Intégration des incertitudes liées aux prévisions de consommation et production à la gestion prévisionnelle d'un réseau de distribution

par Jérôme Buire

Thèse de doctorat en Génie électrique

Sous la direction de Xavier Guillaud.

Soutenue le 14-12-2018

à l'Ecole centrale de Lille , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) , en partenariat avec Laboratoire d'électrotechnique et d'électronique de puissance (L2EP) (laboratoire) et de Laboratoire d'électrotechnique et d'électronique de puissance (L2EP) (laboratoire) .

Le président du jury était Mario Paolone.

Le jury était composé de Juliette Morin, Leticia De Alvaro Garcia.

Les rapporteurs étaient Louis Wehenkel, Raphaël Caire.


  • Résumé

    La gestion prévisionnelle des réseaux de distribution imposée par les codes de réseaux européens nécessite une connaissance approfondie de leur comportement et implique de prendre en compte la volatilité des énergies renouvelables et les capacités de prévision à l’horizon J-1 de la consommation et de la production. En effet, les valeurs déterministes les plus probables des prévisions ne sont plus suffisantes pour pouvoir prédire et gérer à l’avance un réseau. Une modélisation et une optimisation stochastiques permettent un choix, au plus juste, de paramètres de contrôle.La thèse se concentre la prise en compte, dans la modélisation et l’optimisation, des incertitudes des réseaux de distribution. Une modélisation stochastique de réseau est proposée, elle intègre les incertitudes liées au régleur en charge et aux prévisions de consommation et de production. Les contrôleurs des générateurs, le régleur en charge et les gradins de condensateurs permettent de limiter les fluctuations des tensions des nœuds et de la puissance réactive à l’interface et de respecter les exigences contractuelles. Industriellement, les contrôleurs des générateurs sont caractérisés par des lois de commande linéaires ou linéaires par morceaux. En effectuant des hypothèses sur la nature stochastique des données, on peut montrer que les tensions aux nœuds sont des variables gaussiennes ou des sommes de variables gaussiennes par morceaux. Une optimisation stochastique basée sur ces modèles permet de choisir les paramètres des contrôleurs qui minimisent les risques de surtension et des efforts de générateurs, sans avoir à mettre en œuvre des méthodes coûteuses en temps de calcul de type Monte Carlo

  • Titre traduit

    Management of a distribution network considering uncertain consumption and production forecasts


  • Résumé

    The voltage profiles inside the network and power flows at the transport-distribution interface are modified under the massive insertion of renewable sources in distribution grids. The system’s uncertainties cannot be handled by local controllers which parameters are tuned at the actuator installation stage. A solution, widely accepted in the literature, consists of achieving a centralized optimization of the actuators references (distributed generators reactive powers, reference voltage of the On Load Tap Changer, capacitor banks reactive power). Within this framework, a supervisor computes all references at the same time and delivers the references to each actuators, which requires an efficient and reliable communication system.The main contribution of the thesis is to design an alternative approach which keeps the local control structures which settings will be updated on an hourly basis. The optimization relies on a stochastic representation of the grid that accounts for the On Load Tap Changer uncertainties and day ahead forecasts of the productions and consumptions. It is shown that every variable of the system can be represented by Gaussian or sum of truncated Gaussian variables. A stochastic optimization allows to select the controllers settings that minimize overvoltages and control efforts, without using time-consuming algorithms such as Monte-Carlo methods. This work will demonstrate that an appropriate management of uncertainties spares unnecessary and costly oversizing


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?