La relative hyperbolicité des produits semi-direct des produits libres

par Ruoyu Li

Thèse de doctorat en Mathématiques

Sous la direction de François Dahmani.

Le président du jury était Indira Lara Chatterji.

Le jury était composé de Anne Parreau, Stefano Francaviglia.

Les rapporteurs étaient François Gautero.


  • Résumé

    Dans la thèse présente, nous nous intéressons à l'étude de la relative hyperbolicité des produits semi-direct des produits libres, ainsi que le problème de conjugaison pour certains automorphismes de ces produits libres.Plus précisement, pour un produit libre $$G=G_1astdotsast G_past F_k$$ un automorphisme $phi$ est intitulé atoroidal s'il ne fixe pas (ni aucune de ses puissances) la classe de conjugaison d'un élément hyperbolique de $G$. Cet automorphisme est appelé completement irréductible si le système de facteurs libres est le plus grand qui est fixé par toutes les puissances de cet automorphisme. Il est appelé toral si pour tous les $i$, il existe $g_iin G$ tel que ${rm ad}_{g_i}circ phi|_{G_i}$ est identité sur le facteur libre $G_i$. Nous disons qu'il a la condition centrale si pour chaque $i$, il existe $g_iin G$ conjugue $phi(G_i)$ à $G_i$, et s'il existe un élément non trivial de $G_irtimes_{{rm ad}_{g_i} circ phi|_{G_i}} mathbb{Z}$ qui est central dans $G_irtimes_{{rm ad}_{g_i} circ phi|_{G_i}} mathbb{Z}$.Nous prouvons, dans le Théorème 4.28, que si $phi$ est atoroidal et completement irréductible, et si le produit libre est non-elementaire ($kgeq 2$ ou $ p+k geq 3$), le groupe $Grtimes_phi mathbb{Z}$ est relativement hyperbolique (relativement a des suspensions de chaque $G_i$). Après, dans le Théorème 6.10, nous prouvons le même résultat si $phi$ est atoroidal avec la condition centrale. Nous prouvons aussi dans le Théorème 7.21 que si tous les $G_i$ sont abelien, le problème de conjugaison est solvable pour les automorphismes atoroidaux, toraux. Ces sont des analogues du résultat de Brinkmann [7] (celui qui a donné le résultat d'hyperbolicité pour les groupes libres), et du résultat de Dahmani [12] (celui qui a résolu le problème de conjugaison des automorphismes hyperboliques).

  • Titre traduit

    Relative hyperbolicity of suspensions of free products


  • Résumé

    In this thesis, we are interested in the study of the relative hyperbolicity of the suspensions of free products, as well as the conjugacy problem of certain automorphisms of free products.To be more precise, given a free product $$G=G_1astdotsast G_past F_k$$ an automorphism $phi$ is said atoroidal if no power fixes the conjugacy class of an hyperbolic element. It is called fully irreducible if the given free factor system $[G_1],dots,[G_p]$ is the largest one that is fixed by every power of the automorphism. It is said toral if for all $i$, there exists $g_iin G$ such that ${rm ad}_{g_i}circ phi|_{G_i}$ is the identity on the free factor $G_i$. It is said to have central condition if for each $i$, there exists $g_iin G$ conjugating $phi(G_i)$ to $G_i$, and if there exists a non-trivial element of $G_irtimes_{{rm ad}_{g_i} circ phi|_{G_i}} mathbb{Z}$ that is central in $G_irtimes_{{rm ad}_{g_i} circ phi|_{G_i}} mathbb{Z}$.We prove, in Theorem 4.28, that if $phi$ is atoroidal and fully irreducible, and if the free product is non-elementary ($kgeq 2$ or $ p+k geq 3$), the group $Grtimes_phi mathbb{Z}$ is relatively hyperbolic (relative to the mapping torus of each $G_i$). Then in Theorem 6.10 we prove the same result holds if $phi$ is atoroidal with central condition. We also prove in Theorem 7.21 that if all $G_i$ are abelian, the conjugacy problem is solvable for toral atoroidal automorphisms. These are analogue of the result of Brinkmann [7] (which gave the hyperbolicity result for free groups) and the result of Dahmani [12] (which solved the conjugacy problem of hyperbolic automorphisms).


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Savoie Mont Blanc (Chambéry-Annecy). Service commun de la documentation et des bibliothèques universitaires. Bibliothèque électronique.
  • Bibliothèque : Université Grenoble Alpes. Bibliothèque et Appui à la Science Ouverte. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.