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Titre : Analyse par simulation des grandes échelles de l’écoulement de couche limite au-dessus 
d’une canopée urbaine 

Mots clés : Canopée urbaine, Couche limite, Simulation des grandes échelles, Bilan d’énergie 
cinétique turbulente, OpenFOAM 

Résumé : L’urbanisation croissante fait 
émerger des enjeux sociétaux et 
environnementaux relatifs à la pollution 
atmosphérique et au microclimat urbain. La 
compréhension des phénomènes physiques de 
transport de quantité de mouvement, de 
chaleur et de masse entre la canopée urbaine 
et la couche limite atmosphérique est 
primordiale pour évaluer et anticiper les 
impacts négatifs de l’urbanisation. Les 
processus turbulents spécifiques à la couche 
limite urbaine sont étudiés par une approche 
de simulation des grandes échelles, dans une 
configuration urbaine représentée par un 
arrangement de cubes en quinconce. Le 
modèle de sous-maille de type Smagorinsky 
dynamique est implémenté pour mieux prendre 
en compte l’hétérogénéité de l’écoulement et 
les retours d’énergie des petites vers les 
grandes structures. 

Le nombre de Reynolds basé sur la hauteur du 
domaine et la vitesse de l’écoulement libre est 
de 50000. L’écoulement est résolu dans les 
sous-couches visqueuses et le maillage est 
raffiné dans la canopée. Le domaine est 
composé de 28 millions de cellules. Les 
résultats sont comparés à la littérature et aux 
données récentes obtenues dans la soufflerie 
du LHEEA. Chaque contribution au bilan 
d’énergie cinétique turbulente est calculée 
directement en tout point. Cette information, 
rare dans la littérature, permet d’étudier les 
processus dans la sous couche rugueuse. 
Grâce à ces résultats 3D, l’organisation 
complexe de l’écoulement moyen 
(recirculations, vorticité, points singuliers) est 
analysée en relation avec la production de 
turbulence. Enfin, une simulation où les 
obstacles sont remplacés par une force de 
traînée équivalente est réalisée à des fins 
d’évaluation de cette approche. 

 

Title : Analysis of the unsteady boundary-layer flow over urban-like canopy using large eddy 
simulation. 

Keywords : Urban canopy, Boundary layer, Large-Eddy Simulation, Turbulent kinetic energy 
budget, OpenFOAM 

Abstract : The rapid development of 
urbanization raises social and environmental 
challenges related to air pollution and urban 
climate. Understanding the physical processes 
of momentum, heat, and mass exchanges 
between the urban canopy and the 
atmospheric boundary-layer is a key to assess, 
predict and prevent negative impacts of 
urbanization. The turbulent processes 
occurring in the urban boundary-layer are 
investigated using computational fluid 
dynamics (CFD). The unsteady flow over an 
urban-like canopy modelled by a staggered 
arrangement of cubes is simulated using large 
eddy simulation (LES). Considering the high 
spatial and temporal inhomogeneity of the flow, 
a dynamic Smagorinsky subgrid-scale model is 
implemented in the code to allow energy 
backscatter from small to large scales.  

The Reynolds number based on the domain 
height and free-stream velocity is 50000. The 
near-wall viscous sub-layers are resolved and 
the grid is refined in the canopy resulting in 
about 28 million grid cells. LES results are 
assessed by comparison with literature and 
data recently acquired in the wind tunnel of the 
LHEEA. The turbulent kinetic energy budget in 
which all contributions are independently 
computed is investigated. These rarely 
available data are used to analyse the turbulent 
processes in the urban canopy. By taking 
advantage of the three-dimensionality of the 
simulated flow, the complex 3D time-averaged 
organization of the flow (recirculation, vortices 
or singular points) is analyzed in relation with 
production of turbulence. Finally a drag 
approach where obstacles are replaced by an 
equivalent drag force is implemented in the 
same domain and results are compared to 
obstacle-resolved data. 
 
 

 



“The two most important days in your life are the day you are born
and the day you find out why.”

– Mark Twain.





Acknowledgements

First of all, I want to thank Dr. Laurent Perret. In the final year of the Master program, I had
the opportunity to complete a six-month internship under his guidance. This work opened
my vision of fluid mechanics research and inspired my interest in airflow modeling in urban
environments.

I sincerely appreciate my supervisor Dr. Isabelle Calmet for her guidance and help in the
past three years. I am deeply impressed by her profound understanding of academic issues,
rigorous academic attitude and diligent work style. Sometimes the discussion with her made
me feel stressed because I am afraid that physical phenomenon I may not understand, but I
clearly know that what I learned from Isabelle will benefit me for the rest of my life.

Also, I am very grateful my supervisor Dr. Boris Conan for his guidance, help and
encouragement from the topic selection to the final completion of the thesis. After each
discussion, he always likes to say ”good’, this praise is always as warm to me as the spring
breeze. He encouraged me to keep moving forward. His approachable mentor style, tireless
pursuit of scientific research and the spirit of continuous innovation have set a role model for
my future research life.

In the process of the whole PhD research, a lot of discussions were held with Karin,
Sophie, Pascal, Thibaud, Adrien. They expressed a lot of useful suggestions and technology
help for this work, and I am deeply grateful. Also, thanks to other DAUC members Carlo,
Caroline, Dominique, Antoine and Jérémie, I am really enjoy the "madeleine" and "Le gâteau
des rois".

This work was granted access to the HPC resources of supercomputer CINES under the
allocation 2017-A0020100132 made available by GENGI and of LIGER under the allocation
2017-E1703020 from Ecole Centrale de Nantes. I am very grateful to the development and
technical support staff of CINES and ECN. In particular, the researcher at CINES, gave me
a lot of guidance and help in my programming and operation. I would like to express my
sincere gratitude.



iv

I am also very gratefully acknowledge the financial support of the PhD scholarship from
China Scholarship Council (CSC) under the grant CSC N◦ 20158070084, and the financial
support of the French National Research Agency through the research grant URBANTURB
N◦ ANR-14-CE22-0012-01.

Finally, I am very grateful to my parents and my fiancee Dong Ru for understanding
and encouraging in the process of completing this thesis. The completion of this paper is
inseparable from their support. I love you always forever.



Table of contents

Nomenclature v

List of figures vii

List of tables xv

Introduction 1

1 Atmospheric boundary layer: structure and characteristics 5
1.1 The structure of the atmospheric boundary layer . . . . . . . . . . . . . . . 5

1.1.1 Outer layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Inertial sublayer . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.3 Roughness sublayer . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Urban canopy layer . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Effect of the urban canopy roughness . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Morphological parameters . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Flow classification . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.3 The layout of the buildings . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Representation of the urban canopy in numerical simulations . . . . . . . . 14
1.3.1 Obstacle resolving method . . . . . . . . . . . . . . . . . . . . . . 14
1.3.2 Immersed boundary method . . . . . . . . . . . . . . . . . . . . . 15
1.3.3 Drag-porosity approach . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.4 Aerodynamic roughness length . . . . . . . . . . . . . . . . . . . . 17

1.4 Statistical variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 First-order statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Second-order statistics . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4.3 Friction velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.4 Skewness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.5 Two-point correlation coefficient . . . . . . . . . . . . . . . . . . . 21



ii Table of contents

1.4.6 The power spectral density characteristics . . . . . . . . . . . . . . 21
1.5 Previous researches for the urban canopy flow . . . . . . . . . . . . . . . . 22

1.5.1 Field measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.5.2 Wind-tunnel experiment . . . . . . . . . . . . . . . . . . . . . . . 24
1.5.3 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Numerical model and verification 31
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 The LES equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.1 Filtered Navier-Stokes equations . . . . . . . . . . . . . . . . . . . 32
2.2.2 Subgrid-scale modeling . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Numerical method details . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.1 Finite volume method . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.2 Numerical schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.3 OpenFOAM flow solver . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Preliminary simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.1 Computational domain . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.2 Choice of the SGS model . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.3 Mesh generation and choice of the resolution . . . . . . . . . . . . 49
2.4.4 Refined mesh around the cubes . . . . . . . . . . . . . . . . . . . . 51

2.5 Concluding remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3 Validation and discussion of LES model for simulating urban canopy flow 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Numerical simulation setup . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Simulation domain . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2.2 Simulation grid set-up . . . . . . . . . . . . . . . . . . . . . . . . 58
3.2.3 Simulation running time setting . . . . . . . . . . . . . . . . . . . 59
3.2.4 Simulation parameters . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Assessment of numerical approach . . . . . . . . . . . . . . . . . . . . . . 60
3.3.1 Mean stream-wise velocity . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Reynolds stress components . . . . . . . . . . . . . . . . . . . . . 62
3.3.3 Skewness of velocity component . . . . . . . . . . . . . . . . . . . 67
3.3.4 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Mean flow analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.4.1 Vorticity analysis of mean velocity . . . . . . . . . . . . . . . . . . 74



Table of contents iii

3.4.2 Q-criterion analysis of mean velocity . . . . . . . . . . . . . . . . 75
3.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Turbulent kinetic energy budget over urban canopy 77
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 The governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 TKE budget around a cube . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1 Production and dissipation terms . . . . . . . . . . . . . . . . . . . 79
4.3.2 Turbulent transport terms . . . . . . . . . . . . . . . . . . . . . . . 81
4.3.3 Pressure transport term . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3.4 Advection term . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.4 TKE budget comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 TKE budget in the vicinity of the canopy . . . . . . . . . . . . . . . . . . . 84

4.5.1 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 Turbulent transport . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5.3 Pressure transport . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.5.4 Advection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5.5 Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Analysis of the turbulent transport term . . . . . . . . . . . . . . . . . . . 99
4.6.1 The decomposition of turbulence transport . . . . . . . . . . . . . 99
4.6.2 The impact of ignoring non-measured terms . . . . . . . . . . . . . 100

4.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Drag-porosity approach: assessment and suggestions 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Numerical simulation details . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.1 The governing equations . . . . . . . . . . . . . . . . . . . . . . . 104
5.2.2 Drag force coefficient . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2.3 Simulation details . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3 Assessment of the drag-porosity approach . . . . . . . . . . . . . . . . . . 107
5.3.1 First-order statistic . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.3.2 Second-order statistics . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.3 Skewness of the velocity . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.4 Energy spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.4 Turbulent structure analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.4.1 Turbulent kinetic energy budget . . . . . . . . . . . . . . . . . . . 113
5.4.2 Quadrant analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



iv Table of contents

5.4.3 Low-momentum regions . . . . . . . . . . . . . . . . . . . . . . . 116
5.4.4 Two-point correlation . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.5 Suggestion for improving the drag-porosity approach . . . . . . . . . . . . 121
5.5.1 Separately model the features in the near-surface region . . . . . . 121
5.5.2 Spatial averaging methods . . . . . . . . . . . . . . . . . . . . . . 122
5.5.3 Add drag profile above the canopy . . . . . . . . . . . . . . . . . . 122

5.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6 Conclusions and perspectives 125
6.1 Main results and achievements . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 129

Appendix A PimpleFOAM Solver 137

Appendix B Dynamic Smagorinsky SGS model 139



Nomenclature

Notations
( ) Time-averaging operator
⟨ ⟩ Horizontally spatial-averaging operator
| | Magnitude operator
x Streamwise coordinate [m]
y Spanwise coordinate [m]
z Vertical coordinate [m]
u Instantaneous streamwise velocity component [ms−1]
v Instantaneous spanwise velocity component [ms−1]
w Instantaneous vertical velocity component [ms−1]
u′ Fluctuation of the streamwise velocity component [ms−1]
v′ Fluctuation of the spanwise velocity component [ms−1]
w′ Fluctuation of the vertical velocity component [ms−1]
uτ Friction velocity [ms−1]
u∗ Friction velocity [ms−1]
uh Velocity at the top of the canopy [ms−1]
z0 Aerodynamic roughness length [m]
d Zero-plane displacement height [m]
δ Boundary layer height [m]
κ Von Karman’s constant
t Time [s]
h Height of the cube [m]
λp Plan area density
λ f Frontal area density
α f Volume frontal density [m−1]
F Drag force per unit volume and density [ms−2]
FD Drag force [kgms−2]
CD Drag force coefficient



vi Nomenclature

τ Shear stress [kgm−1s−2]
ν Kinematic viscosity[m2s−1]
νsgs Subgrid-scale viscosity [m2s−1]
ρ Reference density [kgm−3]
Ubar Desired mean velocity [ms−1]
A Advection [m2s−3]
P Production [m2s−3]
Tr Turbulent transport [m2s−3]
Tp Pressure transport [m2s−3]
Tsgs Subgrid transport [m2s−3]
εr Viscous dissipation [m2s−3]
εsgs Subgrid dissipation [m2s−3]

Abbreviations
ABL Atmosperic Boundary Layer
ISL Inertial Sub-Layer
RSL Roughenss Sub-Layer
UCL Urban Canopy Layer
IBM Immersed Boundary Method
CFD Computational Fluid Dynamics
DNS Direct Numerical Simulation
LES Large-Eddy Simulation
RANS Reynolds-averaged Navier–Stokes equations
OpenFOAM Open source Field Operation And Manipulation
SGS Subgrid-Scale
TKE Turbulent Kinetic Energy
HWA Hot-Wire Anemometry
PIV Particle Image Velocimetry
LDV Laser Doppler Velocimetry
ISA Intrinsic Spatial Averaging
ESA Extrinsic Spatial Averaging
ECN Ecole Centrale de Nantes
LHEEA Laboratoire de Recherche en Hydrodynamique, Energétique et Environnement

Atmosphérique



List of figures

1 (a) High rise and low rise in the downtown Beijing, China; (b) Relatively
uniform height of buildings in the downtown Paris, France (Photos are
extracted from Google website). . . . . . . . . . . . . . . . . . . . . . . . 1

2 Schematic roadmap for numerical research work involving urban canopy
flow studies. Blue plots: the work achieved, the green plots: data from
literature and hatched yellow blocks: work that needs to be done in the future. 4

1.1 Schematic of the atmospheric boundary layer structure including five differ-
ent layers in the vertical direction. . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Schematic plot for calculating the morphological parameters in urban canopy,
from Maché (2012). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Schematic plot of flow regimes classification over urban-like building arrays.
(a) Isolated roughness flow W/H > 3.33, (b) Wake interference flow 1.53 <

W/H < 3.33, (c) Skimming flow W/H < 1.53 (Figure from Oke et al. 2017). 12
1.4 Schematic plan view of the cubic arrays layouts with a plan area density

λp = 25% of there types: (a) aligned arrays, (b) squared arrays, (c) staggered
arrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.5 Example of the obstacle resolving method where the block within the grid is
used to represent the urban canopy. . . . . . . . . . . . . . . . . . . . . . 14

1.6 Schematic plot of urban canopy created using immersed boundary method
(Figure extracted from Giometto et al. (2016). . . . . . . . . . . . . . . . . 15

1.7 Spectrum of the axial turbulence component (figure extracted from Castro et
al. 2006). Note that z′ = z−d and k = 2π f/u, with f is the frequency. . . . 22

2.1 Schematic of spectrum of turbulent kinetic energy and the energy cascade.
The pink line marks the delimiting line between the resolved scale and the
subgrid scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Instantaneous view of the C coefficient of the dynamic Smagorinsky model
in a vertical symmetry plane. . . . . . . . . . . . . . . . . . . . . . . . . . 36



viii List of figures

2.3 2D Schematic plot of volume surrounding the node point on a mesh in finite
volume method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Schematic plot of the no-slip condition. . . . . . . . . . . . . . . . . . . . 43
2.5 Schematic plot of the free-slip condition. . . . . . . . . . . . . . . . . . . . 43
2.6 Schematic 3D view of the computational domain [4h× 4h× 4h] occupied

by the staggered cube array in the preliminary simulations, where h is the
height of cubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.7 Schematic plan view of the computational domain in staggered cube arrays. 45
2.8 Vertical profiles of mean streamwise velocity at locations P1 (a) and P2 (b)

and P3 (c) and P0 (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 Vertical profiles of velocity standard deviation behind a cube at P1 (a, c) and

in front of a cube at P2 (b, d). . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.10 Vertical profiles of Reynolds shear stress behind a cube at P1 (a) and in front

of a cube at P2 (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.11 View of the mesh generated by the OpenFOAM tools: blockMesh and Snap-

pyHexMesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.12 Comparison of the time-averaged streamwise velocity, normalized by the

friction velocity (uτ ) at locations P1 (a) and P2 (b) and P3 (c) and P0 (d)
for the three mesh resolutions. White circles: ∆ = h/64. Blue dashed line:
∆ = h/16. Red solid line: ∆ = h/32. . . . . . . . . . . . . . . . . . . . . . 51

2.13 The logarithmic profile for the mean velocity above the cube, before refining
the mesh around the cube (White circle) and after refining the mesh around
the cube (Red point), U+ = z+ is in Black line. . . . . . . . . . . . . . . . 53

2.14 Plan view of the refined mesh around the cubes. . . . . . . . . . . . . . . . 53
2.15 The contour plot of the two-point correlation of streamwise velocity Ruu,

where the reference position is in the wake of the cube at a height of 1.5h. . 55

3.1 Perspective view of the computational domain, where h is the cube height. . 58
3.2 Plan view of the refined mesh around the cubes in the present simulation. . 59
3.3 Vertical profiles of mean streamwise velocity at locations P1 (a), P2 (b), P3

(c), P0 (d) indicated in figure. 3.1. Blue solid line: LES computations. Red
dashed line: DNS data from Coceal et al. (2007b). Circles: wind-tunnel
data from Castro et al. (2006). Squares: wind-tunnel data from Herpin et al.
(2018). Stars: PIV data from Blackman et al. (2017) . . . . . . . . . . . . 61



List of figures ix

3.4 Vertical profile of normalized Reynolds shear stress and vertical velocity
standard deviation at P1 ((a), (b)), P2 ((c), (d)), and P3 ((e), (f)) . Solid line:
LES; Dashed line: DNS from Coceal et al. (2007b); Circles: wind-tunnel
data from Castro et al. (2006); Triangles: wind-tunnel data from Blackman
and Perret (2016); Stars: wind-tunnel data from Blackman et al. (2017). . . 63

3.5 Horizontal plane of Reynolds shear stress at z = 0.06h. . . . . . . . . . . . 64
3.6 Vertical profiles of standard deviation of streamwise and spanwise velocity

components at P1 ((a), (b)), P2 ((c), (d)), and P3 ((e), (f)). Solid line: LES;
Dashed line: DNS from Coceal et al. (2007b); Circles: wind-tunnel data
from Castro et al. (2006). Squares: wind-tunnel data from Herpin et al.
(2018); Triangles: wind-tunnel data from Blackman and Perret (2016); Stars:
wind-tunnel data from Blackman et al. (2017). . . . . . . . . . . . . . . . . 66

3.7 Horizontal plane of the standard deviation of streamwise velocity components
at z = 0.06h. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.8 Vertical profiles of skewness at location P1 (a), P2 (b), P3 (c), P0 (d). Blue
solid line: skewness of streamwise velocity component (Sku). Red-dashed
line: skewness of spanwise velocity component (Skv). Green-dashed line:
skewness of vertical velocity component (Skw). . . . . . . . . . . . . . . . 68

3.9 Vertical profiles of mean streamwise velocity plotted on a log scale, where
⟨u⟩ is the horizontally and temporally averaged streamwise velocity above
the cubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.10 Turbulent spectra of the streamwise velocity component E(kz′) at P2 from
LES (Solid blue line) compared with wind-tunnel data (circles) from Castro
et al. (2006). The black dash-line represents the -5/3 slope. The red dash-line
and magenta dot-dash-line indicate the minimum and maximum wavenumber
resolved in the LES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.11 Mean flow structure in a vertical x-z plane through the middle of the cube in
the staggered array showing (u,w) wind vectors. . . . . . . . . . . . . . . . 71

3.12 Top view of the horizontal transect (x,y) near the ground (z = h/40) with
planar streamlines. Wind goes from left to right. . . . . . . . . . . . . . . . 72

3.13 3D view of the streamlines emanating from vertical lines at P1 (a), P2 (b) and
P3 (c). Streamlines color denotes the mean velocity. Green lines indicated
the streamlines sources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.14 magVorticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.15 Q-criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



x List of figures

4.1 Vertical profiles of TKE budget terms (a) behind cube (P1), (b) in front of
cube (P2), (c) in the gap between two cubes (P3) and (d) on cube (P0), all
terms are normalized by u3

τ/h. . . . . . . . . . . . . . . . . . . . . . . . . 80
4.2 Vertical profiles of |P|/|εsgs + εr| ratio (a) behind cube P1, (b) in front of

cube P2, (c) in gap P3 and (d) on cube P0. . . . . . . . . . . . . . . . . . . 81
4.3 Production and dissipation terms of TKE budget compared to the wind-tunnel

data from Castro et al. (2006) and Blackman et al. (2017) at location P2 (a)
and P3 (b). All terms are normalized by u3

τ/h. . . . . . . . . . . . . . . . . 83
4.4 (a) Decomposed production terms from LES at P3, all terms are normalized

by u3
τ/h. (b) Resolved strain rate tensor (Si j) at P3, normalized by uτ/h. . . 83

4.5 Three-dimensional visualization of Production, normalized by u3
τ/h. For

clarity, only three cubes are shown. (a) Zoom inside the urban canopy with
iso-contours of P = 10 (orange) and P =−10 (light blue). Iso-contours are
shown only below z = 3h/4. (b) View of iso-contours of Production P = 25
(red) and P =−25 (dark blue). . . . . . . . . . . . . . . . . . . . . . . . . 85

4.6 Top view of the horizontal transect (x,y) of Production normalized by u3
τ/h.

Wind goes from left to right. (a) Near the ground (z = h/40) with planar
velocity streamlines where S, N and F locations stands for saddle point, node
and focus node, respectively. (b) In the middle of the cube (z = h/2) with
mean velocity vector field. Vectors are of equal length to better visualize
flow structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 (a) Vertical transect of Production normalized by u3
τ/h in the middle of the

cube with a projection of the mean velocity vector field. Vectors are of equal
length to better visualize flow structures. (b) Production in the windward
face of a cube with wall streamlines. . . . . . . . . . . . . . . . . . . . . . 88

4.8 Vertical transect of Turbulent transport normalized by u3
τ/h in the middle of

the cube with a projection of the mean velocity vector field. Vectors are of
equal length to better visualize flow structures. The pink contour circles is
Production (P = 25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.9 Three-dimensional visualization of Turbulent transport (Tr), normalized by
u3

τ/h. For clarity, only three cubes are shown. (a) View of Tr = 5 (pink). (b)
View of iso-contours of Turbulent transport Tr =−8 (dark blue). . . . . . . 90

4.10 Top view of the horizontal transect (x,y) of Turbulent transport (Tr), normal-
ized by u3

τ/h, in the middle of the cube (z = h/2) with mean velocity vector
field. Vectors are of equal length to better visualize flow structures. Wind
goes from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



List of figures xi

4.11 Three-dimensional visualization of Pressure transport, normalized by u3
τ/h.

For clarity, only three cubes are shown. (a) View of iso-contours of Tp = 15
(pink). (b) View of iso-contours of Pressure transport Tp =−5 (dark blue). . 92

4.12 Vertical transect of Pressure transport (Tp) normalized by u3
τ/h in the middle

of the cube with a projection of the mean velocity vector field. Vectors are of
equal length to better visualize flow structures. . . . . . . . . . . . . . . . . 93

4.13 Three-dimensional visualization of Advection, normalized by u3
τ/h. For

clarity, only three cubes are shown. (a) View of iso-contours of Advection
A = 5 (pink). (b) View of iso-contours of Production P = 25 (red) and of
Advection A =−5 (dark blue). . . . . . . . . . . . . . . . . . . . . . . . . 94

4.14 Vertical transect of Advection (A) normalized by u3
τ/h in the middle of the

cube with a projection of the mean velocity vector field. Vectors are of
equal length to better visualize flow structures. The pink contour circles is
Production (P = 25). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.15 Vertical transect of TKE normalized by u2
τ in the middle of the cube with a

projection of the mean velocity vector field. Vectors are following the value
of time-averaged velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.16 Top view of the horizontal transect (x,y) of Advection normalized by u3
τ/h,

in the middle of the cube (z = h/2) with mean velocity vector field. Vectors
are of equal length to better visualize flow structures. Wind goes from left to
right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.17 Three-dimensional visualization of iso-contours of Dissipation εr + εsgs <

−5, normalized by u3
τ/h. For clarity, only three cubes are shown. . . . . . . 97

4.18 Vertical transect of dissipation (εr + εsgs) normalized by u3
τ/h in the middle

of the cube with a projection of the mean velocity vector field. Vectors are of
equal length to better visualize flow structures. . . . . . . . . . . . . . . . . 97

4.19 (a) - (f) The decomposition of Turbulence transport (Tr) at location P3 into
the contribution of each velocity gradient compared to the wind-tunnel data
from Blackman et al. (2017). All terms normalized by u3

τ/h. . . . . . . . . 98
4.20 (a) Turbulent transport (Tr) compared to the wind-tunnel data from Blackman

et al. (2017) and Tr without three span-wise gradients. (b) Three span-wise
gradients of Turbulent transport (Tr). All terms normalized by u3

τ/h. . . . . 99
4.21 3D visualization of the sum of the spanwise gradients of the turbulent trans-

port terms discrepancy between the Turbulence transport and Turbulence
transport without span-wise velocity fluctuation gradients. Red color means
∆Tr ×h/u3

τ = 5 and blue color means ∆Tr ×h/u3
τ =−5. . . . . . . . . . . . 100



xii List of figures

5.1 Vertical profile of drag coefficient CD using the equation from Maché (2012)
and extracted from obstacle resolving method, compared to the data from
Cheng and Castro (2002) and Coceal et al. (2006). . . . . . . . . . . . . . . 105

5.2 Vertical view of the mesh generated by the OpenFOAM tool: blockMesh. . 107
5.3 Vertical profiles of (a) spatial and temporal streamwise mean velocity ⟨u⟩,

normalized by ⟨u⟩4h: comparison between drag-porosity LES and obstacle-
resolved LES using intrinsic and extrinsic method. (b) spatial and tempo-
ral streamwise mean velocity ⟨u⟩ within the canopy, normalized by ⟨u⟩h.
Porosity CD-resolved (red solid line), porosity CD-Maché (blue dashed line),
obstacle-resolved LES using intrinsic spatial averaging (white circle) and
extrinsic spatial averaging (black dot). . . . . . . . . . . . . . . . . . . . . 109

5.4 Vertical profiles of the spatial averaged (a) standard deviation of the stream-
wise velocity, ⟨σu⟩; (b) standard deviation of the spanwise velocity ⟨σv⟩; (c)
standard deviation of the vertical velocity ⟨σw⟩; (d) Reynolds shear stress,
normalized by u∗; (e) turbulent kinetic energy (TKE), normalized by u2

∗. . . 110
5.5 Vertical profiles of spatial and temporal averaged (a) skewness of streamwise

velocity component (⟨Sku⟩); (b) skewness of spanwise velocity component
(⟨Skv⟩); (c) skewness of vertical velocity component (⟨Skw⟩). . . . . . . . . 112

5.6 Turbulent spectra of the streamwise velocity component E(kz′) at P2 and
z/h = 1.62 from OR-LES (Solid blue line) and from DP-LES (Solid cyan
line) compared with wind-tunnel data (circles) from Castro et al. (2006). The
black dash-line represents the -5/3 slope. The red dash-line and magenta
dot-dash-line indicate the minimum and maximum wavenumber resolved in
the LES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.7 Vertical profiles of spatial averaged TKE budget terms normalized by u3
τ/h,

(a) OR-LESISA and (b) DP-LESM. . . . . . . . . . . . . . . . . . . . . . . 114
5.8 (a) Relative number of events in each quadrant as a function of height. (b)

Relative contribution to u′w′ of events in each quadrant as a function of
height. Blue: Q1; Red: Q2; Green: Q3; Yellow: Q4. Points: DNS from
Coceal et al. (2007b); dashed line: DP-LES data. . . . . . . . . . . . . . . 116

5.9 Instantaneous snapshot showing contour plots of streamwise velocity at two
altitudes: z = 1.5h (left) and z = 2h (right) from Coceal et al. (2007b). Black
regions: u < 0.8u. White regions: u > 1.2u. Here u is the local mean velocity.117



List of figures xiii

5.10 Instantaneous snapshot showing contour plots of streamwise velocity at
different altitudes: a) z = 1.5h, b) z = 2h, c) z = 3h and d) z = 4h of the
OR-LES result. Blue regions: u < 0.8u. Red regions: u > 1.2u. Here u is the
local mean velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.11 Instantaneous snapshot showing contour plots of streamwise velocity at
different altitudes: a) z = 1.5h, b) z = 2h, c) z = 3h and d) z = 4h of the
DP-LES result. Blue regions: u < 0.8u. Red regions: u > 1.2u. Here u is the
local mean velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.12 Two-point correlation plot in the XY plot from the wind-tunnel experiment
from Rivet (2014). (a) and (c) from the DP-LES simulation; (b) and (d) from
Rivet (2014). (a) and (b) at z = 1.5h; (c) and (d) at z = 3h. . . . . . . . . . 121

A.1 Flow chart of the PIMPLE algorithm . . . . . . . . . . . . . . . . . . . . . 138





List of tables

1.1 Terrain classification of aerodynamic roughness length z0 from WMO (2008) 17

2.1 Interpolation schemes from OpenFOAM user guide (2018) . . . . . . . . . 39
2.2 Time schemes from OpenFOAM user guide (2018) . . . . . . . . . . . . . 40
2.3 Domain parameters information for SGS model comparison . . . . . . . . 46

3.1 Summary of parameters for urban-like arrays simulation . . . . . . . . . . 60

5.1 Summary of parameters in the comparison . . . . . . . . . . . . . . . . . . 106





Introduction

With the constant development of urbanization, the ratio of population living in cities
continues to grow. The United Nations said that 68% of the world’s population projected to
live in urban areas by 20501. Followed from urban population growth, pollution problems
in cities are more and more prominent: among them, air quality catches citizens special
attention. Cities’ micro-climates, including air quality, are the result of complex mechanical
and thermal interactions between the atmospheric boundary layer (ABL) and the underlying
buildings. Many different kinds of building layouts, heights and shapes exist in cities, such
as the heterogeneous arrangement of high rise and low rise buildings in the downtown of
Beijing (see Figure 1 (a)), or the relatively uniform low-rise buildings configuration in the
center of Paris (see Figure 1 (b)).

（a） （b）

Figure 1 (a) High rise and low rise in the downtown Beijing, China; (b) Relatively uniform
height of buildings in the downtown Paris, France (Photos are extracted from Google website).

The ground roughness plays a crucial role in the momentum, heat and mass transfer
between the ABL and the urban canopy layer where populations live. From an aerodynamic
point of view, the wind in the ABL is a high Reynolds number flow exhibiting high shears as

1https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-
prospects.html
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well as high turbulence levels. Analyzing and understanding accurately the dynamics of the
turbulent flow inside the urban boundary layer provides important information contributing
to a better evaluation of the impact of buildings on the micro-scale climate. However, the
high complexity of turbulent interactions at play remains an important scientific challenge.
The present study focuses on the micro-scale analysis of the urban boundary layer at the scale
of a district or streets. The urban canopy here is represented by a staggered arrangement of
cubes of constant height. Such detailed studies, resolving explicitly the building geometry,
are of high scientific interest to understand the dynamics of the urban canopy flow. This
type of work also participates to the development of simplified models used at regional scale
where buildings cannot reasonably be explicitly resolved. In this work, the performance of
the drag-porosity approach where buildings are represented by an equivalent drag force is
evaluated. The main steps of the work and organization of the manuscript are summarized in
Figure 2.

Objectives and structures of the thesis

The first objective of this work is to set-up and run reliable numerical simulations of the flow
field in an urban boundary layer. The bibliographic review proposed in Chapter 1 describes
the up-to-date general knowledge on urban boundary layer and details some of the most
salient work made on site, in a wind tunnel or in numerical simulations over the last decades
on realistic and simplified urban geometries.

Several settings for numerical simulations using Large Eddy Simulation (LES) with
OpenFOAM are evaluated in Chapter 2 in order to select the most appropriate parameters.
This study is made on a [4h×4h×4h] domain for cost efficiency. A precise parametric study
draws special attention to the choice of the mesh size and of the subgrid-scale model.

Using the most appropriate numerical configuration found in Chapter 2, a simulation over
a domain of [16h× 12h× 8h] using about 28 million cells is presented in Chapter 3. The
assessment of the performance of the obstacle-resolved LES, the second objective of this
work, is made throught a detailed comparison of the results against literature data. Mean flow
and turbulent-related variables up to the third order momentum are carefully discussed in
light of literature data from state-of-art wind tunnel experiments and numerical simulations.
This comparison includes the latest experimental results obtained in the atmospheric wind
tunnel of the LHEEA lab.
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The third objective of the work is to contribute to the understanding of dominant turbulent
processes at play in the urban canopy (Chapter 4). For that, all terms of the turbulent kinetic
energy (TKE) budget are explicitly computed at every spatial locations of the domain. The
spatial organization of the TKE budget terms are then depicted in 2D and 3D figures and
carefully analyzed to extract the most salient features.

A drag-porosity approach is implemented in OpenFOAM (Chapter 5) with the objective to
evaluate its performance compared to the simulation where obstacles are explicitly resolved.
Its ability to reproduce the complex turbulent flow of an obstacle-resolved simulation is
evaluated by comparing turbulent variables such as high order momentum and the TKE
budget.

Finally, Chapter 6 presents conclusions and perspectives of the work.
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Figure 2 Schematic roadmap for numerical research work involving urban canopy flow
studies. Blue plots: the work achieved, the green plots: data from literature and hatched
yellow blocks: work that needs to be done in the future.



Chapter 1

Atmospheric boundary layer: structure
and characteristics

The scope of this chapter aims to introduce the structure of the atmospheric boundary layer
and the morphological parameters used in the urban canopy flow study. The nature of the
canopy flow and the method that is used to represent the urban canopy in numerical simulation
are illustrated. Then, the statistical parameters that are used in the analysis procedure are
described. Finally, the previous research background is introduced at the end of this chapter.

1.1 The structure of the atmospheric boundary layer

Atmospheric boundary layer (ABL) extends from the ground up to 1-2 kilometres, which
is the primary living space for humans, animals, and plants. Unlike the overlying free
atmosphere where the flow dynamics is insensible to the surface friction, the air inside the
ABL is in direct contact with the surface and is significantly affected by the underlying
roughness. Due to the complexity and diversity of the covers and roughness elements in the
city areas, precisely defining the hierarchical structure of the atmospheric boundary layer
will be very beneficial in understanding the critical turbulent mechanism of the boundary
layer flow.

As quoted in Kaimal and Finnigan (1994), Sutton (1953) suggested dividing the ABL
into two parts: the surface layer and the layer above. In the surface layer, which develops
from the surface up to 50−100m, the wind structure is controlled by surface friction and
temperature gradients. The layer above the surface layer extends to a height of 500−1000m.



6 Chapter 1. Atmospheric boundary layer: structure and characteristics

The wind structure in this layer is affected by the surface friction, temperature gradients, and
Earth’s rotation.

With the in-depth understanding of the near-wall turbulence, researchers realized that
the structure of the surface layer could be divided into the inertial sublayer (ISL) and
the roughness sublayer (RSL). Figure 1.1 schematically depicts the atmospheric bound-
ary layer structure including five different layers in the vertical direction. In boundary
layer applications, identifying the atmospheric boundary layer structure is very helpful in
demonstrating the critical features of each layer. For example, the momentum, turbulence,
and mass exchange are very intense within the roughness sublayer, especially inside the
urban canopy layer (UCL). It is worth mentioning that the comprehension of these vertical
structural characteristics helps to understand the interaction between the atmosphere and
underlying surface, as well as to identify the primary physical mechanisms of the flow
processes that occur within the urban area. The following sections will briefly describe these
layers separately.

Urban 

canopy layer

U

z

Mean velocity profile

Roughness 

sublayer

Surface layer

Outer layer

δ U∞

Inertial 

sublayer

Free atmosphere

U(z)

Figure 1.1 Schematic of the atmospheric boundary layer structure including five different
layers in the vertical direction.
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1.1.1 Outer layer

The outer layer (also known as the mixed layer) is a layer in the upper part of the ABL that
extends from the top of the surface layer up to the bottom of the free atmosphere. The potential
temperature and specific humidity here are nearly constant with the height. The wind in this
layer is the result of pressure gradient force and Coriolis force. The turbulence is generated
by surface friction and heat transfer from the surface to the atmosphere. The thermal effect
is very influential in the development of a well-mixed layer. By neglecting thermal effects,
one assumes that the static stability of the atmosphere is neutral, and the turbulence is only
generated by dynamic processes. In this case, this layer is called ’Ekman layer’. The thermal
effects will not be considered or discussed in this thesis.

1.1.2 Inertial sublayer

The inertial sublayer (ISL) is the upper part of the sur f ace layer, wherein the flow charac-
teristics are substantially homogeneous in the horizontal direction, and only depends on the
height above the ground (z). In the neutral atmosphere, over a given period, the time-averaged
streamwise velocity U can be characterized by a logarithmic profile, defined as:

U(z) =
uτ

κ
ln(

z−d
z0

) (1.1)

In equation (1.1), uτ denotes the friction velocity (see section 1.4.3). The von Kármán
constant κ can take the values ranging from 0.35 to 0.43, but κ = 0.4 is usually adopted
in the boundary layer studies (Kaimal and Finnigan 1994). z0 and d are aerodynamic
parameters, which depend on the height and densities of the roughness elements. A zero-
plane displacement height d is introduced in case of dense canopies to account for the
effective height of the ground due to vertical flow displacement and drag force distribution
through the canopy (Raupach et al. 1991). Several parameterization methods have been
proposed to determine the aerodynamic parameters d and z0 as a function of morphological
parameters such as canopy height, plan packing density, frontal area density (Macdonald et
al. 1988, Kastern-Klein and Rotach 2004). When the flow field is available (as in the present
work), z0 and d can be obtained from the mean velocity profile and friction velocity. Another
way (used here) to calculate d in urban configuration is directly using the mean drag profile
within the canopy, and assuming d is the mean height of the momentum absorption by the
surface or the mean height at which the total drag acts (Jackson 1981, Coceal et al. 2007b).
It is then defined as:
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d =

∫ h
0 zD(z)dz∫ h
0 D(z)dz

(1.2)

where D(z) is the drag profile within the canopy, which is calculated by the time-averaged
pressure difference between the front and back face of an obstacle.

1.1.3 Roughness sublayer

The roughness sublayer (RSL) is the lower part of the surface layer located below the
inertial sublayer, in which the flow characteristics depends explicitly on the properties of
the roughness (Raupach 1981). The RSL extends from the ground surface up to a height
of 2 ∼ 5 times the mean height of roughness elements (h). For instance, Rotach (1993a)
observed that the level z/h = 1.55 is within the RSL from the experiment conducted in
the center of Zürich. Roth and oke (1993) found evidence that the level z/h = 2.65 is still
within the RSL over a suburban area. The airflow in the roughness sublayer above the urban
canopy layer is very sensitive to the underlying canopy and atmospheric flow above (Barlow
2014). Flow characteristics are significantly affected by obstacles and result in very complex
three-dimensional flow structures.

1.1.4 Urban canopy layer

The urban canopy layer (UCL) is the bottom part of the RSL. The UCL extends from the
ground up to the top of canopy (Oke 1976; Roth 2000). The local climatic characteristics of
urban areas are significantly affected by various factors, such as the frictional effects of rough
surfaces, the exchange of heat and humidity between the surface and the atmosphere, and the
anthropogenic heat sources. In addition, the presence of obstacles such as trees and buildings
can strongly influence the mean flow and the characteristics of the turbulence. The behavior
of the flow also depends on the shape, height and arrangement of the obstacles. These factors
lead to a very complex flow dynamics within the urban canopy. For now, the understanding
of the turbulence dynamics involved in the urban canopy is still under discussion and not
fully understood even if recent studies have investigated the dynamic interactions between
the large-scale structures of the boundary layer and the smaller structures associated with
canopy flows (Blackman et al. 2016, 2017).
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1.2 Effect of the urban canopy roughness

The height and arrangement of obstacles in urban canopy play an important role in the
characteristics and structure of turbulent flow, which significantly affects the transfer of
momentum, heat and mass in the roughness sublayer. Therefore, it is necessary to have a
detailed understanding about the type of urban canopy configuration and its impact on the
flow.

1.2.1 Morphological parameters

1.2.1.1 Mean height of the buildings

The height of the building is an important parameter for canopy flow studies because it
is closely related to flow patterns and frictional effects in urban areas. Xie et al. (2008)
performed numerical simulations over a random height urban model and found that the
relatively high pressure on the tallest building generates significant contributions to the total
drag. However, the difference in the height of buildings throughout the city is very large,
and there is no standard which can be used to fully understand the flow structure. Therefore,
using the mean height of the buildings to simplify the problem can help to establish a unified
research standard.

The mean height of the canopy (h) is defined as a weighted average of the buildings’
height:

h =

n

∑
i=1

hi ×Api

n

∑
i=1

Api

(1.3)

where hi is the height of building i, n is the total number of buildings and, Api is the plan area
of the element i. More details about these parameters are shown in a schematic plot (Fig.
1.2).

1.2.1.2 Plan area density

The plan area density λp is an important factor in classifying the flow and quantifying the
impact of the canopy on the flow. It refers to the surface area of buildings in a particular
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urbanized area. λp is defined as the ratio of the total plan area occupied by obstacles to the
total plan area ATotal (see Figure 1.2):

λp =

n

∑
i=1

Api

ATotal
(1.4)

1.2.1.3 Frontal area density

The frontal area density λ f is the ratio of the total windward area of the buildings to total
plan area (ATotal), and is defined as:

λ f =

n

∑
i=1

A f i

ATotal
(1.5)

where A f i is the cross-sectional area of the obstacle i normal to the incident flow (see Figure
1.2).

In the present work, the urban canopy will be represented by an array of cubic obstacles
of constant height so that the canopy height and cube height are equal. The cubes being
aligned with the flow, Api and A f i have the same value and λ f is equal to λp.

1.2.1.4 Volumic frontal density

The frontal density per unit volume α f (z) is a parameter which describes the frontal surface
area per air volume. It is calculated according to the geometry of the obstacles present in the
grid cell. When it is defined at different levels (z) of the canopy as in equation (1.6), it can be
used in the drag-porosity approach (Sec. 1.3.3). It has a dimension of [m−1] and defined as:

α f (z) =

n

∑
i=1

A fi(z)

dxdydz−
n

∑
i=1

Vfi(z)
(1.6)

where A fi(z) is the frontal area of the obstacle i normal to the incident flow at level z , and
Vfi(z) is the volume occupied by the obstacle i at level z (Fig. 1.2).
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Figure 1.2 Schematic plot for calculating the morphological parameters in urban canopy,
from Maché (2012).

1.2.2 Flow classification

The distinct architectures inside the urban area profoundly disturb the upcoming flow and
make the study of flow characteristics within the boundary layer very difficult. To describe
the flow regime inside the RSL, the ratio of the gap between obstacles (or street width) (W )
to the height of the buildings (H) is applied.

Oke (1988) classified three typical flow patterns in 2D roughness geometry to state the
canopy flow regimes. The roughness geometry was characterized by the aspect ratio H/W ,
which is the ratio of building height to building spacing. These regimes are referred as
isolated roughness flow, wake interference flow, and skimming flow. The schematic plot of
these flow regimes are shown in Figure 1.3.

Perry et al. (1969) classified two types by adjusting the space between the neighboring
cubes: d−type (W ≤H) roughness and k−type (W ≥ 3H) roughness. In k−type roughness,
the friction effect plays an important role and is highly dependent on the friction Reynolds
number. At the same time, a strong interaction between the flow and the obstacles occurs at
the top of the roughness, causing the eddy shedding in the wake regions of the elements. In
d − type roughness, the friction coefficient does not depend on the scale of the roughness,
but on the outer scale such as the boundary layer height (δ ), and there is essentially little
eddy shedding in the main flow. The behaviour in terms of turbulence between these two
types are different (Jimenez 2004, Kanda et al. 2006). Leonardi et al. (2007) demonstrated
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that the frictional drag is much larger than the pressure drag in d − type roughness, whereas
the pressure drag dominates in k− type roughness.

Figure 1.3 Schematic plot of flow regimes classification over urban-like building arrays. (a)
Isolated roughness flow W/H > 3.33, (b) Wake interference flow 1.53 <W/H < 3.33, (c)
Skimming flow W/H < 1.53 (Figure from Oke et al. 2017).

1.2.3 The layout of the buildings

The layout of the buildings is not only a crucial factor in urban design but also in the urban
turbulence surveys because the location and orientation of the turbulent structure are firmly
related to the incoming ABL flow and local flow within the roughness sublayer. The relative
position of the obstacles has a substantial influence on the direction and speed of the flow.
Since complex architecture significantly limits the understanding of canopy flows, simplified
cubic array models can be established to achieve the purpose of urban research.

This section aims to describe three common types of the cubic array arrangements. As an
example, we consider a plan area density λp = 25% (Fig. 1.4).

In aligned arrays (Fig. 1.4 (a)), the cubes are placed in a single row in the wind direction,
with a distance of one cube length between successive cubes in the streamwise direction
and of three cubes length in the spanwise direction. In squared arrays (Fig. 1.4 (b)), the
cubes are located along lines parallel and perpendicular to the wind direction with a distance
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of one cube length between cubes. In staggered arrays (Fig. 1.4 (c)), the distance between
successive cubes in the the streamwise direction is three cubes length, and one cube length in
the spanwise direction.

wind
cube

(a)

wind
cube

(b)

wind
cube

(c)

Figure 1.4 Schematic plan view of the cubic arrays layouts with a plan area density λp = 25%
of there types: (a) aligned arrays, (b) squared arrays, (c) staggered arrays.

It is interesting to distinguish the flow characteristics between these simplified cubic
arrangements. Coceal et al. (2006) found that the drag coefficient in the aligned and squared
arrays are much smaller than in the staggered case. The consequence is a reduced spatial-
averaged streamwise velocity within the staggered array compared to the other two types.
The spatial-averaged spanwise and vertical turbulence intensities for the staggered array are
found similar to the aligned array, but the streamwise turbulence intensity is much lower
within the canopy due to the enhanced drag of the staggered cubic array.
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1.3 Representation of the urban canopy in numerical sim-
ulations

In ABL models, there are different ways to represent the urban canopy, and the corresponding
representation method can be selected in the model according to the size of the research
domain. This section aims to introduce the common ways to take into account the urban
canopy in computational fluid dynamics (CFD) applications.

1.3.1 Obstacle resolving method

The obstacle resolving method refers to a simulation in which the obstacles are explicitly
described inside the computational domain. The benefit of this approach is that the presence
of the obstacles produces a real fluid environment to simulate the flow features resulting from
the interactions between the flow and the obstacles.

x/h

z/h

Figure 1.5 Example of the obstacle resolving method where the block within the grid is used
to represent the urban canopy.

Although this method has apparent advantages, it also has drawbacks. For example, due
to the existence of large velocity gradients near solid boundaries, high resolution is required
in these regions. This results in a large number of cells near walls and makes prohibitive
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simulation cost (see Figure 1.5). These shortcomings prevent the use of obstacle resolving
method combined with unsteady turbulence modeling for large-scale ABL studies, but it can
be used in simplified academic configurations (Coceal et al. 2006 and Xie and Castro 2006).
In the present study, obstacle resolving method will be used to study the turbulent flow over
a staggered cube array.

1.3.2 Immersed boundary method

The application of obstacle resolving method with an arbitrary three-dimensional shape in
space is still far from mature. The immersed boundary method (IBM) solves the problem of
coupling between the complex obstacle shape and the flow field. The main benefit of this
approach is that the force exerted by the obstacle on the flow is introduced in the momentum
equation (equation 2.2), which allow to create complex and evolutive obstacle shapes. It was
first used to represent a flexible and moving boundary exerting a force on the fluid (Peskin
1972).

Figure 1.6 Schematic plot of urban canopy created using immersed boundary method (Figure
extracted from Giometto et al. (2016).

From the application perspective, there are two main ways: continuous forcing method
and discrete forcing method. In the former, the force term is added to the continuous Navier-
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Stokes equation before discretization, whereas in the latter, the force is applied (explicitly or
implicitly) to the discretized equations. The application of immersed boundary method to
study the urban canopy has been performed by many researchers (Mittal and Iaccarino 2005,
Cheng and Porte-Agel 2015, Giometto et al. 2016). Giometto et al. (2016) used a discrete
forcing immersed boundary method for representing the urban canopy (see Figure 1.6).
The results were fully validated by field measurements data under near-neutral conditions
and confirmed the possibility of combining LES with this method to analyze the pollutant
dispersion in urban areas.

1.3.3 Drag-porosity approach

Similar to the principle of the immersed boundary method, the drag-porosity method ex-
presses the existence of obstacles and their influence on the turbulent flow through the action
of an averaged drag force. This approach is often used in forest canopies (Kanda and Hino
1994, Su et al. 1998, Dupont and Brunet 2008, Yue et al. 2008). The difference with IBM is
that a set of obstacles can be considered as a porous medium.
The configuration of the urban canopy is modeled by the profile of the drag coefficient CD(z)
that is related to the drag force FD through the equation:

FDi =
ρ

2
CD(z)α f (z)ui|u| (1.7)

where α f (z) is the volumic frontal density (Eq. 1.6), ui is the ith velocity component, and
|u|=√u ju j. This drag force constitutes a sink of momentum in the momentum conservation
equations (See chapter 5, Eq. 5.3).

The advantage of the drag-porosity approach is to considerably reduce the number of
computational cells, especially in the lower part of the simulation domain, thereby saving the
calculation cost. This method has already shown a good agreement of the turbulent statistics
in comparison with the literature (Maché 2012). It can be used in applications at city scale
or regional scale or to generate incoming flows in microscale applications. However, the
local characteristics of the flow cannot be modeled using this method, so that some flow
features which could be important in the flow dynamics and exchanges within the RSL can
be wrongly predicted.
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1.3.4 Aerodynamic roughness length

In the mesoscale atmospheric study, the flow can be considered as over an homogeneous
surface since the scale is too large to explicitly describe the local effects of the roughness
elements. Therefore, the aerodynamic parameter z0 and d (see section 1.1.2) are prescribed
to model the effect of the surface roughness on the wind field in the inertial sublayer. The
vertical fluxes between canopy and atmosphere are usually estimated based on the Monin-
Obukhov similarity theory. The typical values of aerodynamic roughness length z0 (assuming
d = 0) are summarized in Table 1.1.

Table 1.1 Terrain classification of aerodynamic roughness length z0 from WMO (2008)

Terrain description z0 (m)

Open sea, Fetch at least 5 km 0.0002
Mud flats, snow, no vegetation, no obstacles 0.005
Open flat terrain; grass, few isolated obstacle 0.03
Low crops; occasional large obstacles, x/H > 20 0.10
High crops; scattered obstacles, 15 < x/H < 20 0.25
Land, bushes; numerous obstacles, x/H ≈ 10 0.5
Regular large obstacle coverage (suburb, forest) 1.0
City centre with high- and low-rise buildings > 2

1.4 Statistical variables

In this section, the statistical variables and the scaling parameters (friction velocity) used in
Chapter 3, Chapter 4 and Chapter 5 to validate the performance of the model and to make a
quantitative analysis of the turbulent flow are described.

1.4.1 First-order statistics

Time-averaged quantities

The time averaging is defined as the arithmetic mean of a series of values obtained over a
given period. For instance, the time average of the variable ϕ is defined as:
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ϕ =
∑

n
k=1 ϕk ×∆ tk
∑

n
k=1 ∆ tk

(1.8)

where the (..) symbol denotes a time-averaged value, ϕk is the value of the variable ϕ at each
time-step ∆tk.

Spatial-averaged quantities

The way to do the spatial averaging inside the canopy have been widely discussed recently
(Finnigan 2000, Kono et al. 2010, Böhm et al. 2013 and Castro 2017). The discussion
is mainly about the quantities averaged over only the fluid area or over the entire domain
including both fluid and obstacles.

In general, the spatial averaging of a flow property ϕ over a volume V can be expressed
as:

⟨ϕ⟩= 1
V

∫
V

ϕ (x,y,z)dV (1.9)

where the ⟨..⟩ symbol denotes the spatial averaging value.
When V corresponds to the entire domain including both fluid and obstacles, the spatial

average is an extrinsic spatial average (ESA), defined as:

⟨ϕ⟩ESA =
1

Vf +Vs

∫
V f+Vs

ϕ(x,y,z)dV =
1

Vf +Vs

∫
V f

ϕ(x,y,z)dV (1.10)

where the Vf is the fluid volume and Vs is the solid volume.

When one considers only the fluid volume (V =Vf ), then the spatial average is an intrinsic
spatial average (ISA), defined as:

⟨ϕ⟩ISA =
1

Vf

∫
V f

ϕ(x,y,z)dV (1.11)

There is no difference between these two averages above the canopy because Vs = 0 there.
The main difference occurs inside the canopy. For instance, for a cubic array with plan area
density λp = 0.25, the fluid volume Vf is triple of the solid volume Vs inside the canopy layer,
and then:

⟨ϕ⟩ESA =
3
4
× 1

Vf

∫
V f

ϕ(x,y,z)dV =
3
4
×⟨ϕ⟩ISA (1.12)
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Kono et al. (2010) suggested that intrinsic spatial average could be reasonable when λp

is small because there is less effect by the obstacles. Xie and Fuka (2017) analyzed the
differences between these two methods over aligned cuboid arrays and observed that extrinsic
spatial average was better than intrinsic spatial average in avoiding the abrupt change of total
shear stress at the canopy height. These two methods will be tested in chapter 5 in order to
compare the drag approach to the obstacle resolving method.

1.4.2 Second-order statistics

Standard deviation

In statistics, the standard deviation (σ ) is a measure of the degree of the variation to the mean
value of a dataset. It is defined as the arithmetic square root of the variance, which reflects
the degree of dispersion between individuals within the dataset.

The standard deviation of turbulent variable (ϕ) is commonly used for statistical analysis
of turbulence. The definition is as follows:

σϕ =

√√√√ 1
N

N

∑
k=1

(ϕk −ϕk)2 =

√
(ϕ

′
k)

2 (1.13)

where ϕk is the turbulent property of time-step k, ϕk is time-averaged value and ϕ
′
k is the

fluctuation with respect to ϕk.

Velocity co-variances

Velocity co-variances are the mean statistical correlation between the components of the
velocity fluctuations. It is defined as:

u′
iu

′
j =

1
N

N

∑
k=1

(ui −ui)(u j −u j) (1.14)

where ui is the velocity components in the ith direction. The mean velocity ui determined by
time averaging, and u

′
i is the fluctuation of the velocity.

In this study, velocity correlation is calculated using the following method:

u′
iu

′
j = uiu j −ui u j (1.15)
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The Reynolds shear stress (−u′w′) is defined from the mean correlation of the streamwise
and vertical components of the velocity fluctuations.

1.4.3 Friction velocity

Friction velocity is a reference velocity, which is widely used as a scaling parameter in the
surface layer studies. It represents the effect of wind stress (τ) on the surface and varies with
the nature of the roughness (Kaimal and Finnigan 1994). It can be derived from the average
drag force (FD) acting on the cubes through the relation:

uτ =

√
τ

ρ
(1.16)

where τ = FD/A with A is total plan area (ATotal) and FD is the drag force. The contribution
of the viscous force is neglected (Cheng et al. 2007).

In some wind-tunnel experiments, the wind stress (τ) is not directly measured data.
Therefore, assuming a constant flux layer, the friction velocity is estimated using the Reynolds
shear stress data at the canopy top (e.g. Böhm et al. 2013, Blackman et al. 2017). This
scaling velocity is called here u∗ and defined as:

u∗ =
√
−u′w′ (1.17)

1.4.4 Skewness

Skewness (Sk) is a statistical parameter that evaluates the degree of asymmetry of a probability
distribution. The value of the skewness can be a positive, negative or zero. The skewness
for turbulent property ϕ is the third moment of fluctuation normalized using its standard
deviation:

Skϕ = ϕ ′3/(σϕ)
3 (1.18)

The skewness of the velocity is computed to describe the high (or low) speed region,
which links with the nonlinear process that occurs inside the canopy layer. It can provide
insight into momentum transfer events such as sweep and ejection events (Blackman et al.
2017).
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1.4.5 Two-point correlation coefficient

The two-point correlation of velocity is a crucial parameter in turbulent statistical studies,
which states the relationship between the velocity fluctuations at two points in the flow
field. The structure of turbulence and the spectral distribution of turbulent energy can be
obtained through the analysis of two-point correlation. The two-point correlation coefficient
of velocity is defined as:

Ri j(xre f ,yre f ,zre f ,x,y,z) =
u′

i(xre f ,yre f ,zre f )×u′
j(x,y,z)

σui(xre f ,yre f ,zre f )×σu j(x,y,z)
(1.19)

where (xre f ,zre f ) is the coordinate of the reference location, and (x,z) is the coordinate of
the random location.

1.4.6 The power spectral density characteristics

The power spectral density (E) shows the energy distribution with different frequencies
(corresponding to different scales) of the turbulence. It is defined as :

E( f ) =
1

2π

∫
∞

−∞

R(t)e−iωtdt (1.20)

where f is the frequency, t is time, R(t) is the autocorrelation of velocity signal.

Typically, the velocity fluctuations are used to reflect the distribution of turbulent kinetic
energy in different sizes. As an example, Fig. 1.7 shows the temporal frequency spectrum
obtained from the wind-tunnel experiment of Castro et al. (2006). The most of the turbulence
energy occurs at the low-frequency regions. In the range of 0.1 < kz′ < 0.6, the curve has
a slope of approximately −1, while in the range of 0.6 < kz′ < 10, the curve has a slope
of approximately −5/3. This slope implies the presence of an inertial subrange. Inertial
subrange is between the large-scale energy-containing range at which energy is injected and
the small-scale dissipation range at which energy is dissipated. Kolmogorov (Kolmogorov
1941a, 1941b) found that for high Reynolds numbers, the inertial subrange is universal and
uniquely determined by the dissipation rate ε . From dimensional analysis, in the inertial
subrange, the energy spectrum E(k) can be written as:

E(k) = α1ε
2
3 k−

5
3 (1.21)
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where α1 is the Kolmogorov constant, with a value estimated between 0.5 and 0.6. That is
the well known −5/3 power law in Kolmogorov’s theory which characterizes the inertial
subrange.

Figure 1.7 Spectrum of the axial turbulence component (figure extracted from Castro et al.
2006). Note that z′ = z−d and k = 2π f/u, with f is the frequency.

1.5 Previous researches for the urban canopy flow

In general, the urban canopy flow is studied using field measurement, wind-tunnel experiment
or numerical simulations. In the past few decades, a great deal of research has been carried
out by researchers using these approaches to explore the physical mechanisms of the turbulent
flow over urban area. The purpose of this section is to briefly review the principal findings
and conclusions that are helpful to evaluate and improve the numerical model and to analyze
the turbulent characteristics within the urban canopy.

1.5.1 Field measurement

Field measurement means that the measuring devices are located outdoors and the measure-
ment data collected from the survey area. In field measurement, all the scales of turbulence
are obtained, up to the boundary layer scale.
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The investigation of real flows in the urban environment began from the 1990s. Rotach
(1993a, 1993b, 1995) studied the wind flow in the "Urban Climate Program" project of
Switzerland over a W/H=0.83 street canyon. They found an inflection point in the mean
wind profile at z = 1.2h, where h is the mean height of the canopy (Rotach 1995). Later, a
series of measurements were conducted in "Bubble" project of Switzerland (Christen 2005;
Roth et al. 2006; Christen et al. 2007, 2009). They analyzed the flow over and within the
urban canopy, as well as the surface energy balance. Christen (2005) did a lot of work about
the TKE budget within the RSL. He pointed out that in the canopy, shear production is
less significant, and turbulence is dominated by large coherent structures which is highly
intermittent. The majority of TKE is transferred by turbulent and pressure transport from
the roof layer where a large velocity gradient and an inflected wind profile are observed.
The shear production dominates the TKE inside the shear layer. A large amount of TKE
is exported from the shear layer by sweeps into the upper part of the street canyon and by
ejections into the above-roof layer (Christen et al. 2007). As a consequence, the dissipation
rate was found lower than local production. Christen et al. (2007) found that the inflection
is above the top of the canopy between 1h and 1.5h. Davidson et al. (1995) carried out the
first field survey of the flow characteristics around the staggered and aligned array of the
three-dimensional cube in city area. The results of the comparison between the measured
data and the wind tunnel experimental data were good.

In recent decades, a series of field measurement projects have been carried out in urban
area. For example, the "COSMO" project in Japon (Kanda et al. 2007; Inagaki and Kanda
2008); the "URBAN 2000" project (Allwine et al. 2002) and "Joint URBAN 2003" project
(Brown et al. 2004; Klein and Clark 2007) in the United States of America, etc. In particular,
environmental factors were considered in the study, such as Vachon et al. (2002),who
investigated the impact of traffic on the development of flow field in street canopy.

However, only a few measurement points are generally available in real urban areas
to conduct the analysis which cannot provide the complete three-dimensional flow field
(Giometto et al. 2016). In addition, various infrastructures in urban areas may interfere with
the understanding of measurement data. The inhomogeneous flow characteristics in the RSL
raises questions about the use of point measurement. Recently, stochastic estimates are used
to combine the wind tunnel data with the field measurement data (Perret et al. 2016) for the
urban canopy flow studies, providing a direction for the widely use of field measurement
data.
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1.5.2 Wind-tunnel experiment

The wind-tunnel experiments are now a commonly used physical modeling method. In the
field of aerodynamics research, wind tunnels are used to study the effects of air flow through
the ad hoc objects. These tested objects are referred to as the wind-tunnel model and are
instrumented with appropriate sensors to measure the velocity, aerodynamic forces, pressure
distribution, or other aerodynamic-related characteristics. The measurement techniques can
be Hot-Wire Anemometry (HWA), Particle Image Velocimetry (PIV) and Laser Doppler
Velocimetry (LDV).

The wind-tunnel experiments conducted by the laboratory EnFlo and University of
Southampton mainly focus on the flow over cubic array to study the development of turbu-
lence inside the urban boundary layer. They have achieved many important results (Cheng and
Castro 2002; Castro et al. 2006; Cheng et al. 2007; Reynolds and Castro 2008). Cheng and
Castro (2002) performed experiments over different height and arrangement cubic arrays with
a same planning area density λp = 25%. The results demonstrated the three-dimensionality
of the turbulent flow inside the roughness sublayer (RSL). They also found that there is a
greater drag to the flow in staggered array than in aligned array. Castro et al. (2006) studied
the turbulence over staggered cube array under the neutral condition. The results confirmed
that the dominant scale of turbulence inside the RSL is of the same order of magnitude as
the roughness height. The eddy structure over the 3D cubic array is different from that over
2D roughness.The TKE budget results showed that the shear production acts as a principal
energy source above the obstacles, and the turbulent transport is significant inside the RSL.
Reynolds and Castro (2008) used PIV and LDV to measure the flow over staggered cube
array. In the quadrant analysis, they found that sweep motions are dominant and contribute a
large percent to the mean shear stress, whereas ejections are significant outside the RSL. The
results of the two-point correlation analysis also show that the vertical velocity correlation
is less dependent on the increased height, which is different from the streamwise velocity
correlation.

Recently, the experiments performed in the wind tunnel of the laboratory LHEEA (Cen-
trale Nantes) provide new dataset to analyze the turbulent flow and assess numerical simula-
tions within the RSL (Blackman and Perret 2016; Blackman et al. 2017; Herpin et al. 2018).
Blackman and Perret (2016) carried out the wind-tunnel experiment in a boundary layer wind
tunnel. The relationship between the large-scale structures in the flow and the small-scale
structures inside the canopy was explored. In the another study of Blackman et al. (2017),
the energy transfer mechanism is analyzed through the TKE budget analysis, in which the
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dissipation is calculated from a LE-PIV method (Sheng et al. 2000). The results confirmed
that the shear layer induced by the underlying roughness produce and dissipate energy, and
transfer the energy through other TKE budget terms. Herpin et al. (2018) analyzed dynamics
of the flow in a staggered array with a 25% density. The power spectral density inside the
canopy was analyzed using the LDV data. The spectral analysis provides more insight into
the structure of turbulence near walls.

The advantage of the wind tunnel experiment is that as long as the fully developed
turbulence is reached, the complex turbulence structure within the roughness sub-layer
can be realistically simulated without relying on any turbulent closure model (e.g. in
CFD). Additionally, complex urban morphology can be modeled in detail, including plants,
street canyon and 3D urban models etc. Comparing to the field measurement, there is no
limitation in the flow measurement position, and constant flow conditions can be maintained
throughout the whole measurement. These experimental studies deepened the understanding
of turbulent flow characteristics by elucidating the main turbulent processes that occur
within the atmospheric boundary layer and provided a vastly useful dataset for validating the
accuracy of numerical models (see section 1.5.3).

However, restrictions in experimental technique prevent from capturing the three di-
mensional flow field which often limits the analysis to one or two dimension and make
researcher to rebuild missing information based on theoretical assumptions (Castro et al.
2006; Blackman et al. 2017). The assumptions used in the wind-tunnel experiments need
to be carefully verified. Under the current situations, it is necessary to conduct numerical
simulations to get more insight into the turbulent transport processes and verify the relevance
of the assumption used in the analysis of experimental data.

1.5.3 Numerical simulations

Numerical simulation has been widely used in the study of turbulence and related processes
in urban areas. It is expected to provide more insight into the turbulent structures and provide
sufficient evidence to verify the relevancy of the assumptions employed in the experiments.
The requirement for reliable prediction of unsteady flow dynamics has greatly spurred the
development of numerical methods. Castro et al. (2017) pointed out the importance of
unsteadiness of the turbulent flow in dispersion issues. In this section, numerical simulation
studies of the unsteady flow including direct numerical simulation and large-eddy simulation
over urban canopy are reviewed.
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Direct numerical simulation

Direct numerical simulation (DNS) is a numerical method in which the Navier-Stokes
equations are solved without using any turbulence model. This approach requires to resolve
the flow down to the smallest turbulence length and time scale.

In the DNS studies over the 3D urban-like configuration, Yakhot et al. (2006) used the
immersed-boundary method to study the flow characteristics and coherent structure over
one isolated cube in a fully developed turbulent channel with Reynolds number Re = 5610.
The time-averaged data of turbulent mean flow, Reynolds shear stress, and turbulent kinetic
energy are shown. The results confirmed that the vortex formed in front of, behind and on
the both side of the cube generate the instability of the flow. In addition, negative production
was observed in front of the cube where the main horseshoe vortex originates. Coceal et al.
(2006, 2007a, 2007b, 2007c) published a series of papers that simulated turbulence features
on aligned, square, and interlaced cubic arrays. The DNS results were well validated with
the wind-tunnel measurement data from Cheng and Castro (2002) and Castro et al. (2006).
In Coceal et al. (2006), three different types of cubic arrangements (aligned, squared and
staggered) with a 25% packing density were used in the [4h×4h×4h], [4h×4h×6h] and
[8h× 8h× 4h] computational domain with the Reynolds number based on the velocity at
the top of the domain and the cube height is Re = 5000. Periodic boundary conditions
were applied in the horizontal directions, and free-slip condition acted on the top, and
no-slip boundary conditions were imposed in all solid surface. Good agreements were
observed in the mean velocity and two-order statistics in comparison with the wind-tunnel
data from Cheng and Castro (2002). Besides, the mean flow pattern in the staggered array
were more three dimensional than in the alined arrays and squared arrays. The section
drag coefficient is constant with the vertical height in the squared arrays and alined arrays,
while varies significantly in the staggered arrays. Coceal et al. (2007b) performed DNS
study over a staggered cubic array in [16h×12h×8h] computational domain with a 25%
packing density and Re = 5800 to investigate the turbulent structure of the turbulent flow.
The results demonstrated the accuracy of DNS by comparing the mean velocity, turbulence
intensities and spectra with the wind-tunnel experiment data (Cheng and Castro 2002 and
Castro et al. 2006). The dynamic features and organized structures of the unsteady turbulent
flow are analyzed in details. The presence of the low-momentum regions and ejection and
sweep events are associated with hairpin-like vortices. Later, Leonardi and Castro (2010)
performed DNS over staggered arrays of cubes with various density ranging from λp = 4%
to λp = 25% in [8h×6h×8h] and [12h×9h×8h] computational domain with Re = 7000.
The obstacles were represented using immersed boundary method. They examined the drag
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force coefficient difference in the different arrangement to provide a reference for the urban
canopy model which treats the urban canopy as a porous medium modeled in terms of a drag
force distributed in heights. (e.g. Coceal and Belcher 2004).

The resolution in DNS requires a very narrow mesh to solve the smallest dissipative
scales, the size of the mesh decreasing as the Reynolds number increases. Through the above
introduction, we can find that although DNS is considered to be the most accurate numerical
method, unfortunately, in most cases, conducting DNS in the high Reynolds number ABL
flow is still an impossibility.

Large-eddy simulation

As described previous, DNS is computationally expensive and only limited to low Reynolds
number flow applications. Large-eddy simulation (LES) explicitly resolve the large-scale
flow and uses a subgrid-scale (SGS) model to parameterize the effect of the small-scale
motions. It has a good advantage in reproducing accurately the unsteady features of the
turbulent flow, better than the low-order method like Reynolds-averaged Navier-Stokes
(RANS), which often fails to correctly capture the dynamic features of the flow field (Cheng
et al. 2003, Xie and Castro 2006). Castro et al. (2017) demonstrated that LES is a powerful
tool comparing to DNS and wind tunnel data, and pointed out that the careful use of LES can
produce generally excellent agreement with wind tunnel and DNS results.

In the atmospheric boundary layer and canopy studies, LES approach is widely used. It
has been applied to the atmospheric boundary layer for diagnosing and predicting turbulent
flows since the early 1970s (Deardorff 1970, 1972). For urban canopy studies, Kanda (2006)
performed a set of LES simulations over staggered and squared arrangement of cubic arrays
with different densities (from λp = 0.03 to λp = 0.44) and different height. They found
that the drag coefficient was sensitive to the building area density in staggered array, while
insensitive in square array. The turbulent organized structure was analyzed in the study
through the flow visualization and quadrant analysis. Xie and Castro (2006) carried out
LES over staggered cubic arrangements with a 25% packing density in the [4h×4h×4h]
computational domain. The simulations were performed under a range of Reynolds number
from 5000 to 5000000. Good agreement of the mean velocity and turbulent statistics was
observed in comparison with the DNS results (Coceal et al. 2006) and the wind-tunnel
experiments (Cheng and Castro 2002). The result confirmed the weak influence of Reynolds
number on the canopy flow. Later, Xie et al. (2008) performed LES over a random height
roughness array. The mean velocity and turbulent intensities were validated against the
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wind-tunnel data from Cheng and Castro (2002). This study found that the tallest buildings
generate a disproportionate contribution to the surface drag, and the distinct blocks can
significantly influence the canopy flow. Bou-Zeid et al. (2009) performed LES to understand
the effect of the complexity of urban canopy representation on the flow. To close the equation,
a Lagrangian (Meneveau et al. 1996) dynamic scale-dependent SGS model (Bou-Zeid et
al. 2005) is applied. A large negative shear production was found inside the canopy at the
transition between the surrounding area and the neighborhood of interest indicating that
the energy is transferred from the turbulent motions to the mean flow. Kono et al. (2010)
performed LES simulations with a dynamic SGS model over the aligned and staggered array
in a range of packing densities. The results were validated against the wind tunnel data
from Cheng and Castro (2002). They found that the drag coefficient is independent of the
packing densities for the aligned array, but it was very sensitive to the packing density in the
staggered array. Cheng and Porte-Agel (2015) performed LES with a modulated gradient
SGS model (Cheng and Porte-Agel 2013) over staggered and aligned array in different
packing densities. The study found that the displacement height (d) is insensitive to the
canopy arrangement (staggered or aligned) and the roughness length (z0) is larger in the
staggered array than aligned array. Claus et al. (2012) using LES analyzed the effect of a
set of upstream wind directions on staggered cubic array in a [8h×8h×4h] computational
domain. The results demonstrated that the spatially averaged mean velocity in the staggered
array is very dependent on the oncoming flow direction.

Turbulent kinetic energy budgets can provide a detailed turbulent energy information
above and within the canopy. Giometto et al. (2016) performed LES in conjunction with the
immersed boundary layer method on a real urban-like canopy model. The mean velocity data
is in good agreement with the field measurement data. The novelty of this study is to quantify
the impact of the non-measurable terms on TKE budget, and the pressure transport is found
to be significant in the near-wall regions. Tomas et al. (2016) performed LES over squared
array in both stable and neutral conditions to study the stratification effects on the flow
and pollutant dispersion. Good agreements were found in the profiles of mean streamwise
velocity and mean Reynolds stress in comparison to the wind-tunnel data from Castro et al.
(2006). The results confirmed that the subgrid turbulent transport of TKE is negligible in the
flow field, and subgrid dissipation account for 40% of the total dissipation of TKE. However,
so far, no numerical simulation has been used to explore the TKE budget in a staggered array.

There are other works worth mentioning briefly, although they are not the main focus
of current work, such as using LES simulations to study the dispersion issues over urban
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canopy (Boppana et al. 2010; Wong and Liu 2013), and to study the inflow conditions
of the simulation (Xie and Castro 2008; Foti et al. 2017). Recently, Yang et al. (2016)
performed LES within the roughness sublayer of boundary layer flow over rough surfaces.
They demonstrated that exponential mean velocity profiles could describe the mean velocity
within the RSL under a wide range of arrangements. However, this exponential profile has
been doubted by Castro (2017), who examined various datasets and mentioned that Yang’s
conclusions may be accurate when the grid resolution is sparse or the domain contains various
building heights.

Finally, in the description of these urban canopy turbulence study, there are still many
unanswered questions which need to be explored. Some unresolved issues such as using
numerical simulation to analyze the TKE budget will be fully discussed in the later chapters.





Chapter 2

Numerical model and verification

The scope of this chapter is to introduce large-eddy simulation models, including governing
equations, subgrid-scale (SGS) models, and numerical methods. Numerical selections such
as mesh resolution and SGS models are tested in the preliminary simulation. The results
using different SGS models are compared and discussed in regard to literature studies. The
purpose of this section is to select the most appropriate simulation parameters to perform
LES simulation.

2.1 Introduction

Numerical simulation has been widely used in turbulence research in urban areas. As de-
scribed in the chapter 1, DNS is computationally expensive and is therefore limited to low
Reynolds number applications. LES requires less computer resources than DNS and is
considered to be the most beneficial and feasible numerical method for detailed analysis of
unsteady turbulence in the atmospheric boundary layer.

However, the results obtained from the LES simulation depend on parameters such
as mesh resolution, SGS model, and numerical scheme. Choosing the most appropriate
simulation parameters is of utmost importance for properly modeling the turbulent flow. As
far as the SGS model is concerned, the main drawback of the traditional eddy-viscosity SGS
model is that it prescribes a constant model coefficient, which should vary in space and
time. Additionally, these models prevent from simulating instantaneous energy backscatters
through the cutoff length scale, which were evidenced both in the shear layer that develops
at the top of the cube and in the overlying boundary layer (Blackman et al. 2017). The
dynamic procedure proposed by Germano et al. (1991) overcomes this constraint and allows
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the model coefficient to change dynamically, which makes the dynamic SGS model be the
best candidate to operate for the urban environmental simulation.

In this chapter, we first introduce the governing equations of incompressible turbulent
flow, including the continuity equation and the momentum equation, as well as the common
SGS model choices (see section 2.2). Simulation parameters used in OpenFOAM, such as
the flow solver, boundary conditions, and numerical schemes, are then described in section
2.3. The comparison results of the different SGS models and of the different mesh resolution
are discussed in regard to the literature study in Section 2.4. Section 2.5 summarizes the
concluding remarks of the present chapter.

2.2 The LES equations

2.2.1 Filtered Navier-Stokes equations

LES only resolves the large-scale structures in the flow by filtering the Navier-Stokes
equations (see Figure 2.1), and uses a subgrid-scale (SGS) model to simulate the effects of
the unresolved scales on the filtered scales.

Resolved scale 

     (filtered)

Un-resolved scale 

   (subgrid scale)

Figure 2.1 Schematic of spectrum of turbulent kinetic energy and the energy cascade. The
pink line marks the delimiting line between the resolved scale and the subgrid scale.
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The filtered continuity and momentum conservation equations of the incompressible flow
write as:

∂ ũi

∂xi
= 0 (2.1)

∂ ũi

∂ t
+

∂ ũiũ j

∂x j
=− 1

ρ

∂ p̃
∂xi

+
∂

∂x j
(ν

∂ ũi

∂x j
− τi j) (2.2)

where ũi (for i = 1 (ũ), 2 (ṽ), 3 (w̃)) are the filtered velocity components in streamwise, span-
wise and vertical directions, respectively, and p̃ is the filtered pressure. ρ is the density and ν

is the kinematic viscosity. τi j is the subgrid-scale stress tensor defined as : τi j = ũiu j − ũiũ j.

2.2.2 Subgrid-scale modeling

The LES application is sensitive to the choice of the subgrid-scale (SGS) model, especially
in the vicinity of the walls. The proper selection of the SGS model will help to improve the
accuracy and fidelity of the large eddy simulation. There are two main types of SGS models:
one is the traditional eddy-viscosity SGS models such as Smagorinsky model (Smagorinsky
1963) and subgrid kinetic energy model (Deardorff 1980); the other type refers to dynamic
models such as dynamic Smagorinsky model (Germano et al. 1991, Lilly 1992).

Smagorinsky SGS model

The well-known Smagorinsky SGS model is initially proposed in 1963 by Joseph Smagorin-
sky (Smagorinsky 1963). It is an eddy-viscosity SGS model, and relies on the viscous
analogy and the mixing length assumptions. The deviatoric (dev) part of the SGS stress
tensor is defined as:

dev(τi j) = τi j −
1
3

τkkδi j =−2νsgs S̃i j (2.3)

and the SGS kinetic viscosity νsgs is modeled as:

νsgs = (CS∆̃)2|S̃i j| (2.4)

where CS is the Smagorinsky model coefficient, which is usually specified to be a constant

value according to the flow type. ∆̃ = 3
√

∆x∆y∆z is the mesh-filter width. |S̃i j|=
√

2S̃i jS̃i j
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with the resolved strain rate tensor S̃i j defined as:

S̃i j =
1
2

(
∂ ũi

∂x j
+

∂ ũ j

∂xi

)
(2.5)

The Smagorinsky SGS model has been widely used in atmospheric flow field research
(Xie et al. 2008; Boppana et al. 2010). The Smagorinsky SGS model is based on the
assumption of a local equilibrium of turbulence at small scales, meaning the balance between
shear production and dissipation (Smagorinsky 1963, Sullivan et al. 1994). The Smagorinsky
model coefficient CS is prescribed to be a constant value. This prevents from the calculation
of backscattering energy and results in an overestimated effect of model viscosity near walls.
Deardorff (1970) used CS = 0.1 in the turbulent channel flow after considering that the value
of CS = 0.23 (Lilly 1966) causes excessive damping of large-scale fluctuations. Mason
and Callen (1986) found that CS = 0.2 gave good results when the mesh resolution was
sufficiently fine. In OpenFOAM, CS = 0.167 is the standard value which will be used in this
study.

Turbulent kinetic energy SGS model

Turbulent kinetic energy (TKE) SGS model (Deardorff 1980) is also an eddy-viscosity model
in which the subgrid-scale kinetic energy (ksgs) is obtained by solving a transport equation
(equation 2.9).

The subgrid-scale stress tensor τi j is approximated as:

τi j =
2
3

ksgsδi j −2νsgsS̃i j (2.6)

where the SGS kinetic energy ksgs is:

ksgs =
1
2

τkk =
1
2
(ũkuk − ũkũk) (2.7)

and the SGS eddy viscosity νsgs is:

νsgs =Ck
√

ksgs∆ (2.8)

The SGS kinetic energy ksgs transport equation writes:

∂ksgs

∂ t
+

∂ (ũ jksgs)

∂x j
= 2νsgsS̃i j

∂ ũi

∂x j
+

∂

∂x j
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(ν +νsgs)
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]
−Cε

k3/2
sgs

∆
(2.9)
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where ν is the kinetic viscosity, Ck and Cε are model coefficients. Schumann (1975) used
Ck = 0.094 and Cε = 1.02; Menon et al. (1996) used Ck = 0.05 and Cε = 1.0. In OpenFOAM,
the default values are those used in Yoshizawa (1986): Ck = 0.094 and Cε = 1.048 .

Implementation of a dynamic Smagorinsky SGS model

The dynamic Smagorinsky SGS model has been implemented in OpenFOAM in the present
work in order to improve the accuracy of the SGS model near walls and to capture the
backscattering kinetic energy in LES simulation.

Germano et al. (1991) introduced a dynamic procedure for evaluating subgrid-scale
model coefficients using information contained in the resolved velocity field. The aim is to
adapt the coefficient value automatically in both space and time (Zang et al. 1993, Calmet
and Magnaudet 1997, Giometto et al. 2016). It has two main advantages compared to the
traditional eddy-viscosity SGS model. (a) Without using damping function or intermittency
function, the model coefficient is neither a priori nor a fixed-constant value and varies
according to the simulation process locally; (b) The calculation of the model coefficient
could produce negative values, which eliminates the drawback of the conventional eddy-
viscosity SGS model that prevent energy backscatter from small scale to resolved scale
(Piomelli et al. 1991, Yakhot et al. 2006, He et al. 2017).

In the dynamic approach a test-filter ̂̃G = Ĝ G̃ is defined, the characteristic width of which

is ̂̃
∆ = a× ∆̃. The momentum equation (2.2) filtered with the filter Ĝ involves a new SGS

stress tensor Ti j = ̂̃uiu j − ̂̃ui ̂̃u j which is unknown as well as τi j. In the dynamic Smagorinsky
model the deviatoric part of the SGS stress tensor at grid- and test-filter scales are modeled
in a similar way as in equations (2.3) and (2.4) assuming that the model coefficient C is
independent of the filter scale:

τi j −
1
3

τkkδi j =−2C∆̃
2|S̃i j| S̃i j (2.10)

Ti j −
1
3

Tkkδi j =−2Ĉ̃
∆

2
|̂̃Si j|

̂̃Si j (2.11)

Germano (1991)’s algebraic identify defines the tensor Li j as:

Li j = Ti j − τ̂i j = ̂̃uiũ j − ̂̃ui ̂̃u j (2.12)

which can be calculated explicitly by applying the filter Ĝ to the resolved velocity field.
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From equations (2.10), (2.11) and (2.12), one can write:

Li j −
1
3
Lkkδi j =CMi j (2.13)

where Mi j =−2 ∆̃2(a2 |̂̃Si j|
̂̃Si j − |̂S̃i j|S̃i j) with a = 2 in the present study.

As suggested by Lilly (1992), the dynamic coefficient C is computed at each time step
and each computational cell using least-squares method, through the relation:

C =
Li j Mi j

Mi j Mi j
(2.14)

Figure 2.2 Instantaneous view of the C coefficient of the dynamic Smagorinsky model in a
vertical symmetry plane.

An appropriate SGS model helps improving the accuracy of numerical simulation, es-
pecially when analyzing the flow close to the solid boundary. The dynamic approach has
been successfully used for simple flows as plane channel flows or recirculating flows (see
e.g. Calmet and Magnaudet 1997 or Zang et al. 1993). There is no doubt that the advantage
of the dynamic Smagorinsky model lies in the ability to consider the local change of model
coefficient (C) (see Fig. 2.2). However, the dynamic procedure may locally induce large
negative values of the model coefficient, giving rise to the numerical instabilities. In order to
avoid this problem, the total viscosity (ν +νsgs) is forced to be locally a non-negative value
(the code of this procedure is given in Appendix B).
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2.3 Numerical method details

In this work, LES simulations are carried out using OpenFOAM© 2.4.0 (Open source Field
Operation And Manipulation) [72], an open-source development environment based the C++
library aiming for solving various complex physical problems using finite volume method
including fluid mechanics, thermodynamics, heat and mass transfer, etc. (Weller et al. 1998).
The code can be parallelized using an MPI interprocessor communication protocol. The
great benefit of OpenFOAM is that it is released under the terms of the GNU general public
license (GPL) and the object-oriented design makes it easy for users to freely redistribute
and/or modify their own models and solvers for their specific purposes. Besides, OpenFOAM
provides a variety of applications and simulation examples to help users better understand
the principles and usage scenarios of the program.

2.3.1 Finite volume method

The finite volume method (FVM) is a method of representing and evaluating partial differen-
tial equations (PDEs) in the form of algebraic equations (Toro 2009). The filtered continuity
equation and momentum equations of the incompressible flow (Eq. 2.1 and 2.2) write in
finite volume method: ∫ ∫ ∫

V

∂ ũi

∂xi
dV = 0 (2.15)

∂
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− 1

ρ
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∂xi

dV +ν

∫ ∫ ∫
V

∆ ũi dV −
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V

∂τi j

∂x j
dV

(2.16)

The Gaussian divergence theorem is used to convert the volume integral of the divergence
terms into a surface integral. The basic idea is to interpolate the volume center values to the
values at face center, and then calculate the sum of these face center values. For example,
in Figure 2.3 (in 2D for sake of clarity), the domain is divided into a finite number of small
control volume (CV). The divergence term of variable ϕ in the computational nodes (such as
at cell center P of the control volume) can be written as equation (2.17).

∫ ∫ ∫
V

∇ ·ϕ dV =
∫ ∫

S
ϕ ·−→n dS = ∑

f
S f ·ϕ f ·−→n f

= Sw ·ϕw ·−→nw +Se ·ϕe ·−→ne +Sn ·ϕn ·−→nn +Ss ·ϕs ·−→ns

(2.17)
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where V represents the volume of the cell and S represents the surface of cell. ϕ f is cell face
center value, −→n f is the unit vector orthogonal to the surface directed outwards. Letters W, E,
N and S are neighborhood cell center around control volume.

a b

Figure 2.3 2D Schematic plot of volume surrounding the node point on a mesh in finite
volume method.

2.3.2 Numerical schemes

Spatial schemes

In OpenFOAM, the user has several spatial interpolation scheme options (see Table 2.1).
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Table 2.1 Interpolation schemes from OpenFOAM user guide (2018)

Interpolation schemes Numerical behaviour

linear Second order, unbounded
skewLinear Second order, (more) unbounded, skewness correction
cubicCorrected Fourth order, unbounded
upwind First order, bounded
linearUpwind First/second order, bounded
QUICK First/second order, bounded

In the current work, interpolation involved in the gradient terms, laplacian terms and
divergence terms are performed using the linear interpolation scheme (linear entry in Table
2.1). Linear interpolation is center difference and the weight calculated to each adjacent
center is inversely proportional to its distance to the face. For example, see Figure 2.3,
the face center value ϕw can be calculated by interpolating the volume center value of two
adjacent elements as:

ϕw =
a

a+b
(ϕP)+

b
a+b

(ϕW )
(2.18)

Time schemes

Time discretization is typically performed through discretizing the time integral equation. In
OpenFOAM, the discretisation schemes for time can be selected from choices listed in Table
2.2.

In this work, the second order implicit backward scheme named by the keyword backward
is used. For the quantity ϕ , the time derivative can be evaluated by:

∂ϕ

∂ t
(t) =

3 ϕn −4 ϕn−1 +2 ϕn−2

2 ∆ t
(2.19)

where ∆t is the time step for the simulation. The superscripts denote time levels, ϕn =

ϕ(t), ϕn−1 = ϕ(t −∆t) and ϕn−2 = ϕ(t −2×∆t). In each time-step, the integration takes
the value of 2 previous steps to obtain the solution.
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Table 2.2 Time schemes from OpenFOAM user guide (2018)

Time schemes Numerical behaviour

steadyState sets time derivatives to zero.
Euler transient, first order implicit, bounded.
backward transient, second order implicit, potentially unbounded.
CrankNicolson transient, second order implicit, bounded.
localEuler pseudo transient for accelerating a solution to steady-state

using local-time stepping; first order implicit.

2.3.3 OpenFOAM flow solver

The flow solver for the present LES study is modified from the PimpleFOAM solver. It is a
combination of the PISO (Pressure Implicit with Splitting of Operator) algorithm (Issa 1986)
and SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm (Patankar
and Spalding 1972). It is well known that the time step required for the PISO algorithm to
solve fast changing flow needs to be very small to keep the stability criterion of Courant
number (Co) < 1, otherwise, the simulation will blow up. But the pimpleFOAM solver can
speed up the simulation by using a larger time step and keep achieve good convergence. This
is because SIMPLE (steady-state) processing is used to find the steady-state solution for each
time step, especially when the nature of the solution is unstable. The code and flow chart of
the PimpleFOAM algorithm is provided in Appendix A.

PimpleFOAM algorithm

The sequence of events can be summarized as follows in order to compute the solution at
tn+1 = tn +∆t

1. Use the initial guess solution at time tn for pressure, velocity and mass flow rate field
( p̃(n),ũ(n) and ṁ(n), respectively).

2. Construct momentum equation:
∂ ũi
∂ t +

∂ ũiũ j
∂x j

− ∂

∂x j
(ν ∂ ũi

∂x j
− τi j) =− 1

ρ

∂ p̃
∂xi

3. Solve implicitly the momentum equation to obtain a new velocity ũ∗

4. Compute the mass fluxes at faces ṁ(∗)
f using the Rhie-Chow interpolation (Rhie and

Chow 1983).



2.3 Numerical method details 41

5. Update the pressure and velocity fields at the cell centroids and the mass flow rate at
the cell faces p̃(∗), ũ∗∗ and ṁ(∗∗)

f to obtain continuity-satisfying fields.

6. Using the latest available velocity and pressure field, calculate the coefficients of the
momentum equation and solve it explicitly.

7. Construct the pressure matrix using the momentum matrix with the updated velocities
and obtain a new pressure correction field p̃

′′
.

8. Update the pressure, velocity, and mass flow rate field.

9. Judge whether the number of corrector steps exceeded (nCorrectors)

10. Judge whether the solution converged

11. Set the solution at time tn+1 to be equal to the converged solution and set the current
time tn+1 to be tn.

12. Advance to the next time step.

13. Go back to step 1 and repeat until the last time step is reached.

Mean velocity driving the flow

In the present simulation, the flow is driven by balancing the flow speed to the desired
velocity Ubar through adjusting the pressure gradient at each time step. That is to say, the
predicted velocity ũ∗ during the simulation is adjusted by comparing to the desired velocity
Ubar, and then one obtain the new velocity field ũ∗∗.

The sequence of events is summarized as follows:

1. Set desired mean velocity Ubar.

2. Solve implicitly the momentum equation to obtain the velocity field ũ∗ and read the
initial pressure gradient (∇ p̃(n)).

3. Calculate the pressure gradient increment (∇ p̃′) by adjusting the volume averaged
velocity to the desired value Ubar.

4. Then, add the pressure gradient source to the next loop ∇p̃∗ = ∇p̃(n)+∇ p̃′.

5. Update the velocity field ũ∗∗.
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2.3.4 Boundary conditions

Boundary conditions setting is a crucial step in numerical simulation. The role of boundary
conditions in modeling is not only to construct the geometric objects, but also to affect the
solutions associated with boundary conditions. In this section, the details about the boundary
conditions will be described.

Periodic boundary conditions

Periodic boundary conditions (PBCs), also known as cyclic boundary conditions, mean that
all variables are periodic at the boundaries of the computational domain. That is to say, the
variable ϕ at the inlet and outlet has the equivalent value as equation (2.20).

ϕ(outlet) = ϕ(inlet) (2.20)

Although the computational power of computers are rapidly growing, it is still unrealistic
to perform numerical simulations in very large computational domains. Using a finite field
domain to reflect an infinite canopy can only be achieved by applying periodic boundary
conditions. In this work, the periodic boundary conditions are imposed in span-wise and
streamwise directions to simulate an infinite cube array.

No-slip boundary conditions

In fluid dynamics, the no-slip condition for viscous fluids assumes that the velocity of the
fluid at the solid boundary is zero, which can also be an example of the Dirichlet boundary
condition. A schematic plot of the no-slip boundary condition is shown in Figure 2.4.

In this work, the no-slip conditions are prescribed at the floor and on all obstacle surfaces
for velocity.
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Zero velocity at surface

Surface

Relative velocity 

Figure 2.4 Schematic plot of the no-slip condition.

Free-slip boundary conditions

No friction between the fluid

and wall

Surface

Relative velocity 

Figure 2.5 Schematic plot of the free-slip condition.

Free-slip boundary conditions in fluid dynamics assume that there is no friction between
the fluid and the solid boundary.A schematic diagram of the free-slip boundary condition is
shown in 2.5. Besides, free-slip condition is set at the top boundary of the domain.

In the present simulation, the free-slip condition is set for the boundary top where the
fluid is not affected by the friction of the ground.
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Zero gradient boundary conditions

A zero-gradient boundary condition is Neumann boundary condition, which prescribes the
gradient of a quantity on a boundary to zero (see equation 2.21):

∂

∂
−→n

ϕ = 0 (2.21)

In the present simulation, the pressure is set to zero gradient boundary conditions at the
floor and on all obstacle surfaces.

2.4 Preliminary simulation

2.4.1 Computational domain

Figure 2.6 shows the computational domain of the preliminary simulations with length (L)
× width (W) × height (H) = [4h× 4h× 4h], where h = 0.02[m] is the cube height. The
urban canopy is represented by a staggered array of cubic obstacles with constant height
and packing density λp = 25%. The size of the computational domain has been chosen in
reference to Coceal et al. (2006) and Xie and Castro. (2006), who performed DNS and LES
separately in the same domain size and obtained a good agreement of the turbulent statistics
with the wind-tunnel experiment data from Cheng and Castro (2002) and Castro et al. (2006).
Therefore, this computational domain size is considered in the preliminary simulation for the
selection of LES parameters.
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Figure 2.6 Schematic 3D view of the computational domain [4h×4h×4h] occupied by the
staggered cube array in the preliminary simulations, where h is the height of cubes.
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Figure 2.7 Schematic plan view of the computational domain in staggered cube arrays.
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2.4.2 Choice of the SGS model

Since LES only resolves the large-scale motions of the flow and the small-scale motions are
modeled by an SGS model, it is necessary to choose the most suitable SGS model to perform
the large eddy simulation. In this section, preliminary simulations are performed to evaluate
three SGS models: Smagorinsky model, TKE SGS model and dynamic Smagorinsky model.
Obstacle-resolved method is employed to simulate the staggered cubic arrays. The mesh
resolution is ∆ = h/32 for all cases (see section 2.4.3). The simulation is performed with a
time step of 0.002T over a total duration 400T , including an initial duration of 200T , and a
further duration of 200T used for the high-order statistics, where T = h/uτ can be interpreted
as the eddy turnover time for the largest eddies shed by the cube (Coceal et al. 2006). The
four locations (P0-P3) in Fig. 2.7 will be used to compare the mean flow and high-order
statistics with the literature data. More details of each simulation are listed in Table 2.3.

Table 2.3 Domain parameters information for SGS model comparison

SGS type Array type λp Lx ×Ly ×Lz h [m] uτ [m/s] Reτ mesh

TKE SGS Staggered 0.25 4h×4h×4h 0.02 0.357 452 ∆ = h/32
Smagorinsky Staggered 0.25 4h×4h×4h 0.02 0.384 486 ∆ = h/32
DS* Staggered 0.25 4h×4h×4h 0.02 0.36 456 ∆ = h/32

*Dynamic Smagoinsky is noted as DS

Time-averaged streamwise velocity

Figure 2.8 presents the mean streamwise velocity normalized by the friction velocity u∗
at positions P0-P3, compared with DNS data from Coceal et al. (2007b) and wind-tunnel
measurement data from Cheng and Castro (2002). The friction velocity u∗ is calculated by
using the constant Reynolds shear stress just above the crest of the canopy. The comparison
of the profiles show that the LES results are in good agreement with the literature data, which
indicates that the present LES model gives a reliable result for the urban canopy study. It is
found little difference between the velocity from various SGS models, even if the data from
dynamic Smagorinsky model is closer to DNS data near the ground (Figure 2.8 (a)).
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P1

P2

P3

P0

Figure 2.8 Vertical profiles of mean streamwise velocity at locations P1 (a) and P2 (b) and
P3 (c) and P0 (d).

Standard deviation of velocity

Figure 2.9 presents the comparisons of the standard deviation of velocity normalized by the
friction velocity u∗ at two positions P1 (a,c) and P2 (b,d). Figure 2.9 (a) shows that all the
numerical simulation values underestimate the measured standard deviation of streamwise
velocity σu within the canopy, but the dynamic Smagorinsky SGS model results are in better
agreement with DNS than the other non-dynamic SGS models. The differences between
the SGS models at P2 (Figure 2.9 (b)) are not very clear, but agreement between DNS and
LES data is very good from 0.1 < z/h < 0.3. These similar performances can also be seen
in standard deviation of vertical velocity component σw: the dynamic Smagorinsky model
provides the closest results to the measured data in Figure 2.9 (c). Figure 2.9 (d)) shows that
the maximum difference of σw between LES and wind-tunnel data is up to about 20 % at the
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height of z/h = 0.2, but LES using the dynamic Smagorinsky model gives a good agreement
with the DNS data from the ground up to the top of the canopy.

P1

P2

P1

P2

Figure 2.9 Vertical profiles of velocity standard deviation behind a cube at P1 (a, c) and in
front of a cube at P2 (b, d).

Reynolds shear stress

Figures 2.10 (a, b) present the Reynolds shear stress (−u′w′) profiles normalized by the
friction velocity at two positions P1 (a) and P2 (b), using data from LES, DNS and mea-
surements. The results from LES are fitting very well with the DNS data, especially in the
wake of the cubes (Figures 2.10 (a)). But it underestimates the measurement values at the
top of canopy. Figure 2.10 (b) shows that there is a peak in DNS at the height of z = 0.1h
just above the ground surface, which is overestimated by the LES data. Among these SGS
models, dynamic SGS model gives the best simulation value in comparison with the DNS
data.
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P1

P2

Figure 2.10 Vertical profiles of Reynolds shear stress behind a cube at P1 (a) and in front of a
cube at P2 (b).

Conclusion

A big uncertainty lies in the application of LES is the SGS model, the lack of the accuracy
in simulating the near-surface flow behaviour by SGS model have been shown in the work
of Xie and Castro (2006). Alam et al. (2018) mentioned that there are few available CFD
technology that are reliable for the prediction of the near-surface turbulence in the urban
roughness sublayer. The advantage of the present dynamic Smagorinsky SGS model is to
consider the local variations of the model coefficient, as well as allow backscatter effect.
Based on the comparison of mean flow and second-order statistics, we can conclude that the
dynamic Smagorinsky model gives the best simulated results among the SGS models tested
here in comparison with the literature data. Therefore, the present dynamic Smagorinsky SGS
model will be used in large-eddy simulations to analyze and study the flow characteristics
within the urban canopy (Chapter 4).

2.4.3 Mesh generation and choice of the resolution

Basic mesh generation

The mesh used here is generated by OpenFOAM’s meshing tool: blockMesh and Snappy-
HexMesh. These tools generate hexahedral mesh cells.

Figure 2.11 shows an example of the mesh generated in OpenFOAM, where the blank
square area is occupied by the cube. In the horizontal directions a uniform mesh h/16 is
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used. In the vertical direction, the mesh has a uniform resolution (h/16) from the ground up
to z = 1.5h, and is stretched in the vertical direction. The maximum mesh expansion ratio
reaches 4 at top of the simulation domain.

x / h

z / h

Figure 2.11 View of the mesh generated by the OpenFOAM tools: blockMesh and Snappy-
HexMesh.

Sensibility of the mesh

This section aims to compare the mean velocity in three mesh resolutions: ∆ = h/16,
∆ = h/32 and ∆ = h/64. The mesh settings gives about 0.16 million cells for the ∆ = h/16
simulation, 0.98 million cells for the ∆ = h/32 simulation and 9.50 million cells for the
∆ = h/64 simulation. The sensitivity of the time-averaged streamwise velocity to the mesh
resolution at locations P0-P4 is shown in Figure 2.12. The computed velocities are almost
identical at mesh resolution of ∆ = h/32 and ∆ = h/64, except for the lower part slightly
above the ground. The minimum mesh resolution ∆= h/16 gives a smaller velocity compared
to other mesh resolutions near the ground (Figure 2.12 (a)) and in the middle of the canopy
(Figure 2.12 (c)).
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P1

P2

P3

P0

Figure 2.12 Comparison of the time-averaged streamwise velocity, normalized by the friction
velocity (uτ ) at locations P1 (a) and P2 (b) and P3 (c) and P0 (d) for the three mesh resolutions.
White circles: ∆ = h/64. Blue dashed line: ∆ = h/16. Red solid line: ∆ = h/32.

Coceal et al. (2006) have confirmed that simulations over cubic geometry are generally
well resolved with a ∆ = h/32 mesh compared to a ∆ = h/64 mesh. Xie and Castro (2006)
also pointed out that a LES with a ∆ = h/32 mesh can successfully captured the peak of
σw around the top of cube. Coceal et al. (2007b) performed a DNS with ∆ = h/32 mesh
in a [16h×12h×8h] computational domain and got good agreements in comparison with
wind-tunnel data from Cheng and Castro (2002). Therefore, the mesh resolution of ∆ = h/32
is applied for the present simulation to resolve the flow variation that develops within the
roughness sublayer.

2.4.4 Refined mesh around the cubes

For high Reynolds number flow, an inertial sublayer exists in the regions z+ > 30, where the
mean velocity over a smooth wall is logarithmic (see equation 2.22):
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U+ =
1
κ

ln(z+) (2.22)

Closer to the wall, the viscous sublayer is the region where z+ < 5, and the mean velocity
has the following relation:

U+ = z+ (2.23)

Here, U+ is the dimensionless velocity (i.e. the streamwise velocity u parallel to the solid
surface divided by the friction velocity uτ , U+ = u/uτ ). κ is the Von Kármán constant. z+ is
the distance to the wall made dimensionless using the frictional velocity uτ and the kinematic
viscosity coefficient ν , z+ = z×uτ/ν .

In the current preliminary study, the shortage induced by the mesh resolution ∆ = h/32
have been pointed out (Figure 2.13). Using the present mesh resolution (∆ = h/32), the
minimum value of z+ is approximately 5, which means that the size of the first layer of cells
is larger than the width of the viscous sublayer, so that, there are no sufficient cells above the
top of the cube to resolve the flow variation inside the viscous sublayer. Usually, as no wall
function is used here, at least 3 points have to be in the range z+ < 5 to correctly resolve the
viscous sublayer. Accurately simulating the flow characteristics within the near-wall region
is a requirement for the wall-bounded turbulence simulation. Tomas et al. (2016) used a
minimal vertical mesh spacing of ∆ = h/100 at the top of blocks, aiming to resolve the flow
features inside the viscous sublayer.
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P0

Figure 2.13 The logarithmic profile for the mean velocity above the cube, before refining the
mesh around the cube (White circle) and after refining the mesh around the cube (Red point),
U+ = z+ is in Black line.

x / h

z / h

Figure 2.14 Plan view of the refined mesh around the cubes.

Therefore, to accurately deal with the turbulent flow inside the near-wall region, a refined
mesh needs to be applied. However, it should be noted that as the mesh is refined, the
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number of cells will increase greatly and the computational cost will increase accordingly.
Considering the computational cost, the vertical mesh spacing of ∆ = h/128 is chosen on
the first two mesh layers above the top of the cube, and ∆ = h/64 mesh acted on the other
near-wall regions as shown in Figure 2.14. The reason of applying a finer mesh on top of the
cube is due to the larger velocity gradient and stronger shear stress in the shear layer lying
above the cube. After refining the mesh in near-wall regions, the velocity profile above the
cube is clearly modified well above the viscous sublayer (see Figure 2.13). Now, values of
z+ below 5 have three points and follow the linear law (equation 2.23). It indicates that the
present ∆ = h/128 mesh truly help to capture the viscous sublayer flow.

2.5 Concluding remark

In this chapter, we first introduced the LES equations, followed by three commonly used
SGS models. Then, the numerical method of the simulation such as finite volume meshed,
numerical schemes, flow solver and boundary conditions are described.

To choose the most appropriate simulation parameters, preliminary simulations were
performed. The turbulent statistics using these SGS models, including time-averaged stream-
wise velocity, Reynolds shear stress, and standard deviation of the velocity were compared to
the literature data and the differences analyzed. The comparison showed that the dynamic
Smagorinsky SGS model provides the closest results to the literature data, especially in the
canopy. This demonstrated that the dynamic Smagorinsky model can significantly improve
the prediction results of numerical simulations.

The meshing generation method in OpenFOAM and the sensitivity to the mesh resolution
of the mesh are discussed in this chapter. The purpose is to select the most appropriate mesh
resolution which can use less computer resource and well resolve the flow characteristics
within the viscous sublayer. After analysis, the vertical mesh spacing of ∆ = h/128 is chosen
on the first two mesh layers above the top of the cube, and ∆ = h/64 mesh acted on the other
near-wall regions.
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Figure 2.15 The contour plot of the two-point correlation of streamwise velocity Ruu, where
the reference position is in the wake of the cube at a height of 1.5h.

Figure 2.15 depicts a contour plot of the two-point correlation of streamwise velocity
(section 1.4.5), where the reference position is in the wake of the cube (P1) at the height of
1.5h. It clearly shows that the large-scale turbulent structure above the cube is blocked by
the finite size of the computational domain, although applying periodic boundary conditions
here. This figure shows that a larger computational domain is needed to provide complete
turbulence structure information. In reference to Coceal et al. (2007b), the computational
domain [16h×12h×8h] is chosen in the next chapter. The statistics will be validated against
the literature data, and the 3D flow characteristics will be revealed in the analysis.





Chapter 3

Validation and discussion of LES model
for simulating urban canopy flow

3.1 Introduction

The first purpose of this chapter is to evaluate the performance of present LES model. The
second purpose is to describe the 3D features of the mean flow. To achieve these objectives,
mean flow and second-order statistics are validated against the wind-tunnel experimental data
and DNS data from the literature. The velocity skewness and the energy spectrum are given
to explain the transport and the distribution of turbulent kinetic energy. Finally, a detailed
analysis of the 3D structure of the mean flow is performed by flow visualization technique of
the streamline, Q-criterion and vorticity analysis.

3.2 Numerical simulation setup

3.2.1 Simulation domain

Figure 3.1 shows the computational domain of the present simulation with dimension [16h×
12h×8h] in streamwise (x), span-wise (y) and vertical (z) directions, respectively. The size
of the computational domain has been chosen in reference to Coceal et al. (2007b) who
successfully performed DNS of the flow over the urban-like canopy. The floor is covered
by staggered cubes array of uniform height (h) and packing density λp = 25%. The four
locations (P0-P3) will be used to compare the mean flow and high-order statistics with
the literature. Besides, free-slip condition is set at the top boundary of the domain, and
no-slip conditions are prescribed at the floor and on all obstacle surfaces. Periodic boundary
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conditions are imposed in span-wise and streamwise directions to simulate an infinite array.
The flow is driven by keeping a constant flow rate velocity Ubar.

x�
y�

z�

P0� P1�

P2�P3�

8h�

Figure 3.1 Perspective view of the computational domain, where h is the cube height.

3.2.2 Simulation grid set-up

Along with the size of the computational domain, the mesh size is another important parameter
since it determines the size of the resolved eddies and the ability to account for large velocity
gradients that occur near the walls. Comparing their numerical results obtained with a grid
spacing ∆ = h/32 and ∆ = h/64, Coceal et al. (2006) concluded that simulations over cubic
geometry are generally well resolved with ∆ = h/32. Xie and Castro (2006) also pointed
out that a LES using ∆ = h/32 was able to capture the peak of vertical velocity fluctuations
near the top of the canopy. In their DNS with ∆ = h/32 Coceal et al. (2007b) also obtained
results in good agreement with wind-tunnel data (Cheng and Castro 2002). However, our
own sensitivity analysis (see Section 2.4.3) showed that a grid spacing ∆ = h/32 fails to
resolve the flow gradients that occur within the viscous sublayer. The accurate description of
near-wall region requires refined mesh as also suggested by Tomas et al. (2016) who used a
vertical grid spacing of ∆ = h/100 at the top of the obstacles. Hence, in the present study,
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a regular grid ∆ = h/32 is first selected from the floor up to z/h = 1.5 and then gradually
expanded in the vertical direction throughout the rest of computational domain. Additionally,
to accurately deal with the flow in the near-wall regions, a vertical grid spacing of ∆ = h/128
is applied at the first two mesh layers above the top of cubes while a grid spacing ∆ = h/64
is applied on the other near-wall regions (see Fig. 3.2). All of these mesh settings give about
28 million cells for the present simulation.
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Figure 3.2 Plan view of the refined mesh around the cubes in the present simulation.

3.2.3 Simulation running time setting

The simulation is performed with a time step of 0.00076T over a total duration 500T where
T = h/uτ can be interpreted as the eddy turnover time for the largest eddies shed by the cube
(Coceal et al. 2006). After a first period of 300T , which is longer than the duration reported
in previous studies (Coceal et al. 2006), the flow has reached a statistically steady state.
The simulation is further continued during 200T in order to compute high-order statistics
and turbulent kinetic energy budget. There is no standard rule for selecting the time over
which the statistics have to be carried out. However, Coceal et al. (2006) observed that the
dispersive stress was overestimated when the time used for statistics was only 50T and finally
used 400T for the statistics collection. Xie and Castro (2006) argued that 80T is enough for
statistics gathering and even observed that the variation of the statistical data throughout the
roughness sublayer was usually small after averaging duration longer than 20T . Coceal et al.
(2007b and 2007c) chose 100T for each part of their simulation in the same computational
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domain as in the present work. In recent studies, Tomas et al. (2016) and Castro et al. (2017)
used 800T and 710T for the statistics collection, respectively. However, in the present study
the statistics obtained over a duration of 200T are converged at least up to the third order
moments (see Section 3.3.3).

3.2.4 Simulation parameters

The value of the Reynolds number Re based on the velocity at the top of the domain and the
domain’s height (8h) is about 50000, and the friction Reynolds number based on the friction
velocity uτ (section 1.4.3) and h is Reτ = 481. Simulation details are summarized in Table
3.1.

Table 3.1 Summary of parameters for urban-like arrays simulation

Array type λp Lx ×Ly ×Lz h uτ Reτ Re Ubar

Staggered 0.25 16h×12h×8h 0.02 [m] 0.38 [m/s] 481 50000 3.5 [m/s]

3.3 Assessment of numerical approach

In order to evaluate the quality of our LES results, the mean vertical profiles of the longitudinal
velocity and of the Reynolds shear stress are examined at four locations P0, P1, P2 and P3
indicated in Fig. 3.1. These locations are extracted from the simulation to be compared to
various experimental and numerical literature data.

The experimental work of Castro et al. (2006) is used for comparison and enriched by
recent experimental datasets from the atmospheric wind tunnel of LHEEA (Nantes, France):
the Laser Doppler Velocimetry (LDV) dataset from Herpin et al. (2018) and two datasets
using Particle Image Velocimetry (PIV) by Blackman and Perret (2016) and by Blackman et
al. (2017). Note that in order to be directly compared with numerical results, PIV datasets
have two modifications compared to the one reported in the mentioned papers: first vertical
profiles are here extracted at points P1, P2 and P3 without spatial averaging and, second,
experimental data are here normalized by the friction velocity obtained from drag force
measurements (see Section 1.4.3) as in Herpin et al. (2018), instead of from the constant
shear layer as used in the original articles. Results are also compared to the direct numerical
simulations (DNS) of Coceal et al. (2007b).
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In the following, the time averaging of the resolved fields is denoted by an overbar (..).
The fluctuation with respect to this average is denoted by a prime symbol so that the resolved
velocity component can be decomposed as ui = ui +u

′
i. The index i take the value 1, 2, or 3

referring to the streamwise, spanwise and vertical components, respectively.

3.3.1 Mean stream-wise velocity

Figure 3.3 shows vertical profiles of the mean streamwise velocity component normalized
by the friction velocity (uτ ) at four locations around a cube. LES results (in blue lines) are
in good agreement with DNS data from Coceal et al. (2007b) and from the wind-tunnel
measurements of Castro et al. (2006) at the four locations presented. This observation is
equally valid inside the canopy and up to z/h = 4.

P1

P2

P3

P0

Figure 3.3 Vertical profiles of mean streamwise velocity at locations P1 (a), P2 (b), P3 (c),
P0 (d) indicated in figure. 3.1. Blue solid line: LES computations. Red dashed line: DNS
data from Coceal et al. (2007b). Circles: wind-tunnel data from Castro et al. (2006). Squares:
wind-tunnel data from Herpin et al. (2018). Stars: PIV data from Blackman et al. (2017)
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Inside the canopy and in the vicinity of the cubes (z/h ≤ 1.25) results are also in good
agreement with wind-tunnel experiments performed by Herpin et al. (2018) using LDV and
by Blackman et al. (2017) using PIV. The growing differences observed when increasing
height may be attributed to differences in the relative boundary-layer height. In the present
case, as well as in Coceal et al. (2007b), the cube height to boundary-layer height ratio is
h/δ = 12.5% which is close to the configuration of Castro et al. (2006) where h/δ = 13%,
but almost four times higher than in Herpin et al. (2018) and in Blackman et al. (2017) where
h/δ = 4.5%.

The variety of mean velocity profiles observed at different locations inside the canopy
illustrates the inhomogeneity of the flow induced by the presence of cubes. Mean reversed
flow observed in numerical results in the lower part of the canopy upstream of a cube at P1
(Fig. 3.3 (b)) and downstream of the cube at P2 (Fig. 3.3 (a)) demonstrates the presence of
time-average recirculation structures on the wind-side (upstream recirculation) and lee-side
(wake recirculation) of the cube. Strong local velocity gradients inside the canopy (see Figs.
3.3 (a),(b),(c)) indicate the presence of a strong shear layer near z/h = 1.

3.3.2 Reynolds stress components

Figures 3.4 and 3.6 show turbulence characteristics of the flow normalized by uτ at locations
P1, P2 and P3.

The turbulent Reynolds shear stress (−u′w′) above the canopy and down to z/h = 0.2 at
P1 and P2 corresponds fairly well to the DNS of Coceal et al. (2007b) and to wind-tunnel
data (Figs. 3.4 (a), (c)). Upstream of the cube (P2), a local maximum is observed in our LES
results at z/h = 0.1 (Fig. 3.4 (c)). Xie and Castro (2006) made the same observation and
suggested that it was due to the viscous sublayer that was well resolved close to the wall at
this position. However, at P2 for z/h = 0.1 a reverse flow is observed in Fig 3.3 (b). A peak
is also observed in the standard deviation of the longitudinal velocity component (Fig 3.6 (c)).
Figure 3.5 shows that these peaks are more likely to be linked to the upstream recirculation
area (P2) located upwind of the cube (more details about this area are given in Sec. 4.5, see
also Fig 4.7 (a)).
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P1

P2

P3

Figure 3.4 Vertical profile of normalized Reynolds shear stress and vertical velocity standard
deviation at P1 ((a), (b)), P2 ((c), (d)), and P3 ((e), (f)) . Solid line: LES; Dashed line: DNS
from Coceal et al. (2007b); Circles: wind-tunnel data from Castro et al. (2006); Triangles:
wind-tunnel data from Blackman and Perret (2016); Stars: wind-tunnel data from Blackman
et al. (2017).
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Figure 3.5 Horizontal plane of Reynolds shear stress at z = 0.06h.

For the positions presented here, the maximum Reynolds shear stress is located at the cube
height in both simulations and experiments. In the wake of the cube (at P1) the numerical
simulations underestimate this maximum in comparison to experimental data of Castro et
al. (2006) while the PIV results by Blackman and Perret (2016) show the lowest maximum
among all data (Fig. 3.4 (a)). Discrepancies are also found for the standard deviation of the
vertical velocity component σw: the peak of σw obtained with numerical simulations falls
between experimental results (Fig. 3.4 (b)). Similar observations were made by Reynolds
and Castro (2008) who pointed out two main reasons explaining the differences in the peaks
of −u′w′ and σw. The first one relies on the fully developed state of the boundary layer.
They state that for h/δ < 10%, the boundary layer has reached a fully developed state so
the Reynolds shear stresses are reaching a minimum asymptotic value. That means the
higher h/δ , the higher the shear stress peak. This is also observed here in Figs. 3.4 where
datasets have very different values of h/δ (see section 3.3.1). The second reason is linked
to the vertical resolution of the datasets as a coarser resolution will have the tendency to
smooth peak value. LDV measurements by Castro et al. (2017) have a vertical resolution of
approximately 0.015h while the PIV resolution by Blackman et al. (2017) is approximately
0.038h. PIV is therefore expected to smooth local peaks of shear components. In LES, the
resolution near z = h is approximately 0.031h, which is finer compared to PIV but still a
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factor of two bigger compared to LDV measurements. This explanation is correlated to
observations depicted in Figs 3.4 (a) (b).

At point P2, experimental data from Castro et al. (2006) and Blackman et al. (2017) are
also available to be compared with numerical results of σw (Fig. 3.4 (d)). Both DNS and
LES values of σw fall between the two experimental databases. As for point P3, vertical
profiles of −u′w′ and σw are rarely reported in the literature. The LES shear stress profile is
in rather good agreement with PIV data above the canopy and down to z/h = 0.6. Below,
large discrepancies are observed and LES results are higher than PIV data (Fig. 3.4 (f)). σw

profiles are showing large discrepancies at all heights (Fig. 3.4 (f)).

The standard deviation of streamwise (σu) and spanwise (σv) velocity components are
presented in Fig. 3.6. LES results show that the accuracy in simulating σu is close to that of
the DNS (Coceal et al. 2007b) at P1 and P2. At P1, below z/h = 1, numerical data are in
good agreement with PIV data (Figs. 3.6 (a)) but significantly lower than results from LDV
technique. In such a wake region, the lack of space resolution is probably to blame to explain
these differences. At P2 and P3 (Figs. 3.6 (c),(e)) numerical results match very well with the
LDV data from Herpin et al. (2018). A phenomenon similar to the shear stress (i.e high σu)
is observed in the recirculation zone near the ground (Fig. 3.7).

The standard deviation of the spanwise velocity (σv) is certainly the component of the
Reynolds stress the most difficult to measure and simulate. It is to be reminded that σv

extracted from PIV is reconstructed from stereo-PIV leading to a underestimation of the
velocity fluctuations. Large discrepancies can be observed comparing the results obtained
in the various experiments (Figs. 3.6 (b),(d),(f)). σv is significantly smaller than in the
experimental data of Castro et al. (2006), but larger than in the experimental data of Blackman
et al. (2017). This is mainly explained by the measurements and simulation resolution
differences or the difference in h/δ ratio. However, the LES seems to provide the right
tendency in the profile of σv and it is in rather good agreement with the wind-tunnel data
from Herpin et al. (2018) at P2 and P3 and at P1 above and inside the canopy top.

From this analysis it is clear that the assessment of the numerical method cannot be
based on a unique experimental data set. The detailed reason why the different experimental
approaches lead to different results is out of the scope of the present work. However the
comparisons presented in this section demonstrate that the overall agreement between our
LES results and available data including DNS is satisfactory for the first and second order
moments.
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P1
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P3

Figure 3.6 Vertical profiles of standard deviation of streamwise and spanwise velocity
components at P1 ((a), (b)), P2 ((c), (d)), and P3 ((e), (f)). Solid line: LES; Dashed line: DNS
from Coceal et al. (2007b); Circles: wind-tunnel data from Castro et al. (2006). Squares:
wind-tunnel data from Herpin et al. (2018); Triangles: wind-tunnel data from Blackman and
Perret (2016); Stars: wind-tunnel data from Blackman et al. (2017).
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Figure 3.7 Horizontal plane of the standard deviation of streamwise velocity components at
z = 0.06h.

3.3.3 Skewness of velocity component

As explained in section 1.4.4, skewness is a measure of the asymmetry of a statistical
distribution. For a velocity component ui, it is the third order moment of velocity fluctuation
normalized using the standard deviation:

Skui = ui′
3/(σui)

3 (3.1)

Skewness provides insight into momentum transfer events such as sweeps and ejections
(Blackman et al. 2017). Brunet et al. (1994) demonstrated over a plant canopy that strong
positive Sku associated with negative Skw are the evidence of energetic downward sweep
events while strong negative Sku and positive Skw are linked to ejections.

Profiles P0-P3 presented in Fig.3.8 are in the symmetry plane, so Skv ≈ 0 for all positions.
At P1, a negative peak in Skw and a positive peak of Sku near z/h = 1 may be the sign of
important downward motions (sweeps) in the shear layer after the cube. Below z/h = 0.8,
components of skewness have lower values indicating a more homogeneous mixing induced
by the wake recirculation behind the cube. In contrast, at P2 and P3, high negative values of
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Skw and low positive values of Sku are found below z/h = 1 clearly indicating the presence
of sweeps. For all positions studied, above z/h ≈ 1.25, Sku < 0 and Skw > 0 meaning that
the flow is dominated by ejections, similarly to a rough boundary-layer flow. These results
are consistent with the observation of Finnigan (2000) and Coceal et al. (2007b).

P1

P2

P3

P0

Figure 3.8 Vertical profiles of skewness at location P1 (a), P2 (b), P3 (c), P0 (d). Blue
solid line: skewness of streamwise velocity component (Sku). Red-dashed line: skewness
of spanwise velocity component (Skv). Green-dashed line: skewness of vertical velocity
component (Skw).

3.3.4 Energy spectrum

The energy spectrum E(kz′) of the streamwise velocity component above the cubes (at
z/h = 1.62) is shown at P2 in Fig. 3.10 and compared with the wind-tunnel data from Castro
et al. 2006). The wavenumber k is defined as k = 2π f/U , with f the frequency and U the
local mean streamwise velocity. The variable z′ is defined as z′ = z−d with d denoting the
zero-plane displacement estimated as the height at which the total drag acts (see section
1.1.2). This method has been widely debated because the fitting of the logarithmic profile



3.3 Assessment of numerical approach 69

using the resulting value of d implied large discrepancies in the value of the von Kármán
constant κ (see Coceal et al. 2007b). However in our simulation, this method gives generally
accepted values d = 0.74h and κ = 0.4 (κ is calculated from Fig. 3.9).
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Figure 3.9 Vertical profiles of mean streamwise velocity plotted on a log scale, where ⟨u⟩ is
the horizontally and temporally averaged streamwise velocity above the cubes.

In Fig. 3.10, the red doted-line denotes the lowest expected normalized wavenumber
(kminz′) computed based on domain size and mean velocity and the purple doted-line denotes
the highest resolved wavenumber from the LES computation (cut-off) calculated based on
the grid size and uτ . The amplitude of the spectrum is normalized through the integration of
the spectrum ((σu)

2). The same procedure is applied to the dataset of Castro et al. (2006) to
be comparable.

The simulated energy spectrum matches very well with the wind-tunnel data (Fig. 3.10)
and the inertial subrange (−5/3 slope) is accurately captured. According to the data from
Castro et al. (2006) the cut-off wavenumber of the LES (kmax) seems to be at the limit of the
inertial sub-range. As expected, for a normalized wavenumbers higher than kmaxz′, the energy
of the small scales starts to drop faster in the simulation than in the experiment. For low
wave numbers, the limited size of the LES domain is expected to lead to a poor simulation
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of the large scale structures. However, the energy deficit for kz′ lower than kminz′ is rather
limited compared to wind-tunnel data.

P2

Figure 3.10 Turbulent spectra of the streamwise velocity component E(kz′) at P2 from LES
(Solid blue line) compared with wind-tunnel data (circles) from Castro et al. (2006). The
black dash-line represents the -5/3 slope. The red dash-line and magenta dot-dash-line
indicate the minimum and maximum wavenumber resolved in the LES.

3.4 Mean flow analysis

The focus of this section is on the mean flow field. Figure 3.11 shows the vertical cross-
section with mean velocity vectors (u,w) in a vertical x− z plane through the middle of the
cube.

In the plot, a clockwise recirculation structure is shown at the bottom of the windward
side of the cube (at P2). The flow is downward along the front face of the cube. The reverse
flow is identified in the lower part close to the surface ahead of the cube. This circulation
structure has a nearly identical position than in the previous studies of DNS (Coceal et al.
2006) and LES (Xie and Castro 2006).
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Figure 3.11 Mean flow structure in a vertical x-z plane through the middle of the cube in the
staggered array showing (u,w) wind vectors.

A separation point at one cube length behind the cube leads to a reverse flow around
location P1 in the lower part of the canopy. A strong updraft is observed on the leeward face
of the cube, which merges into the uniform and unidirectional downstream flow slight above
the top of the cube. We will show in Section 4.5 that these reversed flows have a strong
connection with the production of the turbulent kinetic energy.

Figure 3.12 shows the streamlines in an horizontal transect (x,y) near the ground (z =
h/40). In particular, two small recirculation are located at the upwind corner of the cube. A
big horseshoe vortex is observed in the vicinity of the cube, but the head of the horseshoe
vortex is not clearly visible in the present plot. The upstream flow is deflected by the presence
of the cube as a result of the flow separation occurring at the frontal face of the cube. The
flow pattern presented here is different from the flow over one cube configuration which
show a pair of counter-rotating flows behind the cube (Yakhot at al. 2006). Besides, the
reattachment point of the separated flow does not appear in the downstream area.
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Figure 3.12 Top view of the horizontal transect (x,y) near the ground (z = h/40) with planar
streamlines. Wind goes from left to right.

Figure 3.13 shows the streamlines pattern in a 3D view. Streamlines are generated
upstream and downstream from three vertical lines starting at the ground and going up to
z = h/2 at location P1 (Fig. 3.13 a), P2 (Fig. 3.13 b), and P3 (Fig. 3.13 c). Streamlines
generated at P1 show that the flow impacting the top of the wind faces of cubes "A" and "B"
(Fig. 3.13 a) is sinking along the cubes faces and converges in the wake of cube "C", where
is goes backwards. The flow is then lifted up along the lee-side of cube "C" and goes finally
back in the streamwise direction. Streamlines generated at P2 (Fig. 3.13 b) show that the
incoming flow on the lower part of a cube is "trapped" in the recirculation at the foot of the
cube and slowly goes to the side of the cube. Streamlines generated at P3 (Fig. 3.13 c) show
that, below z = h/2, the flow between cubes comes from the two recirculation area of the
two upstream cubes and then goes straight in the streamwise direction after P3.
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(a)

A

B
C

P1

(b)

A

B
C

P2

(c)

A

B
C P3

Figure 3.13 3D view of the streamlines emanating from vertical lines at P1 (a), P2 (b) and
P3 (c). Streamlines color denotes the mean velocity. Green lines indicated the streamlines
sources.
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3.4.1 Vorticity analysis of mean velocity

The vorticity is used to measure the curl of the flow. Mathematically, the vorticity of a
three-dimensional flow is usually defined as the curl (or rotational) of the flow velocity vector,
denoted by −→

ω :

−→
ω = ∇×−→u (3.2)

Figure 3.14 Visualization of the flow over the computational domain: iso-surface of the
magnitude vorticity (|−→ω |= 200 [s−1]).

The vorticity of the mean velocity is presented in Figure 3.14. The horseshoe vortex can
be identified in front of the cube in an ellipsoid elongated in the cross-wind direction with
two legs into the gaps of the cube. Besides, the vorticity of the mean velocity is observed
on the edging sides of the cube and in the shear layer slight above the top of the cube. This
indicates that when mean flow passing around an obstacle, the presence of the object causes
the mean flow to change the flow direction and produce vorticity, while the laterally deflected
flow moves upward, merging with the flow in the shear layer.
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3.4.2 Q-criterion analysis of mean velocity

The Q-criterion (Haller 2005) allows to consider the vortex movement through separating
the matrix of the gradient of velocity (equation 3.3), which can be used to present the vortex
structure.

Q =
1
2
(Ωi jΩi j −Si jSi j)> 0 (3.3)

where Ωi j =
1
2 (∇u− (∇u)T ) is the vorticity tensor, and Si j =

1
2 (∇u+(∇u)T ) is the strain

rate tensor. They are the symmetric and antisymmetric part of the velocity gradient ∇u.

Figure 3.15 Flow visualization over the computational domain: instantaneous iso-surface of
the Q-criterion (Q = 5000 [s−2]).

Fig. 3.15 shows an iso-contour of the mean flow Q-criterion (Q = 5000 [s−2]). This
visualization plot provides a qualitative understanding of the flow complexity and dynamic
features. The shear layer emanating from the sharp edges of the cube immediately separates
and generates distinct boundary layers within the roughness sublayer. The high Reynolds
number flow leads to strong interactions between different scales, and the individual shape
and organization of the vortex are not clear to present. The vortex structure in the wake
region may be induced by the recirculation on the edging of the leeward surface (Fig. 3.12).
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3.5 Chapter summary

The investigations performed here are in the continuation of the efforts of Chapter 2 to
progress toward higher fidelity levels of the LES modeling. In the context of assessing the
performance of the model, large-eddy simulation (LES) with dynamic Smagorinsky SGS
model are performed in this study to investigate the flow over urban-like cubic roughness.

The LES code is firstly assessed in comparison with the data from DNS (Coceal et al.
2006) and wind-tunnel (Castro et al. 2006; Blackman and Perret 2016; Blackman et al.
2017; Herpin et al. 2018). Good agreement is observed in the vertical profile of mean flow,
high-order turbulent statistics and energy spectrum. The investigation on the mean flow
illustrates the inhomogeneous characteristic of the flow inside the urban boundary layer.
The maximum simulated Reynolds shear stress is slightly above the top of the cube, but in
magnitude smaller than the experimental data (Castro et al. 2006). Standard deviations of
the streamwise and vertical velocity component match well with the wind-tunnel data above
the canopy. The standard deviation of the span-wise velocity component is significantly
smaller than the experimental data, but the general features are reproduced. The skewnesses
of velocity show that sweep events mainly occur inside the canopy, and ejection events
contribute more above the canopy. The energy spectrum confirms the existence of inertial
subrange and the limitations due to the computational domain and the mesh size.

Besides, the mean flow is analyzed by presenting the vertical structure, 3D streamlines,
and Q-criterion and vorticity analysis. The circulation in front of the cube is observed at an
identical position as presented in the previous studies of Coceal et al. (2006) and Xie and
Castro (2006). Then, the horizontal streamlines confirm that the flow pattern is different
from the flow over one isolated cube. Here, no vortex is observed at the top of the cubes,
but the strong vortical structure is observed in front of the obstacles, which indicates that
the horseshoe vortex generated in the recirculation zone is due to this vortex structure. The
horseshoe vortex is clearly observed by the visualization means of Q-criterion and vorticity
in front of the cube.

From the analysis in this chapter, the reliability of the large-eddy simulation model has
been fully confirmed. At the same time, through the analysis of the flow statistics, we can
conclude that the turbulent flow motion in the urban canopy is highly inhomogeneous and
may lead to high turbulent energy exchanges. In order to understand the mechanism of
turbulent energy transfer in the RSL, the characteristics of the turbulent kinetic energy will
be described and discussed in detail in the next chapter.



Chapter 4

Turbulent kinetic energy budget over
urban canopy

The scope of this chapter is to analyze the turbulent kinetic energy (TKE) budget over
the urban-like canopy and to demonstrate the relevance of ignoring non-measurable terms
in the wind-tunnel experiment when calculating turbulent transport. A comparison of the
TKE budget against the experimental data is shown here to assess the fidelity level of the
present LES simulation. The 3D visualization of the TKE budget terms in the vicinity of the
cube is presented in order to identify the locations where they contribute more. Finally, the
decompositions of the turbulent transport terms are compared to the wind-tunnel data.

4.1 Introduction

The growing interest in understanding the turbulence transport mechanisms that develop
within the urban environment has promoted the development of the turbulent flow dynamic
studies in the urban canopy. In the previous studies, mean flow, high-order statistics and
coherent structures of the turbulent flow have been deeply analyzed by numerical modeling,
such as in the work of Coceal et al. (2006, 2007a, 2007c), Xie and Castro (2006), and Xie et
al. (2008). However, few studies have been performed to investigate the turbulence kinetic
energy (TKE) budget over the urban canopy (Tomas et al. 2016), although it has been well
studied over plant canopy (Moeng 1984; Dwyer et al. 1997; Finnigan 2000; Yue et al. 2008).

The TKE budget is critical for understanding the turbulent exchange in the atmospheric
boundary layer, especially in the roughness sub-layer. Based on the conclusions of the
wind-tunnel experiments of Brunet et al. (1994) and Castro et al. (2006), the production is
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approximately balanced by the dissipation in the surface layer, and the turbulent transport
which is a major energy sink. Blackman et al. (2017) investigated in detail the TKE budget
over staggered cube arrays in boundary layer wind tunnel using an LE-PIV model to estimate
the dissipation rate. Giometto et al. (2016) performed LES over a realistic urban model.
They demonstrated that the pressure transport is very significant in the near-wall area and the
turbulence is transported into the urban canopy. Tomas et al. (2016) used the LES method to
study the spatial-averaged TKE budget over a squared array and highlighted the negligible
effect of the subgrid-scale transport.

However, obtaining all the terms used to calculate the TKE budget in wind-tunnel
experiments remains a challenging issue. Depending on the experimental facilities some
terms in the TKE budget may be only partially measured. For instance, Blackman et al.
(2017) used PIV technique to measure the three components of the velocity in the central
plane of the cube: this makes it impossible to obtain the spanwise gradients involved in
the transport term. These uncertainties raise the questions about the accuracy of turbulent
transport data from the wind tunnel experiments (Blackman et al. 2017). To verify the
relevance of the hypothesis used to rebuilt or neglect missing terms in wind tunnel data
analysis, the LES modeling is performed in a [16h×12h×8h] computational domain with
the dynamic Smagorinsky SGS model. The analysis carried out here is in the continuation of
the effort and discussion of Chapter 3.

The objective of this chapter is to evaluate the performance of the LES model by validating
and analyzing the TKE budget and to describe the main physical turbulent processes that
occur within the urban canopy. The TKE budget terms are compared to the available
experimental data from the wind-tunnel measurements (Castro et al. 2006; Blackman et al.
2017; Herpin et al. 2018) (see section 4.3 and section 4.4). 3D visualization of the TKE
budget terms in the vicinity of the cube is used to present the spatial characteristics of the
energy transfer (section 4.5). To the author’s knowledge, this is the first attempt to present a
3D visualization of TKE budget using LES over the urban-like staggered cubic array. Finally,
the effect of ignoring non-measurable terms when calculating TKE budget in wind-tunnel
measurement is described and discussed.

4.2 The governing equations

From the LES equations (2.1), (2.2), (2.3) and (2.5), and assuming that the turbulent flow has
reached a fully steady state, the turbulent kinetic energy (TKE) budget writes as:
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where A represents advection by the mean flow, P is the production, Tr is the turbulent
transport by resolved velocity fluctuation, Tp is the transport by pressure fluctuation, Dν is
the viscous diffusion, εr is the resolved dissipation, Tsgs is the SGS transport, and εsgs is
the SGS dissipation, which represents the transfer of energy between resolved-scale and
subgrid-scale through the cut-off filter. All contributions to the TKE budget are directly and
individually computed in the simulation. Quantities are time averaged over 200T in each cell
of the domain, and then combined to have the TKE budget terms everywhere in the domain.

4.3 TKE budget around a cube

Figure 4.1 depicts all contributions to the TKE budget at P0-P3. Note that Dν is very small
for high Reynolds number flows and not shown here for clarity.

4.3.1 Production and dissipation terms

At all locations, above the height z/h ≈ 1.5, the production (P) and dissipation terms (εsgs +
εr) are the major contributions to the TKE budget and tend to balance each other with the
increasing height. However, the equilibrium is never exactly reached and the production
remains stronger (|P|> |εsgs + εr|) (see Fig. 4.2).

The production P reaches a maximum just above the cubes at location P1 (Fig. 4.1 (a)),
where the shear stress above the cube is the strongest. This sharp peak is then rapidly
decreasing above and below the top of the cube (z/h = 1). With downwind distance (at P3
and P2), the production peak decreases in intensity and shifts slightly above z/h = 1. The
region of high production becomes thicker (see Fig. 4.1 (c) and Fig. 4.1 (b)), until reaching
the next cube (Fig. 4.1 (d)).
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P1

P2

P3

P0

Figure 4.1 Vertical profiles of TKE budget terms (a) behind cube (P1), (b) in front of cube
(P2), (c) in the gap between two cubes (P3) and (d) on cube (P0), all terms are normalized by
u3

τ/h.

In the simulation, dissipation generally acts in a mirror of production, but with lower
absolute values. The maximum ratio of |P|/|εsgs + εr| is found at about z/h = 1 (at P1),
slightly above z/h = 1 (at P2 and P3) and at about z/h = 2 (at P0) (Fig. 4.2). The maximum
ratio reaches 1.6, 6, 2.4, 2.25 for locations P0-P3, respectively. This phenomenon indicates a
strong participation of other TKE budget terms in this area: advection, turbulent transport,
and pressure transport. Above the roof level, the ratio decreases slowly at all locations.
On the contrary, dissipation is higher than production inside the canopy in the regions,
0.3 < z/h < 0.9 at P1, 0.2 < z/h < 0.8 at P2, and 0.2 < z/h < 1 at P3. This is mainly due to
the small production. For example, P < 0 is observed near the ground at P3 (Fig. 4.1)
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P1

P2

P3

P0

Figure 4.2 Vertical profiles of |P|/|εsgs + εr| ratio (a) behind cube P1, (b) in front of cube P2,
(c) in gap P3 and (d) on cube P0.

4.3.2 Turbulent transport terms

The turbulent transport (Tr +Tsgs) is the major sink of TKE at P1. It transfers energy from the
thin shear layer ((Tr +Tsgs)< 0 at z/h = 1.05) downwards inside the canopy and upwards
into the roughness sub-layer (Tr +Tsgs > 0 at z/h = 0.9 and z/h = 1.2). Going downwind, at
P3 and P2, the turbulent energy sink still remains and broadens up and down, but the position
of maximum energy sink becomes higher. Just upstream of the cube (at P2), the region where
the turbulent transport is negative extends from z/h = 1.7 down to z/h = 0.9. The turbulent
transport acts as a source of TKE inside the canopy. Similar behavior of turbulent transport
is seen at P3. Besides, the turbulent transport, acting upward and downward at P1 is clearly
unbalanced toward the canopy further downwind. Finally, the Tsgs is found to be negligible
throughout the whole flow field (not shown here). This phenomenon was also noted in the
aligned cube arrays by Tomas et al. (2016).
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4.3.3 Pressure transport term

The transport by pressure fluctuations (Tp) acts in similar way as the turbulent transport in
front of the cube (at P1) (see Figure 4.1 (a)) by transferring energy up and down. In the gap
between the cubes (at P3), Tp is very weak above z/h ≈ 0.8. Inside the canopy, it acts as a
sink of TKE (see Figure 4.1 (c)). The contribution of Tp is much more significant in front of a
cube (at P2) (see Figure 4.1 (b)) than behind (at P1). At P2, it is a dominant sink with a broad
extent between z/h = 0.4 up to z/h = 1.7, and even larger in magnitude than dissipation near
the top of the cube (0.8 < z/h < 1.2) (see Figure 4.1 (b)). This peak of |Tp| indicates that the
flow in staggered configuration cubes impinges the windward side and edges of the cubes
resulting in large pressure fluctuations in front of the cubes.

4.3.4 Advection term

Finally, the advection (A) is found to be significant in the shear layer at locations P1 and
P2. According to the location in the wake of the cube or the upstream recirculation area, it
may be negative (at P1) or positive (at P2). The large sink at P1 contributes to balance the
strong production in the shear layer above the cube. Inside the canopy, the contribution of
the advection is found to be significant at P2 and P3. Because of the strong link between
the advection and mean flow, the negative and positive A observed in the lower part of the
canopy (0.1 < z/h < 0.5) at location P2 reflects the existence of recirculation zone. This
results from the flow impinging on the surface of the obstacle and creating a reverse flow.
Besides, high advection area is observed at the lower part of the canopy (0.1 < z/h < 0.6) at
P3 (Figure 4.1 (c)): it acts as a primary source, larger than the production. This phenomenon
indicates that the turbulent energy present in the gap between the cubes is created elsewhere
and advected. Indeed, as will be seen later (section 4.5.4), the flow is diverted laterally, and
then converges in this area with speed up.

4.4 TKE budget comparison

TKE budget from LES at location P2 (Fig. 4.3 (a)) and P3 (Fig. 4.3 (b)) are compared to the
experimental data from Blackman et al. (2017) and Castro et al. (2006). Only production
and dissipation are shown here for clarity. Note that in the literature, only few experimental
studies are available for comparison with the present work.
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P2 P3

Figure 4.3 Production and dissipation terms of TKE budget compared to the wind-tunnel
data from Castro et al. (2006) and Blackman et al. (2017) at location P2 (a) and P3 (b). All
terms are normalized by u3

τ/h.

P3
P3

Figure 4.4 (a) Decomposed production terms from LES at P3, all terms are normalized by
u3

τ/h. (b) Resolved strain rate tensor (Si j) at P3, normalized by uτ/h.
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The production (P) shows a good agreement with the experimental data inside the canopy
and above z/h = 2 (at P2) and z/h = 1.5 (at P3). For both positions, the LES production
peak is larger than PIV data (Blackman et al. 2017). Regarding dissipation (εr + εsgs), the
numerical data are larger in magnitude than in Blackman et al. (2017), but slightly smaller
than the data from Castro et al. (2006). The same reasons as mentioned in Sec. 3.3.2 can
be invoked here to explain the differences observed: (i) the lower boundary-layer height
induces a higher shear resulting in higher production and higher dissipation in magnitude,
(ii) the experimental PIV results may underestimate the peaks due to a too coarse resolution.
The higher value of P and (εr + εsgs) slightly above the canopy (at z ≈ 1.4h) and their rapid
decrease with the height for both LES and wind-tunnel data from Castro et al. (2006) clearly
show the effect by the small δ/h. With a four times bigger δ/h in Blackman et al. (2017), P
and (εr + εsgs) are decreasing very slowly with the height.

As shown in Blackman et al. (2017), through the decomposition of the production
terms, the combination of the shear stress and the velocity gradient (−2u′w′ S13) is the main
source of production. This is confirmed in our LES result in the upper part of the canopy
(0.8 < z/h < 1), and above the canopy (z/h > 1) by comparing (−2u′w′ S13) to P (see Fig.
4.4 (a)). Additionally, negative production P is observed in the lower part of the canopy
at P3 (Fig. 4.3 (a)). It is the result of the span-wise velocity component fluctuation and
the span-wise velocity gradient term (−v′v′ S22). This phenomenon is consistent with the
observation of Blackman et al. (2017), who found that the span-wise term (−v′v′ S22) acts
as a sink of energy instead of a source in the lower part of the canopy (below z/h = 0.5).
Moreover, the contribution of S12 and S23 are negligible all over the vertical profile (Fig.
4.4 (b)) resulting in negligible contribution of (−2u′v′ S12) and (−2u′v′ S23) in the central
plane of the cubes.

4.5 TKE budget in the vicinity of the canopy

The TKE budget terms presented in Figure 4.1 displayed a great inhomogeneity inside
the canopy layer and within the roughness sub-layer. This section aims at describing and
interpreting the three-dimensional results from the LES modeling by extracting 2D planes
and displaying 3D iso-contours plots to understand deeper the spatial repartition of the
turbulence.
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4.5.1 Production

(a)

(b)

Figure 4.5 Three-dimensional visualization of Production, normalized by u3
τ/h. For clarity,

only three cubes are shown. (a) Zoom inside the urban canopy with iso-contours of P = 10
(orange) and P =−10 (light blue). Iso-contours are shown only below z = 3h/4. (b) View
of iso-contours of Production P = 25 (red) and P =−25 (dark blue).

Near the ground, two main areas are producing TKE (Figs. 4.5 a). The first one is located at
a distance of about h/2 upstream of a cube, near location P2. It is an ellipsoid elongated in
the cross-wind direction with a length of about h. It is also visible in Fig. 4.6 (a) and Fig.
4.7 (a) with the production P > 10. The ellipsoid region is not horizontal but rather tilted
with its upwind part raising up and its downwind part touching the ground (Fig. 4.5 (a)).
Looking at the mean flow in this region (Fig. 4.7 (a)), high production seems to be linked to
the side of the strong clock-wise recirculation region existing upwind of the cube (S1 point).
The second high production region is a nearly circular area situated between the front faces
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of two cubes, and its center is at point S2 (see Fig. 4.5, Fig. 4.6 (a) and Fig. 4.7). Production
reaches more than P = 25 in this area. Going upwards (z = h/2), this region merges with two
other high production regions attached to the vertical edges of the windward side of the cube.

P0P2 P1 P3

(b)

Figure 4.6 Top view of the horizontal transect (x,y) of Production normalized by u3
τ/h. Wind

goes from left to right. (a) Near the ground (z = h/40) with planar velocity streamlines where
S, N and F locations stands for saddle point, node and focus node, respectively. (b) In the
middle of the cube (z = h/2) with mean velocity vector field. Vectors are of equal length to
better visualize flow structures.



4.5 TKE budget in the vicinity of the canopy 87

At z = h/2, only two main production regions are remaining. They are attached to the two
vertical upwind edges of the cube and get stronger with the increasing height and, eventually,
merge into the spanwise space between two cubes (Fig. 4.6 (b) and Fig. 4.5 (a)). These
regions are corresponding to the side of a recirculation area identified by mean velocity
vectors (Fig. 4.6 (b)). A secondary P peak is visible on the lower part of the windward face
of the cube near point S4 (Fig. 4.7 and Fig. 4.5 (a)). It is an elongated span-wise structure
that may be linked to a small counter-clock-wise secondary recirculation at the foot of the
cube observed in Fig. 4.7.

Going up from z = h/2 (see Fig. 4.5 (b)), high production regions are observed on the
two vertical edges of the windward side of the cube and the four edges of the top face.
The strongest production area is seen starting from the trailing edge of a cube (downwind
edge of the top face), and expanding downwind to reach the second row of cubes with high
production (P > 25). The intensity of production in this area decreases with downwind
distance from the cube and spreads in all direction but mainly upwards (Fig. 4.7). All high
production regions around the cube are linked to the sharp corners with flow separation and
to the high shear regions.

Indeed, high P regions described are connected to the separation regions. Close to a
surface, they are represented by saddle points S1, S2 and S4 where streamlines are converg-
ing/diverging with a great updraft. On cubes, they are situated on the edges, where flow
separates. These regions of flow convergence may be linked to sources of vortex shedding.

The flow also presents areas where P < 0. The negative production reflects that energy is
extracted from turbulence and returned to the mean flow (Pope 2000).

For z < h/2, a weak span-wise elongated negative production zone (P ≈−15) is observed
at the ground near point N1 (Fig. 4.6 (a) and Fig. 4.7 (a)), right upwind of a cube, parallel to
the first high production region previously described (S1). Point N1 is a repelling node (here
it is more a repelling line, see Helman and Hesselink 1989) representing flow impinging on a
surface. Here it is very close to the re-attachment zone situated between the big clock-wise
recirculation upwind of the cube and the secondary counter-clock-wise recirculation at the
cube’s foot.

The region with the most negative production (P <−25) starts at the cube’s leading edge
and extends downwards along the windward side of the cube with decreasing intensity to
reach P =−10 at approximately z = h/2 (Fig. 4.7 (a) and Fig. 4.5 (b)). This region, denoted
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by N2 in fig. 4.7 (a) and Fig. 4.7 (b), is also a repelling node (or line) where the mean
turbulent flow impacts the cube face and deviates downwards.

Instantaneously, it is likely that some of the vortices shed by leading edges of the previous
cube (see the instantaneous view in Coceal et al. 2006) are destroyed when impacting the
next cube, leading to a destruction of turbulence.

P2 P0 P1 P3

(a)

S1 N1 S3 S2

S4

N2

N2

S4

(b)(b)

Z

Y

Figure 4.7 (a) Vertical transect of Production normalized by u3
τ/h in the middle of the cube

with a projection of the mean velocity vector field. Vectors are of equal length to better
visualize flow structures. (b) Production in the windward face of a cube with wall streamlines.
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Figure 4.8 Vertical transect of Turbulent transport normalized by u3
τ/h in the middle of the

cube with a projection of the mean velocity vector field. Vectors are of equal length to better
visualize flow structures. The pink contour circles is Production (P = 25).

4.5.2 Turbulent transport

As discuss in section 4.3.2, the Tsgs is found to be negligible throughout the whole flow field.
Therefore, only the 3D iso-coutour of turbulent transport (Tr) is presented here.

A large area of negative Tr are observed in the flow (see Fig. 4.8 and Fig. 4.9 (b)). As
discussed in sec. 4.3.2, the turbulent transport is a major sink to balance the production inside
the roughness sub-layer. Near the ground, the negative Tr is observed at around h/2 upstream
of the cube and in the gap of the cubes where Tr <−8 (see Fig. 4.9 (b)). Moving upwards
from the ground to the top of the cube, the negative value of Tr are observed along the edging
sides of the windward side and along the four edges of the top face and extend from the
trailing edging to the next cube. Comparing Fig. 4.7 (a) and Fig. 4.8, it can be seen that the
negative Tr area is almost in the same location as the high production (P = 25) area.
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(a)

(b)

Figure 4.9 Three-dimensional visualization of Turbulent transport (Tr), normalized by u3
τ/h.

For clarity, only three cubes are shown. (a) View of Tr = 5 (pink). (b) View of iso-contours
of Turbulent transport Tr =−8 (dark blue).

At the cube’s foot, positive Tr is forming on both side of the cube. Going up to z = h/2,
three high turbulent transport (Tr) areas are observed: one is slightly downstream of the
leading edge of the top face, another is an extended region in the wake area between two
cubes (near location P3) and the third is on the vertical edges of the windward side of the
cube (Fig.4.9 (a) and Fig. 4.10). The high positive Tr moves downward along the vertical
edges of the windward side to the foot of the cube (Fig.4.9 (a) and Fig. 4.8).
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Figure 4.10 Top view of the horizontal transect (x,y) of Turbulent transport (Tr), normalized
by u3

τ/h, in the middle of the cube (z = h/2) with mean velocity vector field. Vectors are of
equal length to better visualize flow structures. Wind goes from left to right.

4.5.3 Pressure transport

The transport by pressure fluctuations (Tp) is significant (Tp > 15) in front of the cube either
on the windward side of the cube or in a region elongated in the spanwise direction which
skirts the cube’s foot (see Fig. 4.11 (a)). Going upwards with the increasing height, high
pressure transport (Tp > 15) passes the leading edge and on the cube’s top face. The high Tp

area described here are clearly linked to the impinging flow on the surface near location N1
and N2 (repelling nodes).

Near the ground, two span-wise elongated negative Tp zones (Tp < −5) are observed:
one is at around 2h/3 upstream of a cube above point S1, the other is along the foot edge of
the cube above location N1 (Fig. 4.11 (b) and Fig. 4.12). Looking at the mean flow in this
region (Fig. 4.12), the negative Tp seems to be linked to the recirculation region upwind of
the cube when w > 0 ( N2) and w < 0 (N1).
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(a)

(b)

Figure 4.11 Three-dimensional visualization of Pressure transport, normalized by u3
τ/h. For

clarity, only three cubes are shown. (a) View of iso-contours of Tp = 15 (pink). (b) View of
iso-contours of Pressure transport Tp =−5 (dark blue).

Significant negative Tp is observed at the leading edge of the windward side in a large
width. Negative Tp is also observed in the middle height of the canopy between the cubes.
No significant negative Tp is observed in the shear layer and in the wake of the cube. This
phenomenon indicates that the Tp does not contribute to transfer the high Production in the
wake. But it certainly acts as a sink in the gap between the cubes (see Fig. 4.11 (b)).
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Figure 4.12 Vertical transect of Pressure transport (Tp) normalized by u3
τ/h in the middle of

the cube with a projection of the mean velocity vector field. Vectors are of equal length to
better visualize flow structures.

4.5.4 Advection

Inside the canopy, the positive advection (A) region forms a span-wise tube at the cube’s foot
(see Fig. 4.13 (a)) and extends on the windward side up to the top of the cube, and on the
cube’s left and right sides, reaching the vertical elongated region situated in the gap of the
cubes where A > 5 (near P3) (see Fig. 4.13 (a) and Fig. 4.14). Going up from z = h/2, high
positive A is observed on leading edges in a large width, and downwind along the top face in
the shear layer.

Near the ground, a negative cross-wind strip where A <−5 is observed located approx-
imately z = h/3 in front of the cube (Fig. 4.13 (b)). This location is slightly downstream
of point S1 where high P was observed (Fig. 4.14). Besides, stronger negative advection
areas (A <−10) are observed on the leading edge and trailing edges of the top face. They
extend downstream the second row cubes and merge into the canopy along the windward
side vertical edges (see Fig. 4.13 (b) and Fig. 4.14).
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(a)

(b)

Figure 4.13 Three-dimensional visualization of Advection, normalized by u3
τ/h. For clarity,

only three cubes are shown. (a) View of iso-contours of Advection A = 5 (pink). (b) View of
iso-contours of Production P = 25 (red) and of Advection A =−5 (dark blue).

In the wake, two highly negative A regions are observed emanating from the trailing
edge, forming two layers above and below the high P region and merging with the two
vertical edges of windward side of the next cube (see Fig. 4.13 (b) and and Fig. 4.14). The
negative A here can be explained by the positive streamwise gradient of TKE and positive
streamwise velocity (see Fig. 4.15). Additionally, the negative A close to S1 (Fig. 4.14) can
be explained by negative streamwise gradient of TKE and reversed streamwise velocity. It
is also visible that the positive advection A follows immediately the negative A region in
streamwise direction (see Fig. 4.16).
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Figure 4.14 Vertical transect of Advection (A) normalized by u3
τ/h in the middle of the cube

with a projection of the mean velocity vector field. Vectors are of equal length to better
visualize flow structures. The pink contour circles is Production (P = 25).

Figure 4.15 Vertical transect of TKE normalized by u2
τ in the middle of the cube with a

projection of the mean velocity vector field. Vectors are following the value of time-averaged
velocity.
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Figure 4.16 Top view of the horizontal transect (x,y) of Advection normalized by u3
τ/h, in

the middle of the cube (z = h/2) with mean velocity vector field. Vectors are of equal length
to better visualize flow structures. Wind goes from left to right.

4.5.5 Dissipation

The main area to dissipate TKE is in the vicinity of the cube and near the solid boundaries
(see Fig. 4.17). Inside the canopy, large values are observed on the two vertical edges of the
windward face of the cube, and develops laterally along the downstream direction. Slightly
above the cube, the peak of dissipation is clearly shown in the shear layer (Fig. 4.18) which
extends downwind reaching the second row of cubes (see Fig. 4.17 and Fig. 4.18). The
intensity of (εr + εsgs) is larger in the gap (P3) than in the wake of the cube (P1) (Fig. 4.18).

Note that the little points in this graph are due to the subgrid-scale dissipation, in which
the dynamic Smagorinsky model gives large SGS stress tensor values.
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Figure 4.17 Three-dimensional visualization of iso-contours of Dissipation εr + εsgs <−5,
normalized by u3

τ/h. For clarity, only three cubes are shown.

Figure 4.18 Vertical transect of dissipation (εr + εsgs) normalized by u3
τ/h in the middle of

the cube with a projection of the mean velocity vector field. Vectors are of equal length to
better visualize flow structures.
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Figure 4.19 (a) - (f) The decomposition of Turbulence transport (Tr) at location P3 into the
contribution of each velocity gradient compared to the wind-tunnel data from Blackman et al.
(2017). All terms normalized by u3

τ/h.
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4.6 Analysis of the turbulent transport term

The commonly used experimental instrumentation (i.e., HWA, LDV or 2D PIV) are unable
to measure gradients in the three directions restraining the calculation of some terms of the
TKE budget. In the wind-tunnel experiment of Blackman et al. (2017), span-wise gradients
of triple correlations are ignored in the computation of turbulent transport (Tr). However, the
influence of ignoring these terms has not been examined. In this section, the consequences
of ignoring the spanwise terms of Tr are examined by describing all terms of the turbulent
transport (Tr) captured in CFD.

4.6.1 The decomposition of turbulence transport

The decomposition of turbulent transport (Tr) at location P3 is shown in Fig. 4.19 (a) - (f)
in comparison with the wind-tunnel data from Blackman et al. (2017). A good agreement

is observed both above and within the canopy. The term -1
2

∂ u′u′u′

∂x acts as a source at the
canopy height, while it acts as a sink in the canopy (Figs. 4.20 (a)). The main contribution is

from -1
2

∂ u′u′w′

∂ z as in the experiment. Inside the canopy, this peak of -1
2

∂ u′u′w′

∂ z observed in
LES is larger than in the wind-tunnel experiment, and the location of the peak is higher in
LES (Fig. 4.19 (b)). Overestimated value are shown in the upper part of the canopy in Figs.
4.19 (c),(d),(f). This phenomenon may be due to the fact that the large size in wind-tunnel
experiments weaken the intensity of velocity fluctuations and turbulent transport. However,
very good agreement is observed in Fig. 4.19 (e).

P3

Figure 4.20 (a) Turbulent transport (Tr) compared to the wind-tunnel data from Blackman
et al. (2017) and Tr without three span-wise gradients. (b) Three span-wise gradients of
Turbulent transport (Tr). All terms normalized by u3

τ/h.
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4.6.2 The impact of ignoring non-measured terms

Figure 4.20 (a) shows, at P3, the comparisons between Tr completely computed from the
LES, Tr from LES data but without span-wise gradients and Tr obtained from wind-tunnel
experiment (Blackman et al. 2017). The agreement between the present Tr and that from
the wind-tunnel data is generally good above the canopy and close to the ground. A large
discrepancy is observed in the middle of the canopy 0.4 < z/h < 1. It reflects that ignoring
the three span-wise gradients results in an underestimated Tr inside the canopy. Indeed, when
the spanwise gradient are ignored in the present CFD results, the Tr agrees much better with
the experimental data. The three uncalculated spanwise velocity gradients in the wind-tunnel
experiment are shown in Fig.4.20 (b). Their contributions are principally concentrated within

the canopy. The two terms -1
2

∂ u′u′v′

∂y and -1
2

∂ w′w′v′

∂y are acting as sources of the energy, while

-1
2

∂ v′v′v′

∂y acts as the sink of the energy.

Figure 4.21 3D visualization of the sum of the spanwise gradients of the turbulent transport
terms discrepancy between the Turbulence transport and Turbulence transport without span-
wise velocity fluctuation gradients. Red color means ∆Tr ×h/u3

τ = 5 and blue color means
∆Tr ×h/u3

τ =−5.
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Figure 4.21 presents ∆Tr, the contribution of the spanwise terms of turbulence transport
(Tr) defined as

∆Tr =−1
2

∂ u′u′v′

∂y
− 1

2
∂w′w′v′

∂y
− 1

2
∂v′v′v′

∂y
. (4.2)

∆Tr is small above the canopy and in the wake of the cubes. However, it is significantly large
in the gap of the cubes. Ignoring these terms will result in a value of Tr being overestimated
or underestimated.

4.7 Chapter summary

Large-eddy simulations (LES) with dynamic Smagorinsky SGS model were performed
to investigate the transport mechanisms of the turbulent kinetic energy within roughness
sublayer.

The local TKE budget is demonstrates the complex behavior of turbulent flow. A peak of
production is observed in the wake of the cube where the strongest shear layer induced by
the presence of the cubic roughness develops. The peak decreases downward as the shear
layer increases. The contribution of production and dissipation which balance each other
are the major contributions to the TKE budget above z/h > 1.5. The turbulent transport
acts as a sink in the shear layer, but as a source above and below. The pressure transport is
significantly large in front of the cube. The advection acts to gain the energy in front of the
cube but to lose energy in the wake. Production shows good agreement with the wind-tunnel
results both above and within the canopy at location P3. The interesting suggestion from the
comparison is that the overestimated absolute value of dissipation may be due to the lower
boundary layer thickness. Besides, the 3D iso-surface visualization of the TKE budget terms
reflects the high spatial variation. High production mainly concentrates on the edges of the
cubes and in the shear layer. Dissipation is mainly in the vicinity of the cube. Advection and
turbulent transport redistribute the energy in the flow and are the major sink in the wake of
the cube. Pressure transport acts as a source in the recirculation area in front of the cube.

Finally, the relevance of ignoring the span-wise gradients when calculating turbulent
transport in the experiment (Blackman et al. 2017) is verified with the present simulation
results. The comparison of the results at location P3 is presented and highlight the contri-
bution of span-wise terms inside the canopy. Neglecting these terms in the LES induces an
underestimation but a better agreement with the wind-tunnel data. The 3D iso-coutour of the
discrepancy provide more insight into the spatial distribution of this difference. The discrep-
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ancy is generally small above the canopy, but much more significant in the gap between the
cubes than in the shear layer.



Chapter 5

Drag-porosity approach: assessment and
suggestions

The scope of this chapter is to assess the drag-porosity approach in the application of
unsteady urban canopy flow modeling. Spatial-averaged statistics such as mean flow, high-
order statistics, TKE budget, and coherent structure are compared to the obstacle resolved
LES simulation results and literature data. Suggestions are given for improving the prediction
performance of the drag-porosity approach.

5.1 Introduction

In recent years, the urban environment has become a prime topic of concern, and increasing
attention has been given to the various environmental problems which occur in urban areas.
Based on current computing power, widely used building-resolved CFD models are only
applicable to street or neighborhood scales and are not possible on a regional or city scale.

For the study of real urban areas, the detailed knowledge of the buildings organization is
unavailable and a drag-porosity approach may be preferable. The drag-porosity approach,
as commonly used for forest canopies (Dupont and Brunet 2008), models the presence of
obstacles and their influence on the turbulent flow by a drag force that depends on averaged
morphological characteristics of the canopy. It has the advantage of reducing the computation
costs and can be applied for example to generate realistic inflow conditions for studies at the
scale of some buildings. The model has been proved to reproduce the turbulence statistics
characteristics within the atmospheric boundary layer (Maché 2010, Rodrigues et al. 2012).
However, still only few LES works exist on the use and efficiency of drag-porosity approach
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to represent the turbulent transfers between urban canopies and atmosphere (Maché 2012).
On the other hand, the flow within the roughness sublayer is very complex and unsteady
with a vortex shedding in the shear layer. These vortical structures cannot be generated in
the drag-porosity approach since obstacles are not explicitly represented. Identifying the
drawbacks in order to improve the accuracy of the drag-porosity approach remain a challenge.

The aim of the present study is to get insights into the main advantages and drawbacks of
the drag-porosity approach. To assess the model performance, turbulent statistics from the
drag approach are compared with those obtained in the same configuration when obstacles
are explicitly accounted for. They will be called DP-LES (drag-porosity LES) and OR-
LES (obstacle resolving LES), respectively. The numerical simulation details including
the governing equations and the simulation configurations are presented in section 5.2.
The comparison results are discussed in section 5.3 and section 5.4. Section 5.5 gives the
suggestions for improving the performance of the drag-porosity model.

5.2 Numerical simulation details

5.2.1 The governing equations

Considering the governing equations of OR-LES (see section 2.2.1), the filtered Navier-Stocks
equations of the DP-LES are written as follow:

∂ ũi

∂xi
= 0 (5.1)

∂ ũi

∂ t
+

∂ ũiũ j

∂x j
=− 1

ρ

∂ p̃
∂xi

+
∂

∂x j
(ν

∂ ũi

∂x j
− τi j)−

Fi

ρ
(5.2)

Where the drag force Fi is introduced here to model the influence of urban canopy in the
drag-porosity approach using equation (5.3), see also section 2.2.1.

Fi =
ρ

2
CD (z)α f ũi |ũ| (5.3)

Here, CD (z) is the drag force coefficient profile (see sec.5.2.2). α f is the volume frontal
density, and in our configuration, α f = 1/3h (equation (1.6)). |ũ|=

√
ũ jũ j where u j is the

velocity component in the jth direction. Hereafter, the (.̃.) symbol is omitted during the
comparison for clarity.



5.2 Numerical simulation details 105

5.2.2 Drag force coefficient

The drag coefficient coefficient (CD) used in the drag-porosity approach can be calculated
from the OR-LES by the following equation:

CD(z) = 2∆p(z)/ρU2(z) (5.4)

where ∆p(z) is the mean of the laterally integrated pressure difference between the front and
back faces of a cube and U(z) is the spatially-averaged streamwise mean velocity (ISA). In
this approach, the viscous drag is omitted. In Leonardi and Castro 2010, the viscous drag
was estimated as 7% of the pressure drag proving the large predominance of pressure drag.

The CD profile from the equation provided by Maché (2012) was optimized in order to
model as closely as possible the mean velocity profile inside the canopy. The equation for
the staggered cube arrays with a 25% plan density is:

CD(z) = 87.121(
z
h
)4 −273.75(

z
h
)3 +300.55(

z
h
)2 −135.15(

z
h
)+22.097 (5.5)
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Figure 5.1 Vertical profile of drag coefficient CD using the equation from Maché (2012) and
extracted from obstacle resolving method, compared to the data from Cheng and Castro
(2002) and Coceal et al. (2006).
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CD extracted from the OR-LES and from the equation provided by Maché (2012) are
hereafter called "CD-resolved" and "CD-Mache", respectively. They are presented and
compared with the CD value from Cheng and Castro (2002) and Coceal et al. (2006) in
Figure 5.1. From the ground up to the height z = 0.4h, rapid decrease CD with the height is
observed in all these data. In the range 0.4h < z < 0.6h, constant values are observed in the
literature. But different behaviors are observed in the "CD-resolved" and "CD-Mache", where
"CD-resolved" decrease with the height and "CD-Mache" slightly increase with the height up
to the height z = 0.8h. Then, all data are forced to zero at the top of the canopy. In general,
the "CD-resolved" has a larger value at the same vertical altitude than the "CD-Mache".

5.2.3 Simulation details

The present work is performed in the software OpenFOAM 2.4.0. Standard Smagorinsky
SGS model (section 2.2.2) with CS = 0.167 is used in the drag-porosity simulation with
"CD-resolved". Dynamic Smagorinsky SGS model (section 2.2.2) is used in the drag-porosity
simulation using "CD-Mache". The drag-porosity LES performed with "CD-Mache" and "CD-
resolved" are called "DP-LESM" and "DP-LESR", respectively. Equations are solved using
second-order implicit linear differencing for the spatial derivatives and second-order implicit
linear backward differencing for the temporal integration as in OR-LES. The computational
domain and boundary conditions are equivalent to the setup in the OR-LES modeling (see Sec.
3.2.1). The mesh used here is uniform (∆ = h/16) in all directions from ground to z = 1.5h,
and the mesh is expended in the vertical direction (see Fig. 5.2). The roughness Reynolds
number Rτ based on the friction velocity and obstacle height is about 577. To ensure the flow
temporal convergence, simulations were run for an initial duration about 200T . Statistics
were collected and averaged over a further duration of 200T for computing flow statistics
and turbulent kinetic energy budget. More simulation details are summarized in Table 5.1.

Table 5.1 Summary of parameters in the comparison

Simulation CD Array type λp SGS CS u∗ Cell number

OR-LES - - Staggered 0.25 DS∗ - - 0.379 28 Millions
DP-LESM CD-Mache Staggered 0.25 DS∗ - - 0.456 2.7 Millions
DP-LESR CD-Resolved Staggered 0.25 S∗∗ 0.167 0.323 1.6 Millions

* Dynamic Smagoinsky is noted as DS
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** Smagoinsky is noted as S, this simulation is performed before the Dynamic Smagoin-
sky model achieved.

Figure 5.2 Vertical view of the mesh generated by the OpenFOAM tool: blockMesh.

5.3 Assessment of the drag-porosity approach

To assess the performance of the drag-porosity approach inside the RSL, the spatial and
temporal averaged statistics from the DP-LESR and DP-LESM are compared to OR-LES
results. In OR-LES, the spatial averaging of the variable is denoted by an operator (⟨..⟩),
which is spatial averaging over an horizontal plane. Both intrinsic and extrinsic spatial
averaging (see section 1.4.1) are performed, they are called OR-LESISA and OR-LESESA,
respectively. For all approaches, ⟨u⟩h is the streamwise velocity averaged in horizontal
direction and time at height z = h, and ⟨u⟩4h is the streamwise velocity averaged in horizontal
direction and time at z = 4h. Friction velocity u∗ (see section 1.4.3) is calculated using
equation (5.6).

u∗ =
√
−⟨u′w′⟩h (5.6)
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5.3.1 First-order statistic

The spatial and temporal averaged streamwise velocity (⟨u⟩) normalized by ⟨u⟩4h resulting
from the drag-porosity LES performed with "CD-Mache" and "CD-resolved" are compared
to the data of ⟨u⟩ using the intrinsic and extrinsic spatial averaging methods from OR-LES
results (Figure 5.3 (a)). The mean velocity profiles of both porosity approaches show a
satisfactory agreement to the obstacle-resolved simulation above the height z = h. Slight
difference is observed between z= 1.5h and z= 3h, where porosity approaches underestimate
the obstacle resolved data. Within the canopy, different flow behavior is observed in porosity
approach. The DP-LESM seems to strongly increase the mean velocity and deviate from
the obstacle-resolved results, while DP-LESR gives a slightly smaller value than the spatial
averaging OR-LES data within the canopy. The reason why ⟨u⟩ from the DP-LESM is higher
is due to the reduced drag coefficient that gives an enhanced mean velocity within the canopy.

Figure 5.3 (b) shows the ⟨u⟩ profile normalized by the mean velocity at the top of the
cubes ⟨u⟩h. Both drag-porosity approaches overestimate the ⟨u⟩ profile of OR-LESESA in the
range of 0.8 < z/h < 1. From the ground up to z = 0.8h, DP-LESM fits the OR-LESISA profile
better than the DP-LESR, but DP-LESR is closer to the OR-LESESA profile than DP-LESM.
However, the shape of the mean velocity profile (and in consequence the vertical velocity
gradients) inside the canopy obtained with CD-Mache shows the best agreement with both
OR-LES data.

In general, the drag-porosity approach models reasonably well the air-flow above the
canopy, but the results inside are poor. The parametrized drag force coming from Maché
(2012) gives the better fit to the intrinsic spatial averaging data inside the canopy.
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Figure 5.3 Vertical profiles of (a) spatial and temporal streamwise mean velocity ⟨u⟩, nor-
malized by ⟨u⟩4h: comparison between drag-porosity LES and obstacle-resolved LES using
intrinsic and extrinsic method. (b) spatial and temporal streamwise mean velocity ⟨u⟩ within
the canopy, normalized by ⟨u⟩h. Porosity CD-resolved (red solid line), porosity CD-Maché
(blue dashed line), obstacle-resolved LES using intrinsic spatial averaging (white circle) and
extrinsic spatial averaging (black dot).

5.3.2 Second-order statistics

The spatial and temporal averaged σu, σu and σw, Reynolds shear stress and TKE are shown
in Figure 5.4.
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Figure 5.4 Vertical profiles of the spatial averaged (a) standard deviation of the streamwise
velocity, ⟨σu⟩; (b) standard deviation of the spanwise velocity ⟨σv⟩; (c) standard deviation of
the vertical velocity ⟨σw⟩; (d) Reynolds shear stress, normalized by u∗; (e) turbulent kinetic
energy (TKE), normalized by u2

∗.

A discontinuity appears in the intrinsic spatial averaging method at z = h because the
average is performed only on fluid regions. The drag-porosity simulations lead to an under-
estimation of ⟨σu⟩ (Figure 5.4 (a)), but agree well at the top of the canopy (0.9 < z/h < 1)
and well above the canopy (z/h > 3). For ⟨σv⟩ (Figure 5.4 (b)) and ⟨σw⟩ (Figure 5.4 (c)),
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above the height z = h, the DP-LESM gives a better fit to the obstacle resolved data than
DP-LESR . Similarly to ⟨σu⟩, lower values of ⟨σv⟩ (Figure 5.4 (b)) and ⟨σw⟩ (Figure 5.4 (c))
are observed in DP-LES inside the canopy. This may be due to the lack of a rigid shape of
the obstacle resulting in a reduction in velocity fluctuations inside the canopy. The TKE from
DP-LESM shows a good agreement in comparison with OR-LES data above z > 2h, and an
underestimated value below (Figure 5.4 (e)).

In general, the second-order turbulence statistics from the drag-porosity approach shows
a closer result to the extrinsic spatial averaging value than the intrinsic spatial averaging
results.

5.3.3 Skewness of the velocity

The spatially averaged skewness of the streamwise (⟨Sku⟩), spanwise (⟨Skv⟩) and vertical
(⟨Skw⟩) velocity components are shown in Figure 5.5.

The first point to note is that the spatially averaged skewness of the spanwise velocity
component (⟨Skv⟩) is almost negligible in the domain (see Figure 5.5 (b)). Above the canopy,
the streamwise velocity skewness (⟨Sku⟩) from DP-LES has a satisfactory agreement with
the results from OR-LES (Figure 5.5 (a)). Inside the canopy, there is a good agreement
of the (⟨Sku⟩) between DP-LESM and the OR-LESISA data in the upper part of the canopy
(0.7 < z/h < 1). But the discrepancy is observed at 0.3 < z/h < 0.7, where DP-LESM

overestimates the ⟨Sku⟩ values. In terms of ⟨Skw⟩, good agreement between the DP-LESM

and intrinsic spatial averaging data is observed from z/h = 0.7 to z/h = 1, but underestimated
⟨Skw⟩ appears in the drag porosity approach in the lower part of the canopy (0.1 < z/h < 0.7).
The underestimated value indicates that the vertical fluctuations is not accurately considered
in the DP-LES simulation. Since there are strong upward and downward flows around the
cube (see Fig. 3.11), the lack of obstacles may reduce the vertical velocity fluctuation inside
the canopy.
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Figure 5.5 Vertical profiles of spatial and temporal averaged (a) skewness of streamwise
velocity component (⟨Sku⟩); (b) skewness of spanwise velocity component (⟨Skv⟩); (c)
skewness of vertical velocity component (⟨Skw⟩).

5.3.4 Energy spectrum

Figure 5.6 shows the spectrum from the DP-LESM added into Fig. 3.10. The simulated
energy spectrum from the from DP-LES matches very well the wind-tunnel data and OR-LES
data in the inertial subrange (−5/3 slope) is accurately captured (Fig. 3.10). After kmaxz′, the
energy of the small scales starts to drop more rapidly in the DP-LES simulation comparing
to the wind-tunnel data and OR-LES data. For low normalized wavenumbers, there is much
lower energy in the DP-LES simulation for kz′ < kminz′, but in general, the deficit of the
energy spectrum is not too significant.
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Figure 5.6 Turbulent spectra of the streamwise velocity component E(kz′) at P2 and z/h =
1.62 from OR-LES (Solid blue line) and from DP-LES (Solid cyan line) compared with
wind-tunnel data (circles) from Castro et al. (2006). The black dash-line represents the -5/3
slope. The red dash-line and magenta dot-dash-line indicate the minimum and maximum
wavenumber resolved in the LES.

5.4 Turbulent structure analysis

To assess the performance of the drag-porosity approach, the turbulent structure is discussed
in this section. The DP-LES analyzed in this section only refers to the simulation performed
with "CD-Mache" (DP-LESM).

5.4.1 Turbulent kinetic energy budget

The spatial averaged turbulent kinetic energy (TKE) budget of DP-LES writes here from Eqs.
5.1 and 5.2), which are modified from the filtered Navier-Stokes equations of OR-LES:
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where A represents advection by the mean flow, P is the production by shear, Tr is the
transport by resolved velocity fluctuation, Tp is the transport by pressure fluctuation, Dν is
the viscous diffusion, εr is the resolved dissipation, Tsgs is the SGS transport, εsgs is the SGS
dissipation, which represents the transfer of energy from resolved to subgrid scales trough
the cut-off, and εF is the drag force dissipation. All these contributions to the TKE budget
are directly computed from simulation results. Each component of the TKE budget, used the
same proceduce as in section 4.2, and then are spatially averaged over horizontal planes.

Spatial-averaged TKE budget results

Since the drag-porosity approach give a better fit to the intrinsic spatial averaging method in
the skewness analysis, Figure 5.7 present the spatially-averaged TKE budget from OR-LESISA

(Fig. 5.7 (a)) and the comparison with DP-LESM (Fig 5.7 (b)).
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Figure 5.7 Vertical profiles of spatial averaged TKE budget terms normalized by u3
τ/h, (a)

OR-LESISA and (b) DP-LESM.

Figure 5.7 (a) shows that the production and dissipation balance above z = 3h. A rather
sharp peak of production is observed at height z = h. The Advection term, of negative
sign at z = h, shows a similar sign as at P1 (Fig. 4.15). The pressure transport is, with the
space-average, nearly zero at z = h.

After comparison, the TKE budget terms from OR-LESISA and DP-LESM present similar
features: the balance between production and dissipation above z = 3h, and a production
larger than the dissipation in the range h < z < 3h. Additionally, the productions from the
two approaches are similar above z = 2h. Dissipation which includes εF in the porosity
approach, shows a good agreement with the OR-LES within the canopy. This indicates that
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the drag porosity approach reproduces well the TKE dissipation within the canopy and the
TKE production well above the top of the canopy.

However, the drag porosity approach completely underestimates the dissipation from
z = h to z = 3h, and the peak value of dissipation and production at the roof level. These
differences may be due to the poor reproduction of the shear layer developed on the top of
the cube in the DP-LES simulation. According to Blackman et al. (2017), the shear layer
above the urban canopy can produce and dissipate TKE. Comparing to the OR-LES results,
the pressure transport term in the DP-LES simulation is reversed but also negligible. The
overall trend of turbulent transport is very similar, except for the underestimated peaks at
the top of the canopy and the positive values within the canopy. It can also be noted that in
the DP-LES, the advection term is almost non-existent. This agrees with the OR-LES results
well above the top of the canopy, but lead to an underestimation of the negative value at the
roof level.

5.4.2 Quadrant analysis

The quadrant analysis technique (Coceal et al. 2007b) considers the frequency of occurrence
and contribution of the velocity fluctuations to the shear stress u′w′ . Contributions to shear
stress can be separated in four quadrants:

Q1 : u
′
> o,w

′
> 0

Q2 : u
′
< o,w

′
> 0

Q3 : u
′
< o,w

′
< 0

Q4 : u
′
> o,w

′
< 0

(5.8)

where Q2 events indicates the transport of low momentum fluid upwards through an ejection
process, and Q4 (is linked to the transport of high-momentum fluid downwards by means of
sweep events.

Figure 5.8 shows the relative number of each event and the relative contribution to the
Reynolds stress u′w′ for the DP-LES compared to the DNS data from Coceal et al. (2007b)
as a function of height. Since the enormous computational cost in the simulation, there is no
available data for quadrant analysis in the OR-LES simulation.

Q1 and Q3 events are less significant than the Q2 and Q4 events since the former two are
rare and contribute little to the shear stress (Figure 5.8). Above the canopy, the contribution
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of Q3 and Q4 events are in satisfactory agreement with the DNS data (Figure 5.8 (b)). There
is less contribution of the sweep events (Q4) to the Reynolds stress compared to the ejection
events (Q2) above the canopy, but the opposite is observed inside the canopy. This agrees
with the DNS data and the conclusions of Raupach (1981) that Q4 events contribute most of
the shear stress near the rough surface. However, the DP-LES simulation underestimates the
number and contribution of Q1 both above and within the canopy, Q2 events are overestimated
in both number and contribution plots (Figure 5.8). Besides, the cross over point between
the mainly sweep and mainly ejection contribution is at around z = 1.2h in the DP-LES
simulation, which is slightly lower than in DNS (at z = 1.25h). It is worth noting that there
is more sweep events than the ejection events well above the canopy in the DNS results, but
it is not reproduced by the DP-LES simulation. These results are consistent with the finding
that in the canopy, fewer but more energetic sweep events dominate the contribution to u′w′

(Finnigan 2000, Coceal et al. 2007b).
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Figure 5.8 (a) Relative number of events in each quadrant as a function of height. (b) Relative
contribution to u′w′ of events in each quadrant as a function of height. Blue: Q1; Red: Q2;
Green: Q3; Yellow: Q4. Points: DNS from Coceal et al. (2007b); dashed line: DP-LES data.

5.4.3 Low-momentum regions

Other large-scale structures in turbulence are the low-momentum regions (LMRs). Then are
defined as the regions where the instantaneous flow velocity is below a certain percentage for
the local averaged velocity (Coceal et al. 2007b).

Figure 5.9 shows the contours of the streamwise velocity fluctuation u′ at z = 1.5h
and z = 2h above the cubes from DNS results (Coceal et al. 2007b). The white regions
correspond to areas where u′ is greater than 20% of the local mean average and the black
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regions correspond to areas where u′ is less than 20% of this averaged value. The low velocity
streaks (the black regions) are elongated in the streamwise direction. They are more LMRs
observed near the canopy (Fig. 5.9 (left)) than above (Fig. 5.9 (right)).

Figure 5.9 Instantaneous snapshot showing contour plots of streamwise velocity at two
altitudes: z = 1.5h (left) and z = 2h (right) from Coceal et al. (2007b). Black regions:
u < 0.8u. White regions: u > 1.2u. Here u is the local mean velocity.



118 Chapter 5. Drag-porosity approach: assessment and suggestions

(a)

x/h

y/h

(b)

x/h

y/h

(c)

x/h

y/h

(d)

x/h

y/h 

Figure 5.10 Instantaneous snapshot showing contour plots of streamwise velocity at different
altitudes: a) z = 1.5h, b) z = 2h, c) z = 3h and d) z = 4h of the OR-LES result. Blue regions:
u < 0.8u. Red regions: u > 1.2u. Here u is the local mean velocity.

Figure 5.10 shows the instantaneous visualization of LMRs on the horizontal plane at
four different altitudes above the canopy from the OR-LES simulation. The red regions
correspond to areas where u′ is greater than 20% of the local average and the blue regions
correspond to areas where u′ is less than 20% of the average value. The low velocity streaks
(the blue regions) are elongated in the streamwise direction in agreement with the DNS
data. There are numerous LMRs observed near the canopy height, and the number of LMRs
streaks is generally reducing with the higher altitude. The length of LMRs streaks in the
spanwise direction Ly increases with the higher altitude from Ly = 2h (Figure 5.10 (a)) to
Ly = 4h (Figure 5.10 (c)). The high velocity streaks occupy more space and are much more
numerous in the OR-LES simulation than the DNS results (Figure 5.9).
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Figure 5.11 Instantaneous snapshot showing contour plots of streamwise velocity at different
altitudes: a) z = 1.5h, b) z = 2h, c) z = 3h and d) z = 4h of the DP-LES result. Blue regions:
u < 0.8u. Red regions: u > 1.2u. Here u is the local mean velocity.

Figure 5.11 shows the instantaneous visualization of LMRs at four different altitudes
above the canopy from DP-LES.The LMRs streaks elongated along the streamwise direction
are observed in the DP-LES simulation, but they are much thicker LMRs compared to the
OR-LES and DNS data at the near roof level with Ly = 3h (Figure 5.11 (a)). The LMRs are
less thick in OR-LES simulation due to the staggered arrangement of the cubes changing
the direction of the flow and reducing the magnitude of streamwise velocity, resulting in the
separation of the LMRs streaks. In addition, the high velocity streaks are less presented in
the DP-LES in agree with the data of the DNS (Coceal et al. 2007b) (see Figure 5.11 (a)).
The high velocity streaks in the DP-LES starts to disappear from the height z = 3h (Figure
5.11 (c)), while in the OR-LES simulation is z > 4h (Figure 5.10 (d)).
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5.4.4 Two-point correlation

The two-point correlation (section 1.4.5) of the streamwise velocity component (Ruu) from
the drag-porosity simulation at the reference location z = 1.5h and z = 3h, are presented and
compared with the wind-tunnel experiment data from Rivet (2014) in Figure 5.12. In the
plot, we set a correlation level equal to 0.7 in the DP-LES data to compare the size of the
turbulent structures of the different studies.

Compared to the results of Rivet (2014), the Ruu spatial correlation maps also highlight
the presence of elongated structure, the streamwise dimension Lx increases with altitude in
agreement with the wind tunnel data.

At z = 1.5h, the turbulent structure in the DP-LES has the maximum streamwise dimen-
sion Lx = 2h which is smaller than the maximum Lx = 3h obtained in the wind tunnel. The
same result is found at height z = 3h, where the maximum streamwise dimension Lx = 4h in
the wind tunnel is much larger than the maximum value in the DP-LES (Lx = 3h). This is
probably due to the fact that in the work of Rivet (2014), the wind tunnel develops a boundary
layer δ = 19.5h much larger than the δ = 8h in the DP-LES.
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Figure 5.12 Two-point correlation plot in the XY plot from the wind-tunnel experiment from
Rivet (2014). (a) and (c) from the DP-LES simulation; (b) and (d) from Rivet (2014). (a) and
(b) at z = 1.5h; (c) and (d) at z = 3h.

5.5 Suggestion for improving the drag-porosity approach

5.5.1 Separately model the features in the near-surface region

The major drawback of the drag-porosity approach is mainly related to the underestimation
of the statistics moments inside the canopy. Indeed, it has been shown that even if the mean
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behavior is correctly predicted and a good agreement is found for the Reynolds shear stress
inside the canopy, high-order statistics such as the standard deviation of velocity as well as
TKE budget remains underestimated.

As the opinion in Coceal et al. (2006), the flow in staggered configuration cubes is
diverted laterally because of the staggered cubes in adjacent rows and speeds up in the
gap, leading to greater pressure on the front face of the cubes. However, this enhanced
pressure effect can not be captured in the drag-porosity approach. Therefore, the model
should separately consider the near-wall flow features and this effect should be added into
the model.

5.5.2 Spatial averaging methods

The local features is impossible to be captured in the drag-porosity approach, and the only
way to compare the turbulence statistics is spatial averaging. The method for generating
a spatial averaging value in obstacle resolved LES depends on whether one consider the
solid volume. It has been shown that the difference between the two averaging methods is
mainly inside the canopy. Although these two methods provide good results for comparing
the DP-LES results, it still needs to choose a reasonable way to validate the drag-porosity
statistics. Indeed, the intrinsic spatial averaging gives the better results in the mean flow and
skewness, but the extrinsic spatial averaging in the second-order statistics is closer to the
drag porosity data.

5.5.3 Add drag profile above the canopy

Currently, the CD profile is only used within the urban canopy. According to the results of
the TKE budget, the underestimated dissipation above the canopy indicates that the lack of
obstacles leads to the lack of a strong shear layer above the canopy, which in turn leads to the
underestimation of dissipation and production of TKE. Therefore, the drag coefficient should
be added to z = 1.5h above the canopy to simulate the effects by the strong shear layer.

5.6 Conclusions

The spatially and temporal averaged mean velocity profiles, second-order statistics profiles
and skewness data from the drag-porosity approach are compared with the obstacle-resolving
results in this chapter. Good agreement in these statistics is observed above the canopy.
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This good agreement achieved between the OR-LES and the DP-LES shows the possibility
to use drag-porosity approach to generate mean flow characteristics in the urban canopy
applications. The DP-LES using the CD profiles provided by Maché (2012) gives a better
fit to the intrinsic spatial averaging OR-LES data than using CD profiles from obstacle-
resolving method. Besides, the energy spectrum is presented in this chapter to demonstrate
the performance of the present drag-porosity approach is able to capture the energy transfer
in the inertial sub-range.

From the analysis of the spatially averaged TKE budget, the TKE terms differ greatly
in obstacle resolved method compared to the drag-porosity approach. Although the TKE
budget of the drag-porosity approach leads to a correct representation of production above
z = h, it differs from the obstacle-resolved simulation is observed below the top of cubes.
As for dissipation, good agreement is observed inside the canopy, but the sharp change at
the roof the canopy and the value above are underestimated. Additionally, discrepancies
concerning the lack of the reversed sign of pressure transport and the almost null advection
need to be further considered.

In the coherent structure analysis, underestimated Q2 and overestimated Q1 and Q3
events are observed inside the canopy. The elongated streamwise LMRs is clearly shown
in the drag porosity approach, but much thicker in the spanwise direction at the roof level.
Finally, a satisfactory agreement of the streamwise velocity fluctuation correlation Ruu from
DP-LES was observed compared to the wind tunnel data.

Finally, there are still certain discrepancies observed inside the canopy. This discrepancies
indicate that the understanding about the drag force approach is still not enough. Therefore,
a more in-depth study of the characteristic of the drag porosity approach such as the proper
orthogonal decomposition (POD) is needed to provide more suggestion for improving the
performance of this model, especially within the canopy.
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Conclusions and perspectives

The high fidelity of numerical simulations will help to obtain better predictions results for
the analysis of unsteady turbulence in urban environments. At the same time, the study
of the dynamic characteristics of turbulence in the city area also helps to understand the
formation and transport mechanism of turbulent kinetic energy, and it will be of great help to
the research of pollutant dispersion and coherent structures.

6.1 Main results and achievements

Implementation of a dynamic Smagorinsky model in OpenFOAM

In LES, the very common Smagorinsky eddy-viscosity model used a prescribed value to
model the subgrid-scale dissipation. This parameterization process does not allow obtaining
model coefficients that can be locally changed like in a dynamic model. However, the
existing dynamic Smagorinsky model in OpenFOAM used a horizontal average to compute
the parameter. In this work, the dynamic Smagorinsky model implemented maintains the
local features.

The method is not limited to the case of having a homogeneous flow and is easily applied
to complex geometries and unsteady flows. In order to be able to implement the model
with minimal computational instabilities, we considered Calmet and Magnaudet. (1997)’s
suggestion that the local total viscosity is set to a non-negative value to keep the simulation
stable.
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LES validation

The achievement of the present LES model in the field of the large-scale urban canopy opened
the perspectives of improving the numerical applications. In the current work, LES using the
dynamic Smagorinsky SGS model were performed with a refined mesh able to resolve the
flow in the viscous sublayer. Such fine meshes are rarely reported in literature.

The LES code is firstly assessed in comparison with the data from DNS (Coceal et al.
2006) and wind-tunnel (Castro et al. 2006, Blackman and Perret 2016, Blackman et al. 2017
and Herpin et al. 2018). The investigation on the mean flow illustrates the inhomogeneous
characteristic of the flow inside the urban boundary layer. The maximum simulated Reynolds
shear stress is slightly above the top of the cube, but in magnitude smaller than the experimen-
tal data. Standard deviations of the streamwise and vertical velocity component match well
with the wind-tunnel data above the canopy. The standard deviation of the span-wise velocity
component is in rather good agreement with the wind-tunnel data from Herpin et al. (2018)
above and inside the canopy top. However, it is significantly smaller than the experimental
data of Castro et al. 2006, but larger than the experimental data of Blackman et al. (2017).
This is mainly explained by the measurements and simulation resolution difference or the
difference in h/δ ratio. The skewness shows that sweep events mainly occur inside the
canopy, and ejection events contribute more above the canopy. The energy spectra confirm
the existence of inertial subrange and the limitations by the computational domain and mesh
resolution. On the other hand, the Q-criterion analysis confirmed that the present mesh
resolution is fine enough to capture the vortex structures of the flow. This finding highlights
in particular the need to consider the three-dimensionality of the flow.

TKE budgets and its 3D structure

Each term of the local TKE budget is computed in this work allowing to describe the complex
behavior of turbulent flow. A peak of production is observed in the wake of the cube where
the shear layer induced by the presence of the cubic roughness is the strongest. The peak
decreases downwind as the shear layer increases. The production and dissipation are major
contributions to the TKE budget above z/h > 2, and are nearly in equilibrium. The turbulence
transport acts as a sink in the shear layer, but a source above and below. The pressure transport
is significant in front the cube. Advection is a source of energy in front of the cube, but a
sink in the wake. Production shows good agreement with the wind-tunnel results both above
and within the canopy at location P3. The 3D iso-surface visualization of the TKE budget
reflects the spatial variation of TKE terms. High production mainly concentrates on the
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edges of the cubes and in the shear layer. This high production is transferred by the turbulent
transport upward and downward. A strong pressure transport acts as a source in front of the
cube where the incoming flow is impinging on the cubes. Advection acts as a sink near the
high production region. The negative advection in the wake can be explained by the positive
streamwise gradient of TKE and positive streamwise velocity. Dissipation is mainly in the
near-wall regions. High dissipation is also observed the shear layer.

Finally, the feasibility of ignoring the span-wise gradients when calculating turbulent
transport in experiment (Blackman et al. 2017) is verified with the present simulation results.
The comparison of the results at location P3 highlights the contribution of span-wise terms
inside the canopy. Underestimated turbulent transport is observed inside the canopy and
shows a good agreement with the wind-tunnel data. 3D structures provide more insight into
the spatial distribution of discrepancies, the largest are observed in the spanwise gap between
two cubes cubes.

Drag porosity approach in LES

The drag-porosity approach is performed with LES to verify the capabilities of the proposed
method. Satisfactory results were observed in the spatial and temporal averaged flow
velocity. The good agreement with the obstacle resolved LES shows the ability of the
drag-porosity approach to produce reasonable flow characteristics above the RSL that can be
used to generate the unsteady flow. However, some discrepancies are observed inside the
canopy. Besides, the TKE budgets differ greatly between the drag-porosity approach and
obstacle resolving method. The TKE budget of the drag-porosity approach leads to a correct
representation above z = 2h but differs from the obstacle-resolved simulation below. The
discrepancies concern large lack of dissipation, the reversed sign of pressure transport and the
almost null advection. Therefore, developments are still needed to improve the performance
of the drag-porosity approach to capturing more detailed information, especially inside the
canopy.

6.2 Perspectives

The remarkable performance of the present model made it interesting to continue the research
over urban-like canopy. Further research will be conducted using the present LES model with
the dynamic Smagorinsky SGS model to investigate the effects of configurations of buildings
with more complex geometries, such as various building heights or different packing density.
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Recently, the experimental data have shownthat large-scale coherent structures interact
and influence the small-scale structures in the shear layer through a non-linear interaction
(Blackman and Perret, 2016). Future work could combine with wind-tunnel data to study the
nonlinear transfer relationships between different scale structures. This could help quantify
the uncertainty of the present model. It is also worthwhile to improve the DP-LES simulation.
A more advanced process that can help to eliminate the differences between the OR-LES
simulations and the DP-LES simulations should be analyzed.
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Appendix A

PimpleFOAM Solver

To sum up, the PimpleFOAM algorithm has three layers of loops per time step:

1 w h i l e ( p imple . l oop ( ) )
2 {
3 # i n c l u d e "UEqn .H"
4 / / −−− P r e s s u r e −v e l o c i t y PIMPLE c o r r e c t o r l oop
5 w h i l e ( p imple . c o r r e c t ( ) )
6 {
7 # i n c l u d e " pEqn .H"
8 }
9 i f ( p imple . t u r b C o r r ( ) )

10 {
11 t u r b u l e n c e −> c o r r e c t ( ) ;
12 }
13 }

• The outer pimple.loop() is similar to the SIMPLE loop

• Assemble and solve the velocity equation (UEqn) using the initial guess

• The middle layer is PIMPLE corrector loop (pimple.correct()) similar to PISO
loop , and is responsible for the pressure correction.

• Inner layer is non-orthogonal pressure corrector loop

• Then, the new pressure is used as the initial value to solve pressure equation

• Update the converged solution



138 Chapter A. PimpleFOAM Solver

Start

set initial guess p(n), u(n) and ṁ(n)

construct momentum equation, obtain new velocity u∗

construct pressure correlation equation for p
′

correct p(n),u(n) and ṁ(n) to obtain p(∗),u(∗∗) and ṁ(∗∗)

construct and solve explicitly momentum equation for u∗∗∗

construct pressure correlation equation for p
′′

correct p(∗),u(∗∗∗) and ṁ(∗∗∗) to obtain p(∗∗),u(∗∗∗∗) and ṁ(∗∗∗∗)

corrector steps exceed ? see p(∗)= p(∗∗),u(∗∗) = u(∗∗∗∗)

update the solutions as initial guessconverged ?

set the converged solution time exceeded ?

Stop

Y

N

Y

N

Y

N

Figure A.1 Flow chart of the PIMPLE algorithm



Appendix B

Dynamic Smagorinsky SGS model

In this work, the dynamic Smagorinsky SGS model is implemented in OpenFOAM©2.4.0.
As suggested by Lilly (1992), the dynamic coefficient C is computed at each time step and
each computational cell using least-squares method, the code is:

1 v o l S c a l a r F i e l d dynamicSmagor insky : : cD
2 (
3 c o n s t volSymmTensorFie ld& D
4 ) c o n s t
5 {
6 c o n s t volSymmTensorFie ld MM
7 (
8 s q r ( d e l t a ( ) ) * ( f i l t e r _ ( mag (D) * (D) ) − 4*mag ( f i l t e r _ (D)

) * f i l t e r _ (D) )
9 ) ;

10

11 v o l S c a l a r F i e l d MMMM = ( magSqr (MM) ) ;
12

13 tmp<volSymmTensorFie ld > LL =
14 dev ( f i l t e r _ ( s q r (U( ) ) ) − ( s q r ( f i l t e r _ (U( ) ) ) ) ) ;
15

16 MMMM. max (VSMALL) ;
17

18 r e t u r n ( 0 . 5 * ( LL && MM) /MMMM) ;
19

20 }
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However, the dynamic procedure may locally induce large negative values of the model
coefficient C (see Figure 2.2), giving rise to numerical instabilities. In order to avoid this
problem, the total viscosity (ν +νsgs) is forced to be locally a non-negative value, the code
in OpenFOAM©2.4.0 as follows, where the kinematic viscosity ν = 1.58 * 0.00001.

1 {
2 nuSgs_ = cD (D) * s q r ( d e l t a ( ) ) * s q r t (2 * magSqr (D) ) ;
3

4 f o r ( Foam : : l a b e l i =0 ; i <nuSgs_ . s i z e ( ) ; i ++)
5 i f ( nuSgs_ [ i ] < − 1 . 5 8 * 0 . 0 0 0 0 1 )
6 {
7 / / −−k i n e m a t i c v i s c o s i t y = 1 . 5 8 * 0 .00001
8 nuSgs_ [ i ] = − 1 . 5 8 * 0 . 0 0 0 0 1 ;
9 }

10

11 nuSgs_ . c o r r e c t B o u n d a r y C o n d i t i o n s ( ) ;
12 }
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