffer with ExaStamp
data

11 fillBuffer (&part);
12
13 // Tell that data are ready
14 damaris_commit("timestep/rx");
15 damaris_clear("timestep/rx");
16
17 // Send the event
18 damaris_signal("runAnalytics");

Figure 5.4 | Instrumentation of ExaStamp with Damaris API: at ExaStamp initialization (left) and at the end of a
simulation iteration (right).

82

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

1 <simulation name="xstamp">
2
3 <parameter name="nbPart" type="int" value="1"/>
4
5 <layout name="intData" type="int" dimensions="nbPart" />
6 <layout name="doubleData" type="double" dimensions="nbPart" />
7
8 <group name="timestep">
9 <variable name="id" layout="intData" />

10 <variable name="type" layout="intData" />
11 <variable name="rx" layout="doubleData" />
12 <variable name="ry" layout="doubleData" />
13 <variable name="rz" layout="doubleData" />
14 <variable name="vx" layout="doubleData" />
15 <variable name="vy" layout="doubleData" />
16 <variable name="vz" layout="doubleData" />
17 </group >
18
19 <actions >
20 <event name="runAnalytics" action="myAnalytics" library="libanalytics.so" />
21 </actions >
22
23 </simulation >

Figure 5.5 | XML �le to describe the ParticleInSitu structure shared by simulation and analytics.

allocates its data into the shared memory segment is di�cult and we decided to use the second
option (Figure 5.4 right). When the simulation reaches an in situ iteration, it allocates resources
into the shared memory segment (damaris_alloc), copies the data into the allocated bu�er,
tells Damaris that data are ready to be processed (damaris_commit) and that it does not use
them anymore (damaris_clear) and sends the event to launch analytics (damaris_signal).

The development of the plugins is less straightforward than the instrumentation of the simu-
lation code because Damaris does not expose a simple API for the plugins. It is therefore required
to go more in depth into Damaris structure as shown in Figure 5.6. A VariableManager is in
charge of keeping track of the variables de�ned in the XML �le. Data are stored in blocks. On a
node, each simulation MPI process copies a block of data per iteration into the shared memory
segment. The Damaris servers on a node, and hence the analytics MPI processes of the node, can
access all the blocks stored in the shared memory segment of the node. In our situation, each
node is composed of one simulation MPI process and one analytics MPI process, as highlighted
in Figure 5.3. Thus, the analytics process only needs to retrieve one block of data per iteration.
The analytics then performs its computations on the retrieved pointers. Finally, the plugin is in
charge of freeing the shared memory segment when data are not necessary anymore.

Damaris does not provide a native way to handle the number of threads that the di�erent
processes can access. The user is therefore in charge of splitting the cores into two groups and
to allocate a group of cores to each MPI process of the node. We use here the taskset Linux
command to separate at launch time the N cores of a node into two groups of cores and assign
them to each MPI process of the node. When asking n cores for the analytics on a processor with
N cores, the n �rst cores are assigned to the analytics process and the N − n last cores to the
simulation, guaranteeing that simulation and analytics processes use di�erent sets of cores.

Damaris is integrated inside the simulation executable. The only di�erence with ExaStamp
alone is that the user asks two MPI processes per compute node. The size of the shared memory

83

Task-Based In Situ for Molecular Dynamics on Exascale Computers

1 void myAnalytics(const char* name , int source , int iteration , const char* args)
2 {
3 // Look for rx variable
4 shared_ptr <Variable > v;
5 v = VariableManager :: Search("timestep/rx");
6 if (v)
7 {
8 // Get block corresponding to this iteration
9 shared_ptr <Block > b = v->GetBlock(source , iteration , 0);

10 if (b)
11 {
12 // Get pointer to the data
13 void* addr = b->GetDataSpace ().GetData ();
14 double *rx = (double *) addr;
15 runAnalytics(rx);
16 }
17 else
18 std::cerr << "Block not found" << std::endl;
19 }
20 else
21 std::cerr << "Variable timestep/rx not found" << std::endl;
22
23 // Free shared memory segment
24 VariableManager :: iterator var = VariableManager ::Begin();
25 VariableManager :: iterator end = VariableManager ::End();
26 while (var != end)
27 {
28 var ->get()->ClearAll ();
29 var ++;
30 }
31 }

Figure 5.6 | Development of a Damaris plugin. Damaris does not provide an API for plugin development and we have
to go more in depth into Damaris structure.

84

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

segment has to be set before the execution and we choose it so that only one copy of the data
can �t inside.

5.2.2 Comparison of TINS and Damaris

Figure 5.7 compares TINS and Damaris for the four analytics. Damaris uses di�erent numbers of
static helper cores (1 to 14 cores out of the 28 Broadwell cores). The results for the four analytics
can be divided in three patterns: sequential analytics, lightweight parallel analytics and compute
intensive parallel analytics.

stat_seq_1000 stat_par_1000 histogram_100000000 radial
0

50

100

150

200

Re
la

tiv
e

to
ta

le
xe

cu
tio

n
tim

es
(%

) TINS
(no isolation)
Damaris
(1 helper core)
Damaris
(4 helper cores)
Damaris
(7 helper cores)
Damaris
(14 helper cores)
ExaStamp alone

Figure 5.7 | Comparison of the relative total execution times of the in situ execution of 4 analytics with TINS and
Damaris. Damaris uses di�erent numbers of static helper cores. The total execution times are expressed in percentages
of the total execution time of ExaStamp alone. ExaStamp simulation of 32 iterations with in situ analytics after each
iteration on a simulation of 256,000,000 particles on 64 Broadwell nodes.

Sequential Analytics

In a static helper core strategy, allocating more than one core for the statistics_seq analytics
is useless: it just reduces the simulation execution time because the simulation runs on fewer
resources while not speeding up the sequential analytics. The analytics being longer than the
simulation iteration, the execution time is dominated by the analytics for both approaches. In
TINS, there will also be one thread executing the sequential task while the other threads exe-
cute simulation tasks. The di�erence between the Damaris approach with one helper core is that
the helper thread of Damaris will always execute on the core 0 of the processor because of the
splitting of the cores into two groups made by the taskset function. In TINS, there is no guar-
antee that the task will be executed on a dedicated core. Broadwell nodes being decomposed in
4 NUMA nodes, this can lead to NUMA e�ects when the threads that execute the task are not on
the same NUMA node from one iteration to the other. This is the reason why Damaris with one
helper core is slightly better than the TINS approach for this analytics.

Lightweight Parallel Analytics

statistics_par and histogram are both analytics parallelized with TBB where small analytics
tasks are created. TINS manages to interleave simulation and analytics tasks with an overhead
of less than 3% compared to ExaStamp alone.

85

Task-Based In Situ for Molecular Dynamics on Exascale Computers

The choice of the number of static helper cores for Damaris has an in�uence on the total
execution time. When using only one helper core, the analytics runs sequentially, hence show-
ing the same execution time than a sequential computation. For the statistics_par analytics,
increasing the number of helper cores is necessary to bene�t from the analytics parallelization. 4
helper cores seems to be the best trade o� for the statistics_par analytics. When using more
helper cores, too much cores are removed from the simulation process and the total execution
time gets dominated by the simulation execution time. On the other hand, the histogram ana-
lytics is lightweight compared to the simulation iteration, even sequentially. One helper core is
therefore the optimal for this analytics. However, even with the optimal numbers of helper cores
for the two parallel analytics, Damaris does not manage to be faster than the TINS approach,
showing the bene�t of the task-based approach for these analytics.

Compute Intensive Parallel Analytics

The result is di�erent for the radial analytics. Using one helper core is the best choice for
Damaris that shows an overhead of 4% compared to ExaStamp alone while TINS shows an over-
head of 47% for this analytics. The radial analytics is a computationally intensive analytics
with an important number of large tasks. TINS does not manage to interleave e�ciently the
radial tasks because ExaStamp does not present enough sequential regions to be exploited for
this heavy analytics. Moreover, if tasks of the radial analytics are executed during ExaStamp
sequential regions, they can prevent simulation tasks to be executed. Indeed, the threads need
to complete the tasks of the radial analytics before executing simulation tasks. The tasks can
therefore disturb the simulation that may be delayed after the end of the sequential region. By
dedicating one core in the Damaris approach, the tasks created by the radial analytics do not
disturb the simulation execution, hence the di�erence in the overhead with respect to ExaStamp
alone.

We have compared in this section TINS with the Damaris approach where the cores are split
into two disjoint groups, one for the simulation and one for the analytics. We have shown that
lightweight analytics parallelized with TBB are easily interleaved between simulation tasks by
TINS but that having one dedicated helper core can both reduce the NUMA e�ects in the case
of a sequential analytics and avoid perturbations with the simulation execution in the case of a
compute intensive analytics. In the following section, we will look at the in�uence of a thread
isolation in TINS and see if it can reduce the overheads for sequential and compute intensive
analytics without increasing the overheads for lightweight analytics parallelized with TBB.

5.3 Implementation of a Thread Isolation Mechanism in TINS

We have shown in the previous section that dedicating resources to the analytics can be bene-
�cial for sequential or heavy parallel analytics. We investigate in this section the in�uence of
thread isolation in TINS. To do so, we separate the task execution into two groups of threads
(Section 5.3.1) that can be pinned on disjoint cores thanks to the TBB arena and observer fea-
tures introduced in Chapter 3. We then propose an alternative solution to the analytics task
spawned by the simulation by creating an analytics master thread with a di�erent timeloop than
the simulation master thread (Section 5.3.2) and evaluate the two versions of TINS with respect

86

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

to Damaris (Section 5.3.3). Finally, we highlight the limitations of the static helper core approach
(Section 5.3.4).

5.3.1 Separation of the Tasks into Disjoint Arenas

As already seen in Chapter 3, TBB proposes di�erent mechanisms to guide the task execution. In
particular, arenas allow to execute tasks in di�erent groups of threads given a concurrency level
that sets the maximum number of threads that can execute tasks concurrently. The observer
intercepts when a thread enters an arena to pin it to a given subset of cores.

Let N be the number of cores in the processor. We use two arenas: one with a concur-
rency level of ns for the simulation and one with a concurrency level na for the analytics so that
ns + na = N to guarantee the thread isolation. The arenas are instantiated during ExaStamp
initialization, the analytics arena size being chosen by the user in the input data �le. ExaStamp
code is modi�ed so that each parallel region is called inside the proper arena (Figure 5.8). To
each arena is associated a task_group to represent the concurrent execution of the tasks. The
fork-join model used by ExaStamp is kept thanks to the execute and run_and_wait functions.
The threads enter an arena to execute a parallel region and leave the arena when the tasks of this
arena have all been executed.

1 simulationArena ->execute([&]
2 {
3 simulationGroup ->run_and_wait ([&]
4 {
5 tbb:: parallel_for(tbb:: blocked_range <J>(begin , end),
6 [&](const tbb:: blocked_range <J>& r)
7 {
8 lambda(r.begin(), r.end());
9 }

10);
11 });
12 });

Figure 5.8 | Encapsulation of a parallel region into the simulation arena. The task group represents the concurrent
execution of the tasks. The fork-join model of ExaStamp is kept thanks to the run_and_wait and execute functions.

We derive the arena_observer class from the TBB task_scheduler_observer class and
we associate one arena observer to each arena (Figure 5.9). Each arena observer holds a mask, cor-
responding to na cores for the analytics observer and ns cores for the simulation observer. When
a thread enters an arena, it calls the on_sheduler_entry method of the corresponding arena
observer and the thread mask is applied to the thread thanks to the pthread_setaffinity_np

function. The threads are not pinned on a unique core each but they execute on a subset of cores.
We will see in next section the in�uence of arena pinning on the total execution time.

5.3.2 Implementation of an Analytics Master Thread

We have seen in Section 5.2.2 that NUMA e�ects can be reduced when sequential analytics are
executed on the same core from one iteration to another. We therefore propose an alternative

87

Task-Based In Situ for Molecular Dynamics on Exascale Computers

1 class arena_observer : public tbb:: task_scheduler_observer
2 {
3 public:
4
5 arena_observer(tbb:: task_arena& _a, cpu_set_t _target_mask) :
6 tbb:: task_scheduler_observer(_a), target_mask(_target_mask)
7 {
8 observe(true);
9 }

10
11 void on_scheduler_entry(bool worker)
12 {
13 pthread_t current_thread = pthread_self ();
14 pthread_setaffinity_np(current_thread , sizeof(cpu_set_t), &target_mask);
15 }
16
17 void on_scheduler_exit(bool worker) { }
18
19 ~arena_observer () {};
20
21 private:
22
23 cpu_set_t target_mask;
24 };

Figure 5.9 | Description of the arena observer class. The on_scheduler_entry method is called when a thread
enters the arena and the on_scheduler_exit method is called when the thread leaves the arena.

method to the analytics task created by the simulation master thread that guarantees that se-
quential analytics will be executed by the same thread. We also study the impact of the binding
of the temporary bu�er and the arenas on the total execution time.

Analytics Master Thread

Figure 5.10 describes the version of TINS where an analytics master thread is spawned by the
simulation during the initialization. The two master threads have di�erent timeloops, the simu-
lation master thread being in charge of simulation tasks creation and the analytics master thread
creating analytics tasks.

For the simulation master thread, the di�erence with the timeloop presented in Figure 4.6
relies on the fact that the simulation master thread does not spawn an analytics task after having
copied the data but sends a noti�cation instead. When reaching an analytics breakpoint, the
simulation master thread copies the data into the temporary bu�er and noti�es the analytics
master thread that data are ready to be processed with the dataReady signal. It then resumes to
the next iteration. On the other side, the analytics master thread waits for data to be ready. When
it receives the dataReady signal, it launches the analytics execution inside the analytics arena.
Once the analytics tasks have been executed, the analytics master thread noti�es the simulation
master thread with the analyticsDone signal, telling the simulation that data in the temporary
bu�er can be overwritten. The simulation master thread therefore waits for the analyticsDone

signal before copying the data into the temporary bu�er. This synchronization is necessary to
keep only one copy of the particles data at a time. It is disabled for the �rst analytics breakpoint
to avoid a deadlock. In the case where enough memory is available to store several copies, a

88

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

MPI Process
ns

na

Simulation Thread

Spawn analytics
master thread

Compute a sim-
ulation iteration

if analyticsBreakpoint

Wait for
analyticsDone

Copy data

Notify dataReady

Analytics Thread

Wait for dataReady

Run analytics

Notify
analyticsDone

na + ns = N

Figure 5.10 | Timeloops of the simulation (left) and analytics (right) master thread. The blue rectangles correspond
to portions of codes that can be executed in the simulation arena of size ns . The orange rectangle corresponds to the
execution of analytics inside the analytics arena of size na . In the static helper core con�guration, na +ns = N where
N is the number of cores in the node. The �le output is omitted compared to Figure 4.6 because the �le writing can
be seen as an analytics executed by the analytics master thread.

bu�ering system could be implemented to reduce the time lost by the simulation master thread,
waiting for the analytics to be �nished.

In�uence of the Arena Binding

We compare here the impact of three di�erent binding strategies:

• nobinding: the arenas are not bound and we let TBB schedule the threads on the di�erent
cores. The arena observers are disabled;

• master-binding: the analytics master thread is bound on core 0 and the simulation mas-
ter thread on core N − 1. The binding of the master thread is made once at ExaStamp
initialization and the arena observers are disabled;

• arena-binding: the analytics master threads are bound and the observers apply a mask
when the worker threads enter the arenas. They bind the analytics arena on the �rst na
cores (corresponding to the �rst NUMA nodes of the processor) and the simulation arena
on the remaining ns cores (corresponding to the last NUMA nodes of the processor).

As already seen in Chapter 3, ExaStamp uses an a�nity partitioner and using two arenas
may disturb its e�ciency. Indeed, the a�nity partitioner tries to assign tasks to the same threads
from one iteration to another to optimize cache a�nity. However, in a two-arena system, the
threads are not assigned to a particular arena and a thread may be in the simulation arena for
some iterations and then enter the analytics arena. This is highlighted in Figure 5.11 where the
thread 6 for example is in the simulation arena in the �rst iteration but in the analytics arena in

89

Task-Based In Situ for Molecular Dynamics on Exascale Computers

the second iteration. Let suppose that in this example the a�nity partitioner thinks that the task
t should be executed by the thread 6. Because it is not in the simulation arena for the second
iteration, another thread executes the task t , potentially leading to cache issues. This e�ect could
be all the more exacerbated when the processor is composed of di�erent NUMA nodes.

Figure 5.11 | Trace of the in situ execution of statistics_par with na = 7 and ns = 21 on a 28-core Broadwell
node for two iterations of ExaStamp. Blue and orange areas correspond respectively to simulation and analytics tasks
execution. Purple areas highlight thread idleness periods. Thread 0 (top) is the simulation master thread and thread
27 (bottom) the analytics master thread.

To validate this hypothesis, we measure the total execution time of TINS when computing the
parallel statistics with na = ns = N/2 and we compare it with the execution time of ExaStamp
alone running on N/2 cores. We choose the parallel statistics because it is a lightweight analytics
so that the total execution time is dominated by the simulation with this arena con�guration. The
threads are also likely to change of arena from one iteration to the other, highlighting the NUMA
e�ects. We compare the three binding strategies when ExaStamp uses the a�nity partitioner but
we also look at the impact of the binding when using two other partitioners: simple partitioner
and auto partitioner. These partitioners do not optimize the cache a�nity and should be less
sensitive to the two-arena system.

a�nity auto simple
0.0

2.5

5.0

7.5

10.0

12.5

O
ve

rh
ea

d
on

Ex
aS

ta
m

p
(%

)

No binding
Master binding
Arena binding

Figure 5.12 | Overhead of three binding strategies (nobinding, master-binding and arena-binding) on Exa-
Stamp alone executed on 14 Broadwell cores for three partitioners (a�nity, auto and simple). For the three binding
strategies, TINS is used with na = ns = 14. ExaStamp simulation of 32 iterations with statistics_par being
executed after each iteration on a simulation of 4,000,000 particles on 1 Broadwell node.

90

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

Figure 5.12 shows the overhead of the di�erent binding strategies on ExaStamp alone exe-
cuted on 14 Broadwell cores. For the three partitioners, master-binding shows smaller over-
head than nobinding and the overhead is further reduced with the arena-binding strategy.
The performance gain is more visible for the auto and simple partitioners because the arena bind-
ing gives them thread a�nity that reduces cache e�ects. While the overhead of arena-binding

when using auto and simple partitioners is around 6%, the overhead reaches 12% using an a�nity
partitioner. This validates our hypothesis that the two-arena system has a negative in�uence on
the a�nity partitioner. This latter is not able to decide which thread should execute which task
because the threads may change of arena at each iteration.

In�uence of the Temporary Bu�er Binding

Table 5.2 compares the simulation, copy and analytics execution times of a static helper core strat-
egy for di�erent bindings of the temporary bu�er. The comparison is performed on a Broadwell
node of 28 cores with arenas of size na = ns = 14. The analytics master thread is pinned on the
core 0. The analytics arena is pinned on the 14 �rst cores, corresponding to the NUMA nodes 0
and 1. The simulation arena is pinned on the 14 last cores, corresponding to the NUMA nodes 2
and 3. Compared to a situation where the location of the bu�er is not set, the analytics is up to
41% faster when allocating the bu�er close to the analytics master thread and up to 22% slower
when allocating the bu�er close to the simulation master thread. The di�erent binding strategies
also show slightly slower execution times for the simulation and the copy.

Table 5.2 | Simulation, copy and analytics execution times of a static helper core strategy with ns = na = 14 on a
28-core Broadwell node when binding or not the temporary bu�er on a NUMA node. The relative execution times
are expressed in percentages with respect to ExaStamp alone executed on 14 cores. ExaStamp simulation of 4,000,000
particles for 32 iterations where statistics_par is executed after each iteration.

Simulation Copy Analytics
No binding 113.64 % 0.67 % 0.21 %
NUMA 0 112.55 % 0.41 % 0.13 %
NUMA 1 112.84 % 0.42 % 0.13 %
NUMA 2 112.43 % 0.47 % 0.26 %
NUMA 3 112.30 % 0.47 % 0.34 %

Given all the measurements, we decided to bind the analytics arena on the �rst NUMA nodes
and to allocate the temporary bu�er on the NUMA node 0 where the analytics master thread is
bound. With these bindings, we expect to reduce the NUMA e�ects highlighted by some of the
analytics.

5.3.3 Comparison of the Two Versions of TINS and Damaris

Figure 5.13 compares TINS without isolation, Damaris and TINS with static helper core strategy
(TINS SHC) on the four analytics used in Section 5.2.2. Each bar of the plot corresponds to a
strategy with a number of static helper core. To better understand the total executions times of
the di�erent strategies, the bars are divided into two parts. The left part corresponds to times
measured on the simulation side and the right part corresponds to times measured on the analyt-
ics side. For each part, the dashed areas measure the time when the simulation (resp. analytics)

91

Task-Based In Situ for Molecular Dynamics on Exascale Computers

master thread is active and the blank areas measure idle times of the master threads, either when
waiting for data to be ready for the analytics master thread or waiting for the analytics comple-
tion for the simulation master thread. The total execution times are expressed in percentages of
the total execution time of ExaStamp alone.

1 4 7 14
0

50

100

150

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) stat_par_1000

1 4 7 14
0

50

100

150

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) stat_seq_1000

1 4 7 14
0

40

80

120

160

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) radial

1 4 7 14
0

40

80

120

160

200
Re

la
tiv

e
ex

ec
ut

io
n

tim
es

(%
) histogram_100000000

Damaris TINS SHC ExaStamp alone TINS without isolation

Figure 5.13 | Comparison of the di�erent strategies on 64 Broadwell nodes for a simulation of 32 iterations on
256,000,000 particles. The analytics are performed after each iteration. The total execution times are normalized with
respect to ExaStamp alone. The TINS without isolation reference execution times are those discussed in Section 5.2.2
and Chapter 4.

Overall, TINS and Damaris show similar performance, TINS being even better for heavy
analytics (sequential statistics and radial). When looking into more details, we notice that TINS
with static helper core presents an overhead on the simulation execution time, compared to
the Damaris approach. When using one static helper core, the simulation execution time is
approximately 2% longer with TINS SHC than with Damaris and this di�erence reaches 8% when
using 14 static helper cores. We identi�ed two reasons that may explain this overhead. First, we
explained in the previous section that the two-arena system disturbs the a�nity partitioner of
ExaStamp. The observers also apply a mask to set the core a�nity every time a thread enters an
arena in TINS, potentially leading to small overheads. In Damaris, the processes are separated
thanks to the taskset function and there is only one arena per process. Moreover, Damaris does
not use an observer because the cores are split at launch time, leading to fewer interference.

On the other side, while the execution time of histogram is equivalent for Damaris and
TINS SHC, the execution times of the other analytics are longer with Damaris than with TINS
SHC. For example, the execution of statistics_seq can be up to 79% longer with Damaris than
with TINS SHC with the same number of static helper cores. Measurements with VTune show an
important impact of NUMA e�ects. Indeed, for the same amount of memory accesses, TINS SHC
presents 15% of DRAM remote accesses while this proportion reaches 75% for Damaris. This is
due to Damaris memory management. Damaris relies on a shared memory segment to exchange
data between simulation and analytics processes and this shared memory segment is not bound

92

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

to a speci�c location. The shared memory segment is therefore likely to be interleaved on the
di�erent NUMA nodes, leading to major performance penalties when data need to be accessed.
In TINS SHC, the temporary bu�er is located on the same NUMA node than the analytics master
thread, limiting the NUMA accesses when the analytics threads need to access copied data.

For lightweight analytics parallelized with TBB, TINS SHC is slightly slower than TINS with-
out isolation (respectively 3% for histogram and 6% for statistics_par) because of the over-
head of TINS SHC on the simulation execution time and because one thread is removed from the
simulation. On the other hand, the isolation leads to better performance for statistics_seq

and radial, except when the number of helper cores is set to 14 because too much threads
were removed from the simulation. With one static helper core, TINS SHC is 42% faster than
TINS without isolation on statistics_seq and 29% faster on radial. The isolation and the
memory placement strategies therefore prove their bene�t on heavy analytics while having a
low overhead on lightweight analytics. Moreover, as it will be discussed in Chapter 7, the ana-
lytics master thread implemented in TINS SHC has the advantage of separating simulation and
analytics codes more e�ciently than TINS without isolation.

5.3.4 Highlighting the Limitations of the Static Helper Core Approach

We have seen in the previous section that a thread isolation in TINS can lead to better perfor-
mance than TINS without isolation on heavy analytics. However, the static helper core approach
has still limitations with respect to resource consumption. In particular, it does not exploit the se-
quential regions as in the TINS without isolation case. Moreover, the static helper core approach
adds idleness periods during synchronization points, when the analytics master thread waits
for the dataReady signal or when the simulation master thread waits for the analyticsDone

signal.
The time lost during synchronization points depends on the choice of the number of helper

cores. Figure 5.14 shows the traces of the execution of statistics_par with three di�erent
numbers of static helper cores on one Broadwell node. Notice that the trace measurement system
has been modi�ed to show when the threads are in the simulation or analytics arenas and does not
show the task execution anymore. We did so because the overhead on the simulation execution
time was too important when measuring the task execution and the �les with task measurements
were too heavy to be processed. We therefore instrumented the arena observers to create events
when the threads enter or leave the arenas.

When using only one helper core, the analytics is executed on the analytics master thread and
the sequential execution is longer than a simulation iteration. The 27 simulation threads are thus
idle when the simulation master thread waits for the analyticsDone signal. On the other hand,
when using 4 static helper cores, the analytics execution is faster than the simulation iteration
and the 4 analytics threads are idle when the analytics master thread waits for the dataReady

signal. The best choice for this particular analytics seems to be 2 static helper cores when the
analytics execution time is close to the simulation execution time, hence reducing the thread
idleness periods.

We have implemented in this section a static helper core approach in TINS thanks to an
analytics master thread spawned by the simulation master thread, an arena system and arena
observers. We have shown that TINS with static helper core approach can be up to 79% faster than

93

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Figure 5.14 | Trace of the in situ execution of statistics_par for three numbers of static helper cores: 1 (top),
2 (middle) and 4 (bottom) on a 28-core Broadwell node for three iterations of ExaStamp. The trace shows when the
threads are in the simulation arena (blue areas) or in the analytics arena (orange areas). Purple areas highlight thread
idleness periods. Thread 0 (top) is the simulation master thread and thread 27 (bottom) the analytics master thread.

94

Chapter 5 | Implementation of a Thread Isolation to Improve TINS Performance

Damaris for memory intensive analytics and up to 42% faster than TINS without isolation. The
overhead of TINS with static helper core on the simulation execution time is also less sensitive
to the analytics than TINS without isolation, given that the optimal number of static helper cores
is well chosen at runtime.

5.4 Chapter Summary

We have evaluated in this chapter TINS compared to state-of-the-art process-based middleware:
Goldrush and Damaris. We have shown that TINS without isolation can be up to 12% faster than
the Goldrush approach on analytics parallelized with TBB. We have also shown that the static
helper core approach of Damaris performs better than TINS without isolation for sequential
and heavy analytics. We have implemented a static helper core approach in TINS thanks to a
dedicated analytics master thread and we have shown that TINS with static helper core approach
can be up to 42% faster than TINS without isolation on sequential and heavy analytics. TINS with
static helper core approach is also more stable across the di�erent analytics. However, in a static
helper core approach, the choice of the number of static helper cores is essential to avoid wasting
resources during synchronization points. The optimal number of helper core is found so that the
simulation and analytics execution times are equal but this number is analytics dependent and
requires a manual calibration step from the user. We will see in the next chapter how to make
this choice automatic and we will in particular introduce a dynamic helper core strategy with
a temporary thread isolation where the choice of the number of dynamic helper core is less
punitive than for the static case.

95

6 Implementation of a Dynamic Helper Core
Strategy with Automatic Sizes

The static helper core approach has mostly two drawbacks. First, it does not harvest the se-
quential regions of analytics and simulation. Secondly, an optimal number of static helper cores
has to be found to reduce resource wasting during synchronization points. This optimal number
is analytics dependent and requires a calibration step that is time and resource consuming for
the end-user. In this chapter, we propose three di�erent methods to enhance the performance
of the static helper core approach and to limit and even avoid the choices that the user has to
make. We �rst propose an adaptive static helper core approach where the arena sizes adjust
themselves to �nd an optimal where the simulation and analytics execution times are roughly
equals (Section 6.1). After highlighting the technical limitations to implement such an approach,
we design a dynamic helper core strategy with a temporary thread isolation that enables to use
the sequential regions of simulation and analytics (Section 6.2) and we implement it in TINS. The
dynamic helper core approach still requiring the choice of the analytics arena size, we improve
the approach toward an adaptive dynamic helper core strategy with an automatic choice of the
analytics arena size (Section 6.3).

6.1 Implementation of an Adaptive Static Helper Core Approach

To limit the calibration step required to run in situ analytics in a static helper core approach,
our �rst idea has been to implement an adaptive static helper core approach where the arena
sizes automatically adjust themselves so that the simulation and analytics execution times are
roughly equals (Section 6.1.1). However, the implementation of this approach presents technical
limitations and we discuss the reasons why we did not choose this solution (Section 6.1.2).

6.1.1 Design of the Algorithm

When executing asynchronously an analytics parallelized with TBB, the execution time of the
analytics can be adjusted by the size of the analytics arena. The analytics arena size being linked
to the simulation arena size (na + ns = N), the analytics arena size also has an impact on the
simulation execution time. As we have already seen in Chapter 5, if the analytics arena size
increases, more resources are allocated to the analytics and hence the analytics execution time
decreases. However, fewer resources are allocated to the simulation and the simulation execution
time increases. Similarly, when the analytics arena size decreases, the analytics execution time

97

Task-Based In Situ for Molecular Dynamics on Exascale Computers

increases and the simulation execution time decreases. The analytics arena size can therefore be
the parameter to optimize if we want to have simulation and analytics execution times equals.
However, because the arena size is an integer and because of jitters in the execution times due
to the execution context, �nding an analytics arena size such that the execution times are equals
is nearly impossible and we try to �nd the analytics arena size close to the optimal, that is to say
when the execution times are roughly equals.

Figure 6.1 | UML sequence diagram of the simulation and analytics master threads time measurements.

We propose to measure the execution times of the two master threads as highlighted in
Figure 6.1. When the simulation master thread begins to compute the iterations, it starts a
chronometer, computes the iterations with a simulation arena of size ns0 and ends the chronome-
ter when it reaches the next analytics breakpoint. On the other side, the analytics master thread
starts a chronometer when it gets the dataReady noti�cation, launches the analytics execution
on an analytics arena of size na0 and stops the chronometer when the analytics ends. ts and ta
are then the elapsed time between the two chronometers on the simulation and analytics sides
respectively. Before resuming to the next iteration, the analytics master thread adjusts the arena
sizes by comparing ta and ts :

• if ta > ts , it may mean that the analytics does not have access to enough resources. The
next analytics arena size is therefore na1 > na0 (and hence ns1 < ns0);

98

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

• if ta < ts , it may mean that the simulation does not have access to enough resources. The
next analytics arena size is therefore na1 < na0 (and hence ns1 > ns0).

The algorithm to �nd arena sizes close to the optimal is similar to a dichotomy. We start
from a beginning condition and we try di�erent analytics arena sizes until we �nd the one that
gives simulation and analytics arena sizes roughly equals. Here we propose to start with na = 1
because we want to remove as few resources as possible from the simulation in order not to slow
down too much the simulation. The analytics arena size can vary between 1 and N/2 where N is
the number of cores in the processor. This upper limit is chosen so that the simulation does not
run on fewer threads than the analytics. Such an algorithm may converge in a few iterations only
because N corresponds to the number of cores, which does not exceed 72 for modern processors.

6.1.2 Highlighting the Limitations of the Approach

Execution Times Measurements

The �rst di�culty to implement this approach in TINS is related to the position of the arena
adjustment in the analytics master thread timeloop. In Figure 6.1, the analytics master thread
adjusts the arena size when it gets the dataReady noti�cation. At this point, it can have access
to both simulation and analytics execution times and it can apply the adjustment algorithm. It
thus computes the next arena sizes and has to update the arena sizes by destroying the arenas
and creating them with the new sizes. However, at that point, the simulation has resumed to the
next iteration and tasks are already executed in the simulation arena. It is therefore not possible
to destroy the simulation arena.

A solution to this issue would be to execute the arena adjustment algorithm on the simulation
master thread side, before sending the dataReady noti�cation. However, as it will be seen in
more details in Chapter 7, we would like TINS to decouple simulation and analytics executions
and in particular, we do not want the simulation to be aware of the analytics execution. Making
the simulation master thread execute the arena adjustment algorithm goes against this principle.

The only way to execute the arena adjustment algorithm on the analytics master thread
while still being able to destroy the simulation arena is to add an extra synchronization between
the two master threads. When the data have been copied, the simulation is blocked until the
analytics master thread has destroyed and recreated the arenas. However, this solution limits
the asynchronous character of our system, potentially leading to performance loss.

Execution Times Comparison

Another di�culty in this approach is the con�dence we put in the time measurements and in
particular how to compare the execution times. The execution times may present jitters because
of the resource usage and the way the worker threads execute the tasks. Moreover, ExaStamp
does not perform exactly the same operations at each iteration. For example, the neighbor lists
can be executed given re�nement criteria and not at every iteration, as it is shown in Figure 6.2.
The execution time of the analytics, on the other hand, is expected to be more stable throughout
the iterations. These jitters have to be taken into account when comparing the execution times
in order not to make mistakes in the choice of the next analytics arena size.

99

Task-Based In Situ for Molecular Dynamics on Exascale Computers

0 10 20 30
Iteration number

0.0

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
tim

es
(s)

ExaStamp classic
ExaStamp verlet

Figure 6.2 | Execution time per iteration of ExaStamp with two con�gurations: classic con�guration where the neigh-
bor lists is updated after each iteration (green) and verlet con�guration where the neighbor lists is updated given
re�nement criteria (magenta). ExaStamp simulation of 32 iterations of 4,000,000 particles on one Broadwell node (28
cores).

We have proposed in this section an approach to �nd an optimal number of static helper
cores without any calibration steps. However, in the perspective where simulation and analytics
codes are decoupled, implementing this approach in TINS requires an extra synchronization
between the two master threads that would limit the asynchronous properties of TINS. Moreover,
this approach still does not harvest the sequential regions of both simulation and analytics. We
therefore decided not to implement this method in TINS and to focus on a dynamic helper core
strategy that seemed to be more promising. We will see in the following section the design of
the dynamic helper core approach to harvest the simulation and analytics sequential regions and
we will see in Section 6.3 how it o�ers a more �exible framework for the implementation of the
adaptive algorithm.

6.2 Implementation of a Dynamic Helper Core Strategy with a
Temporary Isolation

The static helper core approach does not harvest the simulation and analytics sequential regions
because the threads are separated into two groups and they cannot execute tasks in the other
group, even if no tasks are available in their own group. The goal of this section is to enable
the threads to switch of arena when no more tasks are available in their original arena. We �rst
design a temporary thread isolation with TBB that enables a more dynamic execution of tasks
(Section 6.2.1) and propose two implementations of this dynamic helper core strategy in TINS
(Section 6.2.2). We then evaluate TINS with dynamic helper core compared to TINS with static
helper core (Section 6.2.3) and highlight the limitations of TBB for some analytics.

6.2.1 Designing a Temporary Thread Isolation with TBB

The idea behind a dynamic helper core strategy is to combine the bene�t of both the static helper
core approach and the task-based execution without isolation. The idea is similar to the dynamic
approach of Callisto [57]: we would like to have two groups of threads when both simulation and
analytics tasks are available but to remove the isolation when only one kind of task is available.

100

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

The idea is summarized in Figure 6.3. In this example, the 6 threads (T0 to T5) are split into two
groups: 4 threads for the simulation (T0 to T3) and 2 threads for the analytics (T4 and T5). In a
static helper core strategy (Figure 6.3 left), when the simulation master thread enters sequential
regions (grey areas), T1 to T3 are idle because they have no tasks to execute. In this example, the
analytics is quicker than the simulation. T4 and T5 are thus idle after the analytics execution,
waiting for data to be copied by the simulation. The idle periods are highlighted by the purple
areas.

Time
T5
T4
T3
T2
T1
T0

Static Helper Core

Time
T5
T4
T3
T2
T1
T0

Dynamic Helper Core
Sequential
Simulation
Analytics
Lost
Potential gain

Figure 6.3 | Gantt diagram of the execution of simulation and analytics tasks on 6 threads (T0 to T5) with a permanent
thread isolation (left) and with a temporary thread isolation (right). T0 is the simulation master thread and T1 to T5
are worker threads. T0 to T3 are threads dedicated for the simulation and T4 and T5 execute analytics tasks. The
diagram shows two iterations of a simulation alternating parallel regions (blue areas) and sequential regions (grey
areas). The analytics is composed of one parallel region (orange areas). The purple areas highlight the periods when
the threads are idle. The green area highlights the potential gain in execution time of the right approach.

The dynamic helper core approach aims at harvesting the thread idleness periods (Figure 6.3
right). Instead of being idle during simulation sequential regions, T1 to T3 participate in the
analytics execution. In the same way, T4 and T5 execute simulation tasks instead of being idle
at the end of the analytics execution. The goal is twofold. First, the method aims at reducing
the thread idleness periods. Secondly, as the simulation threads can execute analytics tasks (and
respectively the analytics threads can execute simulation tasks), the simulation and analytics
execution times should be reduced, hence leading to smaller total execution times.

The implementation of a dynamic helper core strategy is made possible by the TBB arenas.
So far, we have used two arenas of sizes ns and na such that ns + na = N , N being the number
of cores in the processor. These sizes prevent the threads to migrate to the other arena when
they have no tasks to execute. In the example of Figure 6.3, ns = 4, na = 2 and N = 6. When
the simulation enters a sequential region, T1 to T3 do not have tasks to execute in the simula-
tion arena. Instead of being idle, they could enter the analytics arena to participate in analytics
execution but T4 and T5 are already involved in the analytics execution and the analytics arena
size is set to 2. No extra thread can therefore enter the analytics arena because the arena is at its
maximum occupancy. This observation led to the idea of setting arenas such that ns + na > N .
This way, the simulation threads could enter the analytics arena during simulation sequential
regions because the analytics arena would not be at its maximum occupancy.

As already explained in Chapter 3, the TBB scheduler never creates more than N − 1 worker
threads to avoid core over-subscription. When using two arenas of sizes such that ns + na > N ,
satisfying the request of the two arenas would require more threads than available. Three cases
can therefore be distinguished:

• if there are no tasks in the simulation arena (during simulation sequential regions or when
the simulation master thread waits for the analyticsDone signal), the analytics arena can

101

Task-Based In Situ for Molecular Dynamics on Exascale Computers

contain the requested na − 1 worker threads (assuming that na ≤ N);

• if there are no tasks in the analytics arena (when the analytics master thread waits for
the dataReady signal or during analytics sequential regions), the simulation arena can
contain the requested ns − 1 worker threads (assuming that ns ≤ N);

• if simulation and analytics tasks exist concurrently, the arenas get a number of worker
threads proportional to their requests. As TBB can provideN−1worker threads, the arenas
will respectively get (na − 1) (N − 1) / (na + ns − 2) and (ns − 1) (N − 1) / (na + ns − 2)
worker threads.

Work stealing in this context works as follow. When simulation and analytics tasks exist
concurrently, threads are separated into two groups and steal tasks inside their own arena. When
there are no simulation tasks to steal anymore, the worker threads involved in the simulation
arena can enter the analytics arena, given the maximum occupancy of na − 1 worker threads.
The same holds when there are no analytics tasks anymore. Let assume now that na − 1 worker
threads are involved in the analytics arena because the simulation is in a sequential region. When
the sequential region ends, simulation tasks are created again by the simulation master thread.
In this situation, TBB provides a migration mechanism so that worker threads can change of
arena [4]. Some of the threads will leave the analytics arena to enter the simulation arena so that
both arenas get a number of threads proportional to their request.

6.2.2 Implementation of the Temporary Thread Isolation in TINS

Choice of the Arena Sizes

TBB arena feature allows to design a dynamic helper core approach with a temporary thread
isolation by setting the arena sizes such that na + ns > N . The question is now how to choose
na and ns . Our �rst idea has been to set na = ns = N such that all the threads can execute
simulation and analytics tasks and all the threads can enter the other arena instead of being idle.
However, when tasks of both types exist concurrently, half of the threads execute simulation
tasks and the other half execute analytics tasks. It is therefore as if simulation and analytics
were given the same priority. One of the issues of such approach is illustrated in Figure 6.4.
In Figure 6.4 (left), the analytics executed on half of the threads is quicker than the simulation.
When the analytics ends, all the threads migrate to the simulation arena but a lot of simulation
sequential regions cannot be harvested because no analytics tasks may be executed anymore.
In Figure 6.4 (right), the analytics runs on fewer threads and is hence longer than in Figure 6.4
(left) but the simulation runs quicker because more threads execute simulation tasks and more
simulation sequential regions can be used to run analytics. At the end, these two e�ects could
combine to reduce the total execution time. To test this e�ect and hence give a higher priority
to the simulation, we �x the simulation arena size to ns = N so that all the threads can execute
simulation tasks and the analytics arena size is left as a parameter to be �xed. The dynamic
helper core strategy of TINS is summarized in Figure 6.5. We will see in the next section the
in�uence of the analytics arena size on the execution of the di�erent analytics.

102

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

Time
T5
T4
T3
T2
T1
T0

Same priority to simulation and analytics

Time
T5
T4
T3
T2
T1
T0

Higher priority to the simulation
Sequential
Simulation
Analytics
Lost
Potential gain

Figure 6.4 | Gantt diagram of the in situ execution of an analytics with dynamic helper core strategy when giving
the same priority to simulation and analytics (left) or when giving a higher priority to the simulation (right). In the
latter case, the analytics execution time is longer but fewer resources are idle during simulation sequential regions.
The green area highlights the potential gain in execution time of the right approach.

MPI Process
ns

na

Simulation Thread

Spawn analytics
master thread

Compute a sim-
ulation iteration

if analyticsBreakpoint

Wait for
analyticsDone

Copy data

Notify dataReady

Analytics Thread

Wait for dataReady

Run analytics

Notify
analyticsDone

na + ns > N

Figure 6.5 | Dynamic helper core strategy in TINS. The simulation arena size is set to ns = N where N is the number
of cores in the processor and the analytics arena size na > 1 is left as a parameter to be chosen so that na + ns > N .

103

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Core Over-subscription or Restricting Resources

In ExaStamp, the TBB scheduler is initialized with default number of worker threads, that is to
say N −1 on a processor with N logical cores. In the static helper core approach where the arena
sizes are set such that na + ns = N , the arenas request a total of N − 2 worker threads. With the
two master threads, N threads are thus executed on N cores, without core over-subscription. The
situation is di�erent in a dynamic helper core context. Here, the cumulative request of worker
threads by the two arenas is larger than the number of worker threads instantiated by TBB and
the scheduler allocates a proportional number of threads to each arena, leading to N − 1 worker
threads scheduled to execute simulation or analytics tasks. However, with the 2 master threads
existing in TINS, a total of N + 1 threads run on N cores and the cores are over-subscribed.

We saw two solutions for the implementation of the dynamic helper core strategy in TINS.
The �rst solution is to keep the default behavior of TBB and let TBB and the OS handle the core
over-subscription. The second solution is to force TBB to create onlyN−2worker threads. Before
TBB initialization, the analytics master thread is pinned on the core 0 and a mask is created from
core 1 to N . This way, the TBB scheduler only sees N − 1 cores in the system and creates N − 2
worker threads. We saw advantages and drawbacks in both solutions. The second solution avoids
core over-subscription but one thread is removed from the simulation execution. Indeed, as seen
in Chapter 3, the analytics master thread cannot execute simulation tasks because it cannot enter
the simulation arena and at most N − 1 threads (the simulation master thread and N − 2 worker
threads) can enter the simulation arena. In this solution, the analytics master thread is often
idle for small analytics. On the other hand, the �rst solution enables the simulation arena to get
N threads when the analytics arena is empty but it leads to core over-subscription during the
concurrent execution of simulation and analytics tasks.

statistics_par
histogram radial

0

50

100

150

200

250

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

)

na = 7

statistics_par
histogram radial

0

50

100

150

200

250

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

)

na = 28

Oversub-
scription
Core
restriction

Figure 6.6 | Comparison of the two solutions (core over-subscription or restricting resources) for three analytics and
for na = 7 and na = 28. The total execution times are normalized with respect to the execution time of ExaStamp
alone on 28 cores per node. ExaStamp simulation of 32 iterations on 64 Broadwell nodes (1,792 cores).

We implemented the two solutions in TINS and compared them on a set of analytics. Fig-
ure 6.6 summarizes the results for statistics_par, histogram and radial with na = 7 and
na = 28. When the analytics arena is set to 7, both techniques are equivalent for statis-

tics_par and histogram. The radial execution is 3% slower with the core restriction than
with the core over-subscription but this di�erence decreases with the analytics arena size (less
than 1% di�erence with na = 28). On the contrary, the core restriction has smaller execution

104

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

times for the other analytics when the analytics arena size is set to 28. Restricting the cores is
indeed 5% and 7% faster than the core over-subscription method for statistics_par and his-

togram respectively. We therefore decided to keep the core restriction approach that seems to
be slightly better than the core over-subscription method for our target analytics.

Binding Strategies

In the previous chapter, we have shown that, for a static helper core strategy, binding the arenas
to two distinct subsets of the cores leads to better performance than letting TBB schedule them
on all the cores. In a dynamic helper core strategy, the simulation arena does not need to be
bound because it encompasses all the cores. The analytics arena could on the contrary bene�t
from a binding close to the analytics master thread. Figure 6.7 compares the execution times of
the execution of statistics_par with a dynamic helper core approach and with di�erent sizes
for the analytics arena when enabling or not the binding of the analytics arena on the na �rst
cores. As seen in Chapter 5, the na �rst cores correspond to the �rst NUMA nodes, the analytics
master thread being bound to core 0 and the temporary bu�er to NUMA node 0, close to the
analytics master thread. Both approaches are equivalent when na = 28 because the analytics
arena encapsulates all the threads. For smaller analytics arena sizes, binding the analytics arena
has a negative impact on the total execution times: it is respectively 8% and 13% longer for na = 4
and na = 7 compared to a strategy where the analytics arena is not bound. We therefore decided
not to bind the analytics arena.

4 7 28
Analytics arena size

0

50

100

150

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

)

With binding
No binding

Figure 6.7 | Execution of statistics_par in a dynamic helper core context with di�erent sizes for the analytics
arena and when enabling or not the binding of the analytics arena on the na �rst cores that correspond to the �rst
NUMA nodes, close to the analytics master thread and the temporary bu�er locations. The total execution times are
normalized with respect to the execution time of ExaStamp alone on 28 cores. ExaStamp simulation of 32 iterations
on 1 Broadwell node (28 cores).

6.2.3 Evaluation of the Dynamic Helper Core Approach

Comparison of Static and Dynamic Helper Core Approaches

Figure 6.8 compares TINS without isolation, TINS with static helper core strategy (TINS SHC) and
TINS with dynamic helper core strategy (TINS DHC) on the four analytics used in Section 5.3.3.
Each bar of the plot corresponds to a helper core strategy with an analytics arena size. The
analytics arena sizes range between 1 and 14 for the static helper core approach and between 1
and 28 for the dynamic helper core approach. The static and dynamic helper core approaches
are compared when using the same analytics arena sizes, except for the two right bars. In this

105

Task-Based In Situ for Molecular Dynamics on Exascale Computers

situation, we compare the static helper core approach with an analytics arena of size 14 and
the dynamic helper core approach with an analytics arena of size 28. These con�gurations are
comparable because, in the dynamic helper core approach, the two arenas will get 14 threads each
if tasks of both types exist concurrently. An analytics arena of size 1 leads to similar execution
times for the static and dynamic approaches because they have internally the same behavior: one
thread is dedicated to analytics and the remaining N − 1 threads execute simulation tasks. This
comes from the resource restriction explained in Section 6.2.2.

1 4 7 14 28
0

50

100

150

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) stat_par_1000

1 4 7 14 28
0

50

100

150

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) stat_seq_1000

1 4 7 14 28
0

50

100

150

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) radial

1 4 7 14 28
0

50

100

150

200

Re
la

tiv
e

ex
ec

ut
io

n
tim

es
(%

) histogram_100000000

TINS SHC TINS DHC ExaStamp alone TINS without isolation

Figure 6.8 | Comparison of the di�erent strategies implemented in TINS (without isolation, with SHC and with DHC)
on 64 Broadwell nodes for di�erent analytics arena sizes. The simulation is composed of 32 iterations on 256,000,000
particles, the analytics being performed after each iteration. The total execution times are normalized with respect to
the execution time of ExaStamp alone. The TINS without isolation and TINS SHC execution times correspond to the
execution times discussed in Chapter 5 and Chapter 4.

For the four analytics, the dynamic helper core execution is faster than the static helper core
execution with similar arena sizes. If we leave the radial analytics aside at �rst, we notice
also that the dynamic helper core strategy is much less sensitive to the con�guration than the
static helper core approach. In the histogram computation, the execution times are less than
1% di�erent from one con�guration to another (the di�erence being respectively 2% and 3% of
di�erence for statistics_seq and statistics_par). In a static helper core approach, the
total execution time for 14 static helper cores is nearly twice as much as the total execution time
for 1 static helper core. In a dynamic helper core context, the parallel analytics (statistics_par
and histogram) can be performed within an overhead of less than 5% with respect to ExaStamp
alone, and the sequential analytics (statistics_seq) can be performed within an overhead of
10%.

The radial analytics shows a di�erent behavior for the dynamic helper core strategy. When
the analytics arena size increases, the total execution time also increases. An analytics arena of
size 1 induces an overhead of 6% with ExaStamp alone and this overhead reaches 39% with an
analytics arena of size 28. TINS DHC with an analytics arena of size 28 is still 7% faster than

106

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

Figure 6.9 | Traces of the in situ execution of statistics_par (top) and radial (bottom) in a dynamic helper core
context where the analytics arena size is set to 28 on a 28-core Broadwell node and for one iteration of ExaStamp.
The traces show when the threads are in the simulation arena (blue) or in the analytics arena (orange). Purple areas
highlight periods when the threads are not assigned to an arena. Thread 0 (top) is the simulation master thread and
thread 27 (bottom) the analytics master thread.

TINS without isolation. To understand what happens with this analytics, we need to go more in
depth into the task execution.

Figure 6.9 shows the traces of the executions of statistics_par and radial during one
iteration of ExaStamp with an analytics arena size of 28. As explained in Chapter 5, the trace
measurement has been modi�ed to visualize only when the threads enter and leave the arenas.
For the statistics_par analytics, we see that the beginning of the iteration is characterized
by periods where the threads alternate between simulation and analytics arenas. When looking
into more details, we observe that there are only few periods when all the threads are in the
analytics arena. Most of the time, 14 threads belong to the analytics arena and 14 threads belong
to the simulation arena, showing that the TBB scheduler allocates half of threads to each arena
when simulation and analytics tasks exist concurrently and migrates threads from the analytics
arena to the simulation arena when simulation tasks are created again after sequential regions.
The radial analytics shows a di�erent pattern. We see in Figure 6.9 that 27 threads are in the
analytics arena for a long time before they switch to simulation execution. Simulation tasks

107

Task-Based In Situ for Molecular Dynamics on Exascale Computers

are still created by the simulation master thread but the TBB scheduler does not migrate the
threads from the analytics arena to the simulation arena as in the statistics_par execution.
The simulation tasks are therefore executed only by the simulation master thread, increasing the
execution time of the simulation.

This comes from the thread migration mechanism of TBB. Indeed, the worker threads can
discover that they need to leave the analytics arena to enter the simulation arena only when
they are in their stealing loop and when they do not execute a nested parallel algorithm [4]. The
radial analytics is precisely composed of a nested parallel loop and is concerned with this arena
migration issue. The e�ect is all the more visible when the analytics arena size increases because
more threads get trapped in the analytics arena and cannot migrate to the simulation arena. This
e�ect can lead to performance loss for two reasons. First, if the analytics is not e�cient enough
on 27 cores, 27 threads are in the analytics arena but the task execution would be longer than in
the case where fewer threads were involved in the execution. Moreover, the traces do not show if
the threads always have a task to execute when they are trapped in the analytics arena. Secondly,
this analytics highlights our intuition in Figure 6.4: the analytics is executed at the beginning of
the simulation iteration and the simulation sequential regions of the end of the iteration cannot
be harvested because there are no analytics tasks to execute anymore. Moreover, the analytics
master thread spends half of the iteration idle. Allocating fewer thread to the analytics increases
the analytics execution time but it is bene�cial for the total execution time.

To conclude this comparison, TINS with dynamic helper core is less sensitive to the size of the
analytics arena than TINS with static helper core. We see in particular that na = 4 or na = 7 are a
good tradeo� for the analytics execution. It enables to execute the parallel analytics on more than
one core and it prevents that all the worker threads get trapped in the analytics arena when the
analytics is composed of a nested parallel loop. With these con�gurations, the in situ execution
of the four analytics can be performed with an overhead of less than 12% over ExaStamp alone.

Evaluation of the Di�erent Methods on an Iteration Varying Workload at Scale

So far, we have compared the di�erent approaches with the same analytics being performed after
each iteration. During a simulation, the physics of the system evolves and the end-user studies
di�erent phenomena. It results in complicated analytics work�ows where di�erent analytics are
executed with di�erent frequencies. We have seen in Section 6.1 that it is possible to �nd an
optimal number of static helper cores for one analytics but �nding an optimal number of static
helper cores for several analytics may be di�cult because the analytics may have di�erent needs.
For example, the optimal number of static helper cores may be 4 for one analytics but this number
is of course not optimal for a sequential analytics.

We evaluate in Figure 6.10 the capacity of the dynamic helper core strategy to execute itera-
tion varying workloads at scale. We compare Damaris, TINS SHC and TINS DHC on an ExaStamp
simulation of 2 billions atoms using 14,336 Broadwell cores (512 nodes). The simulation is com-
posed of 32 iteration and after the second iteration, an analytics is executed after each iteration
in the following scheme:

• iterations 3 - 12: statistics_par;

• iterations 13 - 22: histogram;

• iterations 23 - 32: radial.

108

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

1 4 7 14 28
Analytics arena size

0

25

50

75

100

125

150

175
Re

la
tiv

e
ex

ec
ut

io
n

tim
es

(%
)

Synchronous
Damaris
TINS SHC
TINS DHC
ExaStamp alone
TINS without isolation

Figure 6.10 | Comparison of Damaris, TINS with static helper core and TINS with dynamic helper core with dif-
ferent analytics arena sizes when executing three di�erent analytics on 14,336 Broadwell cores (512 nodes) on an
ExaStamp simulation of 2 billions atoms. The total execution times are normalized with respect to the execution time
of ExaStamp alone.

Given that the analytics arena size is greater than 1 so that the analytics can be executed in
parallel and smaller than 28 to give a higher priority to the simulation, TINS DHC shows similar
execution times, whatever the con�guration. In particular, TINS DHC always has the smallest
execution time, showing that the static helper core approach fails at �nding an optimal number
of static helper cores for this iteration varying work�ow. TINS DHC can be up to 40% faster than
Damaris and TINS SHC. Moreover, TINS DHC enables the in situ execution of analytics with an
overhead of 6% with respect to ExaStamp alone.

We have shown in this section that a temporary thread isolation allows to implement a dy-
namic helper core strategy where the worker threads are free to migrate to simulation or analytics
arenas. In particular, the threads are split into two groups when both simulation and analytics
tasks exist concurrently but they can enter the other arena instead of being idle when no tasks
are available in their arena. We have shown that TINS with dynamic helper core can be up to
40% faster than TINS with static helper core on an analytics work�ow where the analytics being
executed change over time. The dynamic helper core still requires to choose the analytics arena
size but most of the analytics are not sensitive to the choice of the arena size. This is not the case
of the radial analytics, however, for which the analytics arena size has to be smaller than the
number of cores in the system to avoid disturbing the simulation. We will see in the next section
how we can adapt the algorithm presented in Section 6.1 in the dynamic helper core context to
automatize the choice of the analytics arena size.

6.3 Implementation of an Adaptive Dynamic Helper Core Ap-
proach

In a dynamic helper core context, a tradeo� has to be found between the priority we want to
provide to the simulation and the parallelism we want to give to the analytics. We have seen in

109

Task-Based In Situ for Molecular Dynamics on Exascale Computers

the previous section that the dynamic helper core approach is less sensitive to the analytics arena
size. For most of the analytics, na = ns = N is a good choice because it allows the TBB scheduler
to balance the threads and to migrate all of them into one arena if necessary. However, the thread
migration mechanism of TBB has some limitations because the threads can discover that they
need to migrate to another arena only when they are in a speci�c state. For some analytics, it
leads to too much threads dedicated to the analytics and the simulation execution time is severely
impacted. In this section, we propose to adapt the algorithm presented in Section 6.1 in a dynamic
helper core context so that the analytics arena size can be chosen automatically (Section 6.3.1).
We then validate the approach on two analytics (Section 6.3.2) and highlight the limitations of
the approach (Section 6.3.3).

6.3.1 Design of the Algorithm

The dynamic helper core context is more �exible than the static helper core context to implement
the arena adjustment algorithm presented in Section 6.1. Indeed, in this context, the simulation
arena size is always set to the number of cores and is not modi�ed throughout the execution.
The algorithm can be executed after the analytics master thread has received the dataReady

noti�cation because the analytics arena size can be adjusted no matter of what happens on the
simulation master thread side. There is therefore no need for an extra synchronization between
the two master threads.

Choice of the Starting Condition

In the static helper core algorithm, we proposed to begin the algorithm with na = 1 to remove as
few resources as possible from the simulation. In the dynamic helper core context, we propose
to begin the algorithm with na = N . We have indeed shown that na = ns = N is a good choice
for most of the parallel analytics. The analytics arena size has also no impact on the execution
of sequential analytics because one thread executes the analytics and the other threads enter the
simulation arena, no matter the size of the analytics arena. The only analytics where na = N is
not a good choice are the analytics where the thread migration of TBB shows its limitations. The
optimal analytics arena size is therefore searched between nmin = 1 and nmax = N .

Choice of the Next Analytics Arena Size

The algorithm starts with the highest analytics arena size and decreases it to �nd an optimal
size. The optimal arena size is such that the elapsed time between two dataReady signals is
the smallest. Given an analytics arena of size n0 = nmax = N , the analytics master thread
�rst measures t0 as the elapsed time between the reception of two dataReady signals with an
analytics arena of size n0. The analytics arena size is then reduced (n1 = (nmax + nmin) /2 =
(N + 1) /2) and the analytics master thread measures t1 as the elapsed time between the reception
of the two dataReady signals with an analytics arena of sizen1. It then compares the two elapsed
times:

• if t1 > t0, the �rst con�guration was better than the second one and the optimal arena
size is searched between nmax and nmin = n1 and the next analytics arena size is set to
n2 = (nmin + nmax) /2;

110

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

• if t1 < t0, the second con�guration was better than the �rst one and the optimal arena
size is searched between nmax = n1 and nmin and the analytics arena size is set to n2 =

(nmin + nmax) /2.

The algorithm is then applied again with the new analytics arena size and the new upper and
lower limit until it �nds an optimal analytics arena size.

Execution Times Comparison

As we have explained in Section 6.3, one time measurement is not su�cient to discriminate an
analytics arena size. Indeed, ExaStamp does not always perform the same operations at every
iteration and the execution times can be disturbed by the execution environment. We therefore
propose to measure the execution times 10 times and to compute the mean, the standard deviation
and the coe�cient of variation of the 10 measurements. We distinguish three cases:

• if the new con�guration is more than 5% quicker and the coe�cient of variation is low, the
new con�guration is better than the former and the analytics arena size is decreased for
the next 10 measurements;

• if the new con�guration is more than 5% longer, the con�guration is worst than the former
and the arena size is increased for the next 10 measurements;

• if the new con�guration is less than 5% longer but the coe�cient of variation is high,
the con�guration is worst than the former and the arena size is increased for the next 10
measurements;

In all the other cases, the algorithm cannot make a decision and leaves this arena con�gura-
tion for the next 10 measurements.

Breaking Conditions

We distinguish two di�erent breaking conditions. If the algorithm cannot make a decision three
times in a row, the algorithm stops and we keep the con�guration with the smallest analytics
arena size. The algorithm begins with a high analytics arena size and reduces it until it reaches
a con�guration worse than the former. At that point, the analytics arena size is increased again
until it �nds an optimal. When the algorithm is in an upward phase, it stops when the computed
analytics arena size is the same for two sets of measurements.

6.3.2 Validation of the Approach

Figure 6.11 shows the total execution time of the adaptive method for the radial and the
statistics_par analytics compared with the dynamic helper core approach with di�erent an-
alytics arena sizes for a simulation of 128 iterations. For the statistics_par analytics, the
execution time is dominated by the simulation and we can see that the adaptive method gives
similar execution times. Modifying the analytics arena size does not a�ect the simulation execu-
tion time. The algorithm stops at iteration 32 with an analytics arena of size 14 because it was
unable to make a decision three times in a row.

The adaptive method is important for the radial analytics because the analytics arena size
has an in�uence on the simulation execution time. We measured that the optimal analytics arena

111

Task-Based In Situ for Molecular Dynamics on Exascale Computers

adapt 1 3 7 28
Analytics arena size

0

50

100

150

200

250

300

350

Ti
m

e
(s)

radial

adapt 3 7 28
Analytics arena size

0

50

100

150

200

250

Ti
m

e
(s)

statistics_par

Adaptive
DHC
Standard
DHC

Figure 6.11 | Execution times of the adaptive dynamic helper core approach for the radial and the statistics_par
analytics compared with the dynamic helper core approach with di�erent analytics arena sizes. ExaStamp simulation
of 128 iterations with analytics executed after each iteration on 1 Broadwell node (28 cores).

size is 3 for this analytics and we observe that the adaptive method is better than the dynamic
helper core approaches with na = 1 and na = 28 and equivalent to the dynamic helper core
approach with na = 7. The total execution time is 10% longer with the adaptive method than
with the optimal dynamic helper core approach because of the number of tests it takes to �nd
the optimal solution. Indeed, as it can be seen in Figure 6.12, the adaptive method determines
na = 3 to be the optimal analytics arena size but it takes 72 iterations to make this decision. This
di�erence will become even smaller as the number of iterations increases.

0 20 40 60 80 100 120
Iteration number

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ti
m

e
(s)

na = 28

na = 14

na = 7

na = 3

na = 1

na = 3

na = 2

na = 3

na = 28
na = 3
adapt

Figure 6.12 | Execution time per iteration of the radial execution in three di�erent dynamic helper core con�gu-
rations: na = 28, na = 3 and with adaptive dynamic helper core. The dashed lines represent means of the iteration
times to highlight the di�erent stages of the adaptive algorithm.

6.3.3 Highlighting the Limitations of the Approach

The dynamic helper core context o�ers a more �exible framework for the implementation of an
algorithm to adapt iteratively the analytics arena size. In particular, it does not require an extra
synchronization between the two master threads. However, there are still limitations to this
approach. The algorithm being iterative, it requires a certain number of iterations before �nding

112

Chapter 6 | Implementation of a Dynamic Helper Core Strategy with Automatic Sizes

the optimal arena size. For example, it required 72 iterations to �nd that na = 3 was the best
con�guration for the radial analytics. During the �rst iterations, the analytics arena size was
not the optimal and computation time was lost. This e�ect would be reduced when increasing
the number of iterations.

We have shown in Section 6.2.3 that the dynamic helper core strategy is well adapted for
iteration varying workloads where the executed analytics are not the same at each analytics
breakpoint. Here, the adaptive algorithm proved to be e�cient when the executed analytics is
the same at each analytics breakpoint. When the analytics change over time, the workload also
changes and the algorithm as such is not applicable. Indeed, the elapsed times measured between
two iterations do not match if the analytics are not the same. To circumvent this issue, one
idea would be for the analytics master thread to keep track of the iterations where the analytics
workload varies. For example, suppose that we execute two analytics (A1 andA2) at two di�erent
frequencies (f1 and f2). The analytics master thread can keep track of the analytics breakpoints
when A1 only is executed, when A2 only is executed and when A1 and A2 are executed together.
The analytics master thread would therefore save three analytics arena sizes and update each of
them accordingly.

We have adapted in this section the algorithm presented in Section 6.1 for a dynamic helper
core context. The dynamic helper core context is indeed less restrictive than the static helper
core context. In particular, no extra synchronization is necessary for its implementation. The
approach proved to be e�cient to �nd the optimal analytics arena size for the radial analytics,
hence reducing the execution time compared to the situation when na = N . This approach still
has limitations, in particular the number of iterations it requires to �nd the optimal arena size.

6.4 Chapter Summary

We have designed in this chapter a dynamic helper core strategy with a temporary thread iso-
lation that uses the TBB arena feature. The worker threads can execute both simulation and
analytics tasks and can in particular enter the other arena instead of being idle when no tasks
are available in their own arena. We have shown the bene�ts of the dynamic helper core approach
compared to the static helper core approaches implemented in TINS and in Damaris, TINS with
dynamic helper core being up to 40% faster than the other methods on a set of analytics. Simu-
lations on up to 14,336 cores of 2 billions particles show that the dynamic helper core approach
is able to execute dynamic analytics work�ows with an overhead of less than 7% over ExaStamp
alone. The dynamic helper core approach needs an analytics arena size to be chosen for setting
a priority to the simulation. This approach proved to be weakly sensitive to the analytics arena
size, except for some analytics where the migration mechanism of TBB shows limitations. We
have thus implemented an adaptive algorithm in the dynamic helper core context and we have
shown that it enables to �nd an optimal analytics arena size in a few iterations, for analytics that
are sensitive or not to the analytics arena size.

113

Task-Based In Situ for Molecular Dynamics on Exascale Computers

6.5 Part Summary

In the previous three chapters, we have developed TINS, a task-based in situ method inside Exa-
Stamp. We have measured the performance of TINS on di�erent analytics and we have compared
it with state-of-the-art middleware. TINS is based on an analytics master thread spawned by
ExaStamp at its initialization. The analytics are coded in ExaStamp but they use a simple data
representation as an input and they are not aware of ExaStamp complicated data structure. In the
perspective of having a portable in situ solution, we would like the analytics to be coded outside
of the simulation code. The next chapter will focus on the architecture of the TINS framework, in
particular on how we make use of the dedicated analytics master thread to separate simulation
and analytics codes.

114

Part III

Toward an Evolutive
Task-Based Hybrid

Framework

115

7 Design of a Framework to Automatically
Orchestrate Analytics Execution

In the three previous chapters, we have focused on the performance of our task-based in situ
method. We have in particular shown how the use of a dedicated thread and of TBB mechanisms
enables to execute analytics in situ with the simulation using a dynamic helper core strategy.
This chapter is more oriented toward the architecture of the TINS framework focused on two
characteristics. We want TINS to be a generic framework that may be integrated into other sim-
ulation codes than ExaStamp and an intuitive tool where non expert users can easily develop new
analytics, test them and execute them asynchronously with the simulation in a transparent way.
The architecture of TINS is designed so that simulation and analytics codes are kept well sepa-
rated, the analytics being developed as plugins loaded at runtime in the simulation (Section 7.1).
Analytics work�ows are easily described in an external �le and TINS automatically creates a
task-based graph of plugins matching the user requirements (Section 7.2). TINS is designed to be
an evolutive architecture where new features, such as in transit and post-processing capabilities,
can easily be added in the existing framework (Section 7.3).

7.1 Orchestration of Simulation and Analytics Codes

The �rst step toward the development of our generic and intuitive framework is made by sepa-
rating simulation and analytics codes. As already seen in Chapter 4, developing analytics inside
the simulation code has the advantage of reducing data copy and data transformations but it
also shows drawbacks. In particular, the analytics developer needs to know the simulation data
structures to integrate analytics routines. Moreover, integrating the analytics inside the simula-
tion code may lead to di�culties when it comes to test the analytics. Indeed, it implies that the
simulation code is compiled and started each time a change is performed on the analytics codes.
Finally, it limits the genericity of the approach because the data structures are di�erent from one
simulation to another and analytics can thus not be easily used by di�erent simulation codes.
On the other hand, separating simulation and analytics codes allows to decouple simulation and
analytics data representations and thus to use a simpler data structure for the analytics. The
analytics being compiled as separated codes, the testing process is also improved and analytics
can be used in several simulations without any code modi�cations.

To decouple simulation and analytics codes, we propose the TINS architecture described in
Figure 7.1 in the form of a pseudo-UML. It is organized around a TINSManager interface known
both by the simulation and the analytics codes. An object OrchestratorManager derives from

117

Task-Based In Situ for Molecular Dynamics on Exascale Computers

the interface and is instantiated by the simulation as a singleton (Section 7.1.1). There is one
OrchestratorManager object per MPI process. The analytics are developed as C++ plugins,
holding a pointer to the TINSManager instance created by the simulation (Section 7.1.2). The
plugins are compiled as separate libraries and loaded at runtime by the analytics master thread
spawned by the simulation (Section 7.1.3).

«interface»
TINSManager

OrchestratorManager

SynchronousPolicy
PluginGraph*
ArenaAdapter*
InSituPluginArray*
ParticleInSitu*

void run();

Node

OrchestratorManager*

PluginGraph ArenaAdapter InSituPluginArray

«interface»
Plugin

TINSManager*

Figure 7.1 | Overview of TINS architecture in ExaStamp.

7.1.1 Integration of TINS Architecture in the Simulation Code

During the initialization, an OrchestratorManager object is instantiated by the simulation.
The simulation master thread spawns the analytics master thread presented in Chapter 5 as a
C++ thread that executes the OrchestratorManager::run method. This method corresponds
to an in�nite while loop as sketched in Figure 5.10. It �rst waits for data to be ready, executes the
analytics in the analytics arena when it has received the dataReady signal, sends the analyt-

icsDone noti�cation when analytics execution is completed and �nally resumes to the in�nite
while loop, waiting for the next data to be ready. Data sharing between simulation and analytics
master threads are performed in the shared memory. In particular, the noti�cations are handled
by atomic booleans. In the following, the analytics master thread will be called orchestrator be-
cause the role of this thread is to orchestrate simulation and analytics executions.

The implementation of TINS in ExaStamp corresponds to the addition of an Orchestrator-

Manager object into the Node object and to the modi�cation of the end of the doComputeWork

method presented in Figure 3.9. The OrchestratorManager object is created during ExaStamp
initialization based on the input data �le of the simulation code. The input data �le is read by the
OrchestratorManager object to retrieve information about the in situ mode it should use and
eventually the analytics arena size chosen by the user. We support the di�erent in situ modes in-
troduced in the last three chapters: synchronous and asynchronous without isolation (Chapter 4),
asynchronous with static helper core (Chapter 5) and asynchronous with dynamic helper core

118

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

with or without adaptive analytics arena size (Chapter 6). In the latter case, the ArenaAdapter

class implements the adaptive method introduced in the previous chapter. The synchronous and
asynchronous without isolation modes are slightly adapted compared to the approaches pre-
sented in Chapter 4. The analytics master thread is present in both cases and simulation and
analytics tasks are submitted in the same arena. An extra synchronization is also added in the
synchronous case so that the simulation does not resume to the next iteration immediately after
having copied the data but waits for the analytics completion.

The primary goal of the simulation being to solve the numerical equations, it should not be
aware of the analytics being executed or the frequency with which they are performed. This is the
role of the orchestrator and the doComputeWork method is modi�ed to meet this requirement.
In particular, the writeIO function is replaced by a copyParticle function. At any time, the
orchestrator knows the iteration number of the next analytics breakpoint, based on the analytics
graph it created (see Section 7.2 for more details). The next analytics breakpoint iteration is then
made available to the simulation master thread in shared memory. When the simulation enters
the copyParticles function, it checks whether the iteration corresponds to the next analytics
breakpoint. If it is not the case, it resumes to the next iteration. If it is the case, it copies its data
into a ParticleInSitu structure hold by the orchestrator, sends the appropriate noti�cation
and resumes to the next iteration. Notice that the copy is performed by the simulation on a loca-
tion speci�ed by the orchestrator. To reduce the intrusion into the simulation code, an alternative
would have been to let the orchestrator perform the data copy. However, we wanted TINS to be
generic and not to know the simulation data structure. Making the orchestrator perform the
data copy would have necessitate the description of the AOSOA data structure of ExaStamp in
TINS, limiting the genericity of the approach. Works like Conduit [2] have been released during
this thesis and could yet be used to easily describe the AOSOA structure of ExaStamp in TINS,
enabling the data copy on the orchestrator side. The development of such approach and the com-
parison with the existing one will be performed in a future work. The checkpointing capacities
of the simulation are also not modi�ed by our framework. The simulation still writes checkpoint
�les periodically to the �lesystem but the �le output for later post-processing is moved to the
plugin system.

7.1.2 Development of Analytics Outside of the Simulation as TINS Plugins

In TINS, the analytics are developed as C++ classes compiled as shared libraries and loaded at
runtime by the orchestrator. The classes derive from the Plugin interface (Figure 7.2) that de�nes
the mandatory members and methods that a plugin must implement. The main element of the
Plugin class is the pointer to the TINSManager object that is the building block of our intuitive
system. Each plugin owns a pointer to the TINSManager singleton instantiated by the simulation
and the object acts as a bridge between simulation data and the analytics by providing methods
to get access to the attributes of its ParticleInSitu data structure. The TINSManager object
thus hides both the synchronization between the simulation and the analytics and the way data
are stored by TINS. This way, analytics developers do not need to care about the storage layout
of TINS and this latter can be modi�ed without any modi�cations in the analytics codes.

A plugin has three compulsory members: a name (m_name) used by the user and by TINS to
create the analytics graph, an iteration from which the analytics has to be executed (m_itbegin)
and a frequency (m_freq). The execution of the plugin is then decomposed in three functions.

119

Task-Based In Situ for Molecular Dynamics on Exascale Computers

«interface»
TINSManager

int nbPart;
double* rx;
· · ·

int getNbParticles();
double* getParticlesPosX();
· · ·

«interface»
Plugin

std::string m_name;
int m_itbegin;
int m_freq;
TINSManager* m_tins;

std::string IP_name();
virtual void IP_init() = 0;
virtual void IP_run() = 0;
virtual void IP_finalize() = 0;
virtual void IP_setparameters(const nlohman::json&) = 0;

HistogramPlugin

int m_numbins;
int* m_histogram;

void IP_init();
void IP_run();
void IP_finalize();
void IP_setparameters(const nlohman::json&);
void computeHistogram(double* field, int size);

Figure 7.2 | Class diagram of the Plugin interface and the HistogramPlugin that derives from it.

IP_init is called once at the m_itbegin iteration and corresponds to the initialization of the
plugin (allocation of the class members for example). IP_run is executed according to the fre-
quency of the plugin and corresponds to the analytics execution. IP_finalize is called dur-
ing TINS �nalization to free the allocated data. As an example, the HistogramPlugin class
presented in Figure 7.2 is implemented to compute an histogram of the positions along the x-
axis. The IP_init and IP_finalize methods are used to allocate and free the histogram array
(m_histogram) that will be �lled at each iteration, reducing the allocation costs. The number
of particles and the positions along the x-axis are retrieved thanks to the TINSManager mem-
bers (getNbParticles() and getParticlesPosX()). To bene�t from the dynamic helper core
strategy implemented in TINS, the IP_run method should be parallelized with TBB whenever
possible. As we will see in more details in Section 7.2.1, the IP_run methods of the desired
analytics will indeed be executed in the analytics arena.

The members of the plugins are de�ned in an external JSON data �le. Two kinds of mem-
bers are distinguished: the compulsory ones (the frequency and the iteration when the analytics
should begin) and the members speci�c for a class. In the HistogramPlugin example, the user
can set the number of bins (m_bins) in the JSON �le. This allows to modify the parameters of
the analytics without recompiling the plugins. The IP_setparameters method is used to set
the members according to the JSON input �le or to de�ne default parameters.

The main advantage of this class structure is that it allows to keep persistent data throughout
the execution of the simulation. For example, writing data with the Hercule library developed at
CEA [111] requires to open a Hercule base in an initialization phase and to use this object every
time data are output. With this class structure, such an object can be instantiated in the IP_init

method, destroyed in the IP_finalize method and used at each call to the IP_run method.
The development costs are also kept minimal because the developer just needs to implement the
IP_run method as if the analytics was a post-processing code. The in situ execution of the plugin

120

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

is transparent to the user.

7.1.3 Compilation and Loading of TINS Plugins

The classes corresponding to the di�erent plugins are compiled as shared libraries with one
shared library per de�ned class. The shared libraries are loaded in the simulation during the
OrchestratorManager initialization thanks to the dlopen, dlsym and dlclose functions. The
orchestrator is then in charge of the instantiations of the plugins. However, the dlopen and
dlsym functions retrieve pointers to functions in a shared library by using the symbols associated
to the functions and they show limitations when it comes to loading C++ functions and classes.
While the symbol of a C function corresponds to the name of the function, C++ compilers use
di�erent symbols for the functions to handle function overloading for example. This is called
the name mangling. The name mangling being compiler speci�c and even version speci�c, it is
nearly impossible to retrieve a pointer to a function based on the function name. To solve this
issue, one solution is to de�ne the functions that need to be loaded as C functions thanks to
extern "C" pieces of codes. While this solves the problem of name mangling, it is not possible
to declare a class as a C function. Moreover, we do not want a pointer to a class but an instance
of it. The solution we adopted is to add two functions for each plugin (see Figure 7.3): a creator
creates an instance of the plugin and a destructor destroys it. A plugin is therefore considered as
valid only if it declares a create function (line 8) that returns a pointer to the class instance, a
destroy function (line 14) that deletes a class instance and a pname variable (line 6) that de�nes
the plugin name.

1 typedef Plugin* create_t(TINSManager *);
2 typedef void destroy_t(Plugin *);
3
4 extern "C"
5 {
6 const char* pname = "histogram";
7
8 Plugin* create(TINSManager* tins)
9 {

10 std:: string name(pname);
11 return new HistogramPlugin(name , tins);
12 }
13
14 void destroy(Plugin* p)
15 {
16 delete p;
17 }
18 }

Figure 7.3 | De�nition of the class creator and destructor as C functions to ease the loading of the plugins.

During the orchestrator initialization, the InSituPluginArray object of the orchestrator
scans a speci�c folder where the available plugins have been installed and loads the di�erent
plugins. It then checks whether the plugin is valid by looking at the create, destroy and
pname symbols. If one of the three symbols is missing, the plugin is considered as not valid and
is discarded. If the three symbols are present, the plugin is stored in an array of plugins later

121

Task-Based In Situ for Molecular Dynamics on Exascale Computers

used by the orchestrator for the graph creation.

We have detailed in this section the design of the TINS architecture where simulation and
analytics are kept well separated. The analytics are developed as C++ plugins loaded at runtime
by an orchestrator thread spawned by the simulation. The simulation is not aware of the ana-
lytics execution and a shared object allows data sharing between simulation and analytics. The
available plugins are loaded during simulation execution and the valid ones are stored in an array
of plugins. We will see in the next section how the user can describe their analytics work�ow
and how TINS automatically creates a graph of plugins based on the user requirements.

7.2 Automatic Creation of a Graph of Plugins

To analyze the data produced by a simulation, the user needs to de�ne complex analytics work-
�ows. The analytics work�ows are composed of several components: analytics codes are used
to extract information from the simulation data, visualization routines are used to visualize the
states of the system and �le output are used to save important data into the �lesystem. Some
components may need data produced by other components, leading to dependencies between
the di�erent tasks. Analytics work�ows can thus be seen as a directed graph and we detail in
this section how TINS creates such a graph of plugins. The users describe their analytics work-
�ow in a JSON �le (Section 7.2.1) that is automatically transformed into a TBB �ow graph by
TINS (Section 7.2.2). The analytics graph is executed at each analytics breakpoint and tools are
provided to limit data copy and to allow time dependent analytics (Section 7.2.3).

7.2.1 De�nition of the Analytics Work�ow

As seen in Chapter 2, several methods are used in the literature to de�ne analytics work�ows,
Python scripts and XML �les being the most widely used. In TINS, analytics work�ows are
de�ned thanks to an external JSON data �le as described in Figure 7.4. No recompilations of the
simulation or the plugins are necessary when the user wants to change the analytics work�ow.
The JSON �le corresponds to a list of plugins with their compulsory and additional attributes. We
chose the JSON format for expressing the work�ow because it has a simple key value system that
looks like the text input �les used by most of the simulation codes but it is more �exible. Indeed,
it is possible to de�ne parameters for each analytics without hard-coding all the con�gurations
in the input data reader. Thanks to JSON libraries for C++, handling JSON objects looks like
manipulating C++ objects, which eases the integration into our C++ plugins. Finally, writing a
JSON �le is easier than an XML �le for non expert users.

During the initialization of the OrchestratorManager class, the orchestrator reads the
JSON �le containing the analytics asked by the user. For each asked analytics, the orchestra-
tor uses the plugin name to check whether the plugin is available in its array of plugins. If this is
not the case, the orchestrator issues a warning and goes to the next asked analytics. If the asked
plugin is available, the orchestrator calls the corresponding creator and sets the class parameters
by calling the IP_setparameters method. The class instance is then added to an array hold by
the PluginGraph object, the role of the PluginGraph class being to create the analytics graph.

122

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

1 [
2 {
3 "name": "statistics_par",
4 "itbegin": 8,
5 "freq": 4
6 },
7 {
8 "name": "histogram",
9 "itbegin": 8,

10 "freq": 8,
11 "numbins": 1000
12 },
13 {
14 "name": "write",
15 "itbegin": 0,
16 "freq": 16,
17 "path": "/tmp"
18 }
19]

Figure 7.4 | Example of JSON input �le to describe the analytics work�ow.

7.2.2 Construction of a Graph of Plugins

We decided to rely on the TBB �ow graph feature to de�ne and execute the analytics graph.
As seen in Chapter 3, the TBB �ow graph feature allows to describe graphs as a set of tasks
linked together by explicit dependencies. In TINS, each node of the graph is a plugin and the
edges are data dependencies between the plugins. We chose the TBB �ow graph feature for the
graph construction because it connects well with our task-based in situ framework. Each plugin
is executed as a TBB task submitted in the analytics arena by the orchestrator. If the IP_run

method of the plugin is parallelized with TBB, children tasks are spawned inside a plugin task.
All the tasks are then available in the analytics arena, providing a good potential for the analytics
to be interleaved with the simulation execution.

Node Construction

The nodes of the graph are implemented as continue_node objects de�ned in the TBB �ow
graph API. We made this choice for several reasons. First, data are not explicitly passed from one
node to another because the TINSManager object is used to retrieve the particles attributes. If
a plugin needs to modify a particles attribute, it submits the modi�cations to the TINSManager

instance that is in charge of updating the stored information. Secondly, we want the node to wait
for its predecessors completion before starting its computations. Indeed, even if data are not ex-
plicitly passed from one node to another, a plugin may compute or update a parameter used by
its successor plugins and the continue_node class guarantees that a node waits for its prede-
cessor completion. The PluginGraph object holds a �ow graph object and creates the di�erent
continue_node in this graph object thanks to lambda functions, as described in Figure 3.4. The
lambda function calls the IP_init and IP_run methods of the plugin at the �rst execution and
the IP_run method only for the following iterations.

123

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Automatic Edge Construction

Now that we have constructed the nodes of the graph, the second step consists in the de�nition
of the edges between the nodes. The solution the most widely used in the community is to let
the user describe the analytics dependencies in a Python script. In TINS, the edge construction
is automatized so that our framework is as automatic and as dynamic as possible. This is done
thanks to extra parameters de�ned in the JSON input �le (Figure 7.5). The user describes for
each analytics the parameters required for the plugin execution (input) and the parameters that
are computed and/or modi�ed during the plugin execution (output). The object-oriented design
of the JSON input allows to easily add the input and output information, either with an array
of �elds or an empty array. The input and output �elds can be �elds produced by ExaStamp
(rx, ry, rz), �elds produced by the plugins and made available through the TINSManager object
(rx_filtered) or virtual �elds to enforce a dependency between two plugins (a).

1 [
2 {
3 "name": "plugin_a",
4 "input": ["rx"],
5 "output": ["rx_filtered"],
6 "mpi": false
7 },
8 {
9 "name": "plugin_b",

10 "input" : ["rx", "ry", "rz"],
11 "output" : ["a"],
12 "mpi": true
13 },
14 {
15 "name": "plugin_c",
16 "input": ["rx_filtered", "a"],
17 "output": [],
18 "mpi": false
19 }
20]

Figure 7.5 | Modi�cation to the JSON input �le to describe the plugin inputs and outputs and to tell the orchestrator
whether a plugin performs MPI communications or not.

The graph is constructed by comparing the input and output of each pair of plugins. If the
intersection between the two sets is not empty, an edge is added between the �rst plugin and
the second plugin. In the case a plugin modi�es a �eld produced by the simulation, the output
�eld must have a di�erent name than the input �eld. In the example of Figure 7.5, plugin_a
applies a transformation to the rx �eld and its output is the rx_filtered �eld. We add this rule
so that some plugins can be executed on the data produced by the simulation while other can be
executed on the data transformed by the plugins and so that non expected dependencies are not
added because of name matching.

The algorithm leads to the construction of a graph as the one sketched in Figure 7.6 (left).
However, the graph de�ned as such may lead to deadlocks because of the plugins that perform
MPI calls (communications or explicit barriers). In the example of Figure 7.6, purple nodes are
plugins that perform MPI calls. For the �rst stage of the graph, the only dependencies are from
ExaStamp to the three nodes,A, B andC . As soon as data are made available by the simulation, the

124

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

three tasks corresponding to the three successor plugins are spawned. There is no guarantee in
the order of execution because we do not know which children task is spawned �rst and because
of the work stealing mechanism. In particular, when using several MPI processes, there is no
guarantee that every process will execute the tasks in the same order. While this is not an issue
for local tasks like the plugin B, this can lead to deadlocks when the plugins perform MPI calls.
Indeed, let us consider that one MPI process begins with the execution of the plugin A while
another MPI process begins with the execution of the plugin C . At some point, the �rst process
may wait for the processes involved in the MPI call of the pluginA while the second process may
wait for the processes involved in the MPI call of the plugin C , leading to a deadlock.

ExaStamp

A B C

D E F G H

I J K

ExaStamp

A

BC

D H E

I F

J G

K

Figure 7.6 | Graph of plugins without taking care of MPI plugins (left) or by adding extra dependencies between
the plugins that perform MPI communications to prevent two plugins to perform MPI communications concurrently
(right). The purple nodes correspond to plugins that perform MPI communications.

To solve this issue, the user indicates in the JSON input �le the plugins that perform MPI
communications thanks to the mpi �ag (Figure 7.5). The graph construction is then performed
in two steps. The �rst step is to create a graph without using the mpi �ag by scanning the input
and output of all pairs of asked plugins. In a second step, a breadth-�rst search algorithm is
performed to serialize the nodes that perform MPI calls by adding extra dependencies between
them. The �rst node with the mpi �ag (A in the example) is kept in memory. When the algorithm
traverses another node with the mpi �ag (C in the example), it creates an edge between the two
nodes, removes the �rst node from its memory and keeps the second node. The algorithm stops
when all the nodes have been traversed. At the end, the MPI nodes have extra dependencies, as
sketched in Figure 7.6 (right). The plugins performing MPI communications are linked to each
other so that there is only one plugin performing MPI communications at a time. They can be
executed simultaneously with plugins that do not perform MPI communications because there

125

Task-Based In Situ for Molecular Dynamics on Exascale Computers

is no risk of deadlock. Every MPI processes generate the same graph because they use the same
JSON input �le and they execute the same deterministic algorithm for the graph creation.

The di�erent nodes of the graph are not necessarily executed from the same iteration, nor
at the same frequency but only one graph is created. During the TBB �ow graph execution at
a particular analytics breakpoint, only the nodes whose frequency corresponds to that analytics
breakpoint are executed, the other being discarded. When reaching an analytics breakpoint, the
orchestrator scans the frequency of the di�erent nodes to compute the next analytics breakpoint.
This iteration number is then made available to the simulation so that it knows when it must copy
data.

Every time data are made available by the simulation master thread, the orchestrator is in
charge of launching the graph execution inside the analytics arena. The orchestrator can either
perform computations asynchronously with the graph execution or take part in the graph execu-
tion. The analyticsDone noti�cation is sent when the graph execution is over. For the moment,
the graph construction is made once during initialization and it is not updated during the sim-
ulation lifetime but the system can easily be extended to dynamically add and remove nodes
between two graph executions. The only requirements are to apply a deterministic algorithm
when adding the nodes in the graph so that they are added at the same position in the graph on
every MPI processes and to execute the breadth-�rst algorithm to serialize the MPI nodes.

The description of the input and output �elds of a plugin is an extension of the notion of
contract introduced by Mommessin et al. [85]. In their work, the user describes the nodes and
edges between the nodes in a Python script and they describe the �elds produced by the pro-
ducer and consumed by the consumer. It enables to reduce the data copy but the user is still
responsible to de�ne the edges between the nodes. Here, we propose to use a similar mechanism
to automatically create the edges between the nodes. We will see in the next section how this
feature can be used to also reduce the data copy.

7.2.3 Management of Simulation and Analytics Data

TINS is intended to support a wide range of analytics, from simple analytics that only monitor
a parameter of the simulation to more complex analytics that require information about the
internal organization of simulation data. The primary goal of the TINS framework is to ease the
development of new analytics plugins by hiding the synchronization with the simulation and the
way data are stored by the orchestrator. The plugins just call the accessor methods provided by
the TINSManager object and perform the analytics computation based on the provided data. To
guarantee this ease of development, TINS must manage data in an e�cient way and must provide
tools to help with data representation. We detail in this section two features of TINS regarding
data management: a mechanism to copy only the necessary data and the development of helper
plugins to ease the development of complex analytics.

Copy of the Necessary Data Only

The time to copy data into the ParticleInSitu structure has not been shown so far because
it was not predominant in the total execution time of TINS for the various analytics presented
in Table 4.1. Indeed, for the various experiments presented in Chapters 5 and 6, the copy time
has always been two orders of magnitude smaller than the simulation iteration. Optimizing the
data copy may not seem important when the data being copied are the attributes of the Parti-

126

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

cleInSitu data structure but in the perspective of an evolutive framework, optimizing it may
become important. For example, we will see in Chapter 8 that cells and ghost information can be
copied to help the execution of some analytics, leading to copy times much more important, and
even of the order of magnitude of a simulation iteration. It is therefore essential to copy these
additional data only when necessary and not at every analytics breakpoint, to avoid loosing time
and memory for data that will not be used at this analytics breakpoint.

We therefore decided to generalize the graph creation to indicate to the simulation what
data should be copied at each analytics breakpoint. The system is based on a dictionary that
gives the data that can be output by the simulation and the data that can be produced by the
analytics and stored by the orchestrator. The input and output �elds given for each plugin in the
JSON input �le must match entries in the dictionary. If a �eld does not match any dictionary
entry, it is considered as virtual and is only taken into account for the graph creation. As already
explained in Section 7.1.1, the orchestrator knows at each time the iteration of the next analytics
breakpoint and makes it available to the simulation master thread. To copy only the necessary
data, the orchestrator also computes the list of the data �elds that should be copied for the next
analytics breakpoint and transmits it to the simulation so that only the necessary data are copied.

For the implementation of the approach in ExaStamp, we rely on a new feature of ExaStamp
where lambda functions can be used in the Node level to apply operations on ExaStamp internal
data. The computations are still performed in the Cell level, and in particular ExaStamp still
holds the data in a AOSOA data structure but high level representations of the data are provided
to ease the manipulation of a set of ExaStamp attributes. To copy only the necessary data, a
lambda function corresponding to the data �elds to copy just needs to be constructed based on
the orchestrator information. The dictionary is intended to be enriched in the future with new
parameters. For the moment, we only support the attributes of the ParticleInSitu structure
and ghosts and cells information as later discussed in Chapter 8. It is possible to add new entries in
the dictionary as ExaStamp can provide more data output (molecules and polymers information,
mechanical computations, . . .). The only requirements are to add the structure in the dictionary
and to provide the high level representation of the data to allow the partial copy with lambda
functions.

Development of Helper Plugins to Handle Data Representation

So far, we have mostly presented analytics that use the particles attributes stored in the Parti-

cleInSitu data structure for one iteration. For these analytics, the data representation does not
have an in�uence, these analytics mostly iterating on the attributes arrays to compute param-
eters of interest. The data representation is yet important for some analytics. For example, we
will see in Chapter 8 that the neighbor search on the particles can be speed up by using the cell
information present in ExaStamp. In this section, we focus on temporal analytics that need the
particles attributes of di�erent iterations.

In TINS, data are copied at each analytics breakpoint and are overwritten at the next analytics
breakpoint. The orchestrator does indeed not keep more than one iteration of the data in its
bu�ers. To keep attributes of a given iteration, the analytics developer must add members to
their plugin class and manage the data copy of simulation data to the plugin members. However,
special care must be taken when comparing the attributes arrays of two iterations, as illustrated
in Figure 7.7. In this example, 11 particles (indices 0 to 10) are distributed over two MPI processes.

127

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Between the two iterations, the number of particles hold by each MPI process has changed and
the order of the particles copied in the array has also changed. In particular, the 4th element of
the array (highlighted in orange in Figure 7.7) corresponds to the 10th particle at iteration t1 and
to the 5th particle at iteration t2. Data therefore need to be exchanged between the MPI processes
in order to compare the arrays between the two iterations.

Processus 0 Processus 1

1 10 740

0 4 1 5 10 7

6 9 3 528

1 8 2 3 9

array at t1

array at t2

Figure 7.7 | Data representation of 11 particles distributed across two MPI processes for two iterations.

A solution to this problem is to let the analytics developer discover by themselves the mod-
i�cations in the data representation and perform the necessary MPI communications, but this
breaks the rules of an intuitive and generic approach. Another solution is to modify the way the
data are stored by the orchestrator so that the ith element of the arrays always corresponds to
the same particle from one analytics breakpoint to the other. However, this approach means to
reorganize data at every analytics breakpoint, even when the graph executed at this analytics
breakpoint does not need this reorganization.

We therefore decided to externalize the data reorganization in a helper plugin that can be
used in analytics work�ows where one or several plugins need data reorganization. At each an-
alytics breakpoint, the helper plugin stores the array representing the indices of the particles,
compares them with the indices stored at the previous analytics breakpoint and computes a re-
distribution pattern so that the previous array matches the new array. The redistribution pattern
includes internal reorganization of the array and the necessary MPI communications that need
to be performed. The redistribution pattern can then be used transparently by the plugins that
need reorganization of their arrays.

In the future, we intend to provide more helper plugins to the analytics developers. The goal
of these helper plugins is to extract common patterns regarding data representation so that the
analytics developer can directly use these tools and focus on the analytics implementation. Other
helper plugins may include �lter plugins to extract data corresponding to a particular region or
conversion plugins to retrieve data in a desired physical unit.

We have seen in this section how TINS automatically creates a graph of plugins as a TBB �ow
graph executed in the analytics arena at each analytics breakpoint. TINS is designed to hide to the
plugins the synchronizations with the simulation codes. This way, the plugins can be developed
outside of the simulation code without any knowledge of the simulation or of the way data are
stored. So far, we have mainly construct TINS as an in situ framework but some analytics are not
well suited for an in situ mode. In particular, some analytics require MPI splittings di�erent than
the ones provided by the simulation and would require a lot of MPI communications that would
disturb the simulation execution. Some other analytics have also an execution time much higher
than the simulation execution time that makes it impossible to execute them in situ without

128

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

increasing the end-to-end execution time. We will see in the next section how TINS can be
extended to enable an in transit execution of analytics, without any modi�cations in the plugin
codes and with only a few modi�cations in TINS.

7.3 Extension of TINS with an In Transit Mode

As already discussed in Chapter 2, in transit processing has the advantage of executing heavy an-
alytics concurrently with the simulation without using the resources of the simulation. Analytics
are executed on a set of dedicated nodes, called the staging nodes and the in transit framework
has to manage data transfer between the simulation nodes and the staging nodes, in a way that
minimizes the impact on the simulation execution time. In this section, we integrate an in tran-
sit mode in TINS by using the orchestrator and the graph capacities already present in TINS
(Section 7.3.1). We then show the bene�t of the approach by implementing a prototype and by
validating it on the radial analytics (Section 7.3.2). We �nally show that the TINS extension
for in transit processing can be used to execute analytics plugins in a standalone mode, o�ering
a testing platform and a post-processing mode in TINS (Section 7.3.3).

7.3.1 Design of an In Transit Mode

Figure 7.8 shows the design of the in transit mode of TINS. It relies on the TINSManager, the
PluginGraph and the InSituPluginArray classes and on two separate codes. The �rst code
corresponds to the simulation code that implements the OrchestratorManager class as al-
ready seen. The only di�erence is that the OrchestratorManager class implements a send-

Data method for data transfers to the staging nodes. The second code is the in transit code that
implements an InTransitManager class derivating from the TINSManager object and using
the PluginGraph and InSituPluginArray classes for the graph construction. The in transit
code is kept very simple. It �rst initializes the TBB scheduler on the staging nodes, the TBB
schedulers being di�erent on the di�erent nodes. Then, for each in transit analytics breakpoint,
the program waits for simulation data received through the recvData method implemented by
the InTransitManager object, launches the in transit analytics graph execution and noti�es
the simulation nodes when the in transit computation is �nished. The in transit code shows a
similar timeloop than the orchestrator used in the simulation, except that data are received from
distant nodes.

The in transit code uses the same mechanisms that were implemented for the in situ mode. In
particular, the simulation and in transit codes share the same JSON �le for the graph construction
and no recompilation of the plugins is necessary to execute them in transit. To distinguish the
plugins that are executed in situ or in transit, we added an intransit �ag in the JSON �le. In the
in transit side, the InTransitManager object only takes into account for its graph construction
the plugins with the intransit �ag de�ned. In the simulation side, the OrchestratorManager

object constructs the nodes based on all the plugins. For the in situ plugins, the nodes consist in
calling the IP_run method of the plugin as already explained above. For in transit plugins, two
nodes are created, one for transferring data to the staging nodes thanks to the sendData method
of the OrchestratorManager class and one to wait for in transit analytics completion if nec-
essary. In transit plugins are decomposed in two nodes because they need MPI communications

129

Task-Based In Situ for Molecular Dynamics on Exascale Computers

TINSManager

PluginGraph

InSituPluginArray

Simulation Code

OrchestratorManager

In Transit Code

InTransitManager

JSON File

Plugin Plugin PluginPluginPlugin

data transfers

notification

readread

Figure 7.8 | Design of the in transit mode of TINS.

for the data transfers and we want to be able to execute in situ analytics concurrently with in
transit processing.

The OrchestratorManager and the InTransitManager classes need respectively to im-
plement the sendData and recvData methods to enable data transfer and to store the received
data in the ParticleInSitu data structure of the InTransitManager object. These methods
can be implemented thanks to existing in transit middleware such as Damaris [42], FlowVR [44]
or Decaf [46] for example. This would indeed allow to take bene�t from their work on data
redistribution and data transfer. The strength of our framework is that the plugin implemen-
tation does not depend on the data transfer method. Indeed, data transfer is managed by the
objects derivating from the TINSManager interface and data are retrieved thanks to the accessor
methods that they provide, no matter how these objects get and store the data. The plugins are
therefore exactly the same for an in situ or an in transit execution.

7.3.2 Implementation of a Prototype and Preliminary Results

We have seen in the previous section that the in transit mode of TINS is made possible by imple-
menting the sendData and recvData methods to enable data transfer and to store received data
in the ParticleInSitu data structure of the InTransitManager object. As already seen in
Chapter 2, in transit analytics are usually executed on fewer nodes than the simulation and com-
plex redistribution patterns must be computed to know how data should be sent from simulation
to staging nodes. We want in this section to make a proof of concept of our in transit framework
and to study the potential gains of the approach over an in situ mode alone. We do not want to
deal with complex redistribution patterns and we therefore made the choice of implementing a

130

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

prototype with one staging node only. Future work will include the support of several staging
nodes by implementing our own redistribution patterns or by using existing libraries such as
Bredala [45].

In our prototype, data transfers between simulation and analytics nodes are performed thanks
to the MPMD support of MPI. As already explained in Chapter 2, two codes launched in a MPMD
world share the same MPI_COMM_WORLD communicator. During the simulation initialization, a
MPI communicator is created for the simulation communications and the rank of the in transit
MPI process is found by comparing the simulation and the MPI_COMM_WORLD communicators.
Communications between the simulation nodes and the staging node are then performed in the
MPI_COMM_WORLD communicator thanks to MPI_Gather communications performed by the sim-
ulation orchestrators and the InTransitManager instance in the staging node. The simulation
nodes �rst send their number of particles thanks to MPI_Gather collective communications. This
step is necessary because the number of particles per MPI process may vary over time. Neces-
sary data are then serialized based on the JSON �le that describes the input �elds of the analytics.
Data are then sent to the staging node thanks to MPI_Gatherv collective communications. The
InTransitManager instance is �nally in charge of unserializing the received data and �lling its
ParticleInSitu data structure with the received data. The shared JSON data �le is used here
in two ways. First, it enables the InTransitManager to know which data are received from the
simulation, thanks to the dictionary de�ned for in situ processing. Secondly, the in transit code
uses the shared JSON �le to know the number of calls to MPI_Gather to perform in order to
avoid deadlocks between simulation and staging nodes.

To test the in transit prototype, we compared the end-to-end execution times when executing
the radial analytics in situ with the dynamic helper core strategy or in transit. We have chosen
this analytics for two reasons. First, we have shown in Chapter 6 that the radial analytics has
a signi�cant impact on the simulation execution time because of its nested parallel loops. Exe-
cuting it in transit may thus reduce the impact of the analytics on the simulation execution time.
Secondly, we have explained in Chapter 4 that the radial analytics is actually a kernel extracted
from the Radial Distribution Function (RDF) computation. The RDF computes an histogram of
all the pairs of atoms in the entire simulation. Computing it requires a complex communication
pattern so that every MPI process get access to the positions of the particles hold by all the other
MPI processes. The radial analytics does not implement this communication pattern and does
thus not compute the true RDF when executed in situ. On the contrary, this analytics does not
require the communication pattern when it is executed in transit on one staging node because
it has already access to the positions of all the particles. The in transit execution of the radial

analytics returns thus the true RDF.
Table 7.1 reports the end-to-end execution times when executing the radial analytics in

situ or in transit. We compare the in transit execution when ExaStamp is executed on 4 nodes
and the analytics on one node (intransit), an in situ execution on 4 nodes (insitu-4) and
an in situ execution on 5 nodes (insitu-5). For the three cases, the simulation corresponds
to 256 iterations and the analytics is executed every 32 iterations. We observe that intransit

reduces the end-to-end time of insitu-4 by 11%, mostly because the in transit execution has a
lower impact on the simulation execution time than the in situ execution. However, intransit
uses 20% more resources than insitu-4. When comparing the execution time of intransit

and insitu-5 that uses the same amount of resources, we observe that intransit is this time
10% longer than insitu-5. However, we have explained earlier that intransit returns the

131

Task-Based In Situ for Molecular Dynamics on Exascale Computers

true RDF while a communication pattern is necessary for insitu-5 to return the true RDF.
Implementing such a communication pattern would have an important impact on the in situ
execution time, while the in transit execution time would remain unchanged, reducing or even
reversing the execution time di�erence. Another aspect also needs to be taken into account: the
development time of the analytics. For an in transit execution, the development time is smaller
than for an in situ execution because it does not require the design and implementation of an
e�cient communication pattern. The in transit mode added in TINS therefore allows to execute
some complex analytics at a lower development cost than the in situ mode.

Table 7.1 |Comparison the in situ and in transit execution times of the radial analytics for a 256-iteration simulation
of 16,000,000 particles on 4 or 5 nodes, analytics being performed every 32 iterations.

Mode Total Simulation Graph execution (simulation side)
In transit (4 + 1 nodes) 428.82 s 428.32 s 0.706 s

In situ (4 nodes) 480.69 s 476.71 s 33.32 s
In situ (5 nodes) 389.11 s 386.26 s 21.26 s

Table 7.2 shows the end-to-end execution time of an in situ analytics work�ow compared
with the end-to-end execution time of the same in situ analytics work�ow with the in transit
execution of the radial analytics. The in situ work�ow is executed every 4 iterations while the
radial analytics is executed in transit every 32 iterations. We notice that the in transit node has
a small impact on the in situ analytics execution time, the data transfer corresponding to 2 % of
the in situ analytics execution time and requiring only one thread.

Table 7.2 | Comparison the in situ and hybrid execution times of an analytics work�ow for a 256-iteration simulation
of 16,000,000 particles on 4 nodes. The in situ work�ow is executed every 4 iterations while the radial analytics is
executed in transit every 32 iterations.

Mode Total Simulation Graph execution (simulation side)
In situ 458.38 s 455.14 s 29.47 s
Hybrid 458.96 s 455.70 s 28.47 s (transfer 0.608 s)

The approach has still a limitation when the in transit analytics execution time is greater
than then execution time between two analytics breakpoints. In this case, the orchestrator in
the simulation side is ready to perform the MPI_Gather collective communications but the in
transit code is still performing the analytics computation. The orchestrator is then blocked until
the in transit code is ready to call the MPI_Gather function. To solve this issue, non-blocking
communications or one-sided communications could be used to prevent the orchestrator to be
blocked when the in transit analytics is not ready to receive data. More complex data manage-
ment mechanisms can also be used to store several iterations of simulation data.

7.3.3 Execution of Analytics Plugins in a Standalone Mode

Developing new analytics and integrating them in an analytics work�ow is a complex process
that is generally done in several steps. Usually, the physicists develop analytics codes that are
�rst tested and validated in a post-process way, the analytics codes reading data written by the
simulation. It is only after having validated the analytics results and checked the coherence of

132

Chapter 7 | Design of a Framework to Automatically Orchestrate Analytics Execution

the analytics for a particular phenomenon that the analytics can be integrated into an analytics
work�ow executed in situ or in transit.

Based on this observation, we were convinced that a standalone mode was important to ex-
ecute the analytics plugins outside of the simulation code. However, it is not possible as such
because each plugin is compiled as a shared library and needs to use an instance of the TINSMan-

ager class to retrieve data for their computations. Conceptually speaking, a standalone mode is
not really di�erent than an in transit mode, except that data are not received from distant nodes
but read from �les. The developments already performed for the in transit mode were therefore
reused to o�er a standalone mode by simply adding in the InTransitManager class a readData

method that reads data from a user-de�ned �le and that stores the data in its ParticleInSitu

data structure. Thanks to this reader, the plugins are exactly the same for in situ, in transit and
standalone modes, no recompilations of the plugins being necessary to change the mode.

We therefore use the same in transit code for in transit processing and standalone execution
of analytics. The JSON input �le of the standalone mode is modi�ed to tell the location of the
�les and to express the number of iterations to process. The standalone code instantiates the TBB
scheduler to take bene�t from the TBB parallelization of the plugins and of the graph capacities
provided by TINS. The standalone mode can then be used by analytics developers as a testing
platform to test the analytics execution, validate the results of the analytics and check the validity
of the analytics inside their analytics work�ow. The analytics work�ows can also be tested in a
standalone mode before being executed in situ and/or in transit with the simulation.

We have in this section extended TINS with an in transit capacity by using most of the tools
already developed for the in situ mode. Data are transferred from the compute nodes to the
staging nodes thanks to extra nodes added in the analytics graph. Data transfers can be imple-
mented thanks to existing middleware and we developed a small prototype where we use the
MPMD support of MPI to transfer data to one staging node. We have shown that the in transit
mode allows to execute analytics that were not possible in an in situ context, with a low cost
on the simulation execution. We have also extended this work to add a post-processing mode
in TINS so that analytics can be executed transparently in situ, in transit or in a post-processing
way.

7.4 Chapter Summary

We have presented in this chapter the design of the TINS framework, whose primary goal is to
o�er an intuitive and evolutive environment to develop analytics outside of the simulation code.
The analytics are developed as TINS plugins, the data management and the synchronizations with
the simulation being hidden by TINS. The analytics work�ow is described externally by the user
and automatically transformed into a TBB �ow graph for an in situ execution. The framework of
TINS can be extended to enable the in transit execution of analytics, by using existing middleware
or by implementing our own data transfer. The strength of the TINS framework is that the
analytics are developed as if they were post-processing codes but they can be executed in situ,
in transit or in a post-processing way without any code modi�cation or recompilation. In the
next chapter, we will validate the robustness of the TINS framework and its capacity to execute
complex analytics work�ows in a production environment.

133

8 Validation of TINS on a Production Run

One of CEA �eld of studies is the propagation of shocks through metallic crystals. It can be used
to study micro-jetting [48], micro-spallation [104] or phase transitions for example. We focus in
this chapter in the phase transition of tin1 material under shock. This kind of simulations requires
a complex potential that usually limits the size of the systems that can be considered. Typical
simulations of this phenomenon are usually performed on a few million particles but the under-
standing of the phenomenon requires one or two orders of magnitude more particles. ExaStamp
and the Tera-1000-2 supercomputer allow to perform simulations of 300 millions atoms, leading
to a better understanding of the physics at stake. In this chapter, we use the TINS framework
implemented in ExaStamp to analyze in situ the data produced by a production run, greatly re-
ducing the amount of data being stored to persistent storage and the end-to-end execution time of
simulation and analytics. We �rst describe the physics at stake and the analytics work�ow being
considered (Section 8.1). We then insist on the limitations of the new Tera-1000-2 supercomputer
and the adjustments that were performed to execute TINS on the supercomputer (Section 8.2).
We conclude this chapter with a physical validation of TINS and preliminary performance mea-
surements (Section 8.3).

8.1 Description of the Physics and the Analytics Work�ow

When a shock is initiated, for example when a high-velocity projectile hits a target, a shock wave
propagates inside the material. If the intensity of the shock remains below a certain threshold,
the shock wave propagates until reaching the free surface where it is re�ected and becomes a
rarefaction wave. The propagation does not induce any deformation, the shock is called elastic.
On the contrary, if the shock intensity is large enough, the shock wave is made of an elastic
wave and a plastic wave, traveling at di�erent velocities. A two-wave structure is therefore
observed. The �rst wave always corresponds to an elastic shock wave but the second plastic wave
is more di�cult to identify. By analyzing the local structure of the matter after the second wave,
it is possible to highlight structural changes that indicate a phase transition after the passage
of the second wave. The analysis of the local structure of the matter is made thanks to one
or several order parameters that re�ect the local environment around each particle. We use
here the Steinhardt parameters (Section 8.1.1) to study the structure of the matter and we create

1Notice that tin refers here to the chemical element while TINS refers to our task-based in situ method.

135

Task-Based In Situ for Molecular Dynamics on Exascale Computers

an analytics work�ow that couples the computation of these parameters with several tools to
determine the phase transition of the matter (Section 8.1.2).

8.1.1 Computation of the Steinhardt Parameters

The Steinhardt parameters [71] Qn are used in material sciences to study the local structure of
the matter. The parameters are computed for each particle based on the distances and angles
between a particle and its closest neighbors. Because it studies the local structure of the matter,
the analytics is applicable when the matter is su�ciently dense so that a particle has at least a
dozen neighbors within its cuto� radius. By deriving quantities from these parameters, such as
mean values or histograms on a given region and by comparing these quantities with reference
cards, it is possible to determine the structure of the region.

For a particle i , the computation of the Qn (i) parameters consists in the projection of the
vectors joining i and its Nv (i) nearest neighbors on a sphere of unit radius. The Steinhardt
parameters are de�ned by Equation 8.1.

Qn (i) =

√√
4π

2n + 1

n∑
m=−n

|qnm (i) |2 (8.1)

The qnm (i) coe�cients are expressed in Equation 8.2. They are computed based on the spher-
ical harmonics Ylm and the solid angle Ωj .

qnm (i) =
1

Nv (i)

Nv (i)∑
j=1

Ylm (Ωj) (8.2)

Two parameters need to be chosen when computing the Steinhardt parameters: the value of
n and the number of neighbors to consider for each particle Nv (i). High values of n give more
information about the structure but necessitate more computations. Nv (i) is either the same for
all the particles, corresponding to the k nearest neighbors of the particles, or dependent on i ,
corresponding to the particles inside a sphere of radius rv , smaller than the cuto� radius, around
the ith particle. In the following, we consider only the k nearest neighbors.

The algorithm to compute theQn parameters is decomposed into two steps. For all the parti-
cles i , we �rst need to �nd thek nearest neighbors based on the distance between the particle i and
the other particles. When the neighbors have been found, the Qn parameters can be computed
for each particle based on the discretization of spherical harmonic di�erential equations [101]. A
TBB version of this analytics has been developed at CEA during an internship supervised during
this thesis, and we detail here the adjustments performed to execute it in situ with TINS.

Neighbor Search

The Qn computation (hereafter named qparam analytics) aims at adding n + 1 attributes to each
particle. We can consider it as a local analytics without MPI communications given that TINS
gives access to enough information. The analytics needs the position of the particles owned by
the MPI process but also the neighbors of each particle. The neighbors may be inside the MPI
process or belong to other MPI processes. As we have already seen in Chapter 3, ExaStamp
keeps a layer of ghost cells that correspond to the cells hold by other Domains. We made this
ghost layer available through TINS so that the qparam analytics does not need to perform MPI

136

Chapter 8 | Validation of TINS on a Production Run

communications. Here we consider k ≤ 12 and the k nearest neighbors can be found within the
ghost layers because the Cells in ExaStamp are constructed to have a size slightly greater than
the cuto� radius.

A naive approach is to search the k nearest neighbors by iterating on every particles hold by
the MPI process and on every ghost particles. However, this approach leads to execution times
orders of magnitude longer than the execution time of an ExaStamp iteration (Table 8.1). This
is all the more true for high numbers of particles. ExaStamp being usually used with several
millions particles per MPI process, an acceleration data structure has to be used to reduce the
complexity of the neighbor search.

Table 8.1 | Comparison of the time to �nd the neighbors and the time to compute an iteration of ExaStamp for
di�erent numbers of particles.

Number of particles Neighbor search ExaStamp iteration
16,000 0.083 s 0.004 s
250,000 1.950 s 0.046 s
2,000,000 1,220.0 s 0.301 s

During the data copy, ExaStamp copies the particles attributes into the ParticleInSitu

structure of arrays. The analytics therefore retrieve the particles attributes as arrays of length
the number of particles inside the MPI process. However, ExaStamp internally implements a cell
structure and the arrays are �lled according to the cell structure, as highlighted in Figure 8.1
(left). In the arrays, the cells are represented by contiguous indices. Knowing the array index
where a particular cell begins and the number of particles in the cell, it is possible to determine
where the particles of a given cell are located in the arrays.

idx

rx

idx

rx

idx · · ·

rx · · ·

idx

rx

idx

rx

Cell 0 Cell 5 · · · Cell n Cell m

1 struct CellInfo
2 {
3 int neighbourIdx [26];
4 int start;
5 int nbPart;
6 };

Figure 8.1 | Cell structure inside the arrays of particles attributes (left) and CellInfo structure to easily retrieve cell
information in TINS plugins (right).

The neighbor search can be speed up by using the cell information. Instead of iterating
through the pairs of particles, we perform a loop on the cells. For each cell c, we look for the
Nv (i) nearest neighbors of the ith particle inside the cell c and inside the 26 neighboring cells of
c. To do so, we introduce the CellInfo structure described in Figure 8.1 (right) where the 26
neighboring cells indices, the starting index and the number of particles of the cells are stored
by ExaStamp. With this technique, the neighbor search is reduced by 4 orders of magnitude for
2,000,000 particles.

137

Task-Based In Situ for Molecular Dynamics on Exascale Computers

TBB Parallelization

To take bene�t from TINS capabilities and in particular of the dynamic helper core strategy
proposed by the framework, the qparam analytics has been parallelized with TBB. The analytics
is decomposed in two functions, one for the neighbor search and one for the Qn computation.
The neighbor search function is based on a parallel_for loop on the CellInfo array provided
by TINS. A task corresponds to the neighbor search of the particles inside one or more cells. The
Qn computation on the other hand does not need the cell information and corresponds to a
parallel_for loop on the particles. For each particle i , the distances and angles between i and
its nearest neighbors are computed and used to determine the spherical harmonics components.
The performance of the qparam analytics are sketched in Figure 8.2. The analytics shows a good
scaling on up to 64 threads, reaching 58 on 64 threads. The analytics is mainly compute intensive
and does not take bene�t from hyperthreading. The qparam analytics is an e�cient parallel
analytics that we will be able to use in TINS to be e�ciently interleaved with the simulation
execution.

1 16 64 128 256
Number of threads

1

16

64
128
256

Sp
ee

du
p

Ideal
Neighbor search
Qn computation
Whole analytics

Figure 8.2 | Strong scaling of the qparam analytics on a KNL node for 2,000,000 particles. The cells information have
been provided to speed the neighbor search. The green area highlights the number of threads from which we pass
into the hyperthreading area.

Execution Times

Figure 8.3 shows the execution time of an ExaStamp iteration compared with the execution times
of data copy, neighbor search and Qn computation for a perfect crystalline structure. The com-
putational cost of the analytics is linear with the number of particles and follows the same trend
than the computational cost of ExaStamp. The neighbor search and Qn computation parts have
similar execution times and the whole analytics has an execution time of the same order of mag-
nitude than ExaStamp. The execution time and the good scaling of the analytics therefore make
it a good candidate to be used in an in situ context with TINS.

The copy time is here more signi�cant than the copy times discussed in Chapter 7. This
comes from the fact that the qparam analytics requires the cells information to speed up the
neighbor search. For a simulation of 2,000,000 particles, it requires the index and positions of
approximately 200,000 ghost particles and 300,000 cells, leading to 40MB of additional data com-
pared to the 112MB of data necessary to copy the particle attributes only. This motivates our

138

Chapter 8 | Validation of TINS on a Production Run

16,000 2,000,000 6,750,000 16,000,000
Number of particles

0

2

4

6

8
Ti

m
e

(s)

ExaStamp iteration
Data copy
Neighbor search
Qn computation

Figure 8.3 | Comparison of the time to perform an ExaStamp iteration with the times to copy data, perform the
neighbor search and compute theQn parameters (n = 8 here) for di�erent numbers of particles. Simulation performed
on one node with one MPI process and 64 cores per MPI process.

work to copy only necessary data to avoid the expensive copy of data that may not be used by
all the analytics, as we have already discussed in Chapter 7.

8.1.2 De�nition of the Analytics Work�ow

The analytics work�ow is composed of 5 plugins and the analytics graph is sketched in Figure 8.4.
We �rst compute the Qn parameters for all the particles. We choose here n = 10 and k = 8.
Four plugins can be executed after theQn parameters computation. Extra dependencies between
plugins performing MPI communications are automatically added as explained in Chapter 7.

VTK File Output

A VTK �le is written by each process for later being visualized with ParaView. The �le output is
sequential and relatively long because it writes the positions, velocities and the 11Qn parameters
per particle. It is well suited for being executed asynchronously with the other plugins.

Mean Computation of Qn

For each Qn parameter, the mean value is computed on the global domain. It uses TBB for the
local mean computation and a MPI reduction for the global mean computation. This analytics is
used to see global changes in the structure of the matter. By looking at the mean values along
time, it is possible to determine whether the structure is evolving and how fast.

Slice Histogram

For a shock propagating along one direction (here, the x-axis), the domain is split along the x-
axis into N bins of equal size. Here, we choose N = 1,000. The mean of the velocities along
the three axes and the mean of the Qn parameters are computed for each bin, locally thanks to
a TBB reduction and globally thanks to a MPI reduction. This analytics allows to have a better
insight in the simulation data than the mean computation. In particular, it is possible to see the
two-wave structure, to follow the propagation of the shocks and rarefaction waves and to see
the structural changes along the waves propagation.

139

Task-Based In Situ for Molecular Dynamics on Exascale Computers

ExaStamp

Q com-
putation

VTK
output

Mean of Q
parameters

Slice
histograms

Hn(Qn)

histograms

Figure 8.4 | Analytics graph for the study of a shock propagation into a tin material. The purple nodes correspond
to plugins that perform MPI communications.

Hn (Qn) Histograms

For this analytics, the domain is also split along the x-axis into Nx bins of equal sizes. Inside each
bin, an histogram is computed for eachQn parameter onNq bins. Here we useNx = 200 andNq =

100. This analytics has a similar behavior than the slice histogram analytics (one TBB parallel
reduction and one MPI reduction) but it gives more information for the Qn parameters than just
the mean. The Hn (Qn) histograms have di�erent behaviors. For an ideal crystal structure at
equilibrium, all the particles have the sameQn parameters and each Hn (Qn) histogram is a Dirac
on the Qn value. The Qn parameters being a�ected by the temperature, their histograms have
more often a gaussian shape that re�ects the gaussian distribution of the particles around their
equilibrium value. When several structures are present in the region, the Hn (Qn) histograms are
more complicated and show several peaks. By looking at the Qn values corresponding to the
peaks and by comparing them with reference histograms obtained for di�erent structures, the
physicists can deduce which phases are present in the region. The proportion of each structure
is then computed thanks to a linear combination of the reference histograms that match the
di�erent structures.

For the last three analytics, the results are written into text �les that physicists can later
process thanks to Python scripts for example. This is not a major performance bottleneck though
because the histogram �les correspond to a few MB of memory only while VTK �les require more
than 50GB of memory per iteration.

140

Chapter 8 | Validation of TINS on a Production Run

The complete study of the behavior of tin under shock requires a simulation of 300,000,000
particles on more than 1,000,000 iterations, taking appropriately 1 month with ExaStamp on
the Tera-1000-2 supercomputer. The analytics work�ow presented in this section is therefore
intended to be used on the Tera-1000-2 supercomputer. However, the Tera-1000-2 supercomputer
is a new supercomputer released in early 2018 and it is still under development. We will see in
the following section the limitations of the supercomputer and the adjustments that were made
to execute TINS.

8.2 Limitations of the Tera-1000-2 Supercomputer

The Tera-1000-2 supercomputer is a KNL-based supercomputer that relies on the new BXI in-
terconnect. There are mostly two limitations for executing TINS on this supercomputer: the
disabling of the OS scheduler on the KNL nodes (Section 8.2.1) and the temporary absence of the
MPI_THREAD_MULTIPLE threading support (Section 8.2.2).

8.2.1 Disabling of the OS Scheduler on the KNL Nodes

As seen in Chapter 3, the KNL nodes of Tera-1000-2 are composed of 68 physical cores but 4 cores
are exclusively dedicated to the system. When isolating the system cores, the system adminis-
trators have disabled the OS scheduler on the 64 cores allocated to the applications. TBB relying
exclusively on the OS scheduler to map the threads on the cores, we adapted TINS so that the
threads are bound to the cores.

Usually, TINS relies on the TBB scheduler to map the threads on the available cores in a way
that optimizes the cache a�nity. The only con�gurations where we gave information to the
TBB scheduler for the thread mapping was for the static helper core strategy. In this case, we
gave a mask to the threads entering the arenas so that the analytics were executed on the �rst
NUMA nodes and the simulation on the last NUMA nodes, as we have seen in Chapter 5. Even
in this con�guration, we only gave masks to the TBB scheduler and the scheduler was in charge
of mapping the threads according to the masks.

The TBB scheduler exclusively relying on the OS scheduler and the OS scheduler being dis-
abled in the Tera-1000-2 KNL nodes, we have to help the TBB scheduler to map the threads to
the cores, by assigning to each core a single thread. We do so by using the TBB observer class
introduced in Chapter 3. The observer holds an array with the indices of the cores that can be
used by the application. Every time a thread is scheduled for the �rst time by the TBB scheduler,
it enters the on_scheduler_entry method and the observer binds it to the �rst core that has
not already been assigned to a thread.

8.2.2 Temporary Absence of the MPI_THREAD_MULTIPLE Threading Level

The version of MPI suitable for the BXI interconnect, Bull MPI, is still under development and
does not support MPI_THREAD_MULTIPLE yet. The absence of this threading level is only tem-
porary and we are in contact with Bull to test future versions of Bull MPI that will include it.
However, as explained in Chapter 4, TINS relies on MPI_THREAD_MULTIPLE because MPI com-
munications are performed in tasks that can be executed concurrently with MPI communications
performed by the simulation master thread. This threading support being unavailable at the time

141

Task-Based In Situ for Molecular Dynamics on Exascale Computers

this thesis has been written, we �rst thought of modifying TINS to support a less constraining
threading level, namely MPI_THREAD_SERIALIZED.

In the MPI_THREAD_SERIALIZED threading level, several threads can perform MPI commu-
nications but the developer has to guarantee that the communications are not performed simulta-
neously. The MPI communications have thus to be serialized. To do so, we decided to externalize
the communicator manager of ExaStamp presented in Chapter 3. Inside a Node, the simulation
and the plugins share the same communication manager and every MPI communication is per-
formed thanks to this object. A naive implementation has been to use a mutex to guarantee that
only one thread performs MPI communications at a time but it leads to the same di�culty than
the one explained in Chapter 7. A thread in one MPI process may take the mutex for a simu-
lation MPI communication while a thread in another MPI process may take it for an analytics
MPI communication, leading to a deadlock. More advanced thread management being still under
development at the time this thesis has been written, we decided to restrain our use of TINS on
synchronous executions for the whole analytics work�ow of Figure 8.4 and asynchronous exe-
cutions of analytics work�ows composed of plugins that do not perform MPI communications.
In the following section, we will perform a numerical validation of TINS and present preliminary
performance measurements on the Tera-1000-2 supercomputer under these restrictions.

8.3 Validation of TINS

The primary goal of TINS is to allow the physicists to study physical phenomena with an end-
to-end execution time as small as possible. The validation of TINS is performed in two steps.
First, we perform a numerical validation to check whether the physical phenomena at stake
are well reproduced when executing the analytics work�ow in situ (Section 8.3.1). We then
give preliminary results concerning the performance of TINS on the Tera-1000-2 supercomputer
(Section 8.3.2). We �nally present the possible gain of the TINS framework for the physicists
(Section 8.3.3).

8.3.1 Numerical Validation

To validate numerically the analytics and the execution of TINS, we �rst computed theQn param-
eters, the slice histograms and the Hn (Qn) histograms during a few iterations, based on check-
point �les produced by ExaStamp. The simulation corresponds to a bar of tin material (Figure 8.5)
with a shock propagating along the x-axis. In Figure 8.6, we show the slice histogram of the x-
velocity and of the Q6 parameter for three di�erent iterations. We see the two-wave structure
(left), the re�ection of the shock wave on the free surface (middle) and the moment where the
rarefaction wave crosses the phase transition wave (right). The phase transition is highlighted
by the slice histogram of Q6. The values of Q6 are �uctuating after the passage of the phase
transition wave while it is more stable before.

Figure 8.7 highlights the structural changes by showing the H6 (Q6) histograms in three dif-
ferent regions. The regions before the passage of the phase transition wave (green and purple)
present gaussian H6 (Q6) histograms. Each region is composed of one phase, the phases being
slightly di�erent due to the passage of the shock wave. The region after the passage of the phase
transition wave (orange) exhibits a two-wave structure typical of the cohabitation of several
phases inside the region. This is also highlighted by the di�erent colors in Figure 8.5.

142

Chapter 8 | Validation of TINS on a Production Run

Figure 8.5 | Visualization of theQ6 parameter in a region after the passage of the phase transition wave. The di�erent
colors highlight the coexistence of di�erent phases in this region. This visualization is made possible thanks to the
VTK �le output plugin.

0 500 1000
0

200

400

600

vx (t1)

0 500 1000

0.34

0.36

0.38

0.40

Q6 (t1)

0 500 1000
0

200

400

600

vx (t2)

0 500 1000

0.34

0.36

0.38

0.40

Q6 (t2)

0 500 1000
0

200

400

600

vx (t3)

0 500 1000

0.34

0.36

0.38

0.40

Q6 (t3)

Figure 8.6 | Slice histograms of vx and Q6 for three di�erent iterations. The �rst iteration shows the two-wave
structure with a shock wave and a phase transition wave (left). The shock wave is then re�ected at the free surface
(middle) and the third iteration corresponds to a time after the rarefaction wave has crossed the phase transition wave
(right). The �uctuations in the Q6 slice histogram highlight the coexistence of several phases. The histograms are
sketched thanks to the �les output by the slice histograms plugin.

143

Task-Based In Situ for Molecular Dynamics on Exascale Computers

−1500 −1000 −500 0 500 1000
x

0.34

0.36

0.38

0.40

Q6

0.2 0.4 0.6
0

100000

200000

H6 (Q6), x = -1264

0.2 0.4 0.6
0

100000

200000

H6 (Q6), x = 156

0.2 0.4 0.6
0

100000

200000

H6 (Q6), x = 1079

Figure 8.7 | H6 (Q6) histograms of three di�erent regions along the wave propagation. The histograms are sketched
thanks to the �les output by the slice histograms and the Hn (Qn) histogram plugins.

The data produced by the analytics work�ow executed with TINS are in adequation with the
physical phenomena at stake and with the data produced by other tools developed at CEA. This
validates numerically the analytics and the TINS execution.

8.3.2 Preliminary Performance Measurements

As already explained in Section 8.2, the Tera-1000-2 supercomputer does not provide a MPI_

THREAD_MULTIPLE support, necessary for the asynchronous execution with TINS of analytics
work�ows where analytics perform MPI communications. The asynchronous execution of the
analytics work�ow presented in Figure 8.4 has been tested on small systems on other supercom-
puters, including the Tera-1000-1 supercomputer hosted by CEA but the large-scale simulation
of tin material under shock is only possible on the Tera-1000-2 supercomputer. We therefore
present in this section preliminary results of the synchronous execution of the complete analyt-
ics work�ow with TINS and the asynchronous execution of smaller analytics work�ows where
the plugins do not perform MPI communications.

Synchronous Execution of the Complete Analytics Work�ow

The production run simulates a tin material composed of 300,000,000 particles during 100,000
iterations and using 256 KNL nodes (16,384 cores). The simulation lasts for three days and is
composed of checkpoint �les written every 10,000 iterations and load balancing with the Zoltan
library [24] every 5,000 iterations. The load balancing is necessary because of the heterogeneity
of the simulation and induces a change in the number of particles owned by every MPI processes.

TINS is used to execute the analytics work�ow in a synchronous way. All the analytics are
executed every 500 iterations, except the VTK �le output that is performed every 2,000 iterations.
The �rst observation is that TINS proves to be a robust method that manages to execute the

144

Chapter 8 | Validation of TINS on a Production Run

analytics work�ow during several days. In particular, its data management layout is e�cient to
handle the change in the number of particles owned by the di�erent MPI processes.

Table 8.2 summarizes the end-to-end execution time of the execution with TINS of the ana-
lytics work�ow in situ with ExaStamp. The copy time is negligible compared to the simulation
time because the mean number of particles per MPI process is around 1 million. The execution
time of the analytics graph corresponds to 9% of the total execution time. To see the bene�ts
of the approach, we compared the execution times of ExaStamp/TINS and the current analytics
work�ow used by the physicists at CEA (Table 8.3). Periodically, MPI-IO �les are output by Exa-
Stamp to be read by a custom analytics tools developed at CEA. Writing an MPI-IO �le requires
roughly 120s, reading it corresponds to 540s and theQn computation needs an extra 600s because
the analytics code does not have access to the cells information provided by ExaStamp and is only
parallelized with MPI. Analyzing one iteration with 300,000,000 particles therefore accounts for
1,260s and an MPI-IO �le of 52GB stored into the �lesystem, while the in situ computation with
the qparam analytics and the TINS framework only requires a few seconds and no data stored
into the �lesystem. The gains are expected to be even more important with an asynchronous
execution of the analytics work�ow.

Table 8.2 | Execution times of the analytics work�ow executed in situ with a simulation of 100,000 iterations.

Total Simulation Copy Analytics
Time (s) 301,150 275,650 8 25,830

Table 8.3 | Execution time of one iteration of the qparam analytics executed in situ compared to a custom post-
processing tool developed at CEA. I/O time corresponds to the time to write and read a MPI-IO �le with the particles
information.

I/O Analytics
qparam in situ 0 s 2.5 s

custom post-processing tool 660 s 600 s

Even in the synchronous mode, there is an interest in using the TINS framework for ana-
lyzing simulation data. In particular, TINS provides a graph capacity to transform the analytics
work�ow into a graph where several analytics can be executed concurrently. In the analytics
work�ow used for this study, the graph feature allows to write the VTK �le concurrently with
the other plugins.

Asynchronous Execution of the qparam analytics

To measure the gain of the asynchronous execution of an analytics work�ow compared to the
synchronous execution, we constructed an analytics work�ow composed only of the qparam

analytics. This analytics does indeed not perform MPI communications and can be executed
asynchronously with TINS on the Tera-1000-2 supercomputer. The asynchronous execution of
the analytics is performed with the dynamic helper core strategy with an analytics arena of
size na . For the simulation of the behavior of tin material under shock, the physicists usually
compute the Qn parameters every 500 iterations. In this case, the gain between a synchronous
and an asynchronous execution is of 6.75%. We tested di�erent analytics arena sizes but the best

145

Task-Based In Situ for Molecular Dynamics on Exascale Computers

con�guration is when na = ns = 64 to take bene�t from the analytics parallelization. For this
analytics, the adaptive dynamic helper core approach does not reduce the end-to-end execution
time because the best con�guration is when na = ns .

The gain of the asynchronous approach is all the more important as the frequency of the
analytics increases, as highlighted in Table 8.4. In an extreme case, when the analytics is executed
after each iteration, the asynchronous execution of the qparam analytics is 22% faster than the
synchronous execution. This trend will also be true for the complete analytics work�ow because
the other plugins mainly perform MPI communications that have been proved in Chapter 6 to
be well interleaved by the dynamic helper core strategy.

Table 8.4 | Gain of the asynchronous execution of the qparam analytics compared to a synchronous execution of the
analytics for di�erent frequencies (the frequency increases from left to right).

500 16 4 1
Gain (%) 6.75 7.08 10.07 22.47

TINS and the dynamic helper core strategy allow in situ data analytics at a higher frequency
than the synchronous approach with a small overhead on the simulation execution time. The ap-
proach can thus be used to signi�cantly reduce the end-to-end time of complex analytics work-
�ows.

Limitations of the Graph System

The execution of TINS for this production run let us envision two limitations of the graph sys-
tem. The �rst limitation is related to the serialization of the analytics node that perform MPI
communications. To prevent the potential deadlocks that may occur when executing a graph
composed of analytics that perform MPI communications, we added a �ag in the JSON �le so
that the plugins that de�ne this �ag are serialized. However, this limits the asynchronous aspect
of the graph when most of the plugins perform MPI communications, as it is highlighted in Fig-
ure 8.4. A solution to this limitation would be to split the IP_run method into several methods:
some methods with local computations without MPI communications and some other composed
of MPI communications or any other global communications that require a synchronization from
several MPI processes. The graph could be modi�ed so that the analytics is decomposed into sev-
eral dependent nodes. We highlight this in Figure 8.8, where the nodes are decomposed into two
nodes, �rst a local one and then a global one. This way, only the global nodes would need to be
serialized, which increases the asynchronous aspect of the graph. Most advanced features could
also support the decomposition into more than two nodes to execute more complex analytics.

The second limitation comes from the unique graph where all the nodes are not executed at
the same frequency. In the example of Figure 8.4, all the nodes are executed every 500 iterations,
except the VTK �le output that is performed every 2,000 iterations. The reason behind this
choice is that the VTK �le output execution time corresponds to more than 1,000 iterations of
ExaStamp. By executing it every 2,000 iterations, we hope to overlap the execution time of the
plugin with the simulation. However, our graph system shows a limitation in this case. At the
2,000th iteration, the orchestrator launches the graph execution on data copied by the simulation
and sets the next analytics breakpoint at iteration 2,500. However, when the simulation reaches
the 2,500th iteration, it cannot copy its data because the VTK �le output has not completed yet.

146

Chapter 8 | Validation of TINS on a Production Run

ExaStamp

Q com-
putation
(local)

VTK
output
(local)

Mean of Q
parameters

(local)

Slice
histograms

(local)

Hn(Qn)

histograms
(local)

Hn(Qn)

histograms
(global)

Slice
histograms

(global)

Mean of Q
parameters

(global)

Figure 8.8 | Modi�cation of the graph of Figure 8.4 where the analytics are decomposed into two methods, a local
one without MPI communications and a global one with MPI communications. The serialization is necessary only
between the global nodes.

147

Task-Based In Situ for Molecular Dynamics on Exascale Computers

A solution to this issue is to create several graphs depending on the analytics frequency. In the
example of Figure 8.4, the graph would be decomposed into two graphs, one without the VTK �le
output node and executed every 500 iterations and one consisting in the whole graph executed
every 2,000 iterations. These two graphs coupled with a mechanism that stores several copies of
the simulation data would reduce the waiting time in the synchronization point and would allow
to execute heavy analytics at a low frequency without disturbing the execution of lightweight
analytics at a higher frequency.

8.3.3 Gain of TINS for the Physicists

In situ processing has been recognized in the computer science �eld as a mean to signi�cantly
reduce the end-to-end execution time of complex analytics work�ows compared to traditional
post-processing tools. However, in situ processing is still under-used by the physicists who see
this approach as more restrictive than the post-processing approach. During this thesis, we
conducted a survey on the data analytics habits of the physicists at CEA. Several reasons were
given to explain why the physicists still prefer post-processing tools. First, the major reason is
that the analytics work�ow must be known in advance for in situ processing while this is usually
not the case because it is mostly constructed and re�ned thanks to an exploratory process based
on data stored by the simulation. Secondly, the physicists fear that in situ processing will totally
remove �le output and that they will need to re-execute long simulations if they want to execute
analytics that were not initially planned. Finally, physicists prefer to use synchronous analytics
integrated into the simulation codes instead of complex architectures that would require them
to follow speci�c trainings to master these tools.

Simulation

Files

Standalone Code

Analytics Workflow

writes

read byconstructs

executed
in situ

Figure 8.9 | Iterative construction of an analytics work�ow with TINS.

With TINS, we provide an intuitive environment integrated inside the simulation to o�er
the physicists the ability to create and execute complex analytics work�ows in situ or in transit.
TINS only relies on TBB and does not add extra dependencies in the simulation, greatly reduc-
ing the learning curve to use the framework. Moreover, TINS is not intended to replace the �le
output but rather to complement it, as it is highlighted in Figure 8.9. The framework proposes
a standalone mode that can be used to develop analytics that explore data saved by the simula-
tion and to construct complex analytics work�ows as if they were post-processing codes. The
analytics work�ows can then be executed in situ and/or in transit without any modi�cations in
the analytics codes. Data can still be output, potentially at a lower frequency, so that the physi-
cists can use them to re�ne their analytics work�ows. This way, TINS can be used to iteratively
construct analytics work�ows and reduce the need of �le output. The analytics work�ows can

148

Chapter 8 | Validation of TINS on a Production Run

then be used transparently in a production environment, hence reducing the end-to-end time to
scienti�c discovery.

8.4 Chapter Summary

We have seen in this chapter that TINS allows the construction and the execution of complex
analytics work�ows in a production environment. TINS is a robust and intuitive tool where the
physicists can easily develop and test their analytics work�ows before being executed in a pro-
duction environment. TINS shows promising results on the asynchronous execution of analytics
at a high frequency. Due to technical limitations of the target production supercomputer, we
were not able to execute TINS at its full capacities, that is to say with the dynamic helper core
strategy. We still show that the synchronous execution of a complete analytics work�ow is per-
formed with an overhead of 9% over the execution time of ExaStamp. We have also shown that
TINS present promising results for the asynchronous execution of analytics at a high frequency.

149

9 Conclusion and Perspectives

Traditionally, the analysis of simulation data is performed in a post-processing step. Simulation
data are periodically written into the �lesystem by the simulation and read back by analytics
applications to extract information about the physics at stake. This post-processing of data will
become more and more di�cult because of the growing gap between data generation rate and the
time to write and read data to and from the �lesystem, which calls for new data processing meth-
ods. The in situ paradigm proposes to reduce the need to write data by directly analyzing them
while resident in the compute node memory. Several techniques exist, either by executing simu-
lation and analytics on the same nodes (in situ), by dedicating a set of nodes to the analytics (in
transit) or by using a combination of the two (hybrid). Many works have focused on implement-
ing in situ middleware that optimize the resource usage of the nodes. They generally execute
simulation and analytics as di�erent processes, either by exploiting the unused resources of the
simulation to execute analytics processes or by dedicating cores, called static helper cores, to the
analytics. While these techniques have proved their performance for multicore architectures,
they do not target manycore processors nor simulation codes optimized for these architectures.
In particular, task-based programming models are expected to become a standard for manycore
architectures and would allow to �nely optimize the execution of in situ analytics but few in situ
techniques have been developed with this emergent programming model in mind.

9.1 Contributions

In this thesis, we studied the design and integration of a novel task-based in situ framework
inside a task-based molecular dynamics code designed for exascale supercomputers. Our target
code is ExaStamp [29], a molecular dynamics code developed at CEA for the last 5 years. Exa-
Stamp shows quasi-linear speedup on multi and manycore processors, but the fork-join model
it employs induces small sequential regions that reduce the performance of the simulation code.
Such simulation cannot take the best of existing in situ techniques, either because the sequential
regions are too short to be exploited without degrading the simulation performance or because
con�scating cores has a signi�cant impact on simulation performance. To solve the issues of tra-
ditional in situ techniques on such code, we proposed to leverage the task-based programming
model and the work stealing concept to create and execute analytics tasks concurrently with
simulation tasks and with a low overhead on simulation execution time.

151

Task-Based In Situ for Molecular Dynamics on Exascale Computers

During this thesis, we introduced TINS, a Task-based IN Situ framework that relies on a
task-based programming model to create simulation and analytics tasks concurrently and on a
work stealing scheduler to e�ciently interleave them in situ. Our implementation of TINS uses
Intel® TBB [5] as the work stealing scheduler and is integrated into ExaStamp. In a �rst version,
the simulation spawns an analytics task at a given frequency and resumes to the next iteration
without waiting for the task completion. Simulation and analytics are therefore executed asyn-
chronously thanks to the TBB scheduler. This approach proved to be up to 39% faster than a
synchronous execution and up to 12% faster than the Goldrush middleware [119].

The comparison with the Damaris middleware [42] motivated the implementation of a thread
isolation mechanism in TINS to add a static helper core feature in our framework. It relies on
a dedicated thread, the orchestrator thread, and on an arena system that guarantees the strict
separation of the threads into two disjoint groups. The simulation is just in charge of creating
simulation tasks in a simulation arena and to copy data into a temporary bu�er at a given fre-
quency. The orchestrator synchronizes with the simulation master thread to launch analytics
execution in the analytics arena on the data copied by the simulation. We have shown that the
static helper core strategy implemented in TINS is equivalent or outperforms Damaris for ana-
lytics with important NUMA e�ects and we have shown that TINS is up to 42% faster with the
thread isolation than without.

To reduce the impact of the choice of the number of static helper cores, we designed a dy-
namic helper core strategy with a temporary thread isolation. By extending the arena system
introduced for the static helper core approach, the threads are split into two groups when both
simulation and analytics tasks exist concurrently and steal work inside their own group. When
the simulation enters a sequential region or when the analytics of an iteration is completed, the
threads involved in these computations can move to the other group and steal tasks of the other
group, hence reducing the thread idleness periods. This technique proved to be less sensitive to
the number of helper cores than the static helper core strategy. We have shown that the dynamic
helper core strategy implemented in TINS can be up to 40% faster than the static helper core strat-
egy and Damaris. Simulations on up to 14,336 cores have shown that TINS with dynamic helper
core executes dynamic analytics work�ows with an overhead of less than 7% over ExaStamp
alone. These results have led to the publication of a paper in an international conference [37].

TINS is not only a task-based in situ method but also an intuitive and evolutive framework
where simulation and analytics codes are decoupled. Analytics are coded outside of the simu-
lation code as if they were post-processing codes. The data management and synchronizations
with the simulation are hidden by TINS and a standalone mode allows to test the analytics with-
out executing the whole simulation. The end-user can easily describe analytics work�ows that
are transformed by TINS in TBB �ow graphs and that can be executed in situ with the dynamic
helper core strategy, in transit or with a combination of the two without any code modi�cations.
We have in particular shown that executing analytics in transit adds a negligible overhead on
the in situ execution of other analytics and that the in transit mode allows to execute analytics
that were not possible in an in situ mode at a low development cost.

TINS has been tested and validated on a production run, proving its robustness on runs of
several days with periodic load balancing. Due to technical limitations of the target supercom-
puter, we were not able to execute TINS with its full capacities but the synchronous execution
of a complex analytics work�ow with TINS was made with an overhead of 9% over ExaStamp
execution time alone. Moreover, the in situ computation of a molecular dynamics parameter was

152

Chapter 9 | Conclusion and Perspectives

performed in a few seconds while post-processing tools usually used by the physicists require
more than 10 minutes. Preliminary measurements on the asynchronous execution of a simpler
analytics work�ow show promising results and makes us con�dent in the capacity of TINS to
e�ciently execute complex analytics work�ows at a high frequency and in a production envi-
ronment.

9.2 Perspectives

TINS has shown its robustness in a production environment, its ease of use by non-expert devel-
opers and its performance compared to existing middleware but it also opens new perspectives
and challenges.

Adding Support to Other Task-Based Runtimes Our implementation of TINS relies on the
TBB library that provides a task-based programming model and a work stealing scheduler to
interleave simulation and analytics tasks. This work aims at being generalized to support other
task-based runtimes. We think in particular of OpenMP because a great number of simulation
codes are developed using a MPI+OpenMP programming model. Recent versions of OpenMP
support task-based programming but one di�culty will be to �nd an equivalent of the TBB are-
nas. The approach could also be generalized to distributed task-based programming models such
as Legion [20] or HPX [65] to reduce the limitations of our graph system when analytics perform
MPI communications. Finally, the supercomputing environments are becoming more and more
heterogeneous and CPUs are now more and more often mixed with accelerators that provide
more potential for in situ processing [59, 54]. In this context, it could be interesting to extend
this work for heterogeneous computing thanks to StarPU [15] for example or by using the ex-
tended �ow graph API of TBB to execute tasks on accelerators such as GPUs for example.

Reducing Idleness Periods of the Orchestrator Thread In TINS, an orchestrator thread
is spawned during the initialization of the simulation. The simulation master thread and the
orchestrator thread have their own timeloop, both being in charge of creating tasks in their
corresponding arenas. To avoid core over-subscription, we removed one thread from the worker
thread pool. Because the orchestrator thread is not allowed to execute simulation tasks, there
will therefore be at most N − 1 threads executing simulation tasks on a processor with N cores,
even if the orchestrator thread has no analytics tasks to execute. To reduce the orchestrator
thread idleness periods, the idea would be either to add a mechanism so that the orchestrator
can execute simulation tasks instead of being idle or to add more work to the orchestrator to
bene�t from the presence of this extra thread.

Steering of Analytics One example of work that can be added to the orchestrator thread
is the steering of analytics. The computational steering traditionally consists in modifying the
simulation parameters at runtime, to interactively test the in�uence of a given parameter for
example. This feature has been used in the past but was abandoned because it prevented code
reproducibility. The idea behind the integration of steering capacities in TINS would be to execute
small analytics on the parameters of the simulation, to modify the frequency of the analytics
or to add new analytics in the analytics work�ow at runtime. The end-user could therefore
modify the analytics work�ow at runtime based on the observation of simulation parameters

153

Task-Based In Situ for Molecular Dynamics on Exascale Computers

and without impacting the simulation code reproducibility. A prototype has been developed in a
project with our partner Paratools. It embeds a Python shell managed by the orchestrator thread.
Knowing the data structure used by the orchestrator, it is possible to de�ne Python commands
that retrieve simulation data and apply small computations on them. The prototype is still under
development and should also include the possibility to modify the analytics work�ow at runtime.
The di�culty here will be to add or remove analytics that perform blocking operations such as
MPI communications. It will thus be necessary to implement deterministic algorithms so that
each MPI process inserts or retrieves analytics nodes at the same position in the graph to avoid
deadlocks.

Implementing More Advanced Graph and Data Management The analytics work�ow is
described as a TBB �ow graph where a node corresponds to the computation of an analytics
at a given frequency. At an in situ iteration, the whole graph is executed based on the copy
of the simulation data kept in memory. If the frequency of an analytics in the graph does not
match the in situ iteration, this analytics is not executed. We envision two enhancements of the
graph management. We have seen that a limitation of our graph system is that the analytics that
perform MPI communications must be serialized to avoid deadlocks during the graph execution.
An idea to soften this issue would be to split the analytics into local parts and parts that actually
perform MPI communications, or more generally any blocking computations that could induce a
deadlock. The nodes of the graph would thus be split into several nodes linked with a dependency,
allowing a more �ne-grained serialization. Another idea would be to split the graph into several
graphs based on the frequencies of the analytics. This way, heavy analytics could be executed
at a low frequency without impacting the execution of more lightweight analytics at a higher
frequency. Implementing this approach would require a more advanced data management system
where several copies of the simulation data would be kept in memory but it could greatly reduce
the synchronizations induced by TINS.

Improving In Transit Capacities We have proposed in this work an extension of the TINS
framework to support in transit processing. We have implemented a prototype of in transit ex-
ecution with only one staging node that let us show the bene�t of the approach and the low
overhead on the simulation execution time. Future works will include the development of more
advanced in transit capacities with several staging nodes. The di�culty here is to manage data
transfers e�ciently from the compute nodes to the staging nodes, the two sets of nodes being
usually of di�erent sizes. The idea would therefore be to use existing libraries such as Bredala [45]
to compute redistribution patterns and to transfer data thanks to non-blocking or one-sided com-
munications in a MPMD context.

9.3 Towards Advanced Uses of TINS

In situ processing is an emerging way to analyze data at a high frequency by reducing the amount
of data stored into the �lesystem and the end-to-end time to scienti�c discovery. Unfortunately,
this approach is not currently the preferred way to analyze data because the end-users often see it
as more restricted than post-processing approaches, particularly because the analytics work�ow
has to be known in advance. However, the exascale era will certainly force the end-users to
dramatically change their habits because of the poor I/O performance that exascale machines

154

Chapter 9 | Conclusion and Perspectives

will exhibit. It is therefore of the utmost importance to propose intuitive tools and to promote
their use to smooth the passage to the exascale era.

With TINS, we set the bases of a hybrid framework to reduce the need to write data into
the �lesystem and we propose a task-based in situ method to optimize the resource usage on
a compute node transparently for the user. TINS does not require complex dependencies and
adding analytics in TINS consists in writing C++ plugins parallelized with the TBB library. The
plugins can be developed as if they were post-processing codes thanks to a standalone mode and
executed in situ or in transit without any code modi�cations. TINS is for the moment integrated
into ExaStamp but we have begun to extract it so that it becomes a library that can be used by
other simulation codes. In particular, TINS has been developed for a molecular dynamics code but
it can be used by other communities, given that the simulations use a task-based programming
model and MPI. In this thesis, we have also focused on simulation codes that do not use all the
available memory of the nodes and for which copies of the data can be stored in the compute node
memory but the task-based approach implemented in TINS leaves the opportunity for copying
the data per block to reduce the memory footprint and hence reach a broader community.

The next step is to work with the physicists to design advanced in situ analytics scenar-
ios. This way, we could identify potential shortcomings or missing features and improve the
capabilities of our framework accordingly. The challenge is to make sure that physicists can be
autonomous in using TINS and to guarantee that in situ processing reduces the end-to-end time
to scienti�c discovery compared to post-processing approaches, without being a constraining
tool di�cult to use. To that end, we have already begun to work with physicists to improve the
computation of numerical potentials thanks to machine learning methods. Today, these studies
require to perform heavy computations synchronously with the simulation to �nd con�guration
samples that are added to a database used by a machine learning process. Instead of performing
these heavy computations synchronously, TINS can be used to perform them asynchronously
with the simulation, hence producing more con�gurations within a smaller end-to-end time and
increasing the precision of the machine learning process and of the numerical potential. More
generally, we are collaborating with physicists to design and deploy new analytics work�ows to
analyze in situ the behavior of matter under shock.

155

Part IV

Additional Content

157

10 Résumé de la Thèse en Français

10.1 Introduction

Pour comprendre et mettre en avant des phénomènes physiques, les physiciens créent des mo-
dèles et les valident, les invalident ou les ra�nent grâce à des expériences, physiques ou numé-
riques. Les expériences physiques se font dans des laboratoires qui reproduisent les conditions
physiques du phénomène en jeu. Ces expériences physiques permettent aux physiciens de com-
prendre �nement les phénomènes en jeu mais elles présentent un certains nombre d’inconvé-
nients. Le premier est �nancier, car l’utilisation d’installations de pointe rendent les expériences
physiques très onéreuses. Le deuxième est l’incapacité de reproduire certains phénomènes phy-
siques en laboratoire, comme par exemple le mouvement des planètes en astrophysique ou les
interactions entre océans et atmosphère en climatologie.

Au cours des dernières décennies, la simulation numérique est devenue un outil important
pour pallier à certains des inconvénients des expériences physiques. Les phénomènes physiques
sont modélisés par des modèles mathématiques résolus numériquement par des simulations nu-
mériques s’exécutant sur des supercalculateurs. Un supercalculateur peut être vu comme un en-
semble d’ordinateurs, communément appelés nœuds de calcul, connectés entre eux par un réseau
haute performance. Les nœuds de calcul sont aussi reliés à un système de �chiers pour sauve-
garder des données sous forme de �chiers.

La puissance d’un supercalculateur se mesure en Flop/s, c’est-à-dire au nombre d’opérations
�ottantes (�oating point operations en anglais) qu’il peut e�ectuer en une seconde. Alors que
les premiers supercalculeurs e�ectuaient quelques opérations �ottantes par seconde, la machine
la plus puissantes en juin 2018, Summit 1, atteignait 120 PFlop/s, correspondant à 1017 Flop/s,
ou encore cent millions de milliards d’opérations �ottantes par seconde. Cette augmentation
de la puissance de calcul n’est pas prête de s’arrêter et les constructeurs de machines ont déjà
entamé une course vers l’exascale qui devrait mené, aux alentours de 2020, à des supercalculateurs
capables d’e�ectuer un milliard de milliards d’opérations par seconde (1018 Flop/s).

Jusqu’aux années 2000, les constructeurs ont augmenté la puissance de calcul notamment
grâce à l’augmentation de la fréquence des processeurs constituants les nœuds de calcul. En
1965, Gordon Moore a observé que le nombre de transistors dans un circuit intégré doublait à
peu près tous les deux ans. En diminuant la taille des transistors, il était alors possible d’augmen-

1https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

159

https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/

Task-Based In Situ for Molecular Dynamics on Exascale Computers

ter la fréquences des processeurs. Les codes de simulation pouvaient directement béné�cier de
l’augmentation de la fréquence, s’exécutant de plus en plus vite sans modi�er la moindre ligne
de codes. Néanmoins, la loi de Moore s’essou�e depuis les années 2000, notamment parce que
l’augmentation de la fréquence des processeurs entraîne une augmentation signi�cative de la
température des processeurs.

Pour s’adapter à cette contrainte, les constructeurs ont créés des processeurs multi-cœurs.
Au lieu d’avoir une seule unité de calcul par processeur, les processeurs sont désormais équipés
de plusieurs cœurs permettant d’e�ectuer des calculs en parallèle et réduisant l’enveloppe ther-
mique associée. Les processeurs multi-cœurs actuels peuvent aller de quelques cœurs à quelques
dizaines de cœurs. Le nombre de cœurs par processeur est en augmentation constante et les pro-
cesseurs many-cœurs, avec plusieurs dizaines de cœurs à faible fréquence, sont de plus en plus
prédominants. L’ère de l’exascale sera très certainement atteinte grâce à ce genre de technologies.

Pour pouvoir béné�cier de cette puissance de calcul, les codes de simulations doivent s’adap-
ter aux di�érents niveaux de parallélisme et de mémoire o�erts par les supercalculateurs actuels.
Les codes optent de plus en plus pour une programmation dite hybride, où un modèle de pro-
grammation en mémoire partagée exploite les cœurs disponibles dans un nœud de calcul et un
modèle de programmation en mémoire distribuée permet d’utiliser plusieurs nœuds de calcul. Le
modèle de programmation en mémoire distribuée le plus utilisé est MPI (Message Passing Inter-
face). Des processus MPI sont déployés sur les di�érents nœuds et s’échangent des données via
des communications explicites.

Il existe plusieurs modèles de programmation en mémoire partagée. Ils se basent sur un en-
semble de threads (�ls d’exécution en français) qui sont exécutés sur les di�érents cœurs dispo-
nibles. Par exemple, la programmation à base de tâches propose une interface haut niveau où le
programmeur décrit son programme sous forme de tâches qui sont distribuées de façon transpa-
rente par un ordonnanceur de tâches sur un ensemble de threads qu’il a créés. La programmation
par tâches est susceptible de devenir le modèle de programmation standard pour les machines
multi et many-cœurs. Des bibliothèques telles que Intel® Threading Building Blocks (TBB), pro-
posent un modèle de programmation à base de tâches et un ordonnancement à base de vol de
tâches pour équilibrer les charges de calcul exécutées par les di�érents threads.

Une simulation numérique s’e�ectue en deux étapes. Les ressources de calcul sont dans un
premier temps utilisées pour résoudre les équations mathématiques. Ensuite, les données géné-
rées par la simulation sont périodiquement extraites et écrites sur le système de �chiers sous
forme de �chiers de sorties. Ces �chiers de sorties ont vocation à être relus par des codes d’ana-
lyses qui, à partir des données brutes générées par la simulation, extraient des métriques uti-
lisées par les physiciens pour comprendre les phénomènes physiques. On parle dans ce cas de
post-traitement des données.

L’évolution des supercalculateurs permet d’e�ectuer des simulations de plus en plus pré-
cises. Par exemple, en dynamique moléculaire appliquée aux matériaux, l’étude du changement
de phase d’un matériau sous choc était jusqu’à présent limitée à des systèmes de quelques mil-
lions de particules. Grâce aux nouvelles architectures, il est désormais possible de simuler des
systèmes de plusieurs centaines de millions de particules, améliorant grandement la compréhen-
sion des phénomènes en jeu. Mais cette augmentation du nombre de particules signi�e aussi une
augmentation de la quantité de données à écrire sur le système de �chiers. Néanmoins, les capa-
cités de transfert et d’écriture n’évoluent pas aussi rapidement que les capacités de calculs. Les

160

Chapter 10 | Résumé de la Thèse en Français

simulations sont donc de plus en plus pénalisées par les sorties de données sur le systèmes de
�chiers et le temps total jusqu’à la découverte scienti�que est grandement augmenté.

A�n de diminuer le besoin d’écrire des données sur les systèmes de �chiers, les techniques
de l’in situ proposent d’analyser les données directement là où elles sont produites. Il en existe
trois types : le in situ à proprement parler où simulation et analyses sont exécutées sur les mêmes
nœuds de calcul, le in transit où les analyses sont exécutées sur des nœuds dédiés et l’approche
hybride où des analyses peu coûteuses sont exécutées in situ et des analyses plus coûteuses in
transit.

Les méthodes traditionnelles de l’in situ (sur les mêmes nœuds de calcul) sont adaptées pour
des codes hybrides MPI+X (où X correspond à un modèle de programmation en mémoire par-
tagée) qui n’arrivent pas à béné�cier pleinement des cœurs d’un processeur multi-cœurs. La
plupart des codes de simulation hybrides peuvent en e�et tirer pro�t de quelques cœurs mais ne
sont souvent pas e�caces sur les dizaines de cœurs proposés par ces architectures. Les biblio-
thèques d’in situ proposent donc d’utiliser ces ressources sous-exploitées par la simulation pour
exécuter des analyses de manière asynchrone. Il existe deux grandes techniques : les analyses
peuvent être exécutées pendant les régions séquentielles de la simulation [119] ou des cœurs,
appelés helper cores en anglais, peuvent être con�squés à la simulation pour être dédiés à l’ana-
lyse [41, 44]. Ces techniques sont peu adaptées aux architectures many-cœurs et encore moins
aux codes qui ont été optimisés pour ces architectures. De plus, bien que la programmation par
tâches aient été identi�ée comme propice au développement de systèmes in situ [93], peu de
travaux se sont concentrés jusqu’à présent sur le développement de systèmes in situ à base de
tâches pour les codes MPI+X.

Cette étude s’inscrit dans ce contexte et consiste à étudier l’intégration d’une architecture
in situ à base de tâches au sein d’un code de dynamique moléculaire optimisé pour les architec-
tures multi et many-cœurs. Le code cible est ExaStamp, un code hybride MPI+TBB développé
au CEA et qui atteint des performances presque optimales sur des supercalculateurs à la pointe
de la technologie. Les techniques traditionnelles de l’in situ ne sont pas e�caces sur un code tel
qu’ExaStamp, soit parce que les régions séquentielles sont trop courtes pour être exploitées sans
perturber l’exécution de la simulation, soit parce que con�squer des cœurs à la simulation a un
impact important sur le temps de la simulation. Compte tenu des bonnes propriétés d’équilibrage
de charge du vol de tâches, l’idée est donc de créer des tâches de simulation et d’analyse de façon
concurrente et de tirer parti du mécanisme de vol de tâches pour les entrelacer e�cacement sur
les mêmes cœurs. Plus généralement, le but de la thèse est de tirer pro�t du modèle de program-
mation à base de tâches pour proposer une architecture hybride où les mêmes analyses peuvent
être exécutées in situ, in transit ou de manière hybride de façon transparente pour l’utilisateur.

10.2 Organisation du Manuscrit

Ce manuscrit rend compte de la démarche adoptée pour proposer une architecture hybride de
traitement des données in situ qui tire pro�t de la programmation par tâches et du vol de tâches
pour entrelacer de façon e�cace simulation et analyses. Ce manuscrit s’organise en trois parties.
Dans un premier temps (Chapitres 2 et 3), nous étudions plus en détails le contexte de cette étude,
les solutions existantes pour le traitement in situ, in transit et hybride des données et nous pré-
sentons plus en détails la bibliothèque TBB et le code de dynamique moléculaire ExaStamp. Une
deuxième partie (Chapitres 4, 5 et 6) est consacrée à la mise en place d’une méthode dynamique

161

Task-Based In Situ for Molecular Dynamics on Exascale Computers

de traitement des données in situ. Finalement, une troisième et dernière partie (Chapitres 7, 8) est
dédiée au développement d’une architecture évolutive, intuitive et générique pour le traitement
des données in situ. Ce document étant rédigé en anglais, nous résumons dans cette section les
idées principales et les résultats principaux des cinq chapitres de démarche en français. Nous en-
courageons vivement le lecteur à lire les chapitres en anglais pour de plus amples informations
sur la démarche et les résultats obtenus.

ExaStamp est un nouveau code qui ne possède pas nativement de mécanismes pour analyser
les données in situ. Nous proposons donc dans le Chapitre 4 d’intégrer des analyses représenta-
tives de la physique à l’intérieur du code et de les exécuter dans un premier temps de façon syn-
chrone : périodiquement, la simulation est stoppée et les ressources de calcul sont utilisées pour
exécuter une analyse à la place. Ceci nous permet dans un premier temps de véri�er l’intérêt en
terme de temps de calcul de l’in situ par rapport à la technique traditionnelle de post-traitement.
Grâce au développement d’un outil pour visualiser l’exécution des tâches, nous mettons en évi-
dence les régions séquentielles du code de simulation, qui représentent une opportunité pour
l’implantation d’un système in situ plus e�cace. Nous proposons donc de mettre en place une
exécution asynchrone à base de tâches que nous appelons TINS (pour Task-based IN Situ en an-
glais). Périodiquement, la simulation crée une tâche d’analyse, la soumet à l’ordonnanceur de
tâches et continue l’exécution de la simulation sans attendre que la tâche d’analyse n’ait été exé-
cutée. Simulation et analyses s’exécutent donc de manière concurrente grâce à l’ordonnanceur de
TBB et nous montrons que TINS peut être jusqu’à 39% plus rapide qu’une exécution synchrone.

Dans le Chapitre 5, nous comparons TINS avec deux bibliothèques existantes, Goldrush et
Damaris. Nous montrons que TINS est jusqu’à 12% plus rapide que Goldrush, notamment en
raison du fait que les régions séquentielles d’ExaStamp sont trop courtes pour être exploitées
mais aussi à cause de l’approche à base de processus de Goldrush qui induit deux ordonnanceurs
de TBB sur un nœud alors qu’il n’y en n’a qu’un seul dans TINS. Nous montrons ensuite que
le temps d’exécution avec Damaris est plus faible qu’avec TINS pour de grosses analyses et des
analyses séquentielles, ce qui motive le développement d’un mécanisme d’isolation des tâches
dans TINS. Pour ce faire, nous utilisons des mécanismes natifs de TBB pour créer un système
d’arènes attachées sur des ensembles disjoints de cœurs. La création de tâches d’analyses se fait
grâce à un thread d’analyse créé à l’initialisation par le thread principal de la simulation. Notre
système est donc composé d’un thread de simulation qui crée des tâches de simulation dans une
arène de simulation et qui copie périodiquement des données dans un bu�er temporaire, d’un
thread d’analyse qui se synchronise avec le thread de simulation pour créer des tâches d’analyse
dans l’arène d’analyse une fois que des données sont disponibles dans le bu�er temporaire et
de N − 2 worker threads (N étant le nombre de cœurs dans le processeur) qui sont assignés aux
deux arènes (na threads dans l’arène d’analyse et ns threads dans l’arène de simulation avec
na + ns = N) pour exécuter les di�érentes tâches. Nous montrons que TINS avec ce mécanisme
de helper cores statique est équivalent voire même meilleur que Damaris sur des analyses avec
beaucoup d’accès mémoire. TINS avec helper cores statique est de plus jusqu’à 42% meilleur que
TINS sans isolation. Cependant, nous montrons une limitation de l’approche par helper cores
statique : il faut choisir le nombre de helper cores (na) su�samment grand pour que l’analyse
puisse béné�cier de sa parallélisation et su�samment petit pour que le temps d’exécution de la
simulation ne soit pas trop impacté.

Le Chapitre 6 est dédié à la mise en place de méthodes dynamiques et adaptatives pour pallier

162

Chapter 10 | Résumé de la Thèse en Français

aux inconvénients du helper cores statique. Nous proposons dans un premier temps une méthode
de helper cores statique adaptative qui détermine automatiquement le nombre de helper cores op-
timal, c’est-à-dire na tel que le temps d’exécution de la simulation soit à peu près égal au temps
d’exécution de l’analyse. Cependant, nous montrons que l’implantation du telle méthode dans
TINS rajouterait une synchronisation entre les threads de simulation et d’analyse. De plus, cette
méthode ne permet toujours pas de tirer pro�t des régions séquentielles de la simulation et de
l’analyse. Nous mettons donc en place dans un second temps une méthode de helper cores dyna-
mique où l’isolation entre les threads n’est plus permanent comme dans le helper cores statique
mais temporaire. Les threads sont séparés en deux groupes lorsque des tâches de simulation et
d’analyse sont disponibles en même temps mais cette restriction est relevée quand la simulation
rentre dans une région séquentielle ou que l’exécution de l’analyse est terminée. Cette méthode
utilise le système d’arènes introduit précédemment mais avec ns = N et na > 0 de sorte à avoir
na +ns > N . L’utilisateur doit choisir na , selon le degré de priorité qu’il veut accorder à la simu-
lation, mais nous montrons que le choix de na dans le cas dynamique est beaucoup moins punitif
que le choix de na dans le cas statique. Nous montrons en particulier que la méthode dynamique
est jusqu’à 40% plus rapide que la méthode statique sur un ensemble de scenarios, incluant une
simulation de 2 milliards de particules sur 14,000 cœurs avec des analyses aux besoins di�érents
à chaque itération. Finalement, nous proposons d’implanter la méthode d’adaptation de na dans
le cas dynamique pour automatiquement trouver la meilleure con�guration. Nous montrons que
l’algorithme permet de trouver la meilleure con�guration pour un ensemble d’analyses mais qu’il
faut pour certaines analyses un nombre conséquent d’itérations pour y arriver.

Nous présentons dans le Chapitre 7 l’architecture de TINS qui est conçue de sorte à séparer
les codes de simulation et d’analyse. Jusqu’à présent, les codes d’analyses étaient directement
intégrés dans le code de la simulation mais ceci pose des problèmes, notamment pour la géné-
ricité de l’approche. En e�et, coder les analyses à l’intérieur du code de la simulation impose
des contraintes sur le développement des analyses, contraintes qui sont di�érentes d’un code de
simulation à un autre. Nous développons donc un système de plugins où les analyses sont dé-
veloppées sous forme de plugins chargés dynamiquement lors de l’exécution de la simulation.
Un objet est partagé par la simulation et le plugins, le but de cet objet étant de masquer les
synchronisations entre la simulation et les analyses et de masquer la façon dont sont stockées
les données en mémoire. Le développeur utilise cet objet pour récupérer des pointeurs vers les
données en mémoire et développe les analyses comme si c’était des analyses de post-traitement,
sans se soucier du fait qu’elles vont être exécutées in situ avec la simulation. Nous développons
aussi un système de graphe à base de tâches pour la création de work�ows d’analyses complexes.
L’utilisateur décrit les analyses qu’il veut exécuter dans un �chier externe et TINS en déduit un
graphe où chaque nœud représente une analyse et les liaisons entre les nœuds des dépendances
de données entre les analyses. Chaque analyse est vue comme une tâche à gros grain et la tâche
d’analyse peut à son tour créer des tâches qui vont être intercalées avec la simulation dans une
exécution in situ. Nous ajoutons �nalement dans TINS la capacité d’exécuter les analyses in tran-
sit et nous développons un prototype qui nous permet de valider l’intérêt de cette approche. Le
plus gros avantage de l’architecture de TINS est que les analyses peuvent être exécutées in situ,
in transit ou même en post-traitement de manière totalement transparente et sans aucune mo-
di�cation des codes d’analyses. Ceci en fait une architecture �exible, intuitive et générique qui
peut être utilisée par d’autres codes de simulation qu’ExaStamp.

163

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Finalement, le Chapitre 8 valide l’architecture de TINS en l’utilisant pour analyser in situ les
résultats d’une simulation de production. Nous présentons d’abord le cas test qui étudie le chan-
gement de phase d’un matériau d’étain sous choc. Nous implantons une analyse structurelle sous
forme de plugin et nous montrons que l’architecture de TINS est su�samment souple pour ex-
traire facilement plus de données de la simulation a�n d’accélérer le calcul de l’analyse. Nous
présentons ensuite le supercalculateur cible et en particulier les limitations techniques de cette
machine qui nous empêchent d’utiliser toutes les fonctionnalités de TINS. Nous arrivons néan-
moins à exécuter un work�ow d’analyses complexe avec TINS en quelques secondes seulement
alors qu’il nécessite une dizaine de minutes avec les outils de post-traitement traditionnellement
utilisés. De plus, nous mettons en évidence la robustesse de TINS sur un calcul de plusieurs jours
et nous montrons un surcoût de TINS sur le temps de la simulation de moins de 10%. Outre le gain
de temps de calcul permis par TINS, nous montrons aussi que l’architecture est intuitive et peut
permettre aux physiciens habitués aux outils de post-traitement de transiter vers des techniques
in situ malheureusement encore peu utilisées par cette communauté.

10.3 Conclusion

Traditionnellement, la découverte scienti�que s’e�ectue en deux temps. Des simulations numé-
riques sont tout d’abord calibrées et exécutées sur des supercalculateurs. Les simulations pro-
duisent des données qui sont périodiquement écrites sur les systèmes de �chiers des supercal-
culateurs. Des codes d’analyses sont ensuite utilisés pour lire ces données et en extraire des
métriques utilisables par le physicien pour comprendre les phénomènes physiques. Avec l’évo-
lution actuelle des supercalculateurs, il est possible de simuler des phénomènes physiques de
plus en plus complexes grâce à des systèmes numériques de plus en plus grand. Cependant, les
capacités d’écriture et de lecture n’évoluent pas aussi rapidement que les capacités de calcul et
la technique traditionnelle de post-traitement entraîne un temps de plus en plus long jusqu’à la
découverte scienti�que. Les techniques de l’in situ voient donc le jour pour diminuer le besoin
d’écrire des données sur les systèmes de �chier en les analysant directement là où elles sont
produites. De nombreuses études ont été réalisée pour fournir aux utilisateurs des techniques
performantes pour l’analyse in situ des données mais ces études se focalisent majoritairement
sur les codes qui n’arrivent pas à tirer pro�t du nombre croissant de cœurs par processeur. Elles
sont en particulier moins performante pour des codes qui sont optimisés pour les architectures
multi et many-cœurs. De plus, peu de méthodes in situ se basent sur la programmation par tâches
qui est de plus en plus prédominante sur les machines actuelles.

Dans cette thèse, nous étudions l’intégration d’une architecture de traitement des données
in situ à base de tâches pour un code de dynamique moléculaire optimisé pour les architectures
multi et many-cœurs. Nous proposons l’architecture TINS (pour Task-based IN Situ en anglais)
qui utilise un modèle de programmation à base de tâches pour créer simultanément tâches de
simulation et d’analyses et un ordonnanceur à base de vol de tâches pour entrelacer e�cacement
simulation et analyses. TINS est une architecture hybride où les mêmes analyses peuvent être
exécutées de façon transparente in situ, in transit ou en mode post-traitement. L’exécution in situ
se fait grâce à une méthode innovante de helper core dynamique où les threads sont séparés en
deux groupes uniquement lorsque des tâches des deux types existent, la restriction étant levée
dans le cas contraire. Ceci permet d’exécuter in situ des analyses jusqu’à 40% plus rapidement
qu’avec les méthodes traditionnelles. Ces résultats ont mené à la publication d’un article dans

164

Chapter 10 | Résumé de la Thèse en Français

une conférence internationale [37]. TINS propose une interface intuitive pour le développement
d’analyses et pour la mise en place de work�ows d’analyses complexes. Lors de cette thèse, nous
avons montré que TINS est une architecture intuitive, robuste et évolutive capable d’exécuter des
work�ows d’analyse complexes dans un environnement de production et avec un surcoût pour
la simulation de moins de 10%.

Bien que TINS ait montré sa robustesse dans un environnement de production, son utilisation
intuitive pour des développeurs non experts du domaine et ses performances comparées aux
méthodes de l’état de l’art, ce travail ouvre aussi des perspectives pour le futur. Ces travaux
futurs incluent la généralisation de la méthode de helper core dynamique à d’autres modèles de
programmation par tâches que TBB, l’ajout de capacités de pilotage d’analyses pour modi�er le
work�ow d’analyse pendant l’exécution de TINS et la mise en place d’un système in transit plus
avancé. Avec toutes ses fonctionnalités, nous espérons que TINS saura encourager les physiciens
à changer leurs habitudes de traitement des données et à migrer vers le traitement des données
in situ pour diminuer le temps nécessaire jusqu’à la découverte scienti�que.

165

Bibliography

[1] Boost c++ libraries. https://

www.boost.org/. Accessed: 2018-07-02.
ã Cited on page 37.

[2] Conduit: Simpli�ed data exchange for
hpc simulations. https://llnl-

conduit.readthedocs.io/en/latest/.
Accessed: 2018-06-29.
ã Cited on pages 42 and 119.

[3] The openmp api speci�cation for parallel pro-
gramming. https://www.openmp.org. Ac-
cessed: 2018-06-29.
ã Cited on page 28.

[4] Tbb initialization, termination, and re-
source management details, juicy and gory.
https://software.intel.com/en-us/

blogs/2011/04/09/tbb-initialization-

termination-and-resource-management-

details-juicy-and-gory. Accessed: 2018-
06-23.
ã Cited on pages 102 and 108.

[5] Threading building blocks. https:

//www.threadingbuildingblocks.org/.
Accessed: 2018-06-23.
ã Cited on pages 19, 28, and 152.

[6] Top500 supercomputer sites. https:

//www.top500.org/. Accessed: 2018-07-
06.
ã Cited on pages 25, 29, and 30.

[7] Emmanuel Agullo, Olivier Aumage, Mathieu
Faverge, Nathalie Furmento, Florent Pruvost,
Marc Sergent, and Samuel Paul Thibault. Achiev-
ing high performance on supercomputers with a
sequential task-based programming model. IEEE
Transactions on Parallel and Distributed Systems,
2017.
ã Cited on page 31.

[8] Sean Ahern, Arie Shoshani, Kwan-Liu Ma, Alok
Choudhary, Terence Critchlow, Scott Klasky, Va-
lerio Pascucci, Jim Ahrens, E Wes Bethel, Hank
Childs, et al. Scienti�c discovery at the exascale.
report from the doe ascr 2011 workshop on exas-
cale data management. Analysis, and Visualiza-
tion, 2(3), 2011.
ã Cited on pages 18 and 32.

[9] James Ahrens, John Patchett, Andrew Bauer,
Sébastien Jourdain, David H Rogers, Mark Pe-
tersen, Benjamin Boeckel, Patrick OLeary, Patri-
cia Fasel, and Francesca Samsel. In situ mpas-
ocean image-based visualization. In Proceedings
of the International Conference for High Perfor-
mance Computing, Networking, Storage and Anal-
ysis, Visualization & Data Analytics Showcase,
2014.
ã Cited on page 33.

[10] Jérémie Allard, Jean-Denis Lesage, and Bruno
Ra�n. Modularity for large virtual reality appli-
cations. Presence: Teleoperators and Virtual Envi-
ronments, 19(2):142–161, 2010.
ã Cited on page 41.

[11] MP Allen and DJ Tildesley. Computer simulation
of liquids. 1987.
ã Cited on page 53.

[12] Ilkay Altintas, Chad Berkley, Efrat Jaeger,
Matthew Jones, Bertram Ludascher, and Steve
Mock. Kepler: an extensible system for de-
sign and execution of scienti�c work�ows. In
Scienti�c and Statistical Database Management,
2004. Proceedings. 16th International Conference
on, pages 423–424. IEEE, 2004.
ã Cited on page 42.

[13] Saman Amarasinghe, Dan Campbell, William
Carlson, Andrew Chien, William Dally, El-
mootazbellah Elnohazy, Mary Hall, Robert Har-

167

https://www.boost.org/
https://www.boost.org/
https://llnl-conduit.readthedocs.io/en/latest/
https://llnl-conduit.readthedocs.io/en/latest/
https://www.openmp.org
https://software.intel.com/en-us/blogs/2011/04/09/tbb-initialization-termination-and-resource-management-details-juicy-and-gory
https://software.intel.com/en-us/blogs/2011/04/09/tbb-initialization-termination-and-resource-management-details-juicy-and-gory
https://software.intel.com/en-us/blogs/2011/04/09/tbb-initialization-termination-and-resource-management-details-juicy-and-gory
https://software.intel.com/en-us/blogs/2011/04/09/tbb-initialization-termination-and-resource-management-details-juicy-and-gory
https://www.threadingbuildingblocks.org/
https://www.threadingbuildingblocks.org/
https://www.top500.org/
https://www.top500.org/

Task-Based In Situ for Molecular Dynamics on Exascale Computers

rison, William Harrod, Kerry Hill, et al. Exascale
software study: Software challenges in extreme
scale systems. DARPA IPTO, Air Force Research
Labs, Tech. Rep, pages 1–153, 2009.
ã Cited on page 31.

[14] Cédric Augonnet, Olivier Aumage, Nathalie Fur-
mento, Raymond Namyst, and Samuel Thibault.
Starpu-mpi: Task programming over clusters of
machines enhanced with accelerators. In Euro-
pean MPI Users’ Group Meeting, pages 298–299.
Springer, 2012.
ã Cited on page 31.

[15] Cédric Augonnet, Samuel Thibault, Raymond
Namyst, and Pierre-André Wacrenier. Starpu: a
uni�ed platform for task scheduling on heteroge-
neous multicore architectures. Concurrency and
Computation: Practice and Experience, 23(2):187–
198, 2011.
ã Cited on pages 28 and 153.

[16] Utkarsh Ayachit. The paraview guide. Kitware
Inc, 2015.
ã Cited on page 34.

[17] Utkarsh Ayachit, Brad Whitlock, Matthew Wolf,
Burlen Loring, Berk Geveci, David Lonie, and
E Wes Bethel. The sensei generic in situ interface.
In In Situ Infrastructures for Enabling Extreme-
Scale Analysis and Visualization (ISAV),Workshop
on, pages 40–44. IEEE, 2016.
ã Cited on page 34.

[18] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs,
B. Geveci, S. Klasky, K. Moreland, P. O’Leary,
V. Vishwanath, B. Whitlock, and E. W. Bethel.
In situ methods, infrastructures, and applica-
tions on high performance computing platforms.
Computer Graphics Forum, 35(3):577–597, 2016.
ã Cited on page 33.

[19] Andrew C Bauer, Berk Geveci, and Will
Schroeder. The paraview catalyst user’s guide
v2. 0. kitware, 2015.
ã Cited on page 34.

[20] Michael Bauer, Sean Treichler, Elliott Slaughter,
and Alex Aiken. Legion: Expressing locality and
independence with logical regions. In Proceed-
ings of the international conference on high perfor-
mance computing, networking, storage and analy-
sis, page 66. IEEE Computer Society Press, 2012.
ã Cited on pages 31 and 153.

[21] Janine C. Bennett, Hasan Abbasi, Peer-Timo Bre-
mer, Ray Grout, Attila Gyulassy, Tong Jin, Scott
Klasky, Hemanth Kolla, Manish Parashar, Vale-
rio Pascucci, Philippe Pebay, David Thompson,
Hongfeng Yu, Fan Zhang, and Jacqueline Chen.
Combining in-situ and in-transit processing to

enable extreme-scale scienti�c analysis. In Pro-
ceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’12, pages 49:1–49:9, Los Alamitos,
CA, USA, 2012. IEEE Computer Society Press.
ã Cited on pages 32 and 40.

[22] Robert D Blumofe, Christopher F Joerg,
Bradley C Kuszmaul, Charles E Leiserson,
Keith H Randall, and Yuli Zhou. Cilk: An e�cient
multithreaded runtime system, volume 30. ACM,
1995.
ã Cited on pages 19 and 28.

[23] Robert D Blumofe and Charles E Leiserson.
Scheduling multithreaded computations by work
stealing. Journal of the ACM (JACM), 46(5):720–
748, 1999.
ã Cited on page 28.

[24] Erik Boman, Karen Devine, Lee Ann Fisk,
Robert Heaphy, Bruce Hendrickson, Courte-
nay Vaughan, Umit Catalyurek, Doruk Bozdag,
William Mitchell, and James Teresco. Zoltan 3.0:
parallel partitioning, load-balancing, and data
management services; user’s guide. Sandia Na-
tional Laboratories, Albuquerque, NM, 2007.
ã Cited on page 144.

[25] David R Butenhof. Programming with POSIX
threads. Addison-Wesley Professional, 1997.
ã Cited on page 27.

[26] Thomas E Cheatham III and Daniel R Roe. The
impact of heterogeneous computing on work-
�ows for biomolecular simulation and analysis.
Computing in Science & Engineering, 17(2):30–39,
2015.
ã Cited on page 67.

[27] Hank Childs, Eric Brugger, Brad Whitlock,
Jeremy Meredith, Sean Ahern, David Pugmire,
Kathleen Biagas, Mark Miller, Gunther H Weber,
Hari Krishnan, et al. Visit: An end-user tool for
visualizing and analyzing very large data. Tech-
nical report, Ernest Orlando Lawrence Berkeley
National Laboratory, Berkeley, CA (US), 2012.
ã Cited on page 34.

[28] Younghyun Cho, Surim Oh, and Bernhard Egger.
Adaptive space-shared scheduling for shared-
memory parallel programs. In Job Scheduling
Strategies for Parallel Processing, pages 158–177.
Springer, 2015.
ã Cited on page 38.

[29] Emmanuel Cieren, Laurent Colombet, Samuel
Pitoiset, and Raymond Namyst. Exastamp: A
parallel framework for molecular dynamics on
heterogeneous clusters. In European Conference
on Parallel Processing, pages 121–132. Springer,

168

BIBLIOGRAPHY

2014.
ã Cited on pages 19, 54, 55, and 151.

[30] K Coulomb, M Faverge, J Jazeix, O Lagrasse,
J Marcoueille, P Noisette, A Redondy, and
C Vuchener. Visual trace explorer (vite). Techni-
cal report, Technical report, 2009.
ã Cited on page 70.

[31] David E Culler, Jaswinder Pal Singh, and Anoop
Gupta. Parallel computer architecture: a hard-
ware/software approach. Gulf Professional Pub-
lishing, 1999.
ã Cited on page 26.

[32] Leonardo Dagum and Ramesh Menon. Openmp:
an industry standard api for shared-memory pro-
gramming. IEEE computational science and engi-
neering, 5(1):46–55, 1998.
ã Cited on page 28.

[33] J Chassin De Kergommeaux, Benhur Stein, and
Pierre-Eric Bernard. Pajé, an interactive visu-
alization tool for tuning multi-threaded parallel
applications. Parallel Computing, 26(10):1253–
1274, 2000.
ã Cited on page 70.

[34] Je�rey Dean and Sanjay Ghemawat. Mapre-
duce: Simpli�ed data processing on large clus-
ters. Commun. ACM, 51(1):107–113, January
2008.
ã Cited on page 39.

[35] Ewa Deelman, Tom Peterka, Ilkay Altintas,
Christopher D Carothers, Kerstin Kleese van
Dam, Kenneth Moreland, Manish Parashar, La-
vanya Ramakrishnan, Michela Taufer, and Jef-
frey Vetter. The future of scienti�c work�ows.
The International Journal of High Performance
Computing Applications, 32(1):159–175, 2018.
ã Cited on page 42.

[36] Ewa Deelman, Gurmeet Singh, Mei-Hui Su,
James Blythe, Yolanda Gil, Carl Kesselman, Gau-
rang Mehta, Karan Vahi, G Bruce Berriman, John
Good, et al. Pegasus: A framework for mapping
complex scienti�c work�ows onto distributed
systems. Scienti�c Programming, 13(3):219–237,
2005.
ã Cited on page 42.

[37] Estelle Dirand, Laurent Colombet, and Bruno
Ra�n. Tins: A task-based dynamic helper core
strategy for in situ analytics. In Asian Confer-
ence on Supercomputing Frontiers, pages 159–178.
Springer, 2018.
ã Cited on pages 20, 152, and 165.

[38] Ciprian Docan, Manish Parashar, and Scott
Klasky. Dart: a substrate for high speed asyn-
chronous data io. In Proceedings of the 17th in-

ternational symposium on High performance dis-
tributed computing, pages 219–220. ACM, 2008.
ã Cited on page 39.

[39] Ciprian Docan, Manish Parashar, and Scott
Klasky. DataSpaces: an Interaction and Co-
ordination Framework for Coupled Simulation
Work�ows. Cluster Computing, 15(2):163–181,
2012.
ã Cited on page 39.

[40] Stephanie Donovan, Gerrit Huizenga, Andrew J
Hutton, C Craig Ross, Martin K Petersen, and
Philip Schwan. Lustre: Building a �le system for
1000-node clusters. In Proceedings of the Linux
Symposium, volume 2003, 2003.
ã Cited on page 32.

[41] M. Dorier, G. Antoniu, F. Cappello, M. Snir, and
L. Orf. Damaris: How to e�ciently leverage mul-
ticore parallelism to achieve scalable, jitter-free
i/o. In 2012 IEEE International Conference on Clus-
ter Computing, pages 155–163, Sept 2012.
ã Cited on pages 37 and 161.

[42] M. Dorier, R. Sisneros, T. Peterka, G. Antoniu,
and D. Semeraro. Damaris/viz: A nonintrusive,
adaptable and user-friendly in situ visualization
framework. In Large-Scale Data Analysis and
Visualization (LDAV), 2013 IEEE Symposium on,
pages 67–75, Oct 2013.
ã Cited on pages 37, 76, 77, 81, 130, and 152.

[43] Matthieu Dorier, Robert Sisneros,
Leonardo Bautista Gomez, Tom Peterka, Leigh
Orf, Lokman Rahmani, Gabriel Antoniu, and
Luc Bougé. Adaptive performance-constrained
in situ visualization of atmospheric simulations.
In Cluster Computing (CLUSTER), 2016 IEEE
International Conference on, pages 269–278.
IEEE, 2016.
ã Cited on page 37.

[44] M. Dreher and B. Ra�n. A �exible framework
for asynchronous in situ and in transit analytics
for scienti�c simulations. In Cluster, Cloud and
Grid Computing (CCGrid), 2014 14th IEEE/ACM
International Symposium on, pages 277–286, May
2014.
ã Cited on pages 41, 42, 130, and 161.

[45] Matthieu Dreher and Tom Peterka. Bredala: Se-
mantic data redistribution for in situ applica-
tions. In Cluster Computing (CLUSTER), 2016
IEEE International Conference on, pages 279–288.
IEEE, 2016.
ã Cited on pages 42, 131, and 154.

[46] Matthieu Dreher and Tom Peterka. Decaf: De-
coupled data�ows for in situ high-performance
work�ows. Technical report, Argonne National

169

Task-Based In Situ for Molecular Dynamics on Exascale Computers

Lab.(ANL), Argonne, IL (United States), 2017.
ã Cited on pages 41 and 130.

[47] Matthieu Dreher, Kiran Sasikumar, Subramanian
Sankaranarayanan, and Tom Peterka. Manala:
a �exible �ow control library for asynchronous
task communication. In 2017 IEEE Interna-
tional Conference on Cluster Computing (CLUS-
TER), pages 509–519. IEEE, 2017.
ã Cited on page 43.

[48] O Durand and L Soulard. Power law and ex-
ponential ejecta size distributions from the dy-
namic fragmentation of shock-loaded cu and sn
metals under melt conditions. Journal of Applied
Physics, 114(19):194902, 2013.
ã Cited on pages 54 and 135.

[49] Olivier Durand, S Jaouen, L Soulard, Olivier
Heuze, and Laurent Colombet. Comparative sim-
ulations of microjetting using atomistic and con-
tinuous approaches in the presence of viscosity
and surface tension. Journal of Applied Physics,
122(13):135107, 2017.
ã Cited on page 54.

[50] Mike Folk, Albert Cheng, and Kim Yates. Hdf5: A
�le format and i/o library for high performance
computing applications. In Proceedings of super-
computing, volume 99, pages 5–33, 1999.
ã Cited on page 32.

[51] Juliana Freire, Cláudio T Silva, Steven P Calla-
han, Emanuele Santos, Carlos E Scheidegger, and
Huy T Vo. Managing rapidly-evolving scienti�c
work�ows. In International Provenance and An-
notation Workshop, pages 10–18. Springer, 2006.
ã Cited on page 42.

[52] Yuankun Fu, Feng Li, Fengguang Song, and
Zizhong Chen. Performance analysis and opti-
mization of in-situ integration of simulation with
data analysis: zipping applications up. In Pro-
ceedings of the 27th International Symposium on
High-Performance Parallel and Distributed Com-
puting, pages 192–205. ACM, 2018.
ã Cited on page 43.

[53] Thierry Gautier, Xavier Besseron, and Laurent
Pigeon. Kaapi: A thread scheduling runtime
system for data �ow computations on cluster of
multi-processors. In Proceedings of the 2007 in-
ternational workshop on Parallel symbolic compu-
tation, pages 15–23. ACM, 2007.
ã Cited on page 28.

[54] A. Goswami, Y. Tian, K. Schwan, F. Zheng,
J. Young, M. Wolf, G. Eisenhauer, and S. Klasky.
Landrush: Rethinking in-situ analysis for gpgpu
work�ows. In 2016 16th IEEE/ACM International

Symposium on Cluster, Cloud and Grid Comput-
ing (CCGrid), pages 32–41, May 2016.
ã Cited on page 153.

[55] Dominik Grewe, Zheng Wang, and Michael FP
O’Boyle. A workload-aware mapping approach
for data-parallel programs. In Proceedings of the
6th International Conference on High Performance
and Embedded Architectures and Compilers, pages
117–126. ACM, 2011.
ã Cited on page 38.

[56] Salman Habib, Vitali Morozov, Hal Finkel,
Adrian Pope, Katrin Heitmann, Kalyan Ku-
maran, Tom Peterka, Joe Insley, David Daniel,
Patricia Fasel, et al. The universe at extreme
scale: multi-peta�op sky simulation on the bg/q.
In Proceedings of the International Conference on
High Performance Computing, Networking, Stor-
age and Analysis, page 4. IEEE Computer Society
Press, 2012.
ã Cited on pages 33 and 65.

[57] Tim Harris, Martin Maas, and Virendra J
Marathe. Callisto: co-scheduling parallel run-
time systems. In Proceedings of the Ninth Euro-
pean Conference on Computer Systems, page 24.
ACM, 2014.
ã Cited on pages 38, 77, and 100.

[58] Alan Heirich, Elliott Slaughter, Manolis Pa-
padakis, Wonchan Lee, Tim Biedert, and Alex
Aiken. In situ visualization with task-based par-
allelism. 2017.
ã Cited on page 42.

[59] Monica Liliana Hernandez Ariza, Matthieu
Dreher, Carlos Jaime Barrios-Hernandez, and
Bruno Ra�n. Asynchronous In Situ Processing
with Gromacs: Taking Advantage of GPUs. In
Latin America High Performance Computing Con-
ference, Petropolis, Brazil, August 2015.
ã Cited on page 153.

[60] Reazul Hoque, Thomas Herault, George Bosilca,
and Jack Dongarra. Dynamic task discovery in
parsec: a data-�ow task-based runtime. In Pro-
ceedings of the 8th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems,
page 6. ACM, 2017.
ã Cited on page 31.

[61] Andra-Ecaterina Hugo, Abdou Guermouche,
Raymond Namyst, and Pierre-André Wacre-
nier. Composing multiple starpu applications
over heterogeneous machines: a supervised ap-
proach. In Third International Workshop on Ac-
celerators and Hybrid Exascale Systems, Boston,
United States, May 2013.
ã Cited on page 38.

170

BIBLIOGRAPHY

[62] William Humphrey, Andrew Dalke, and Klaus
Schulten. Vmd: visual molecular dynamics. Jour-
nal of molecular graphics, 14(1):33–38, 1996.
ã Cited on pages 57 and 67.

[63] Alexandru C Iordan, Magnus Jahre, and Lasse
Natvig. Tuning the victim selection policy
of intel tbb. Journal of Systems Architecture,
61(10):584–591, 2015.
ã Cited on page 50.

[64] Sylvie Joussaume, A Bellucci, J Biercamp, Rein-
hard Budich, A Dawson, Marie-Alice Foujols,
B Lawrence, L Linardikis, Sébastien Masson,
Yann Meurdesoif, et al. Modelling the earth’s cli-
mate system: data and computing challenges. In
High Performance Computing, Networking, Stor-
age and Analysis (SCC), 2012 SC Companion:,
pages 2325–2356. IEEE, 2012.
ã Cited on page 32.

[65] Hartmut Kaiser, Thomas Heller, Bryce Adelstein-
Lelbach, Adrian Serio, and Dietmar Fey. Hpx: A
task based programming model in a global ad-
dress space. In Proceedings of the 8th Interna-
tional Conference on Partitioned Global Address
Space Programming Models, page 6. ACM, 2014.
ã Cited on pages 31 and 153.

[66] Hartmut Kaiser, Thomas Heller, Daniel Bour-
geois, and Dietmar Fey. Higher-level paral-
lelization for local and distributed asynchronous
task-based programming. In Proceedings of the
First International Workshop on Extreme Scale
Programming Models and Middleware, pages 29–
37. ACM, 2015.
ã Cited on page 31.

[67] James Kress, Scott Klasky, Norbert Podhorszki,
Jong Choi, Hank Childs, and David Pugmire.
Loosely Coupled In Situ Visualization: A Per-
spective on Why It’s Here to Stay. In Proceed-
ings of the First Workshop on In Situ Infrastruc-
tures for Enabling Extreme-Scale Analysis and Vi-
sualization, ISAV2015, pages 1–6, New York, NY,
USA, 2015. ACM.
ã Cited on page 38.

[68] T Kuhlen, R Pajarola, and K Zhou. Parallel in
situ coupling of simulation with a fully featured
visualization system. In Proceedings of the 11th
Eurographics Conference on Parallel Graphics and
Visualization (EGPGV), 2011.
ã Cited on page 34.

[69] Matthew Larsen, James Ahrens, Utkarsh Aya-
chit, Eric Brugger, Hank Childs, Berk Geveci, and
Cyrus Harrison. The alpine in situ infrastructure:
Ascending from the ashes of strawman. In Pro-
ceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization, pages

42–46. ACM, 2017.
ã Cited on page 42.

[70] Matthew Larsen, Eric Brugger, Hank Childs, Jim
Eliot, Kevin Gri�n, and Cyrus Harrison. Straw-
man: A Batch In Situ Visualization and Anal-
ysis Infrastructure for Multi-Physics Simulation
Codes. In Proceedings of the First Workshop on
In Situ Infrastructures for Enabling Extreme-Scale
Analysis and Visualization, ISAV2015, pages 30–
35, New York, NY, USA, 2015. ACM.
ã Cited on page 42.

[71] Wolfgang Lechner and Christoph Dellago. Accu-
rate determination of crystal structures based on
averaged local bond order parameters. The Jour-
nal of chemical physics, 129(11):114707, 2008.
ã Cited on page 136.

[72] Tau Leng, Rizwan Ali, Jenwei Hsieh, Victor
Mashayekhi, and Reza Rooholamini. An em-
pirical study of hyper-threading in high perfor-
mance computing clusters. Linux HPC Revolu-
tion, 45, 2002.
ã Cited on page 29.

[73] Jianwei Li, Wei-keng Liao, Alok Choudhary,
Robert Ross, Rajeev Thakur, William Gropp,
Robert Latham, Andrew Siegel, Brad Gallagher,
and Michael Zingale. Parallel netcdf: A high-
performance scienti�c i/o interface. In Supercom-
puting, 2003 Acm/Ieee Conference, pages 39–39.
IEEE, 2003.
ã Cited on page 32.

[74] Min Li, Sudharshan S Vazhkudai, Ali R Butt,
Fei Meng, Xiaosong Ma, Youngjae Kim, Chris-
tian Engelmann, and Galen Shipman. Func-
tional partitioning to optimize end-to-end per-
formance on many-core architectures. In High
Performance Computing, Networking, Storage and
Analysis (SC), 2010 International Conference for,
pages 1–12. IEEE, 2010.
ã Cited on page 37.

[75] Esther Liu, Jiand Pacitti, Patrick Valduriez, and
Marta Mattoso. A survey of data-intensive sci-
enti�c work�ow management. Journal of Grid
Computing, 13(4):457–493, 2015.
ã Cited on page 42.

[76] Qing Liu, Jeremy Logan, Yuan Tian, Hasan
Abbasi, Norbert Podhorszki, Jong Youl Choi,
Scott Klasky, Roselyne Tchoua, Jay Lofstead,
Ron Old�eld, Manish Parashar, Nagiza Sama-
tova, Karsten Schwan, Arie Shoshani, Matthew
Wolf, Kesheng Wu, and Weikuan Yu. Hello adios:
The challenges and lessons of developing lead-
ership class i/o frameworks. Concurr. Comput. :
Pract. Exper., 26(7):1453–1473, May 2014.
ã Cited on pages 32 and 42.

171

Task-Based In Situ for Molecular Dynamics on Exascale Computers

[77] Jay F. Lofstead, Scott Klasky, Karsten Schwan,
Norbert Podhorszki, and Chen Jin. Flexible IO
and Integration for Scienti�c Codes Through The
Adaptable IO System (ADIOS). In Proceedings of
the 6th International Workshop on Challenges of
Large Applications in Distributed Environments,
CLADE ’08, pages 15–24, New York, NY, USA,
2008. ACM.
ã Cited on page 78.

[78] Xiaosong Ma, Jonghyun Lee, and Marianne
Winslett. High-level bu�ering for hiding peri-
odic output cost in scienti�c simulations. IEEE
Transactions on Parallel and Distributed Systems,
17(3):193–204, 2006.
ã Cited on page 37.

[79] Preeti Malakar, Venkatram Vishwanath, Christo-
pher Knight, Todd Munson, and Michael E
Papka. Optimal execution of co-analysis for
large-scale molecular dynamics simulations. In
Proceedings of the International Conference for
High Performance Computing, Networking, Stor-
age and Analysis, page 60. IEEE Press, 2016.
ã Cited on page 43.

[80] Preeti Malakar, Venkatram Vishwanath, Todd
Munson, Christopher Knight, Mark Hereld, Sven
Ley�er, and Michael E. Papka. Optimal schedul-
ing of in-situ analysis for large-scale scienti�c
simulations. In Proceedings of the International
Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’15, pages
52:1–52:11, New York, NY, USA, 2015. ACM.
ã Cited on page 43.

[81] Timothy G Mattson, Romain Cledat, Vincent
Cavé, Vivek Sarkar, Zoran Budimlic, Sanjay
Chatterjee, Joshua B Fryman, Ivan Ganev, Robin
Knauerhase, Min Lee, et al. The open community
runtime: A runtime system for extreme scale
computing. In HPEC, pages 1–7, 2016.
ã Cited on page 28.

[82] Michael D McCool, Arch D Robison, and James
Reinders. Structured parallel programming: pat-
terns for e�cient computation. Elsevier, 2012.
ã Cited on page 28.

[83] Naveen Michaud-Agrawal, Elizabeth J Denning,
Thomas B Woolf, and Oliver Beckstein. Md-
analysis: a toolkit for the analysis of molecular
dynamics simulations. Journal of computational
chemistry, 32(10):2319–2327, 2011.
ã Cited on page 67.

[84] Paolo Missier, Stian Soiland-Reyes, Stuart Owen,
Wei Tan, Alexandra Nenadic, Ian Dunlop, Alan
Williams, Tom Oinn, and Carole Goble. Taverna,
reloaded. In International conference on scienti�c

and statistical database management, pages 471–
481. Springer, 2010.
ã Cited on page 42.

[85] Clément Mommessin, Matthieu Dreher, Bruno
Ra�n, and Tom Peterka. Automatic data �lter-
ing for in situ work�ows. In Cluster Comput-
ing (CLUSTER), 2017 IEEE International Confer-
ence on, pages 370–378. IEEE, 2017.
ã Cited on pages 43 and 126.

[86] Oscar H Mondragon, Patrick G Bridges, and
Terry Jones. Quantifying scheduling challenges
for exascale system software. In Proceedings of
the 5th International Workshop on Runtime and
Operating Systems for Supercomputers, page 8.
ACM, 2015.
ã Cited on page 35.

[87] Oscar H Mondragon, Patrick G Bridges, Scott
Levy, Kurt B Ferreira, and Patrick Widener.
Scheduling in-situ analytics in next-generation
applications. In Cluster, Cloud and Grid Comput-
ing (CCGrid), 2016 16th IEEE/ACM International
Symposium on, pages 102–105. IEEE, 2016.
ã Cited on pages 36 and 77.

[88] Gordon E Moore. Cramming more components
onto integrated circuits. electronics 38 (8): 114–
117, 1965.
ã Cited on page 25.

[89] Ryan W Moore and Bruce R Childers. Using util-
ity prediction models to dynamically choose pro-
gram thread counts. In Performance Analysis of
Systems and Software (ISPASS), 2012 IEEE Interna-
tional Symposium on, pages 135–144. IEEE, 2012.
ã Cited on page 38.

[90] Kenneth Moreland, Christopher Sewell, William
Usher, Li-ta Lo, Jeremy Meredith, David Pug-
mire, James Kress, Hendrik Schroots, Kwan-Liu
Ma, Hank Childs, et al. Vtk-m: Accelerating the
visualization toolkit for massively threaded ar-
chitectures. IEEE computer graphics and applica-
tions, 36(3):48–58, 2016.
ã Cited on page 42.

[91] Philip J Mucci, Shirley Browne, Christine Deane,
and George Ho. Papi: A portable interface to
hardware performance counters. In Proceedings
of the department of defense HPCMP users group
conference, volume 710, 1999.
ã Cited on page 78.

[92] John D Owens, David Luebke, Naga Govin-
daraju, Mark Harris, Jens Krüger, Aaron E
Lefohn, and Timothy J Purcell. A survey of
general-purpose computation on graphics hard-
ware. In Computer graphics forum, volume 26,
pages 80–113. Wiley Online Library, 2007.
ã Cited on page 27.

172

BIBLIOGRAPHY

[93] Philippe Pébaÿ and Janine Bennett. An asyn-
chronous many-task implementation of in-situ
statistical analysis using legion. Sandia Na-
tional Laboratories, Sandia Report SAND2015-
10345, 2015.
ã Cited on page 161.

[94] Philippe Pebay, Janine C Bennett, David Holl-
man, Sean Treichler, Patrick S McCormick,
Christine M Sweeney, Hemanth Kolla, and Alex
Aiken. Towards asynchronous many-task in situ
data analysis using legion. In Parallel and Dis-
tributed Processing Symposium Workshops, 2016
IEEE International, pages 1033–1037. IEEE, 2016.
ã Cited on page 42.

[95] Tom Peterka, Robert Ross, Attila Gyulassy, Va-
lerio Pascucci, Wesley Kendall, Han-Wei Shen,
Teng-Yok Lee, and Abon Chaudhuri. Scalable
parallel building blocks for custom data analysis.
In IEEE Symposium on Large Data Analysis and
Visualization (LDAV 2011), pages 105–112. IEEE,
2011.
ã Cited on page 42.

[96] N Pineau, L Soulard, L Colombet, T Carrard,
A Pellé, Ph Gillet, and J Clérouin. Molecular dy-
namics simulations of shock compressed hetero-
geneous materials. ii. the graphite/diamond tran-
sition case for astrophysics applications. Journal
of Applied Physics, 117(11):115902, 2015.
ã Cited on page 54.

[97] Steve Plimpton. Fast parallel algorithms for
short-range molecular dynamics. Journal of com-
putational physics, 117(1):1–19, 1995.
ã Cited on pages 33, 65, and 74.

[98] Arun Raman, Ayal Zaks, Jae W Lee, and David I
August. Parcae: a system for �exible parallel ex-
ecution. In ACM SIGPLAN Notices, volume 47,
pages 133–144. ACM, 2012.
ã Cited on page 38.

[99] James Reinders. Intel threading building blocks:
out�tting C++ formulti-core processor parallelism.
" O’Reilly Media, Inc.", 2007.
ã Cited on page 28.

[100] E Schikuta. Message-passing-interface-forum:
Mpi: A message-passing interface standard.
Techn. Ber., University of Tennessee, Knoxville,
Tennesee, 1994.
ã Cited on page 30.

[101] H Bernhard Schlegel and Michael J Frisch. Trans-
formation between cartesian and pure spheri-
cal harmonic gaussians. International Journal of
Quantum Chemistry, 54(2):83–87, 1995.
ã Cited on page 136.

[102] Will J Schroeder, Bill Lorensen, and Ken Mar-
tin. The visualization toolkit: an object-oriented
approach to 3D graphics. Kitware, 2004.
ã Cited on page 34.

[103] Ajeet Singh, Pavan Balaji, and Wu-chun Feng.
Gepsea: a general-purpose software acceleration
framework for lightweight task o�oading. In
Parallel Processing, 2009. ICPP’09. International
Conference on, pages 261–268. IEEE, 2009.
ã Cited on page 37.

[104] L Soulard. Molecular dynamics study of the
micro-spallation. The European Physical Journal
D, 50(3):241–251, 2008.
ã Cited on pages 33, 54, 57, and 135.

[105] L Soulard, N Pineau, J Clérouin, and L Colombet.
Molecular dynamics simulations of shock com-
pressed heterogeneous materials. i. the porous
case. Journal of Applied Physics, 117(11):115901,
2015.
ã Cited on page 34.

[106] Alexander Stukowski. Visualization and analysis
of atomistic simulation data with ovito–the open
visualization tool. Modelling and Simulation in
Materials Science and Engineering, 18(1):015012,
2009.
ã Cited on page 57.

[107] Herb Sutter. The free lunch is over: A funda-
mental turn toward concurrency in software. Dr.
Dobb’s journal, 30(3):202–210, 2005.
ã Cited on page 25.

[108] Rajeev Thakur and William Gropp. Test suite for
evaluating performance of mpi implementations
that support mpi_thread_multiple. In European
Parallel Virtual Machine/Message Passing Inter-
face Users’ Group Meeting, pages 46–55. Springer,
2007.
ã Cited on page 31.

[109] Rajeev Thakur, William Gropp, and Ewing Lusk.
On implementing mpi-io portably and with high
performance. In Proceedings of the sixth workshop
on I/O in parallel and distributed systems, pages
23–32. ACM, 1999.
ã Cited on page 32.

[110] David Van Der Spoel, Erik Lindahl, Berk Hess,
Gerrit Groenhof, Alan E Mark, and Herman JC
Berendsen. Gromacs: fast, �exible, and free.
Journal of computational chemistry, 26(16):1701–
1718, 2005.
ã Cited on page 74.

[111] Je�rey S Vetter. Contemporary high performance
computing: from Petascale toward exascale. CRC
Press, 2013.
ã Cited on pages 32 and 120.

173

Task-Based In Situ for Molecular Dynamics on Exascale Computers

[112] Philippe Virouleau, François Broquedis, Thierry
Gautier, and Fabrice Rastello. Using data depen-
dencies to improve task-based scheduling strate-
gies on numa architectures. In European Con-
ference on Parallel Processing, pages 531–544.
Springer, 2016.
ã Cited on page 28.

[113] V. Vishwanath, M. Hereld, and M. E. Papka. To-
ward simulation-time data analysis and i/o ac-
celeration on leadership-class systems. In Large
Data Analysis and Visualization (LDAV), 2011
IEEE Symposium on, pages 9–14, Oct 2011.
ã Cited on pages 33 and 40.

[114] Edward E Zajac. Computer-made perspective
movies as a scienti�c and communication tool.
Communications of the ACM, 7(3):169–170, 1964.
ã Cited on page 33.

[115] Yong Zhao, Mihael Hategan, Ben Cli�ord,
Ian Foster, Gregor Von Laszewski, Veronika
Nefedova, Ioan Raicu, Tiberiu Stef-Praun, and
Michael Wilde. Swift: Fast, reliable, loosely cou-
pled parallel computation. In Services, 2007 IEEE
Congress on, pages 199–206. IEEE, 2007.
ã Cited on page 42.

[116] F. Zheng, H. Abbasi, C. Docan, J. Lofstead, Q. Liu,
S. Klasky, M. Parashar, N. Podhorszki, K. Schwan,
and M. Wolf. Predata - preparatory data analyt-
ics on peta-scale machines. In Parallel Distributed
Processing (IPDPS), 2010 IEEE International Sym-
posium on, pages 1–12, April 2010.
ã Cited on page 39.

[117] F. Zheng, H. Zou, G. Eisenhauer, K. Schwan,
M. Wolf, J. Dayal, T. A. Nguyen, J. Cao, H. Ab-
basi, S. Klasky, N. Podhorszki, and H. Yu. Flexio:
I/o middleware for location-�exible scienti�c
data analytics. In Parallel Distributed Processing
(IPDPS), 2013 IEEE 27th International Symposium
on, pages 320–331, May 2013.
ã Cited on pages 37, 40, and 78.

[118] Fang Zheng, Hasan Abbasi, Jianting Cao, Jai
Dayal, Karsten Schwan, Matthew Wolf, Scott
Klasky, and Norbert Podhorszki. In-situ i/o pro-
cessing: a case for location �exibility. In Proceed-
ings of the sixth workshop on Parallel Data Stor-
age, pages 37–42. ACM, 2011.
ã Cited on page 41.

[119] Fang Zheng, Hongfeng Yu, Can Hantas, Matthew
Wolf, Greg Eisenhauer, Karsten Schwan, Hasan
Abbasi, and Scott Klasky. Goldrush: Resource ef-
�cient in situ scienti�c data analytics using �ne-
grained interference aware execution. In Pro-
ceedings of the International Conference on High
Performance Computing, Networking, Storage and
Analysis, SC ’13, pages 78:1–78:12, New York, NY,
USA, 2013. ACM.
ã Cited on pages 35, 76, 77, 80, 152, and 161.

[120] Bruno H Zimm. The scattering of light and
the radial distribution function of high poly-
mer solutions. The Journal of Chemical Physics,
16(12):1093–1099, 1948.
ã Cited on page 68.

174

Integration of High-Performance Task-Based In Situ for Molecular Dynamics on
Exascale Computer

The exascale era will widen the gap between data generation rate and the time to manage their output and
analysis in a post-processing way, dramatically increasing the end-to-end time to scienti�c discovery and calling
for a shift toward new data processing methods. The in situ paradigm proposes to analyze data while still resident
in the supercomputer memory to reduce the need for data storage. Several techniques already exist, by executing
simulation and analytics on the same nodes (in situ), by using dedicated nodes (in transit) or by combining the
two approaches (hybrid). Most of the in situ techniques target simulations that are not able to fully bene�t from
the ever growing number of cores per processor but they are not designed for the emerging manycore processors.
Task-based programming models on the other side are expected to become a standard for these architectures but
few task-based in situ techniques have been developed so far.

This thesis proposes to study the design and integration of a novel task-based in situ framework inside a
task-based molecular dynamics code designed for exascale supercomputers. We take bene�t from the composability
properties of the task-based programming model to implement the TINS hybrid framework. Analytics work�ows
are expressed as graphs of tasks that can in turn generate children tasks to be executed in transit or interleaved
with simulation tasks in situ. The in situ execution is performed thanks to an innovative dynamic helper core
strategy that uses the work stealing concept to �nely interleave simulation and analytics tasks inside a compute
node with a low overhead on the simulation execution time.

TINS uses the Intel® TBB work stealing scheduler and is integrated into ExaStamp, a task-based molecular
dynamics code. Various experiments have shown that TINS is up to 40% faster than state-of-the-art in situ libraries.
Molecular dynamics simulations of up to 2 billions particles on up to 14,336 cores have shown that TINS is able to
execute complex analytics work�ows at a high frequency with an overhead smaller than 10%.

Développement d’un Système In Situ à Base de Tâches pour un Code de Dynamique
Moléculaire Classique Adapté aux Machines Exa�opiques

L’ère de l’exascale creusera encore plus l’écart entre la vitesse de génération des données de simulations et
la vitesse d’écriture et de lecture pour analyser ces données en post-traitement. Le temps jusqu’à la découverte
scienti�que sera donc grandement impacté et de nouvelles techniques de traitement des données doivent être
mises en place. Les méthodes in situ réduisent le besoin d’écrire des données en les analysant directement là où
elles sont produites. Il existe plusieurs techniques, en exécutant les analyses sur les mêmes nœuds de calcul que
la simulation (in situ), en utilisant des nœuds dédiés (in transit) ou en combinant les deux approches (hybride).
La plupart des méthodes in situ traditionnelles ciblent les simulations qui ne sont pas capables de tirer pro�t du
nombre croissant de cœurs par processeur mais elles n’ont pas été conçues pour les architectures many-cœurs qui
émergent actuellement. La programmation à base de tâches est quant à elle en train de devenir un standard pour
ces architectures mais peu de techniques in situ à base de tâches ont été développées.

Cette thèse propose d’étudier l’intégration d’un système in situ à base de tâches pour un code de dynamique
moléculaire conçu pour les supercalculateurs exa�opiques. Nous tirons pro�t des propriétés de composabilité de
la programmation à base de tâches pour implanter l’architecture hybride TINS. Les work�ows d’analyses sont
représentés par des graphes de tâches qui peuvent à leur tour générer des tâches pour une exécution in situ ou
in transit. L’exécution in situ est rendue possible grâce à une méthode innovante de helper core dynamique qui
s’appuie sur le concept de vol de tâches pour entrelacer e�cacement tâches de simulation et d’analyse avec un
faible impact sur le temps de la simulation.

TINS utilise l’ordonnanceur de vol de tâches d’Intel® TBB et est intégré dans ExaStamp, un code de dynamique
moléculaire. De nombreuses expériences ont montrées que TINS est jusqu’à 40% plus rapide que des méthodes
existantes de l’état de l’art. Des simulations de dynamique moléculaire sur des système de 2 milliards de particles
sur 14,336 cœurs ont montré que TINS est capable d’exécuter des analyses complexes à haute fréquence avec un
surcoût inférieur à 10%.

	1 Introduction
	1.1 On the Path Toward Exascale Supercomputers
	1.2 Need for In Situ Processing of Simulation Data
	1.3 Thesis Objectives
	1.4 Thesis Contributions and Organization

	I Molecular Dynamics and I/O Challenges for Exascale
	2 Background on Data Analytics on Supercomputers
	2.1 Architecture of Supercomputers
	2.1.1 Evolution of the Compute Node Architecture
	2.1.2 Node Interconnect
	2.1.3 Filesystem and I/O

	2.2 In Situ Processing
	2.2.1 Synchronous In Situ
	2.2.2 Over-Subscription of the Cores
	2.2.3 Core Separation

	2.3 In Transit and Hybrid Processing
	2.3.1 In Transit Processing
	2.3.2 Hybrid Processing

	2.4 In Situ Workflows Control
	2.5 Chapter Summary

	3 Task-Based Molecular Dynamics for Exascale Computers
	3.1 Intel® TBB, a Task-Based Runtime
	3.1.1 Task Creation with TBB API
	3.1.2 TBB Resource Management
	3.1.3 Tools to Control the Task Execution

	3.2 ExaStamp, a Molecular Dynamics Code for Material Sciences
	3.2.1 Molecular Dynamics for Material Sciences
	3.2.2 ExaStamp Architecture

	3.3 Challenges for the Integration of an In Situ Framework Inside ExaStamp
	3.3.1 Target Architectures
	3.3.2 ExaStamp Performance
	3.3.3 Ideas for the Implementation of a Task-Based Hybrid Framework

	II Toward a Task-Based In Situ Technique
	4 Turning a Synchronous In Situ into an Asynchronous Task-Based In Situ
	4.1 Integration of Analytics for Synchronous Execution
	4.1.1 Integration of Synchronous In Situ in ExaStamp
	4.1.2 Implementation of Analytics Routines inside ExaStamp
	4.1.3 Comparison of the Synchronous In Situ and the File Output Approaches

	4.2 Highlighting Periods of Unused Resources
	4.2.1 Implementation of a Task Monitoring System
	4.2.2 Measure of the Thread Usage in the Synchronous Approach

	4.3 Derivation of a Task-Based Asynchronous IN Situ Approach (TINS)
	4.3.1 Spawning of an Analytics Task
	4.3.2 Evaluation of TINS compared to a Synchronous Execution

	4.4 Chapter Summary

	5 Implementation of a Thread Isolation to Improve TINS Performance
	5.1 Evaluation of TINS compared to the Goldrush Process-Based Approach
	5.1.1 Usage of Goldrush on the Cobalt Supercomputer
	5.1.2 Instrumentation of ExaStamp with Goldrush API
	5.1.3 Comparison of TINS and Goldrush

	5.2 Evaluation of TINS compared to the Damaris Static Helper Core Approach
	5.2.1 Instrumentation of ExaStamp with Damaris API
	5.2.2 Comparison of TINS and Damaris

	5.3 Implementation of a Thread Isolation Mechanism in TINS
	5.3.1 Separation of the Tasks into Disjoint Arenas
	5.3.2 Implementation of an Analytics Master Thread
	5.3.3 Comparison of the Two Versions of TINS and Damaris
	5.3.4 Highlighting the Limitations of the Static Helper Core Approach

	5.4 Chapter Summary

	6 Implementation of a Dynamic Helper Core Strategy with Automatic Sizes
	6.1 Implementation of an Adaptive Static Helper Core Approach
	6.1.1 Design of the Algorithm
	6.1.2 Highlighting the Limitations of the Approach

	6.2 Implementation of a Dynamic Helper Core Strategy with a Temporary Isolation
	6.2.1 Designing a Temporary Thread Isolation with TBB
	6.2.2 Implementation of the Temporary Thread Isolation in TINS
	6.2.3 Evaluation of the Dynamic Helper Core Approach

	6.3 Implementation of an Adaptive Dynamic Helper Core Approach
	6.3.1 Design of the Algorithm
	6.3.2 Validation of the Approach
	6.3.3 Highlighting the Limitations of the Approach

	6.4 Chapter Summary
	6.5 Part Summary

	III Toward an Evolutive Task-Based Hybrid Framework
	7 Design of a Framework to Automatically Orchestrate Analytics Execution
	7.1 Orchestration of Simulation and Analytics Codes
	7.1.1 Integration of TINS Architecture in the Simulation Code
	7.1.2 Development of Analytics Outside of the Simulation as TINS Plugins
	7.1.3 Compilation and Loading of TINS Plugins

	7.2 Automatic Creation of a Graph of Plugins
	7.2.1 Definition of the Analytics Workflow
	7.2.2 Construction of a Graph of Plugins
	7.2.3 Management of Simulation and Analytics Data

	7.3 Extension of TINS with an In Transit Mode
	7.3.1 Design of an In Transit Mode
	7.3.2 Implementation of a Prototype and Preliminary Results
	7.3.3 Execution of Analytics Plugins in a Standalone Mode

	7.4 Chapter Summary

	8 Validation of TINS on a Production Run
	8.1 Description of the Physics and the Analytics Workflow
	8.1.1 Computation of the Steinhardt Parameters
	8.1.2 Definition of the Analytics Workflow

	8.2 Limitations of the Tera-1000-2 Supercomputer
	8.2.1 Disabling of the OS Scheduler on the KNL Nodes
	8.2.2 Temporary Absence of the MPI_THREAD_MULTIPLE Threading Level

	8.3 Validation of TINS
	8.3.1 Numerical Validation
	8.3.2 Preliminary Performance Measurements
	8.3.3 Gain of TINS for the Physicists

	8.4 Chapter Summary

	9 Conclusion and Perspectives
	9.1 Contributions
	9.2 Perspectives
	9.3 Towards Advanced Uses of TINS

	IV Additional Content
	10 Résumé de la Thèse en Français
	10.1 Introduction
	10.2 Organisation du Manuscrit
	10.3 Conclusion

	Bibliography

