The role of Mg-Al hydrotalcite derived mixed oxides as catalytic support materials : Applications in the transesterification of vegetable oils for biodiesel production and in the steam reforming of glycerol for hydrogen production

par Eliane Dahdah

Thèse de doctorat en Chimie

Sous la direction de Edmond Abi Aad et de Samer Aouad.

Soutenue le 17-12-2018

à Littoral en cotutelle avec l'Université de Balamand (Tripoli, Liban) , dans le cadre de École doctorale Sciences de la matière, du rayonnement et de l'environnement (Villeneuve d'Ascq, Nord) , en partenariat avec Unité de chimie environnementale et interactions sur le vivant (laboratoire) , Conseil National de la Recherche scientifique (Liban) (financeur) , Unité de chimie environnementale et interactions sur le vivant / UCEIV (laboratoire) et de Projet E2D2 (Financeur) .

Le président du jury était Mouïn Hamzé.

Le jury était composé de Jean-Luc Blin, Madona Labaki, Jane Estephane, Cédric Gennequin, Nancy Zgheib.

Les rapporteurs étaient Jean-Luc Blin, Madona Labaki.

  • Titre traduit

    Le rôle des oxydes mixtes Mg-Al préparés par voie hydrotalcite comme supports catalytiques : Applications dans la transestérification d'huiles végétales pour la production de biodiesel et le vaporeformatage du glycérol pour la production d'hydrogène


  • Résumé

    Ce travail vise à étudier la transestérification de l'huile de tournesol pour la production de biodiesel et le vaporeformage du glycérol pour la production d'hydrogène renouvelable. Les oxydes mixtes Mg-Al prépares par voie hydrotalcite ont été choisis comme supports catalytiques. Pour la production de biodiesel, les effets du traitement thermique et de la méthode de préparation pour l'incorporation de calcium ont été étudiés. Le catalyseur Ca600/Mg₄Al₂HT calciné à 600°C, préparé par imprégnation de 40 wt% de Ca sur le support Mg₄Al₂ non calciné, a montré les meilleures performances catalytiques en raison de ses propriétés basiques améliorées. Pour le vaporeformage catalytique du glycérol, l'activité des oxydes de métaux purs imprégnés par le Ni a d'abord été étudiée, puisque les oxydes de métaux purs sont souvent utilisés comme supports catalytiques. Le catalyseur Ni/ZrO₂ s'est révélé le plus efficace pour la production d'hydrogène. Pour le vaporeformage du glycérol en présence d'oxydes mixtes obtenus par voie hydrotalcite, les catalyseurs au Ru-Mg-Al ont été étudiés. L'effet de la méthode de préparation (imprégnation ou greffage) sur l'activité catalytique a été étudié. Le catalyseur préparé par imprégnation permettait une plus grande accessibilité à la phase active. Pour des catalyseurs Ni-Mg-Al, les supports ont été modifiés par du lanthane. Le catalyseur Ni/Mg₆Al₁.₆La₀.₄ était le plus performant en raison de sa basicité accrue et de son interaction métal-support. Les activités des catalyseurs Ni/ZrO₂ et Ni/Mg₆Al₁.₆La₀.₄ ont été comparées. Les deux catalyseurs ont produit des rendements en hydrogène similaires. Moins de coke a été produit sur le catalyseur préparé par voie hydrotalcite, en raison de sa basicité supérieure. Un test de stabilité à 600°C a montré la désactivation du catalyseur Ni/Mg₆Al₁.₆La₀.₄ après 6 heures. Lors de l'optimisation des conditions de réaction sur le catalyseur Ni/Mg₆Al₁.₆La₀.₄, une amélioration significative de la stabilité a été observée, étendant ainsi sa durée de vie à 24 heures.


  • Résumé

    This work aims to study the transesterification of sunflower oil for biodesel production and the steam reforming of glycerol for renewable hydrogen production. Mg-Al hydrotalcite derived mixed oxides were chosen as catalytic support materials given their known basicity, thermal stability and low cost. Only one active phase was studied for biodiesel production (Ca) and two different active phases (Ru and Ni) for glycerol steam reforming. The various prepared catalysts were characterized by different techniques such as X-Ray Diffraction (XRD), specific surface area determination by BET method, Fourier Transform Infrared Spectroscopy (FTIR), H₂-Temperature Programmed Reduction (H₂-TPR), CO₂-Temperature Programmed Desorption (CO₂-TPD) and Simultaneous Thermogravimetric-Differential Scanning Calorimetry (TG-DSC). For biodiesel production, the effects of thermal treatment and the preparation method for Ca incorporation were both studied. The catalyst that showed the best catalytic performance was an uncalcined Mg₄Al₂ support impregnated with 40 wt% Ca followed by a calcination at 600°C (Ca/600Mg₄Al₂HT) due to its enhanced basic properties. After several optimization steps over this catalyst, the optimum conditions for biodiesel synthesis were: a methanol to oil molar ratio of 15:1, a catalyst to oil ratio of 2.5 wt% and a reaction time of 6 hours which gave a FAME yield of 95%. The properties of the produced biodiesel were studied and found to be in good agreement with ASTM (American Society for Testing and Materials) requirements. For the catalytic steam reforming of glycerol, the activity of NI-based pure metal oxides (Ni/CeO₂, Ni/Y₂O₃, Ni/ZrO₂) was first studied as pure metal oxides are commonly used as support materials. The effect of the support was evaluated and the Ni/ZrO₂ catalyst was found to be the most efficient for hydrogen production. To study the effect of the zirconia phase, a tetragonal Ni/ZrO₂ was also prepared. The tetragonal catalyst was less active for hydrogen production compared to the monoclinic catalyst. A stability test at 600°C also showed the desactivation of the tetragonal Ni/ZrO₂ after 6 hours on stream. For the catalytic steam reforming of glycerol using Mg-Al hydrotalcite derived mixed oxides, Ru-based Mg-Al catalysts were first studied. The effect of the preparation method (impregnation vs grafting) on the catalytic activity of Ru-Mg-Al catalysts was studied. The catalyst prepared by the impregnation method resulted in a better catalytic activity than the catalyst prepared by the grafting method as it allowed a higher accessibility of the active phase. For the Ni-based Mg-Al catalysts, the hydrotalcite supports were modified with La to study the effects of promoter addition on catalytic properties and activity. The bimetallic effect (1%Ru-5%Ni) and effect of a higher Ni loading (15 wt%) were also studied. The 5 wt% Ni impregnated on a La modified Mg-Al support (Ni/Mg₆Al₁.₆La₀.₄) catalyst was the most efficient for hydrogen production due to its enhanced basicity and metal-support interaction. The activities of the most efficient catalysts, Ni/ZrO₂ and Ni/Mg₆Al₁.₆La₀.₄, were compared. Both catalysts produced similar hydrogen yields. Differences in glycerol conversion to gaseous products were attributed to a higher formation of liquid by-products over the hydrotalcite support compared to the zirconia support. Nevertheless, less coke was produced over the hydrotalcite catalyst given its higher basicity. A stability test at 600°C showed the desactivation of the Ni/Mg₆Al₁.₆La₀.₄ catalyst after 6 hours on stream. Upon optimization of the reaction conditions on Ni/Mg₆Al₁.₆La₀.₄, a significant improvement in the stability was observed as the catalyst lasted for 24 hours on steam.Therefore, Ni/Mg₆Al₁.₆La₀.₄ could be a promising candidate for industrial application.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université du Littoral-Côte d'Opale (Dunkerque, Nord). SCD.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.