Contribution à l’inspection d’échantillons de fabrication additive métallique par ondes de Rayleigh au moyen d’une méthode ultrasons-laser

par Célia Millon

Thèse de doctorat en Chimie théorique, physique, analytique. Lasers, nanosciences et métrologie

Sous la direction de Anne-Françoise Obaton.

Le président du jury était Patrice Peyre.

Le jury était composé de Nikolay Chigarev, Arnaud Vanhoye.

Les rapporteurs étaient Pascal Aubry, Frédéric Jenot.


  • Résumé

    L’objectif de cette thèse est de contribuer à la détection de défauts dans des pièces réalisées par le procédé de fabrication additive de déposition métallique par laser (DML), en vue d’un contrôle in situ. Le contrôle in situ envisagé porte sur les derniers cordons déposés par le procédé (acier 316L et Inconel 718), pour lesquels des porosités et fissures peuvent apparaître (~ 100 µm). L’inspection est effectuée par méthode ultrasons-laser (UL), c’est-à-dire tout optique et non intrusive (régime thermoélastique). Le procédé DML engendre une microstructure dite à gros grains et des rugosités de surface qui rendent le contrôle ultrasonore plus délicat. En effet, ces caractéristiques microstructurales provoquent la diffusion des ondes élastiques dans le milieu. Ce travail de thèse participe donc à la compréhension de ces phénomènes et de leurs influences pour mieux détecter des défauts subsurfaciques dont les dimensions sont proches des longueurs d’ondes acoustiques. Ainsi, l’inspection en surface a été optimisée par la conception d’un montage optique, permettant de favoriser la génération de l’onde de Rayleigh, par une ligne source laser fine (~200 µm) et présentant des fronts raides. En conséquence, le contenu spectral de l’onde a été augmenté vers les hautes fréquences, c’est-à-dire jusqu’à 10 MHz. La longueur d’onde de Rayleigh (λR) a pu être ainsi diminuée à une valeur proche de celle des défauts recherchés, de l’ordre de 700 µm. Ensuite, les limites de ce dispositif ont été mises en évidence sur des pièces fabriquées par le procédé DML. Ces pièces comportent des défauts usinés, des entailles et des trous génératrice dont les dimensions sont inférieures à λR, leur surfaces est rugueuse (diffraction multiple de l’onde de Rayleigh). Puis, l’inspection de défauts réels subsurfaciques est étudiée. Ces défauts sont créés soit par une variation d’un des paramètres du procédé, le hatch (distance inter-cordon), ou encore par l’utilisation d’une poudre métallique de mauvaise qualité. En dégradant volontairement ces paramètres, les échantillons présentent alors des taux de porosités (Φ) pouvant s’étendre de 0,5% à 10%. Enfin, deux méthodes de corrélations ont été exploitées pour discriminer les taux de porosités : à travers l’étude du degré de ressemblance et l’Analyse en Composantes Principales (ACP). La première méthode, simple et rapide à mettre en œuvre, ne permet cependant pas de distinguer les taux de porosités. En revanche, l’ACP indique qu’il est possible de discriminer tous les défauts. Pour finir, des tests préliminaires ont été effectués afin de montrer qu’il est possible d’effectuer des mesures par méthode UL sur surface rugueuse, tout en conservant un bon rapport signal sur bruit, et ce sans moyenner les signaux, au cours d’un déplacement robotisé.

  • Titre traduit

    Contribution to additive manufacturing metallic sample inspection using Rayleigh wave generated by laser-ultrasonics


  • Résumé

    This thesis contributes to the detection of flaws in laser metal deposition (LMD) additive manufacturing process samples towards an in situ control of the process. The in situ control foreseen concerns the last layers deposited by the process (316L and Inconel 718 steel) for which porosities and cracks may appear (~ 100 µm). The inspection is performed by laser-ultrasonics (LU), an all-optical and non-invasive technic. Experiments are conducted in thermoelastic mode. The LMD process gives rise to coarse grain microstructure and surface roughness, that make the control tricky. Indeed, those characteristics generate scattering elastic waves. Thus, this work contributes to the better comprehension of those phenomena and their effects of the detection on subsurface flaws which dimensions are close to the acoustic wavelength. Surface inspection has been optimized by designing an optical setup, improving the Rayleigh wave generation by using a thin laser line source (~200 µm). Hence, the spectral content has been increased until it reaches 10 MHz, that is to say a wavelength equals to 700 µm (λR). Then, the limits have been brought out through the inspection of LMD samples. Those samples include sided drilled holes and notches which dimensions are less than λR, on rough surface (multiple scattering of Rayleigh wave). Moreover, real subsurface flaws inspections have been studied. The flaws have been created by the instability of one of the process parameter: the hatch (distance between each layer), or by a bad powder quality. By intentionally deteriorating those parameters, the samples, then, have porosity rate (Φ) with ranging from 0.5% to 10%. Finally, two correlation methods have been studied to discriminate porosity rate: through the study of the normalized cross correlation function and by Principal Component Analysis (PCA). The first method, simple and fast to implement, does not allow distinguishing the porosity rates. Nevertheless, the PCA indicates that it is possible to discriminate all the flaws. Finally, preliminary tests have been carried out to show that LU measurements is feasible on rough surfaces, while keeping a good signal-to-noise ratio, without averaging, during an automated displacement.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Conservatoire national des arts et métiers (Paris). Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.