Estimation en temps fini de systèmes non linéaires et à retards avec application aux systèmes en réseau

par Kokou Anani Agbessi Langueh

Thèse de doctorat en Automatique, génie informatique, traitement du signal et de l'image

Sous la direction de Thierry Floquet et de Gang Zheng.

Soutenue le 06-12-2018

à l'Ecole centrale de Lille , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) , en partenariat avec Centre de recherche en informatique, signal et automatique de Lille (laboratoire) et de Centre de Recherche en Informatique- Signal et Automatique de Lille (CRIStAL) - UMR 9189 / CRIStAL (laboratoire) .

Le président du jury était Driss Boutat.

Le jury était composé de Woihida Aggoune.

Les rapporteurs étaient Claude Moog, Qinghua Zhang.


  • Résumé

    Cette thèse étudie le problème d'identification de la topologie d'un réseau de systèmes complexes dynamiques, dont les sous-systèmes sont décrits par des équations différentielles ordinaires (EDO) et/ou par des équations différentielles à retard (EDR). La première partie de ce travail porte sur l’identification des paramètres du réseau de systèmes linéaires. Ainsi, différentes classes de systèmes linéaires ont été traitées, à savoir les systèmes sans retard, les systèmes à retard commensurable et les systèmes à entrées inconnues. Un observateur impulsif est proposé afin d'identifier à la fois les états et les paramètres inconnus de la classe de système dynamique considérée en temps fini. Afin de garantir l'existence de l'observateur impulsif proposé, des conditions suffisantes sont déduites. Des exemples illustratifs sont donnés afin de montrer l'efficacité de l'observateur en temps fini proposé.La deuxième partie de ce travail traite le problème de l'identification de la topologie d'un réseau de systèmes dynamiques non linéaires. Dans nos considérations, les coefficients interconnexions de la topologie du réseau sont considérés comme des paramètres constants. Par conséquent, l'identification de la topologie est équivalente à l'identification des paramètres inconnus. Tout d’abord, nous avons déduit des conditions suffisantes sur l’identifiabilité des paramètres, puis nous avons proposé un différenciateur uniforme avec convergence en temps fini pour estimer les paramètres inconnus

  • Titre traduit

    Finite-time estimation of nonlinear and delay systems with application to networked systems


  • Résumé

    This thesis investigates the topology identification problem for network of dynamical complex systems, whose subsystems are described by ordinary differential equations (ODE) and/or delay differential equations (DDE). The first part of this work focuses on the parameters identification of the network of linear systems. Thus, different classes of linear systems have been treated namely systems without delay, systems with commensurable delay and systems with unknown inputs. An impulsive observer is proposed in order to identify both the states and the unknown parameters of the considered class of dynamic system in finite time. In order to guarantee the existence of the proposed impulsive observer, sufficient conditions are deduced. An illustrative example is given in order to show the efficiency of the proposed finite-time observer.The second part of this work treats the topology identification of the network of nonlinear dynamic systems. In our considerations, the topology connections are represented as constant parameters, therefore the topology identification is equivalent to identify the unknown parameters. A sufficient condition on parameter identifiability is firstly deduced, and then a uniform differentiator with finite-time convergence is proposed to estimate the unknown parameters


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : École centrale de Lille (Villeneuve d'Ascq, Nord). Bibliothèque virtuelle.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.