Restauration d'images Satellitaires par des techniques de filtrage statistique non linéaire

par Bassel Marhaba

Thèse de doctorat en Automatique, Génie informatique, Traitement du signal et des Images

Sous la direction de Mourad Zribi.

Soutenue le 21-11-2018

à Littoral , dans le cadre de École doctorale Sciences pour l'Ingénieur (Lille) , en partenariat avec Laboratoire d'informatique, signal et image de la Côte d'Opale (Calais, Pas de Calais) (équipe de recherche) et de Laboratoire d'Informatique Signal et Image de la Côte d'Opale / LISIC (laboratoire) .

Le président du jury était Christine Fernandez-Maloigne.

Le jury était composé de Abdelmalik Taleb-Ahmed, Ayman Al Falou.

Les rapporteurs étaient Yassine Ruichek, Stéphane Derrode.


  • Résumé

    Le traitement des images satellitaires est considéré comme l'un des domaines les plus intéressants dans les domaines de traitement d'images numériques. Les images satellitaires peuvent être dégradées pour plusieurs raisons, notamment les mouvements des satellites, les conditions météorologiques, la dispersion et d'autres facteurs. Plusieurs méthodes d'amélioration et de restauration des images satellitaires ont été étudiées et développées dans la littérature. Les travaux présentés dans cette thèse se concentrent sur la restauration des images satellitaires par des techniques de filtrage statistique non linéaire. Dans un premier temps, nous avons proposé une nouvelle méthode pour restaurer les images satellitaires en combinant les techniques de restauration aveugle et non aveugle. La raison de cette combinaison est d'exploiter les avantages de chaque technique utilisée. Dans un deuxième temps, de nouveaux algorithmes statistiques de restauration d'images basés sur les filtres non linéaires et l'estimation non paramétrique de densité multivariée ont été proposés. L'estimation non paramétrique de la densité à postériori est utilisée dans l'étape de ré-échantillonnage du filtre Bayésien bootstrap pour résoudre le problème de la perte de diversité dans le système de particules. Enfin, nous avons introduit une nouvelle méthode de la combinaison hybride pour la restauration des images basée sur la transformée en ondelettes discrète (TOD) et les algorithmes proposés à l'étape deux, et nos avons prouvé que les performances de la méthode combinée sont meilleures que les performances de l'approche TOD pour la réduction du bruit dans les images satellitaires dégradées.

  • Titre traduit

    Satellite image restoration by nonlinear statistical filtering techniques


  • Résumé

    Satellite image processing is considered one of the more interesting areas in the fields of digital image processing. Satellite images are subject to be degraded due to several reasons, satellite movements, weather, scattering, and other factors. Several methods for satellite image enhancement and restoration have been studied and developed in the literature. The work presented in this thesis, is focused on satellite image restoration by nonlinear statistical filtering techniques. At the first step, we proposed a novel method to restore satellite images using a combination between blind and non-blind restoration techniques. The reason for this combination is to exploit the advantages of each technique used. In the second step, novel statistical image restoration algorithms based on nonlinear filters and the nonparametric multivariate density estimation have been proposed. The nonparametric multivariate density estimation of posterior density is used in the resampling step of the Bayesian bootstrap filter to resolve the problem of loss of diversity among the particles. Finally, we have introduced a new hybrid combination method for image restoration based on the discrete wavelet transform (DWT) and the proposed algorithms in step two, and, we have proved that the performance of the combined method is better than the performance of the DWT approach in the reduction of noise in degraded satellite images.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université du Littoral-Côte d'Opale (Dunkerque, Nord). SCD.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.