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Abstract

In this thesis, we present the risks posed by Advanced Persistent Threats (APTs) and
propose a two-step approach for recognising when detected attacks are part of one. This
is part of the Akheros solution, a fully autonomous Intrusion Detection System (IDS)
being developed in collaboration by three PhD students. The idea is to use machine
learning to detect unexpected events and check if they present a security risk. The
last part, and the subject of this thesis, is the highlighting of APTs. APT campaigns
are particularly dangerous because they are performed by skilled attackers with a precise
goal and time and money on their side.

We start with the results from the previous part of the Akheros IDS: a list of events,
which can be translated to flows of information, with an indication for events found to
be attacks. We find links between attacks using Information Flow Tracking. To do so,
we create a new taint for each detected attack and propagate it. Whenever a taint is
on the input of an event that is part of another attack, then the two attacks are linked.
However, the links are only potential because the events used are not precise enough,
which leads to erroneously propagated taints. In the case of an undetected attack, no
taint is created for that attack, but the other taints are still propagated as normal so
that previous attack is still linked to the next attack, only skipping the undetected one.

The second step of the approach is to filter out the erroneous links. To do so, we use
a Hidden Markov Model to represent APTs and remove potential attack campaign that
do not fit the model. This is possible because, while each APT is different, they all
go through the same phases, which form the hidden states of our model. The visible
observations are the kind of attacks performed during these phases. In addition, the
results in one phase dictate what the attackers do next, which fits the Markov hypothesis.
The score used to rank potential attack campaign from most likely an APT to least likely
so is based on a customised Viterbi algorithm in order to take into account potentially
undetected attacks.

Keywords: Intrusion Detection System, Advanced Persistent Threat, Information
Flow Tracking, Hidden Markov Model
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Résumé

Dans cette thèse, nous présentons les risques posés par les Menaces Persistantes Avan-
cées (APTs) et proposons une approche en deux temps pour distinguer les attaques qui
en font partie. Ce travail fait partie d’Akheros, un Système de Détection d’Intrusion (IDS)
autonome développé par trois doctorants. L’idée est d’utiliser l’apprentissage machine
pour détecter des évènements inattendus et vérifier s’ils posent un risque de sécurité.
La dernière étape, et le sujet de cette thèse, est de mettre en évidence les APTs. Les
campagnes d’APT sont particulièrement dangereuses car les attaquants sont compétents
et ont un but précis ainsi que du temps et de l’argent.

Nous partons des résultats des parties précédentes d’Akheros : une liste d’évènements
traduisibles en flux d’information et qui indique quand des attaques sont détectées. Nous
faisons ressortir les liens entre attaques en utilisant le Suivi de Flux d’Information : nous
ajoutons une nouvelle teinte pour chaque attaque. Lors de la propagation, si une teinte se
trouve en amont d’un flux qui fait partie d’une attaque, alors les deux attaques sont liées.
Certaines attaques se trouvent liées par erreur car les évènements que nous utilisons ne
sont pas assez précis, d’où l’approche en deux temps. Dans le cas où certaines attaques
ne sont pas détectées, la teinte de cette attaque n’est pas créée, cependant, les autres
teintes sont propagées normalement, et l’attaque précédent l’attaque non détectée sera
liée à l’attaque lui faisant suite.

Le deuxième temps de l’approche est de retirer les liens erronés. Nous utilisons un
Modèle de Markov Caché pour représenter les APTs et retirons les campagnes qui ne
suivent pas le modèle. Ceci fonctionne car les APTs, quoique toutes différentes, passent
par les mêmes phases. Ces phases sont les états cachés du modèle. Les observations
sont les types d’attaques effectuées pendant ces phases. De plus, les actions futures des
attaquants dépendent des résultats de l’action en cours, ce qui satisfait l’hypothèse de
Markov. Le score utilisé pour classer les campagnes potentielles de la plus proche d’une
APT à la plus éloigné est basé sur l’algorithme de Viterbi qui est modifié pour prendre
en compte les attaques non détectées potentielles.

Mots clés : Système de Détection d’Intrusion, Attaque Persistente Avancée, Suivi de
Flux d’Information, Modèle de Markov Caché
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Résumé substantiel

Détection temps réel de Menaces Persistantes
Avancées par Suivi de Flux d’Information et

Modèles de Markov Cachés

Introduction

Les attaques informatiques sont une menace omniprésente qui pèse sur tout système
informatique. Les attaques évoluent en même temps que les systèmes ciblés. Elles peuvent
avoir pour origine de nombreuses raisons telles que des erreurs de programmation ou de
configuration. Il est donc prudent de considérer que tout système informatique est vul-
nérable, et il faut donc essayer de détecter les attaques qu’il subit. Ceci permet d’arrêter
puis d’analyser les attaques afin d’en supprimer la source.

Des Systèmes de Détection d’Intrusion (IDS) sont chargés de détecter ces attaques. Ils
peuvent être classés en deux grandes familles : la recherche de signature et la détection
d’anomalie. Le principe de la recherche de signature est que l’IDS a une base de données
d’attaques, les signatures, et cherche dans le système tout ce qui correspond à une de
ces signatures. C’est le fonctionnement des antivirus. L’intérêt de cette méthode est
qu’elle est efficace pour détecter des attaques déjà connues. Cependant, elle est incapable
de détecter de nouvelles attaques. La méthode peut être adaptée afin de détecter des
variantes d’attaques connues, mais ceci augmente la quantité de faux positifs.

À l’inverse, les IDS basés sur la détection d’anomalie ne connaissent rien des attaques.
Ils ont au contraire un modèle du système à protéger, et recherchent toute déviation
par rapport à ce modèle. L’intérêt de cette approche est qu’elle est capable de détecter
des attaques jusqu’alors inconnues puisque l’IDS ne connait aucune attaque. Cependant,
cette approche a tendance à présenter de nombreux faux positifs car il est très difficile
d’avoir un modèle complet et à jour du système. Du coup, dès que le système exécute
une action légitime mais absente du modèle, cette action est vue comme une attaque.
Bien sûr, il est possible de relâcher le modèle, mais faire ainsi augmente la possibilité
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de faux négatifs puisqu’une attaque qui n’induit qu’une faible déviation par rapport au
modèle ne sera pas détectée.

Ainsi, les deux familles d’IDS doivent faire des compromis entre la détection d’autant
d’attaques possibles tout en limitant le nombre de faux positifs et de faux négatifs. Ces
compromis sont d’autant plus importants qu’un nouveau type d’attaquants est actifs.
Ces attaquants travaillent souvent pour des entités riches et puissantes telles que des
gouvernements ou des multinationales. Leurs campagnes d’attaques sont appelées les
Menaces Persistantes Avancées (APTs) et sont en général motivées par l’espionnage et
le sabotage. Ces attaquants sont doués, et peuvent prendre le temps nécessaire pour
s’assurer de pénétrer leur cible et atteindre leurs objectifs.

Les caractéristiques principales des APTs sont le fait que les attaquants sont doués
et que l’attaque est motivée par un but précis et donc ciblée. Contrairement à une
attaque opportuniste où l’attaquant cherche un nombre limité de vulnérabilités dans un
grand nombre de cibles, les APTs des cibles choisies à l’avance et vont donc prendre le
temps d’analyser chaque cible afin d’y trouver des vulnérabilités pour pouvoir pénétrer
le système. Cette approche est rendue possible par la capacité des attaquants à modifier
des attaques existantes pour éviter leur détection et à développer de nouvelles attaques
utilisant des 0-days, vecteurs jusqu’alors inconnus

Un exemple récent est la campagne Monsoon, durant laquelle les attaquants prenaient
contrôle des machines de leurs victimes avec un mail de phishing. Forcepoint a analysé
la campagne dans [Forcepoint 2016] et a trouvé deux nouvelles familles de malware,
BADNEWS et TINYTYPHON, qui étaient donc indétectable par des IDS à signature.
De plus, ces malwares communiquaient avec leur centre de commande en utilisant des
canaux originaux mais difficile à détecter : les champs de commentaires sur Github, des
sites d’actualités, etc…

Ces campagnes d’attaques sont donc de réelles menaces et leur détection pose de
nouveaux défis. Des idées sont déjà en train d’être développées pour répondre à ces
défis, telles que [Vance 2014 ; Chandran, Hrudya et Poornachandran 2015] qui
se concentrent sur la détection d’attaques inconnues ou [Giura et W. Wang 2012 ;
Sexton, Storlie et Neil 2015] qui tentent détecter des campagnes complètes.

Akheros est une startup créée avec pour but explicite de développer un IDS autonome
capable de détecter des APTs. Afin de pouvoir détecter des attaques inconnues, l’IDS
s’inspire de ceux basés sur la détection d’anomalie et ne connait donc rien des attaques
elles-mêmes. Cependant, pour pouvoir être vraiment autonome, le modèle du système
à protéger n’est pas non plus fourni à l’IDS. Ce développement a été partagé en trois
modules qui s’appuient sur les données fournies par de nombreuses sondes qui observent
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le systèmes à différent niveaux, des appels systèmes aux accès utilisateurs.

Le premier module, chargé de l’apprentissage du système à protéger, est le sujet de
la thèse de Matthieu Hourbracq. Il aborde le problème en utilisant un réseau bayésien
pour modéliser le comportement du système à un moment donné. Cependant, lorsque le
comportement dévie suffisamment du modèle, l’IDS enregistre cette déviation dans un
nouveau modèle. Il crée ainsi autant de modèles que nécessaires, et obtient, par exemple,
que le système suit un premier modèle puis passe à un deuxième modèle, revient au
premier puis par sur un troisième, et ainsi de suite. L’IDS apprend aussi un méta-modèle
qui représente les transitions d’un modèle à l’autre. Armés de tous ces modèles, qui
évoluent avec le temps et les changements dans le système, l’IDS est capable d’identifier
les évènements incongrus, tels que la création d’un nouveau modèle très différent des
autres modèles, ou la transition d’un modèle à un autre à un moment inattendu.

Le deuxième module analyse le danger posé par les évènements incongrus mis en avant
par le premier module. C’est le sujet de la thèse de Mark Angoustures. Ce module
commence par représenter les processus et leurs actions sous forme de graphe afin de
localiser précisément la source de l’incongruité. En effet, même si l’incongruité est due
à une action effectuée par un premier processus, ce processus peut-être le résultat d’un
deuxième processus. Le module va ainsi pouvoir déterminer le processus responsable
de l’incongruité. Il va ensuite analyser l’ensemble des actions de ce processus afin de
déterminer si ce dernier représente un risque pour la sécurité du système et, le cas échéant,
caractériser la nature de ce risque.

Le troisième et dernier module est le sujet de cette thèse. Il est chargé de trouver les
liens, s’ils existent, entre les attaques détectées par le deuxième module. Ceci permet de
retrouver les campagnes d’attaques complètes afin de donner aux défenseurs un maxi-
mum d’information lorsqu’ils doivent répondre à ces attaques. En effet, une attaque peut
sembler bénigne, mais si on s’aperçoit qu’elle fait partie d’une campagne d’attaque plus
étendue, il faudra alors l’analyser avec plus de soin.

Ce rapport de thèse présente donc mes contributions à cet effort. Elles sont au nombres
de trois. La première est l’utilisation du Suivi de Flux d’Information (IFT) afin d’éta-
blir des liens entres attaques potentiellement liées. La deuxième est l’établissement d’un
Modèle de Markov Caché (HMM) représentant les APTs afin de vérifier que les liens
établis par IFT sont raisonnables. Cette partie comprend aussi le développement d’un
score permettant de comparer des chaines de différentes longueur et prenant en compte
les attaques potentiellement non détectées. La troisième contribution est connexe aux
deux premières puisqu’elle consiste à la mise en place d’un outil, Moirai, afin de jouer
des scénarios d’attaque facilement. Ceci permet de tester facilement les deux premières
contribution et permet aussi de comparer différents IDS en rendant le partage de scéna-
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rio aussi simple que possible.

Suivi de Flux d’Information – Trouver les liens entre attaques

Le concept du Suivi de Flux d’Information (IFT) est simple : l’idée est de suivre le
parcours des données au sein d’un système. Les applications sont variées. Par exemple,
on peut imaginer que certaines données ne doivent pas apparaitre sur le réseau. Grâce à
l’IFT, on peut suivre ces données et bloquer toute tentative de les envoyer sur le réseau
sans savoir comment elles pourraient arriver là.

L’IFT peut être implémenté à différents niveaux, chaque niveau ayant des avantages
et des inconvénients. [Suh et al. 2004] propose une implémentation hardware, utilisant
un CPU modifié. Ce CPU est capable de suivre les flux d’information à travers tout le
système et avec une bonne précision. Cependant, les politiques qu’il peut implémenter
sont rigides et le déploiement d’un CPU modifié est compliqué. Au contraire, [Qin et al.
2006] propose une implémentation purement software qui instrumente les binaires. Ce
genre d’approche est plus facile à déployer, mais ne peut pas suivre les flux d’information
entre processus. Le but des deux approches est pour autant similaire puisqu’il s’agit
de bloquer l’utilisation de données entrées par l’utilisateur dans le flux d’exécution des
processus, c’est à dire les attaques du genre dépassement de pile et de tampon.

Nous utilisons une implémentation entre ces deux niveaux : l’IFT est effectué au niveau
de l’OS. Ceci rend possible le suivi des flux entre processus sans pour autant demander
de déployer du matériel spécifique. C’est l’approche proposée par [Enck et al. 2014] qui
l’utilise sous Android pour empêcher l’utilisation de données privée par des applications
non autorisées. [Hauser, Tronel, Reid et al. 2012] étend le suivi des flux au réseau
en modifiant Linux. Ceci permet à un parc de machine de collaborer pour suivre les flux
et ainsi de proposer une politique de sécurité à l’échelle du réseau complet. Cependant,
cette approche n’est pas capable de suivre les flux à l’intérieur d’un processus. Si un
processus a deux entrées de flux, toutes les sorties de ce processus devrons considérer
qu’elles sont un mélange de ces deux flux, même si ce n’est pas effectivement le cas. Ceci
induit des faux positifs. Cependant, nous choisissons quand même de nous positionner à
ce niveau car nous avons besoin de suivre les flux entre processus et les sondes dont nous
disposons déjà nous apportent toutes les informations nécessaires.

Pour nous, le but de l’IFT est d’établir des liens entre attaques. Pour ce faire, nous
suivons donc les flux au niveau des processus, fichiers et sockets. L’idée est de suivre les
données provenant des attaques et de déterminer si les flux propageant ces données font
parties d’autres attaques. Pour ce faire, nous commençons par associer un tag à chaque
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attaque. Ensuite, tous les évènements qui ont été identifiés comme faisant partie d’une
attaque sont traduits en flux d’information et propagent le tag de cette attaque. Les
flux qui ne font pas parties d’attaques propagent les tags qu’ils ont en entrées vers
leurs sorties. Ces tags nous indiquent donc où les données provenant d’attaques sont
dispersées. Finalement, nous établissons des liens entre attaques à chaque fois qu’un flux
d’information faisant partie d’une attaque a, en entrée, des données associées à un tag
d’une autre attaque.

Prenons l’exemple présenté Figure 5.3 page 87. Nous avons une campagne d’APT
comportant quatre attaques sur un serveur web et sa base de donnée. Le but est de
lier ces quatre attaques avec l’IFT. En même temps que cette campagne, le site web
est aussi visité par des utilisateurs normaux et est la cible de deux autres attaques
opportunistes. En effet, les campagnes d’APT pouvant durer des mois, il est probable
que le même système subira d’autres attaques en simultané.

En utilisant l’IFT, nous lions les deux premières attaques de la campagne d’APT
comme présenté Figure 3.5 page 52. Un tag, représenté en bleu, est propagé par le
flux faisant partie de la première attaque. Ce tag est propagé par d’autres flux qui nous
permettent de suivre l’exécution d’un premier script qui va télécharger un deuxième script
caché sous le nom de sshd et qui se connecte à IRC pour attendre des instructions.
L’attaquant explore le système et initie une deuxième attaque, représentée par le tag
rouge. Puisque le flux faisant partie de la deuxième attaque provenait d’une source bleue,
les deux attaques sont considérée comme liées. On continue à propager les différents tags
et on arrive effectivement à lier les quatre attaques qui font partie de cet APT, comme
indiqué Figure 3.6f page 53.

Cependant, on observe aussi que nous avons lié la première attaque de l’APT avec
les deux attaques opportunistes. Ceci est dû aux limitations présentée précédemment.
Dans ce cas précis, les trois attaques ciblent le même processus, le serveur web. Après
la première attaque, ce processus reçoit le tag de cette attaque, et lorsque les autres
attaques sont détectées, elles se retrouvent liées à la première. C’est pour cette raison
que nous filtrons ensuite les liens avec un Modèle de Markov Caché (HMM).

En conclusion, grâce aux sorties des modules précédents d’Akheros, l’IFT est capable
de suivre les flux d’information et de lier les attaques qui font parties d’une même cam-
pagne. Il est intéressant de noter que cette méthode fonctionne quel que soit le temps qui
s’écoule entre les attaques, ce qui est un avantage pour détecter les APTs, qui sont des
campagnes pouvant durer plusieurs mois. Cependant, cette méthode crée aussi des liens
qui n’ont pas lieu d’être. Ces liens sont dûs au manque de précision inhérent au suivi
de flux d’information au niveau de l’OS. Le niveau OS est le bon niveau pour pouvoir
suivre les flux qui nous intéressent, mais il faut donc, après l’IFT, filtrer les liens établis
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afin d’éliminer ceux qui sont erronés.

Modèle de Markov Caché – Évaluation des liens

Les Modèles de Markov Cachés sont des modèles stochastiques à deux niveaux. Le
premier niveau est une chaine de Markov, c’est à dire, processus stochastique dont l’état
au moment t ne dépend que de l’état au moment t − 1. Ce processus ne peut pas être
mesuré directement. Le deuxième niveau du modèle de Markov est la partie observable.
Ce niveau comporte une observation pour chaque moment de la chaine, et l’observation au
moment t ne dépend que de l’état au même moment t. Un exemple classique d’application
des HMMs est la détermination des températures d’années non-mesurées en observant
la tailles des cercles de troncs d’arbres pour ces années. Les cercles n’indiquent pas
précisémment si une année était chaude ou froide, mais les années froides ont tendance à
produires des cercles plus petits, et en observant ces cercles, on peut essayer de retrouver
la séquence d’années chaudes et froides.

Formellement, un HMM λ est défini par sa liste de N états S, sa liste de M états O,
la matrice de transition d’états A, la matrice d’observations B et le vecteur initial π. Un
HMM peut être utilisé pour répondre à trois classes de questions. La première est le calcul
du score d’une séquence d’observation pour un modèle donné, c’est à dire savoir si les
observations suivent le modèle. La deuxième est de retrouver la séquence d’états cachés
optimale pour la séquence d’observations mesurées et pour un modèle donné. La troisième
est la détermination du modèle qui correspond à une séquence d’observation. Un certain
nombre d’algorithmes sont disponibles pour répondre à chacune de ces questions.

L’utilisation de HMMs n’est pas une chose nouvelle dans le domaine de la sécurité. Ils
ont déjà servi à obtenir un modèle du système à protéger, tel que dans [Arnes et al.
2006] où les états du HMM représentent l’état du système et les observations sont les
sorties des sondes des IDS. Et ils peuvent aussi servir à modéliser l’attaque, comme dans
[Ourston et al. 2003] où les états représentent les étapes d’une attaque. Dans notre
cas, le HMM est utilisé pour modéliser le scénario d’attaque afin de classer les différentes
chaines d’attaques obtenues par IFT en fonction de leur probabilité d’être effectivement
une APT. C’est à dire que nous voulons répondre à la première question proposée plus
haut : est-ce que la chaine d’observations correspond au modèle ? À la différence près que
nous voulons savoir si la chaine correspond au modèle plus que les autres chaines. Une
fois que nous avons répondu à la première question, la réponse à la deuxième question
permet aux défenseurs humains de réagir de manière appropriée à l’attaque.

Les scores habituels sont construits pour déterminer si une chaine donnée corres-
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pond au modèle mais ne peuvent pas être utilisés pour comparer des chaines de dif-
férentes tailles. Par exemple, le Critère d’Information Bayésien (BIC) est défini par
BIC � ln(L) · k − 2 · ln(L), où L est la longueur de la chaine, k est le nombre de pa-
ramètres du modèle et L est la log-vraisemblance de la chaine : L � ln(P(o , s |λ)) �

ln(P(oL |sL) ·P(sL |sL−1) · · ·P(o1 |s1) ·P(s1)). Si on applique le BIC sur les chaines trouvées
par IFT dans la Figure 3.6f page 53, on se rend compte que le score de la deuxième chaine
est meilleur que celui de la première chaine malgré le fait que cette chaine n’est pas une
APT. Ceci est dû au fait que la chaine est plus courte, et donc la log-vraisemblance est
meilleure.

Nous devons donc trouver un moyen de rendre le score indépendant de la longueur de
la chaine. Pour ce faire, nous commençons par la définition de la log-vraisemblance : L �

ln(P(oL |sL)·P(sL |sL−1) · · ·P(o1 |s1)·P(s1)). On se rend compte qu’on a 2·L multiplications,
et chacun des termes est une probabilité dans les matrices A, B et π. On peut donc
trouver un encadrement pour la log-vraisemblance, et modifier le terme central pour que
les bornes ne dépendent pas de la longueur de la chaine :

2 · L · ln
(
min

i j
(bi j , ai j , πi)

)
≤L ≤ 2 · L · ln

(
max

i j
(bi j , ai j , πi)

)
2 · ln

(
min

i j
(bi j , ai j , πi)

)
≤L

L
≤ 2 · ln

(
max

i j
(bi j , ai j , πi)

)

On utilise donc L
L comme base pour notre score et gardons le fait que le score est positif

et qu’un plus petit score est meilleur. Nous définissons donc notre score comme : S � −L
L .

Comme on peut le voir Figure 4.7 page 71, le score est indépendant de la longueur de
la chaine et est capable de séparer les chaines d’APTs des chaines qui n’en sont pas. Si
on revient aux deux chaines du paragraphe précédent, on obtiens bien un meilleur score
pour la chaine qui représente l’APT et un score plus mauvais pour celle qui n’en est pas
une.

Maintenant que nous avons un score qui permet de comparer des chaines de diffé-
rentes tailles, nous voulons prendre en compte le fait que certaines attaques ne sont pas
forcément détectée. En effet, les attaques effectuées pendant des APTs sont difficile à dé-
tecter. Il est donc raisonnable de penser que certaines passeront inaperçues. En terme de
HMM, cela veut dire que certaines observations seront manquantes, sans que nous sa-
chions à quel moment elles manquent. Nous voulons donc modifier le score pour prendre
en compte ces observations potentiellement manquantes.
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Pour cela, nous commençons par observer que la probabilité de passer de l’état i à
l’état j en sautant un état est P(st+2 � S j |st � Si) �

∑N
k�1 ai ,k · ak , j. Ceci correspond

à l’élément A2[i , j]. Nous observons que la matrice A2 est une matrice de transition,
c’est à dire que chaque élément de la matrice est dans [0, 1] et que chaque ligne somme
à 1. Ceci est vrai pour Ak , ∀k ∈ N. Nous décidons donc d’intégrer ces matrices dans le
calcul de la log-vraisemblance avec un poids décidé par la probabilité p de manquer une
observation. Nous ne pouvons pas intégrer toutes les matrices pour k ∈ N et choisissons
donc de restreindre k à ⟦1, K⟧, où K est choisi de manière arbitraire afin de limiter le
temps de calcul. Le poids associé à la matrice Ak est donc pk−1∑K

n�1 pn−1 . Il est important de
noter que plus k est grand, plus ce poids est petit, et donc le choix de K revient à choisir
la précision voulue pour l’approximation que nous faisons. Si nous notons S(k)

i l’état Si

atteint en k étapes, c’est à dire en manquant k − 1 observation, nous avons donc :

pour i , j ∈ ⟦1,N⟧, k ∈ ⟦1, K⟧, ∀t ,

P(st+1 � S(k)
j |st � Si) � Ak[i , j] ·

pk−1∑K
n�1 pn−1

Nous pouvons utiliser ces probabilités pour calculer une log-vraisemblance qui prend
en compte jusqu’à K − 1 observations manquantes à la suite, notée L(K) et l’intégrer à
notre score, que nous notons donc S(K). Figure 4.8 à Figure 4.16 pages 72–76 montrent
l’évolution de la classification de chaines quand la probabilité p de ne pas détecter une
observation augmente. Nous remarquons que plus p augmente, plus la distinction entre
APT et non-APT diminue. Ceci est dû au fait que plus p augmente, moins le score est
pénalisé lorsqu’il considère des attaques non-détectées. Une chaine non-APT peut donc
être considérée plus facilement comme une APT en rajoutant des étapes manquantes.
Nous avons donc bien un score qui est indépendant de la longueur de la chaine et qui
prend en compte la probabilité de manquer des observations.

Moirai – Un outil pour rejouer des scénarios

Cette troisième contribution ne fait pas directement partie de l’IDS. Cependant, son
élaboration était nécessaire pour pouvoir évaluer les autres contributions. En effet, l’éva-
luation d’IDS passe en général par l’utilisation de jeux de données pré-existants. Cepen-
dant, ces jeux de données deviennent rapidement obsolètes, comme le montre [Małowidzki,
Bereziński et Mazur 2015]. De plus, les jeux de données étant construit indépendam-
ment des IDS, les données qu’ils contiennent ne peuvent pas forcément être utilisées par
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tous les IDS. Par exemple, la plupart des jeux de données sont soit pour IDS qui ob-
servent le réseau ou pour IDS qui observent les hôtes, mais pas pour les deux. Il est donc
compliqué de comparer des IDS différents en utilisant ces jeux de données.

De plus, dans notre cas, nous n’avons pas trouvé de jeux de données permettant de
faire du suivi de flux d’information et comportant des APTs ainsi que d’autres attaques
indépendantes. Nous avons donc créé Moirai. Moirai est un outil qui répond aux problé-
matiques de comparaison d’IDS hétérogènes et qui permet de tenir les jeux de données
à jours. Pour ce faire, Moirai ne crée pas de jeu de données. Moirai se situe un niveau
plus haut et s’occupe de rejouer les scénarios utilisés pour générer les jeux de données.
De plus, une des intentions de Moirai est de faciliter le partage de ces scénarios.

Technologiquement, Moirai est en fait une fine couche au dessus de technologies déjà
existantes. Moirai utilise Vagrant [HashiCorp 2010] pour partager et gérer les machines
virtuelles (VMs) utilisées par les scénarios. Vagrant permet de démarrer chaque scénario
avec des VMs propres et donc de les rejouer à l’identique à chaque fois. Pour se connecter
au VMs et effectuer les actions des scénarios, Moirai utilise soit ssh pour les VMs UNIX
soit Windows Remote Management pour les machines Windows.

Les scénarios eux-mêmes sont définis dans de simples fichiers textes au format INI.
Ces fichiers définissent chaque VM Vagrant ainsi que le timing de chaque action du
scénario. Pour les partager, il suffit donc de partager ce fichier texte ainsi que les logiciels
particuliers installés sur les VMs. Pour ce dernier point, nous recommandons de créer
des VMs template contenant tous les logiciels nécessaires et de les partager via le site
de Vagrant. Pour la personne qui souhaite tester un IDS, il suffit alors de récupérer les
bonnes templates de VMs et de les surcharger en installant l’IDS à tester. Ensuite, il
suffit d’une commande Moirai pour que le scénario se joue.

Cette approche présente plusieurs intérêts. Tout d’abord, l’IDS à tester tourne direc-
tement dans le scénario. Il est donc certain d’avoir toutes les informations dont il a
besoin puisqu’il les collecte lui-même. Cela permet donc de comparer des IDS hétéro-
gènes. L’autre avantage est que les scénarios sont facile à comprendre et à modifier. Si
un scénario utilise des attaques obsolètes, il suffit de modifier le scénario en changeant
ces attaques pour obtenir un scénario à jour. De plus, il est possible d’étendre et de com-
biner des scénarios. Par exemple, si on a deux scénarios avec une campagne d’attaque
chacun, on peut combiner ces scénarios et rajouter des attaques indépendantes. On ob-
tient alors un scénarios plus complexe qui permet de tester les IDS dans des situations
plus difficile à analyser.

L’outil est open source [Akheros 2016a] et deux scénarios sont déjà disponibles
[Akheros 2016b]. Ce sont les scénarios que nous avons utilisés pour tester nos autres
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contributions.

Conclusion

En conclusion, nous avons montré qu’il est possible de trouver les liens entre attaques
afin de reconstruire les campagnes, et en particulier les APTs. Le but indiqué est donc
atteint, mais certaines contraintes ont été relâchées. En particulier, le système n’est pas
complètement autonome puisqu’il nécessite un modèle de campagne d’attaque.

Nous avons présenté trois contributions majeures. Les deux premières contribuent di-
rectement à la détection des campagnes d’attaques tandis que la troisième est nécessaire
pour évaluer les deux autres.

La première contribution est l’application du Suivi de Flux d’Information (IFT) pour
la mise en évidence des liens entre attaques. Nous n’avons pas apporté de modifications
au concept de l’IFT, mais nous démontrons une nouvelle application. Dans nos tests,
l’IFT a toujours été capable de lier les attaques faisant partie de la même campagne.
Malheureusement, l’IFT lie aussi des attaques qui ne font pas partie de la même cam-
pagne, ce qui motive la deuxième contribution. Cette première contribution a été publiée
à NTMS en 2016 : [Brogi et Viet Triem Tong 2016].

La deuxième contribution est l’utilisation d’une Chaine de Markov Cachée (HMM)
pour modéliser les campagnes d’attaques. Cette contribution est utilisée pour classer les
campagnes d’attaques de la plus probablement une APT à la moins probablement une
APT. Ceci permet de filtrer les vrais des faux positifs trouvés par l’IFT. Cette contri-
bution montre donc que les HMMs peuvent être utilisées pour modéliser les campagnes
d’attaques et introduit un score avec deux particularités. La première particularité est
de permettre de comparer des chaines de tailles différentes. Ce besoin est dû au fait que
nous comparons des chaines dont nous ne contrôlons pas la taille afin de les classer, alors
que l’utilisation classique d’un HMM est de comparer une chaine à un ou plusieurs mo-
dèles. Ce qui explique qu’un tel score n’existait pas. La deuxième particularité de notre
score est qu’il prend en compte la possibilité que certaines observations manquent. Nous
avions besoin d’un tel score car la détection des attaques composant les APTs est diffi-
cile et rien ne garantit que toutes les attaques seront détectées. Cette contribution est
en cours de publication au IJSN : [Brogi et Di Bernardino 2018].

La troisième contribution est l’élaboration de Moirai, un outil pour rejouer et partager
des scénarios d’évaluations d’IDS. La création de cet outil s’est révélée nécessaire devant
le manque de jeu de donnée permettant d’évaluer les IDS détectant des APTs. Moirai
permet de définir des scénarios dans un simple ficher texte ce qui les rend facile à par-
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tager. L’IDS a tester tourne directement dans l’environnement qu’il est sensé protéger
et récupère donc toutes les données dont il a besoin. Cette contribution a été publiée
à RESSI en 2017 : [Brogi et Viet Triem Tong 2017]. L’outil lui-même ainsi que les
scénarios que nous avons développés sont disponibles sur Github : [Akheros 2016a ;
Akheros 2016b].

Bien sûr, ces contributions ne sont pas parfaites. Le plus gros défaut concerne l’éva-
luation. Malgré la création de Moirai qui rend le rejeu de scénario trivial, la création
d’un nouveau scénario prend du temps. Nous n’avons qu’un nombre limité de scénario
qui limite donc la qualité de l’évaluation. Nous avons aussi identifié d’autre défauts dans
notre approche. Le premier est que nous n’avons pas traité les faux positifs de l’IFT dans
l’IFT lui-même. En effet, le HMM est là pour classer les chaines trouvées par l’IFT, et
les faux positifs se retrouvent en bas du classement. Cependant, si nous pouvions réduire
les faux-positifs au niveau de l’IFT, cela rendrait certainement le classement produit par
le HMM plus précis. Le deuxième défaut est dans le HMM. Ce dernier est créé au préa-
lable et n’utilise pas les données traitées au fur et à mesure pour s’améliorer. La mise
à jour du modèle doit donc se faire hors-ligne, et demande donc autant de travail que
l’élaboration initiale, ce qui est contraire à notre but d’autonomie de l’IDS. Le troisième
défaut réside dans le score. En effet, celui-ci permet de prendre en compte les données
potentiellement manquante. Les résultats peuvent donc être difficile à interpréter. Dans
le cas où nous supprimons nous même des données, ceci est possible. Mais dans le cas où
nous ne savons pas si des données sont manquantes, l’évaluation requiert, pour chaque
chaine, de regarder à quel endroit le score trouve des données manquantes et d’imaginer
quelles données seraient les plus avantageuses pour interpréter cette chaine comme une
APT.

Face à ces défauts, nous avons identifié des travaux futurs. Le plus gros et le plus
pressant est l’élaboration de nouveaux scénarios, combinant plusieurs APTs. Pour l’ins-
tant, les scénarios existants combinent une APT avec des attaques indépendantes et des
actions légitimes. Nous souhaitons étudier le comportement de notre approche quand
plusieurs APTs sont mêlées. Pour aider dans l’élaboration de ces nouveaux scénarios, il
pourrait être utile, mais pas nécessaire, de rajouter de nouvelles capacités à Moirai. En
particulier, l’outil devrait être capable de mettre en place un spoof d’IP/DNS configu-
rable. Ceci permettra d’intégrer plus facilement de véritable malware qui ne serait pas
forcément configurable.

Un autre point sur lequel nous souhaitons travailler est le traitement des faux positifs
au niveau de l’IFT. L’idée principale est d’utiliser la sortie du HMM afin de supprimer
certaines teintes. Par exemple, si le HMM indique qu’un attaque fait partie d’une APT et
correspond à la phase d’installation de l’outil d’administration à distance de la campagne
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d’attaque, les teintes des phases précédentes de la campagne devraient pouvoir être sup-
primées car les nouvelles attaques devrait logiquement passer par cet outil là. Une autre
possibilité est d’utiliser les chaines qui sont vues comme n’étant pas des APTs, mais il
faut encore trouver une bonne manière d’utiliser cette information.

Dernièrement, nous souhaitons aussi améliorer le HMM en ligne. Une idée serait d’uti-
liser une boucle de retour comprenant un humain : après analyse par un humain d’une
chaine classée par le HMM, celui-ci peut indiquer si le classement est approprié. Le HMM
peut utiliser cette information pour améliorer son modèle. Une autre possibilité à explo-
rer, lorsque le modèle sera capable de s’améliorer en ligne, est l’élaboration d’un modèle
d’HMM par groupe effectuant des APTs. En effet, les rapports sur les APTs identifient les
groupes en regardant les outils utilisés et le parcours de l’APT. Si ces derniers diffèrent
suffisamment d’un groupe à l’autre, il devrait être possible de construire un modèle par
groupe d’attaquant.

De manière général, le travail autour de la détection des APTs ne fait que commencer. Il
y a deux volets principaux sur lequel se concentrer. Le premier est la détection d’attaque
inconnues. De nombreuses attaques sont créées pour éviter la détection par signature, et
si nous voulons être capable de détecter ces attaques, il faut donc se baser sur la détection
d’anomalie. Le problème de la détection d’anomalie est le taux de faux positifs, qui
a tendance à être élevé. Il faut donc élaborer de nouveaux modèles plus précis. Les
récentes avancées de l’apprentissage machine ouvrent de nouvelles pistes, mais ce ne sont
pas les seules pistes à explorer. Le deuxième volet est le cœur de nos contributions :
la reconstruction des scénarios. Ceci est primordial pour la détection des APTs. Cela
permet non seulement de remettre les attaques dans leur contexte, ce qui permet de
mieux évaluer leur impact, mais aussi peut être utilisé avantageusement pour combler
les lacunes dans la détection des attaques individuelles.
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Chapter 1

Introduction

In this chapter, we introduce Advanced Persistent Threats, a new kind
of attack campaign performed by skilled actors. We then present Akheros, the
company where this thesis is taking place, and its solution for detecting these
new threats: a fully autonomous Intrusion Detection System based on machine
learning models. The work is split in three thesis including this one. Lastly, we
detail our contributions to this endeavour: we link already detected and related
attacks together to form potential attack campaigns and then rank those potential
attack campaigns from most probably an APT to least probably an APT.

1.1 Security issues

Information security is an always present concern. Since information systems are
constantly evolving, attacks are also changing and the defense must adapt to the new
information systems to be protected as well as to the new attacks they must be protected
from. Vulnerabilities can stem from a host of reasons, from programming errors, to
configuration errors to inherent language or protocol flaws. As such, it is reasonable
to think that any system is vulnerable all the time, which means that it is necessary to
monitor those systems for signs of attacks. That way, when an attack is found, it can
first be stopped then investigated to find and remove the vulnerability which enabled
the attack.

These security monitoring applications are called Intrusion Detection Systems (IDS),
and there are two main categories. The first kind is based on misuse detection. The idea
is that the IDS knows a list of attacks and will look for telltale signs, raising an alert
when it finds one. This is typically what an antivirus does: it knows a list of viruses
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and looks for them in the files present on the system. This kind of IDS works very
well for already known attacks. However, it suffers from a number of shortcomings.
The first and biggest one is that it cannot detect unknown attacks. If an attack is
not in its database of known attacks, the IDS will never detect it; these attacks that
are not detected are called false negatives: negatives because the IDS does not detect an
attack, false because the IDS should detect an attack. And this works for modifications
of known attacks, though, in this case, the database of known attacks can be made to
match attacks that are close to known attacks. However, by trying to detect variations
of known attacks, the IDS increases the chance of having false positives, i.e. time when
the IDS will raise an alert while there are no attacks. How much of a deviation from
known attacks an IDS can detect becomes a trade-off between false positives and false
negatives. If we want to detect larger deviations, we increase the risk of false positives
while decreasing the risk of false negatives. Note, though, that neither false positives nor
false negatives can ever truly be eliminated.

The second kind of IDS are based on anomaly detection. In contrast with the first kind,
this second kind of IDS knows the system to protect and will raise an alert whenever the
system performs actions it is not supposed to, hence the name anomaly. This means that
these IDS do not need to know anything about the attacks to detect them. However, they
do need a model of the system to be protected, and that model must be updated whenever
the system changes. This second kind of IDS does not escape the false positive and false
negative issue. The model of the protected system cannot fully encompass every single
aspect of the system. There are times, during normal operation, when the system will
deviate from the model. The IDS must allow some deviation from the model to avoid
raising too many false positives, but at the same time, allowing deviations increases the
risk that attacks will not be detected, i.e. false negatives. Once again, there is a trade-off
to be made between the amount of false positives and false negatives that the IDS will
have.

False negatives are bad for obvious reasons. If an attack is not detected, then it will
not be reacted to. However, false positives are bad too. Alerts raised by an IDS are
acted upon by humans. If there are too many false positives, the human operators will
experience alert fatigue and will start ignoring alerts from the IDS. Every single false
positive takes time to investigate. If there are too many false positives, then there may
well be too many alerts and not enough time to investigate them. Either alerts will be
ignored because there is no other choice or more humans operators will be needed. This
phenomenon is compounded by the fact that attacks are actually rare and even with a
low rate of false positives, there could well be more false positives than true positives,
i.e. actual attacks being detected. Imagine a system where the IDS analyses 1000 events
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per hour. If the false positive rate is of 0.1% and there is one attack per day, this means
that in one ten-hour day, the IDS will raise 10 false positive alerts and 1 true positive
alert. In such a situation, the human operators would quickly dismiss every alert from
the IDS without even analysing it.

As we can see, an IDS should be able to detect known and unknown attacks and
must have low enough false positives and false negatives to be useful. The attacks,
however, change every day, with new attack vectors being leveraged all the time. This is
a difficult proposition for the IDS. In addition, a recent development is the apparition
of groups of attackers who are not only highly skilled but working for rich and powerful
entities, such as governments and large corporations. These groups of attackers have skill,
time and money. With their backing, their attacks are usually motivated by political
or economic espionage and sabotage. These new kind of attack campaigns, dubbed
Advanced Persistent Threats (APTs), leave the targeted defenders with little to defend
themselves with.

1.2 Presentation of Advanced Persistent Threats

The main characteristics of an APT is that it is being executed by a group of skilled
attackers backed by a powerful entity, and the attack is a targeted one. Other than that,
it is mostly a normal attack campaign. The attackers will first learn as much as possible
about the system they want to attack. They will find a point of entry and, once inside,
they will explore the system in more details to find their original target. This will usually
entail finding other vulnerable hosts to pivot to so that, little by little, they can get
closer to their goal. Finally, they will reach their goal which can consist of exfiltrating
sensitive data, once or regularly, or interfering with the core process of the system. The
basic phases of the attack campaign are the standard phases of any attack campaign.

What makes these campaigns different is really the attackers themselves. Firstly, they
have very precise goals, decided by the backing entity. This makes the campaign targeted,
and means the attackers will do whatever they can to reach their goal. In contrast, during
opportunistic attacks, the attacker will look for a number of specific vulnerabilities on a
large number of system and exploit those that are vulnerable. By keeping software up
to date, i.e. by patching vulnerabilities as they are discovered, the defender can stave off
the majority of opportunistic attacks. On top of which, having robust in-depth defense
system should catch most of the remaining opportunistic attacks. In the case of APTs,
the attackers are capable of finding new vulnerabilities, called 0-day, and exploit them,
thus patching software, while always a good practice, will not be enough to deter them.
In addition, if the attackers find an already known vulnerability, they can customise an
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exploit so that the IDS protecting the system will not detect it. This makes it really
difficult to protect against APTs using the usual misuse-based and anomaly-based IDS.

A recent example of an APT campaign is the Monsoon campaign, analysed by For-
cepoint in [Forcepoint 2016]. According to the report, the aim of the campaign is espi-
onage. The attackers targeted a number of different industries in China and government
agencies in southern Asia. There are no certainties concerning the initial reconnaissance
phase, but it seems likely that the attackers either had a list of targets or a list of themes
and regions and established the list of targets themselves. Then, for each target, they
would send a customised phishing email containing news concerning topics of interests
to the victim. This phishing email also contained a weaponised document and enticed
the victim to open it. By opening the document, the victim would activate the exploits
and the attackers would gain access to the victim’s computer. This access would then be
used to find and extract sensitive documents. Forcepoint identified two malware devel-
oped by the attackers, BADNEWS and TINYTYPHON; these tools used non-traditional
command and control channels, such as GitHub, forums and news feeds. The attackers
also used already known tools, such as Metasploit, an open source tool used for pene-
tration testing, and available malware. Overall the campaign reached over 110 different
countries and 6300 IP addresses; the exact count of victim is difficult to establish since a
single victim can have multiple IP addresses over the course of the attack and can travel
to different countries.

These targeted attack campaigns, operated by skilled attackers backed by powerful
entities, are indeed a serious threat. And IDS solutions are evolving in order to be able
to stop them. Since the attackers are capable of developing their own exploit specifically
made to evade detection solution, these IDS must stay ahead of the attackers. For now,
there are fledging solutions, but more work is required. This thesis is part of a project
whose aim is to develop such an IDS. The project is separated in three parts, and we
concentrate on the third part: the aim of this thesis is to identify APTs from recorded
attacks inside the monitored system. While there have been work on detecting multi-
step attacks, what differentiate APTs from these attacks is that APTs are composed of
multiple complex attacks. These attacks can target different part of the system and can
last for several months or even years. Multi-step attack detection methods, often based
on temporal proximity of alerts, cannot be used in such cases, where not only there can
be significant delay between each attack, but the attacks may not even happen on the
same machines inside the system. In addition, APTs do not have a set path where one
attack is always followed by the same next attack. Instead, the attackers adapt to the
circumstances, and APTs can branch out, with the attackers usually setting several bases
of operation, some used as backups in case of detection, and from there can execute
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several lines of attacks in order to fulfill their goals. This is why tools tailored for the
detection of APTs are necessary.

1.3 Our solution: Akheros

Faced with these new attacks and the lack of appropriate defenses, Akheros decided
to create a fully autonomous IDS specifically geared toward detecting unknown threats
in an enterprise network. Akheros is a small company fully dedicated to the creation
of this IDS. Akheros’ founder, Philippe Baumard, had the experience of using machine
learning, and specifically Bayesian networks, to model the behaviours of humans. He
hoped to use the same approach to model the behaviours of information systems, and
create an IDS which could use these models and he patented the idea in [Baumard 2015].
This IDS would be inspired by anomaly-based IDS, but would go further by having not
a single static behaviour but numerous behaviours with a governing behaviour for the
dynamics of changes from one behaviour to the next. He called his approach incongruity
detection because, with those behaviours, they would be capable of predicting the future
behaviour of the protected system and compare the predictions with the measured reality.
Those predictions can include behaviour changes and a failure to change behaviour would
be just as severe as an unexpected change. In addition, the IDS would also model
the behaviour of the system during attacks so that, once identified, those attacks could
be re-identified if they reappeared at a later date. Based on this intuition, he founded
Akheros.

The project is organised around three key points, each being solved by a PhD student
in a separate module. The PhD students were hired specifically to work on these modules.
In addition, they collaborate on creating the supporting architecture collecting the data
and communicating between the three modules. The first module learns the behaviours
of the system and detects incongruity, the second module assesses the potential security
risks of those incongruities and the third module tries to establish links between attacks
in order to find APTs and other attack campaign. The architecture of those modules as
well as the supporting probes is shown in Figure 1.1 on the next page. As mentioned,
the aim of the project is to produce an IDS protecting enterprise networks. Such networks
are composed of multiple heterogeneous machines, some used as workstations with a
dedicated users and others used as servers for either inside or outside facing services.
The aim is for the IDS to collect data from all of these heterogeneous sources in order
to have a global view of the network to protect.

The first module is the work of Matthieu Hourbracq. It is tasked with learning a
dynamic model of the behaviours of the monitored system. It is detailed in two ar-
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Figure 1.1: Architecture of the Akheros IDS.

ticles [Hourbracq et al. 2016; Hourbracq et al. 2017]. The original idea is to learn a
Bayesian model of the system in a completely unsupervised and continous way. This
Bayesian model of the system can then be used to make predictions about the future
behaviour of the system. Since the behaviour of a system changes over time, this mod-
ule has to take that fact into account. This means that, as it learns a behaviour, it can
identify when a break occurs and the current behaviour is no longer a continuation of
the previous behaviour but an entirely new behaviour instead. Additionally, the module
learns the behaviour dynamics i.e. the meta behaviour dictating when the system adopts
this or that behaviour. The module then uses these models to check if the behaviour
of the system is consistent with the behaviours learnt until now. To do so, the module
checks if the current behaviour could have been extrapolated from the known models and
the meta-model. If it could not have been, an incongruity score is computed. This incon-
gruity score takes into account how much of the current behaviour could be explained
by existing models and by how many. It also checks, through the meta model, if a new
behaviour is expected; this means that unexpected changes in behaviour or expected but
not observed changes also contribute to the incongruity score. In effect, an incongruous
event is one that is not consistent with what we know of the system and thus cannot
be explained and could not have been predicted. In addition, the module continues to
model incongruous behaviour so that if they are later identified as malicious they may
be instantly recognised the next time they are observed. This is the first level of alerts
in Akheros: incongruity alerts.

Once an incongruity alert is raised, the second module is in charge of deciding whether
the alert is related to a security risk. This is the brainchild of Mark Angoustures,
and it is detailed in [Angoustures, Erra, and Di Bernardino 2017]. In order to assess
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an alert, the module creates a dependency behaviour graph of the system at the time
the alert is triggered. This graph is made of the process tree and their actions in a
sliding time window. Actions are classified beforehand in several categories by using
the same dependency behaviour graph for known malware and known safe software.
Each action has a category and a score in that category. If an action is only ever
observed in malware, it will have a higher score than if it is observed in both malware
and safe software. Then, per category, a personalised pagerank is computed on the
dependency behaviour graph. This personalised pagerank highlights small clusters of
processes which are responsible for the malicious actions. The idea is that if a malicious
process spawns a process to do a malicious action on its behalf and then spawns a second
process to do a second malicious action, the personalised pagerank is able to highlight
the original malicious process instead of stopping at the process directly executing the
malicious action. Finally, depending on several criteria, such as the number of malicious
actions and the number of categories of malicious actions a single cluster is responsible
for, the module decides whether the incongruity alert is, in fact, a security alert. In
the event where an incongruity alert is analysed as presenting a security risk, the fact
that the module scores the risk over several categories helps analysts confirm the results.
In addition, whatever the result of the analysis, they can be integrated into the list of
known malware or safe software, which will help when analysing future alerts. This is
the second level of alerts in Akheros: security alerts.

The third module is the subject of this thesis. Once incongruity alerts have been
analysed and found to present a security risk, this module will check past alerts to see
if some could be related to this latest alert. The aim is to reconstruct attack campaign
and hence highlight APTs. In addition, this gives more data to analysts so that they
can respond to the threat more appropriately. For example, when we detect an attack
which seems to have a low impact, if this module can link it with other attacks and show
that it is part of an attack campaign, then the actual impact of this attack is now much
higher and defenders can respond with this information in mind. This module operates
using a two step approach. First, it tracks information flows between processes to find
potential links between attacks. Then it uses a Hidden Markov Model (HMM) of attack
campaign to check if the potential chain of attack it found is consistent with other attack
campaigns. This is the third level of alerts in Akheros: APT alerts.

1.4 Our contributions

The contributions of this thesis are threefold. The first contribution establishes links
between attacks in order to find potential attack campaign. This is based on the use of
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Information Flow Tracking (IFT) and is detailed in [Brogi and Viet Triem Tong 2016].
The second contribution uses a Hidden Markov Model (HMM) to model attack campaign.
This is used to score the potential attack campaign found by the first contribution. The
approach is detailed in [Brogi and Di Bernardino 2018]. In particular, it introduces a
score which is robust to missing observations, i.e. attacks that were not detected. The
third contribution is the introduction of a tool we created to define, replay and share
complex attack scenarios called Moirai. This was also the subject of an article [Brogi
and Viet Triem Tong 2017] and is detailed in Section 5.4 on page 85.

In order to perform IFT, the module uses the raw data from the database with ad-
ditional indications from the first two modules showing which events in the data raised
alerts and which alerts were seen as security threats. Whenever a new alert is raised,
the module associates a new tag with it and starts propagating it. The propagation is
done by transforming the events collected into flows of information between containers
of information. In this case, those are processes, files and sockets. These containers
are progressively tagged when they are the receiving end of an information flow which
is either part of an attack or whose originating end was already tagged. Container by
container, the tags slowly propagate and a link between attacks is established whenever
a tag is propagated by an information flow which is also part of an attack. A simple ex-
ample would be an attacker exploiting a vulnerability in a web application to upload and
execute a program. This attack is detected, a new tag is created and one of the flows
of information part of the attack is the one where the web application writes the pro-
gram to the disk. The file containing the program, which is a container, is thus tagged
with the tag of the attack. When the program is executed, this second flows means that
the process running the program is also tagged with the tag of the attack. When this
process is used to launch a second attack which is also detected, the information flows
part of this second attack originate from the process. Since the process is tagged, the
module knows there is a link between the two attacks. Things work well in this simple
example and as long as we do not miss flows of information, IFT will be able to link
related attacks together. However, IFT will also link unrelated attacks together, espe-
cially since we track information at the scale of whole files and processes. In a second
example, a first attack occurs on the web server, apache. A new tag is created for the
attack and this tag ends up on the apache process. When a second attack uses a vul-
nerability in apache again, there will be flows of information part of this attack which
originate from the apache process. Since the apache process is tagged, a link between
the two attacks will be established, even though the two attacks are not part of the same
campaign. This is one of the inherent drawback of IFT. We add tags to the system, but
there are no mechanisms to remove them, and so, with time, more and more links will
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be established between unrelated attacks. The method is fully detailed in Chapter 3 on
page 39.

This is where the second step of the module comes in. The aim of this second step is
to filter real links from spurious links. We use a HMM for this. A HMM is a stochastic
model with the following properties; firstly, the process we want to model follows the
Markov hypothesis meaning that the state of the process at a given time only depends
on the state of the model at the previous time; secondly, the process cannot be observed
directly but its progress can be inferred through indirect measurements. This matches
what we want to do. Attack campaign can be split into phases, these phases are the state
of the unobservable process. It is unobservable because we do not know in which phase
the attacker is. However, the actions of the attacker will change depending on the phase
of the attack, and so we can use those actions, which are observable and lead to alerts,
to infer the current phase. Note that there is some overlap between the actions and so
we cannot know with absolute certainty the phase based on the actions. In addition,
the current phase of an attack campaign depends on the previous phase and whether it
succeeded or not. If it succeeded, the attacker is very likely to go to the next phase and
if it did not, they are very likely to try another angle of attack, either in the same phase
or in an earlier phase. So, as we can see, an HMM seem to fit with the requirements
for this second step. In addition, by using an HMM, we can not only check out whether
a chain of observations fit the model, but we can use the Viterbi algorithm to infer the
most likely chain of states to have generated the original chain of observations. This
means that we can associate each attack in the chain with a probable phase of the
attack campaign, which means even more information for the analysts: not only do they
know that the attack is part of an attack campaign, they know which phase of the attack
campaign each attack is in. This is the subject of Chapter 4 on page 55.

There is one point that we have not addressed yet. Since APTs are performed by skilled
attackers, there is chance that some of the attacks will not be detected by the first
two modules. Both the IFT step and the HMM step must be robust to these undetected
attacks. IFT is actually inherently robust to undetected attacks because attacks do not
change the way tags are propagated, they only introduce new tags. IFT finds link between
attacks when a flow is part of an attack and the origins of the flows are tagged with
the tag of another attack. The end result of propagating this flow is that the containers
where the flow ends are tagged with the tag of the new attack. If that new attack is
not detected, these containers are tagged with the tag of the old attack. The tag on the
containers is different, but there is still a flag. It will be propagated normally and if it is
on the origin of a flow which is part of a third attack, then that third attack will become
linked to the previous attack. If the second attack was detected, we end up with the
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first attack linked to the second attack which is linked to the third attack. If the second
attack is not detected, we end up with the first attack linked to the third attack; which is
the best we can hope for since the second attack was not detected. This means we only
need to work on the HMM to make sure that it takes into consideration possible missing
steps. To do this, we modify the Viterbi algorithm, used to find the most probable chain
of states based on the chain of observation. We add the possibility that between two
observations, the chain of states has state without observations, i.e. attacks that were
not detected. When computing the score, we can choose the probability that an attack
will be detected. We use this probability to weigh the possibility of missing observations
in our modified Viterbi algorithm. This customised Viterbi algorithm then gives us the
most probable states which generated the observations with its score, taking into account
possible missing observations. With this solution, both of our steps are resilient to the
possibility of undetected attacks.

The rest of this thesis is organised as follows. We will present related work on APT de-
tection, Information Flow Tracking, Hidden Markov Models and data generation in Chap-
ter 2 on the next page. We will then detail our first contribution, linking attack using
Information Flow Tracking in Chapter 3 on page 39. This includes an evaluation. We
move on to the Hidden Markov Model and the modified Viterbi algorithm, including an
evaluation, in Chapter 4 on page 55. In Chapter 5 on page 77, we present the tools used
in the evaluations in detail. In particular, we explain how we obtain reproducible sce-
narios using Moirai. Finally, we will conclude this thesis in Chapter 6 on page 89.
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Chapter 2

State of the art

In this chapter we discuss related work. We split the chapter in four
parts. First, we focus on other approaches to detecting APTs since this is the
global goal of this thesis. We use these related work to confirm the generic
phases of an APT. Second, we present the state of the art of Information Flow
Tracking. As we will see, IFT is usually employed to find single attacks, but
the implementations are still applicable for our specific application. Third, we
do the same of Hidden Markov Models. We detail their different uses and the
usual scores and their specificities. While these scores are not directly applicable
to our use case, we still keep their general semantics. And, fourth, we present
the possibilities available for evaluating Intrusion Detection Systems. This is
important because we need to evaluate our solution and, as we will see, the
available datasets are heavily criticised and not made for the evaluation of APT
detection in particular.

2.1 APT detection

2.1.1 Definition and examples of APTs

In recent years, Advanced Persistent Threats (APT) have emerged as a real and possi-
bly devastating security risk for companies and governments alike. An APT is a targeted
campaign of attacks, usually executed for political or economic reasons [Websense 2011].
These campaigns are executed by talented and determined attackers, sometimes spon-
sored by nation-states. In contrary to opportunistic attacks, this implies that attackers
will spend the time necessary to find a weak point and, once inside, will lay low as long
as needed in order to achieve their goals. Overall APTs can take months or even years to
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unfold, especially if one of the goals is continuous data exfiltration. As such, the combi-
nation of targeted attacks executed by competent attackers with time and resources on
their side makes APTs real and serious threats.

APTs may be customised to their target, their evolution usually follows the same broad
pattern, as described in [Sood and Enbody 2013; Tankard 2011]. After a first phase of
reconnaissance to find a weak point, the attackers perform an initial compromise in order
to penetrate the perimeter. Since the weak point is not necessarily on the host where
their goals lay, the attackers will establish a foothold and try to elevate their privileges
while also performing internal reconnaissance to find weak points inside the perimeter
which could bring them closer to their goal. Thus, they repeat the “find weak point”,
“exploit weak point”, “establish foothold” and “elevate privileges” loop until they can
get to their goals. Once they finally have a foothold, possibly with elevated privileges, on
a system from which they can access their goal, the last phase begins: “data exfiltration”.
If this goal is only one of several required one, the previous steps will loop back to the
internal “find weak point”. For example, if the attackers want to steal the blueprints
in division A of a business, they may target an employee in division B with a spear
phishing email. Once they are in, they can scan the internal network to try and find
vulnerable services used by both division A and division B. Once they are inside one of
those services, they will try to elevate their services and also infect a few more services in
case their first site is discovered and cleaned. They will then find a way onto division A’s
file server where the blueprints reside and then exfiltrate them.

In [Mandiant Intelligence Center 2013; Fireeye Labs 2015; McAfee Labs 2013; Trend
Micro 2013; Tankard 2011], five different teams present a post-mortem analysis of one
APT family each. Each family is attributed to a group of attackers and is characterised
by the set of tools used. This toolbox is reused, updated and expanded from one APT
to the next operated by the same group, year after year; and they end up used on wildly
different targets. For example, in [Mandiant Intelligence Center 2013], the toolbox is used
over 7 years and touches at least 141 organisations in 15 countries working in every sector,
from IT, of course, to the financial sector to agriculture to healthcare and education. The
longest attack campaign lasted almost 5 years, during which they managed to hide,
monitor their target and retrieve sensitive files. Over the years, the toolbox grows,
acquiring new malware families according to the needs of the attackers. The attackers
are organised like any company, with even reports of attackers working in shifts in [Fireeye
Labs 2015] in order to be active at all times. In that article, the attackers’ group has
been active for more than 10 years. They have professional developers working on the
toolbox, and the tools are versioned and update automatically. When required, they
create variants specific to one of their target. Their main aim is data theft, and they have
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special tools in order to retrieve data from air-gapped networked, which, by definition,
should be impossible.

Overall, these analyses show, in concrete terms, that APTs are indeed a real and
dangerous threat. They also show that all is not lost when trying to defend against
them. The attackers are as much creatures of habit as any other humans. They reuse
their tools from one attack campaign to the next, making signature based detection tools
not completely useless providing one of their campaign has been detected and analysed.
Even if they are skilled, they also used basic exploits if these have not been corrected.
And even between attacker groups, the same behaviours can be observed. They use the
same kinds of softwares in the same kinds of ways. Every single campaign in [Mandiant
Intelligence Center 2013; Fireeye Labs 2015; McAfee Labs 2013; Trend Micro 2013;
Tankard 2011] goes through the generic phases presented in Chapter 1 on page 1. Facing
these advanced threats, advanced detection techniques could make use of the similarities
present within all APT campaigns to detect them.

Additionally, even when not being able to detect APTs, there are still strategies to
minimise their impact. Bowers et al. present in [Bowers et al. 2012] a model of APTs as
a two player game: the attacker and the defender. Both player compete for control of a
system. At any time, each player can, for a cost, take complete and silent control of the
system. The aim for both players is to be in control for as long as possible while paying
as little as possible. This model of a game with stealthy takeovers is used to expose the
costs of being the target of an APT as well as to explore strategies to minimise it. They
apply this to password reset policies, for example, and show that resetting passwords at
random intervals has benefits over resetting them at fixed intervals.

In this section, we learnt that APTs pose very high risks to enterprise networks. They
are operated by very skilled and organised attackers. This makes them very difficult to
detect, and as proof, some campaigns have gone on for years without being detected.
However, there are similarities and patterns that appear in every APT, even if when
they are executed by different entities. This opens avenues to explore in order to defend
against them. Additionally, even in the case where an APT is going on but has not
been detected, there are strategies to adopt in order to reduce its impact. All in all,
even though it is more difficult than for opportunistic attacks, fighting against APTs is
certainly doable.
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2.1.2 State of APT detection

Multi-step alert correlation

We must start this state of the art by a small detour to alert correlation. While our
approach is different in its execution, the idea and reasons for the approach are mostly
the same as the ones behind alert correlation.

In essence, alert correlation is the process by which several alerts from one or more
IDS can be aggregated in a single alert. A simple example would be an aggregated alert
indicating a port scan from a smattering of alerts from individual ports. The effect of this
aggregation is twofold. Firstly, the human operator acting on alerts is shown less alerts;
in the previous example, this means a single alert instead of a smattering of unexpected
activity alerts, one for each port. Second, the alerts shown have more information since
all the information from all the original alerts is aggregated in a single alert. Staying
with the example, the aggregated alert can indicate that there is a port scan while the
individual alert only indicate an unusual activity for a given port. This means that the
operator have less alerts to respond to, and the alerts they are responding to are easier
to deal with since there is more context.

While the original concept is to aggregate all the alerts from a single attack and
output a single alert about that attack, it has since been extended to the detection of
attack campaigns with the use of multi-step correlation. And while the concept of alert
correlation predates the concept of APT, an APT is definitely a multi-step attack, also
known as an attack campaign, albeit one that can take several months to unfold. Hence
this small digression.

[Valeur 2006] presents a nice summary of alert correlation methods and builds on these
methods to create a multi-component real-time alert correlation system.Valeur starts by
presenting the three main types of alert correlation, multi-step, fusion-based and filter-
based, and proposes an integrated correlation process using several correlation steps and
other processing. Each type of correlation is put to use where it is most effective in order
to reduce the load on each component and achieve real-time processing. Valeur then gives
a basic example involving an host monitored by a host-based IDS, an application-based
IDS and two network-based IDS. This host is the target of an attack campaign, called
a multi-step attack in this case, and another single attack. The aim of the correlation
system is to identify the multi-step attack, isolate it from the other attack, and present
it as a single alert with all the associated information. This is exactly the results that
we wish to achieve with this thesis.

However, the means are different. Alert correlation requires rules in order to aggregate

14



2.1 APT detection

alerts and we want to avoid specifying explicit rules. It is possible to generate correlation
rules automatically. An example is [Godefroy et al. 2014] where Godefroy et al. present
a way to generate correlation rules automatically. The rules are generated from an
attack tree, and since the tree is built with the knowledge of the system to protect, this
gives rules that are specific to that system. However, this approach still requires expert
knowledge to build the attack tree, and while the work of the expert is reduced, this is
still a step we want to avoid.

All in all, our approach is similar to correlation in its motivation and expected results.
However, the methods employed differ and the major reason for these differences is the
fact that we want to remove expert knowledge as a pre-requisite of the IDS.

Explicit attack campaign detection

There already exist commercial tools which are sold as being able to detect APTs.
In [Ács-Kurucz et al. 2014], Ács-Kurucz et al. evaluate the reliability of such commercial
tools at the end of 2014. In order to represent the unknown and complex malware
usually present in APTs, they develop custom samples. These samples implement usual
Remote Access Tool (RAT) functionality such as code execution, download, upload and
so on. They are then submitted to five commercial APT detection solutions. Of the four
samples, only the two simplest ones are detected by all five solutions; even then, some
solutions rate them at their lowest threat level. The third sample is detected by two of
the five solutions and the last one is detected by none. This shows that existing solutions
are easily circumvented and validates the need for better solutions. Additionally, the
existing solutions seem to concentrate on detecting the steps of an APT individually.
We believe that the fact that each attack in an APT is part of a campaign of attack can
and should be leveraged when detecting them. This is why we focus on detecting whole
or partial attack campaigns rather than individual attacks.

To compound this, a 2010 Verizon report [Verizon 2010] shows that 86% of victims
have traces in their logs and are still unaware they have been breached. Thus, it is not
only a problem of APT using advanced attacks which cannot be detected. Even when
they do use less advanced attacks which do leave traces, they are not always detected,
and in the case that they are, their severity is underestimated. One of the advantages of
our approach is that even if a low severity event occurs, if we can link it to a number of
other events, then it will be analysed with the appropriate level of caution. In [Li, Lai,
and DDL 2011], Li, Lai, and DDL give another example from 2011 showing that APTs
are not unstoppable threats completely different from usual attacks. Instead, we see that
they employ the usual methods, such as phishing, when trying to get a foothold in a
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system. In addition, the payloads used can be analysed like any other kind of payload,
and such analysis reveal that these payloads are not necessarily unique or special. This
shows that writing tools capable of detecting APTs is definitely possible.

Commercial products are able to detect only the most basic APTs and only in the
best of cases. Academic proposals try to do better. In 2013, in [Virvilis, Gritzalis, and
Apostolopoulos 2013], Virvilis, Gritzalis, and Apostolopoulos do a technical analysis of
reported APTs in order to find common patterns and techniques. They also identify the
issues that enable these malware to evade detection and explores solutions for strength-
ening the defenses against such attacks. While the analysis does not focus on the differ-
ent phases of an APT, it shows the functionalities of the different APTs. Once again,
even though the five APTs analysed are different, the basic ideas behind them are the
same. They all use command and control servers and communicate on the most used
ports, such as 80 or 443. They also all use encryption and obfuscation techniques.

Based on similar observations, some articles try to detect the command and control
phase and the exfiltration phase monitoring only the network. The 2011 Binde, McRee,
and O’Connor article [Binde, McRee, and O’Connor 2011] bases its analysis on one
use case: the Aurora APT. The key observation is that APT traffic stands out during
certain phases. Once a foothold is established, it communicates with the command and
control center outside of the target. This traffic is usually partially automated and should
stand out against the normal traffic of the enterprise, which would normally mostly
stop during off hours. Additionally, when the attackers exfiltrate the data, they usually
exfiltrate a lot of data at once and this should show as a peak in network usage which
can be detected. While this is far from an exhaustive way to detect APTs, it shows that
however advanced the attackers may be, they cannot go around the physical limits of
the hardware, and so simple solutions can also help in detecting attacks.

Vance has a similar approach in his 2014 article [Vance 2014] but focuses on the cloud.
Cloud providers are just as vulnerable to APTs than any other company. However, in
their case, the provider relinquishes control of the higher levels and cannot, for example,
do white-box monitoring of the applications running on their infrastructure. The article
proposes a solution based on monitoring network flows. Flows are available to the cloud
provider and can be used even if the data is encrypted. The solution presented creates
statistical models of the normal network traffic. Command and control traffic and data
exfiltration traffic show as anomalies against the normal network traffic model. While this
approach can detect these two phases, it does not attempt to reconstruct the evolution
of the APT nor does it detect the other phases.

In 2015, in [Chandran, Hrudya, and Poornachandran 2015], Chandran, Hrudya, and
Poornachandran extend the reasoning to indicators on the monitored systems like CPU
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usage, RAM usage, number of files on disk, and so on. Instead of defining rules on each
indicator to limit the values it can take, they use machine learning to classify the systems
as clean or infected. They compare different techniques to see which ones give the best
results. The exact methodology is unclear, but they do manage to have 99.98% accuracy
with their best performing technique. While they do not attempt to reconstruct APTs,
their experiment show that even advanced malware changes the behaviour profile of the
system when they act, and thus can be detected.

Similarly and also in 2015, in [Friedberg et al. 2015], Friedberg et al. start from the
observation that pre-defined rules are not enough to stop customised and targeted at-
tacks, especially for applications with low market-share for whom such rules may not
even exist. Hence, they propose applying machine learning to network event correlation
in order to create an anomaly based IDS. They capture events from system logs and
use unsupervised learning. Their approach extracts patterns from each line and qualifies
those patterns. One line can be affected to multiple classes. Hypothesis are then made
on the implications of one line on the next based on these classes. Hypothesis that hold
for long enough are then turned into rules. These rules are then used to detect anomalous
behaviours. They apply this method to the monitoring of Industrial Control Systems.
Most of the components in these systems are automated systems so such an approach
fits well. However, even if they do attempt to detect unknown attacks, they do not try
to detect APTs, and, in particular, they do not broach the subject of finding separate
attacks which could be part of the same APT.

Y. Wang et al. take a different approach in their 2014 article [Y. Wang et al. 2014] and
introduce the concept of network gene in order to detect APTs. A network gene is defined
as the digital segments extracted by network protocol reverse analysis and their combined
sequences. The sequences are important because they represent the network application
with semantic-rich network behaviour patterns. There are three levels of network genes
from low to high: the messages, protocols and operations. Together, these three levels
form the network genome of the application. The genomes of two applications can be
correlated in two ways. The first case is when two higher level genes share the same lower
level gene. The second case is when two genes on the same level only present some minor
variations. The gene pool is created by analysing a large number of network applications
already classified in benign, malignant and neutral applications. Neutral applications are
applications which are unknown and cannot be classified in either benign or malignant.
Once the gene pool is created, the network is monitored, and network traffic is filtered
in real time according to the white and black lists in the gene pool. Once again, this
concept is good to detect unknown attacks but does not really detects APTs as there is
no way to find attacks which are part of the same attack campaign.
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As we can see, there are ways to detect unknown attacks. However, the previous arti-
cles only detect individual attacks and do not use the fact that those attacks are part of
a larger attack campaign. Articles more relevant to our approach use the links between
attacks in an APT in order to reconstruct the attack campaign. In [Hutchins, Cloppert,
and Amin 2011], in 2011, Hutchins, Cloppert, and Amin present an intelligence-driven
intrusion kill chain. Being a more military oriented article, they recognise the follow-
ing phases for intrusions: “reconnaissance”, “weaponisation”, “delivery”, “exploitation”,
“installation”, “command and control”, and “actions on objective”. Since each phase re-
quires that the previous phase completed successfully, the aim of the kill chain is to pre-
vent the current phase from completing in order to cut the chain. The possible actions
are “detect”, “deny”, “disrupt”, “degrade”, “deceive”, “destroy”. Each action will take a
different form depending on the phase of the intrusion, and some are not even available
for a given phase. For example, it is not possible to “disrupt” a “reconnaissance” action,
only to “detect” or “deny” it and “weaponisation” will be “detect”ed by a network-based
IDS while “exploitation” will be “detect”ed by a host-based IDS. The phases of an APT
used in this article are more precise than what we used because the precision is needed
in order to give a proper response. In our case, we do not need to split “weaponisation”
and “delivery” or “exploitation” and “installation”. Other than that, this article gives
little details on how to do the actual detection and how to decide which phase the intru-
sion is currently in.

In their 2014 article [Bhatt, Toshiro Yano, and Gustavsson 2014], Bhatt, Toshiro Yano,
and Gustavsson also use a kill chain model to present a framework for the detection of
APTs. Their idea is to use a layered defense to slow down the progress of the attackers.
At the same time, this means that attackers will have to perform more actions to get
to their goal and thus increases the chances that they will be detected. For each phase
of the kill chain, they identify the attack vectors. For each of these vectors, they define
prevention and detection measures. Some of these measures includes IDSs and other
automated monitoring system, all of them off-the-shelf components. These systems feed
their data to a centralised database. The database is analysed by an intelligence module
which is already aware of kill chain patterns and malware patterns. The patterns are
created using a separate malware analysis module. They show that with this architecture,
they are able to detect their experimental APT. Once an alert is detected, the intelligence
module tries to determine which phase of the APT the alert belongs to and then looks
for the evidence of the previous steps. This article is interesting because we see once
again that the same simple model of APT is used. Additionally, they also use the fact
that it is the chain of attacks which makes the APT and look for the previous phases
when they detect an attack. Sadly, this part of the intelligence engine is not explained.
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Also in 2014, Bukac, Lorenc, and Matyáš propose an extension of the kill chain,
in [Bukac, Lorenc, and Matyáš 2014], where the attacker performing an APT is allowed
to continue the attack after being detected, placing the system under increased surveil-
lance. By so doing, the defender gains the opportunity to collect valuable intelligence
which can then be used to defend against future attacks. They propose that after a time
of passive observation, the defender would actively tamper with the attacker in order to
evaluate their full capabilities, thus transforming the system into a live honeypot. The
benefits are clear. The defenders learn more about the attackers, seeing their tools in
action, forcing them to deploy new ones and identifying their goal. It then becomes eas-
ier to assess the full extent of the intrusion and to detect dormant hosts. There are,
however, disadvantages. First of all, there may be legal requirements to immediately
end and clean-up intrusions, especially if private data may be at risk. Then, there is the
risk that the only part of the attack has been detected and that the attacker is able to
compromise the system even further. The article then presents a number of questions to
answer when deciding whether to end the intrusion or observe it further.

While De Vries et al. do not mention kill chains in their 2012 article [De Vries et al.
2012], the analysis framework they present to detect APTs is certainly related. It starts
by splitting APTs in 6+2 phases. The six phases are the usual ones, and the additional
two are “control of information leaks” and “erasing tracks” and are active during most
or all of the other phases. For each phase, they list the attack methods used, the attack
features which can be detected, the network locations of these attacks, the methods
to use to detect them, the type of techniques the detection methods use and, finally,
the impacted business aspects. These listed features help answer the classic “What?”,
“Where?”, “Why?” and “How?” which are then used to select the best method to defend
against APTs based on the needs of the defender. The article does not present an actual
attempt at detecting APTs but instead presents ways of thinking about APTs in order
to detect and defeat them. We can see that the other articles presented here conform in
some way to this article. However, in order to conform to everything in this article, each
potential victim would have to develop their own APT detection solution, which is not
a reasonable expectation.

In [Giura and W. Wang 2012] in 2012, Giura and W. Wang first present the main
stages of an APT. Based on this model, they introduce the concept of attack pyramid,
an extension of attack trees. An attack tree represents a threat, and is built recursively
with the goal as the root of the tree and ways to reach that goal as children, who are
then treated as new subgoals. In the resulting tree, each path from a leaf to the root
represents an attack path. A plane is the layer upon which an attack occurs, such as
the physical plane where the attacker can pick a lock, the network plane where the
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attacker compromises a server or the user plane where the attacker sends a phishing
email. Typically, in an attack tree, a path will never cross planes. Since an APT will
usually operate over a number of different planes the authors have introduced the concept
of attack pyramid. An attack pyramid is an attack tree where paths can cross planes.
Thus, with each plane representing a different attack surface, they correlate events across
planes and can show attacks unfolding on several planes at once. Correlation is done
through a set of rules. These rules are defined for each combination of two planes on
common attributes. Correlation only shows the link between events, and so a second
set of rules is used to detect security alerts. They use three types of rules: signature
based rules which compare observations and known attacks and which must be constantly
updated; profiling based rules which compare observed profile and behaviour with profile
and behaviours baselines which also need to be updated whenever the baseline changes;
and policy based rules which are based on organisation policies and must be updated
whenever these policies change. Finally, whenever these rules are triggered, a confidence
factor and a risk factor are computed from the confidence and risk factors of the individual
events. If the confidence and risk factors rise above given thresholds, then an APT alarm
is triggered. This work is interesting because it specifically addresses the detection of
APTs and presents attack pyramids to represent them, which takes into account the
fact that an APT can operate on several planes. However, it requires that the potential
goals of an APT be identified, and for each goal, every path leading to this goal must
also be identified; and they must also be updated whenever the system changes. This
is specifically something that our approach wants to avoid, because it involves a lot of
work to set up and maintain properly.

In [Sexton, Storlie, and Neil 2015], Sexton, Storlie, and Neil decompose an APT into
five phases, “delivery”, “exploit”, “install”, “command and control (C&C)”, “actions”,
which they call the attack chain. Contrary to the attack pyramid which starts from the
goal and reconstructs possible attack paths, the attack chain is a model for APTs. This is
more flexible in that there is no specified way to go from one phase to the next. Instead,
each phase is associated with a number of event types indicative of this phase; events in
different phases must then be combined before an APT can be detected. These events are
not necessarily, by themselves, indicative of a security breach. The combination is done
as follows. First, each event is assigned a score based on historical data, either on the
host it occurred on, or on all the hosts; the more an event is unexpected, the higher its
score. p-values are then computed for each event type and for each host; next, p-values
are computed for each attack phase for each hosts, which is done by retaining only the
smallest p-value of these event types, i.e. the least expected event type; these p-values
are then multiplied and the anomaly score for a given host is the negative logarithm of
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this number. An anomaly score is also computed for clusters of hosts where the same
event types occur, this is done in a similar fashion, and enables highlighting clusters of
potentially anomalous hosts. While this approach starts from the same model of APTs as
the article from Giura and W. Wang [Giura and W. Wang 2012], the method for obtaining
the likelihood a cluster of hosts is the target of an APT differs significantly. However, this
approach is based on anomaly detection and as such requires a significant investment in
understanding the monitored system and the attackers. In particular, each event that
can be observed must be attributed to a phase of the APT ahead of time.

Much earlier, in 2004, in [Gladyshev and Patel 2004], Gladyshev and Patel were already
proposing to model systems as finite state machines in order to conduct forensics analysis.
Once a model of the system has been created and the current state identified, the model
can be used to reconstruct the path leading to the current state. While this model
does not identifies attacks, it does highlights the possible sequences of events leading to
the current state, and which states have to be transitioned through. Some states could
represent attacks, and this method could then reconstruct attack sequences. In a way,
this is similar to what we do since we also identify the sequence of events in an attack
campaign, our approach does not require a model of the system.

In order to counter anti-forensics measures, C. Liu, Singhal, and Wijesekera use attack
graphs and augments them with anti-forensics steps to explain missing links in their 2012
article [C. Liu, Singhal, and Wijesekera 2012]. The aim of attack graphs is to reconstruct
the attack path used by the attackers. However, attacker can use anti-forensics tools
to erase some of their traces and thus break the links between attacks. By adding
the anti-forensics node, the paths can be recovered and the attack campaign properly
detected. This is interesting because, not only are they trying to reconstruct attack
campaigns, they also take into account non-detected attacks which would otherwise break
the links between the rest of the attacks. While missing attacks do not break the links
in our approach, we do have to take them into account when evaluating potential attack
campaigns identified by IFT.

In summary, from these articles, we can take that in order to detect APTs, we must
be able to link related attacks into attack campaigns and only then make a decision
whether this attack campaign is indeed an APT. We do have the advantage that we
do not need to detect individual attacks themselves, as this is done in the previous
steps of the Akheros IDS. Thus, we are left with the sole task of reconstructing attack
campaigns and deciding on their representativeness of an APT. For the reconstruction
of attack campaigns, we do want to use the simple model for APTs present in the above
articles: “reconnaissance”, “compromise”, “establish presence”, “privilege escalation”
and “mission completion”. However, we do not want the model to be too strict, neither
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in the chaining of the steps nor in the captured events representative of each steps. Hence,
a probabilistic model seems appropriate and more specifically, a Hidden Markov Model
has all the required characteristics. The phases of an APT cannot be measured directly,
but must instead be guessed at depending on the types of attacks seen; an APT starting
with three “compromise” steps, while less likely, will still fit the model; and, while there
will be more likely types of attacks for each step, each step can still be represented by
less likely types of attacks. However, such a model cannot separate interlaced attack
campaigns. Instead, our approach must be divided in two steps. The first one will use
Information Flow Tracking to find links between attacks. This should reconstruct attack
campaigns, while separating unrelated attacks occurring at the same time. The intuition
is that, for related attacks, there should be flows of information from one attack to the
next as the attacker uses the tools setup in one attack to perform the next one. Unrelated
attacks should not have flows of information between them, and so we should be able to
clearly separate different attack campaigns. However, Information Flow Tracking does
tend to have a lot of false positives. Thus, the second step will evaluate whether the
reconstructed attack campaigns are indeed APTs using a Hidden Markov Model. The
Hidden Markov Model can capture the flexibility of attack campaigns so that we should
only need one generic model to recognise all, or most of, the attack campaigns.

2.2 Information Flow Tracking

Information Flow Tracking (IFT), also called tainting, is a method used to follow the
propagation of information inside a system. Implementing Information Flow Tracking
requires three things. The first thing are the containers. These are the objects that
contain information and they are the origins and destinations of flows of information.
The second thing is the flows of information themselves. These indicates that information
is being sent from one container to another. The last thing is taints, hence the name
tainting. Taints are metadata that can be attached to containers to indicate the data that
has flown through them. The exact rules defining how taints are attached to containers
vary depending on the IFT scheme and its purpose. In our case, we want to use IFT to
track the flows of information starting at each attack and see if they end up at another
attack.

IFT can be implemented at different levels and in different ways depending on the
goals of the approach. Suh et al. present a dynamic hardware implementation with
a custom CPU in their 2004 article [Suh et al. 2004]. Its aim is to protect programs
against malicious software by identifying spurious inputs and restricting their usage. The
approach is based on the observation that attacks which take over other programs must,
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at some point, transfer control to malevolent code. The aim is, thus, to prevent spurious
data from being used as a program’s control. In order to do this, every potentially
malicious input channel must first be identified. When the system runs, a module in
the OS marks data from these channels. Then, during execution, the CPU determines
whether the result of an instruction is spurious based on the inputs and the instruction.
The CPU prevents spurious data being used in dangerous ways, such as being the target
of a jump. This approach, thus, prevents the exploitation of buffer and stack overflows
(but not the overflows themselves) without modifying the programs or knowing how each
overflow works. This is an interesting approach to show th capabilities of IFT. However,
it is not practical as it requires implementing a custom CPU.

To add more flexibility, Dalton, Kannan, and Kozyrakis present, in 2007, in [Dalton,
Kannan, and Kozyrakis 2007], a hardware and software hybrid IFT platform. The aim is
to block high-level semantic vulnerabilities such as SQL injections and cross-site scripting,
which [Suh et al. 2004] does not stop, while also detecting lower level vulnerabilities
like buffer overflows. To achieve this, Raksha, the proposed architecture, relies on a
custom CPU as well as a software component. This hybrid approach is meant to shore
up the weaknesses of the individual approaches. Approaches based on custom CPUs are
very precise in their Information Flow Tracking and do not require the programs to be
modified, however the policies they enforce are not flexible at all. At the other end of
the spectrum, software-based approaches have flexible policies, but their tracking is not
quite accurate and they require that either the source or the binary of the program be
modified. In Raksha, the CPU is tasked with tracking the information flows, thus the
tracking is precise and the programs do not need to be modified. The policy enforcement
is done in software, which means it is flexible and can be changed at runtime. It is still
limited by the hardware, and in Raksha, the limit manifests as the maximum number
of active policies being limited by the hardware. This approach melds the precision of
hardware tracking with the flexibility of making decision in software. However, once
again, it relies on a custom CPU which makes it difficult to deploy in the real world.

In [L. C. Lam and Chiueh 2006], in 2006, L. C. Lam and Chiueh present a software
based IFT framework, GIFT. Instead of modifying binaries, GIFT is a compiler for the
C language, and in order to use it, programmers must modify their code to include a
function which adds tags whenever data enters the program, a function which sets the
tags whenever a variable is assigned a value, and a function which decides what to do
when data exits the program; it could, for example, prevent writing data with a certain
tag. The compiler then inserts these functions in the code whenever necessary, so that
the actual source code of the original program does not need be modified. GIFT also
provides functions to access the tags at runtime. The article demonstrates the use of these
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capabilities by building an automated sandboxing framework for network applications,
such that the sandboxing is only enabled if necessary. In their evaluation, this sandboxing
framework adds about 35% overhead. While this approach does not require a custom
CPU, it requires instead that every program be created with IFT in mind, which is an
even less reasonable assumption.

Tracking can also be done by modifying binaries. An example is the 2006 article by
Qin et al. [Qin et al. 2006]. The approach leverages dynamic binary instrumentation
to implement IFT. The advantages of this approach is that it is software only, and so
removes the need for custom hardware. Additionally, being binary instrumentation, it
does not require the source code of the program, and so will work with any program,
even if it was not designed for IFT or if the source is not available. The design is
focused on lowering the overhead of IFT, which it does in three ways. First, it only
computes information flow if the inputs are not already tainted, which is the majority of
cases. When the inputs are tainted, the running code is split into logical blocks where
the flows of information can be directly computed from the inputs to the output of the
block, thus reducing the number of checks. Lastly, they work to reduce the number and
overhead of context switches between the original program and the IFT code. With these
optimisation, they manage to drastically reduce the IFT overhead compared to previous
binary instrumentation solutions. A number of policies are implemented on top of this
framework so that for example, much like in [Suh et al. 2004], unsafe data cannot be
used as the destination of a jump. While this approach works on any compiled software,
it does require that each binary on the system be modified, which is not practical.

In their 2008 article [Ruwase et al. 2008], Ruwase et al. improve the performance of
dynamic IFT by parallelizing it. In order to be able to parallelize IFT, it must first be
relaxed, as in limited to unary operators. The log of information flows is then cut in
segments, with one segment by workers. The workers, then, compute the state at the
end of their segment relative to the beginning and send the results to a master thread.
The master then uses the results from all threads to check information flows for the whole
program. With regard to performance, once the log is large enough, even a small number
of workers can give a significant speedup with this method. Since IFT can have a large
overhead, depending on the implementation, any method to speed it up is interesting.
The problem here is that this method limits IFT to unary which does not fit with our
use case.

Yin et al. propose, in [Yin et al. 2007] in 2007, to use system-wide IFT to detect
malware, in particular malware looking for sensitive data. To this end, they present
Panorama, an end-to-end solution to analyse malware samples automatically and look
for malicious information access and processing behaviours. At the center of this solution
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is operating-system aware hardware-level taint tracking. This affords them the fine-
grained precision of hardware tracking with the ability to map the tracked objects to
files and processes as seen by the user. With this solution, they are able to detect all
of the malware samples in their tests while having only few false positives, even though
the tested samples include a wide range of types of malware, such as keyloggers, packet
sniffers, backdoors and rootkits. Their approach is interesting but limited to analysing
malware offline and does not protect a running system.

In 2008, M. S. Lam et al. present PQL [M. S. Lam et al. 2008], the Program Query
Language, to specify information flows patterns in order to protect web applications. The
idea is to check that untrusted input is not allowed to take control of the application. The
programmer can specify patterns that should be avoided, and the system does both static
and dynamic analysis to check for the pattern. Additionally, using PQL, the programmer
can also specify corrective actions to take whenever a matching pattern is detected. They
show that with this approach, they are able to, not only, detect serious attacks in existing
applications but also recover from them. This approach acts as a kind of firewall, where
administrators can specify unwanted flows and how to handle them. This is definitely
an interesting approach but our method is proactive and wants to avoid having to define
rules beforehand.

A solution between custom hardware and modifying every program on the system is
to do the tracking in the operating system. It is less precise than a custom CPU but can
run on commodity hardware; at the same time, it only requires modifying one piece of
software: the OS. In [Enck et al. 2014] in 2014, Enck et al. modify the Android OS in
order to check that applications do not leak private data, and call it TaintDroid. They
assign a different taint to each source of private data, such as GPS or contact information.
They then define one data sink for each point of the system where data leaves. They
leverage the fact Android applications run on the Java Virtual Machine (JVM) and
cannot access this data directly but must instead use well defined interfaces. They, thus,
modify the JVM to track information flows. They allow the tracking of several taints
at once in order to track each source of private data independently. Additionally, the
JVM uses Java Native Interfaces (JNI) in order to interact with the OS, so flows are also
tracked when JNI are called. Finally they also track information flows when applications
use interprocess communications and permanent storage. Their setup allows them to
check whether unmodified applications do leak private data. The approach in [Hauser,
Tronel, Reid, et al. 2012; Hauser, Tronel, Fidge, et al. 2013] is similar, with Hauser,
Tronel, Reid, et al. modifying the Linux OS to track information flows in 2012. The
first article uses this to detect confidentiality violations, just like [Enck et al. 2014]
does. The second article builds on this and creates a distributed Intrusion Detection
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System by carrying information flows marker on the network. Andriatsimandefitra and
V. V. T. Tong, in their 2014 article [Andriatsimandefitra and V. V. T. Tong 2014], port
to android these modifications done to the Linux kernel and then study the behaviour
of malicious applications through the information dissemination observed during their
execution.

As we can see, IFT can be implemented at different levels of abstraction. Each imple-
mentation has to balance flexibility and precision. Implementing a CPU-based IFT with
flexible software policies is probably the most precise way to perform IFT. However, it
is also very impractical. Our implementation of IFT is similar to those last articles. We
use the data the Akheros Intrusion Detection System collects at the OS level while mon-
itoring the system to infer the flows of information. This means that our solution can
easily be installed on any system and run immediately. On the downside, since the flows
of information are collected at the OS level, our approach will be less precise than hard-
ware based approaches such as [Dalton, Kannan, and Kozyrakis 2007]. Since we lose
precision with an OS level IFT scheme, we need a second level to validate the findings
of the IFT. This is where we use a Hidden Markov Model. This stochastic model is a
flexible representation of APTs; and by designing the appropriate score, we can use it to
compare several potential APTs and select to one most probably an APT.

2.3 Hidden Markov Models

2.3.1 Presentation of hidden Markov models

A Markov chain is a stochastic process whose future state depends only on the current
state. A Hidden Markov chain is a Markov chain which cannot be observed directly.
The output of the chain, dependent on the current state, has to be observed instead.
The states, which cannot be observed, are called hidden states, and the output of the
states are called the observations. A Hidden Markov Model (HMM) θ is, thus, defined
by three things: the state transition matrix A � [ai j] which describes the probability
to go from any state to any state; the observation matrix B � [bi j] which describe the
probability for each state to emit each output; and the initial state distribution π � [πi].
HMMs can be used to solve three types of problems as described by Stamp in [Stamp
2004]. The first one is, given a sequence of outputs, to compute the likelihood of that
sequence given the model, i.e was this sequence generated by the model. The second one
is, given a sequence of outputs, to find the optimal sequence of states for the Hidden
Markov chain, i.e. which sequence of states generated the sequence of observations. The
third one is, given a sequence of outputs, to train a model to fit the data.
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The naïve answer to the first problem, enumerating every state sequence, leads to
a computationally unfeasible calculation even for short chains. A different approach
is needed. The solution is the forward-backward procedure [Rabiner and Juang 1986;
Devijver 1985], which basically walks along the trellis representing all the possible chains.
During the forward half of the procedure, we inductively compute the probability of
the partial observation sequence finishing with state i at time t, αt(i). The forward
probabilities are initialised with

∀i , α1(i) � πi bi(O1),

where Ot is the observation at time t. And then, we have

∀ j, αt+1( j) �
[∑

i

αt(i)ai j

]
b j(Ot+1).

The probability of the observation sequence of length T is then
∑

i αT(i). This method
greatly reduces the number of computations needed to obtain the result. Similarly,
the backward probability represents the probability of the partial observation sequence
starting with state i at time t. It is written βt(i) and is also computed inductively. It is
initialised with βT(i) � 1, and then

βt(i) �
∑

j

ai j b j(Ot+1)βt+1( j).

This also reduces the number of computations needed to obtain the backward probabil-
ities, which will be useful in other algorithms.

The Viterbi algorithm [Viterbi 1967; Forney 1973] gives the solution to the second
problem which is finding the optimal sequence of hidden states given a sequence of
outputs. It involves another walk on the trellis, this time storing, for each state, the
most probable path to end there as well as its probability. It is initialised with

∀i , v1(i) � πi bi(O1).

Then,
∀ j, vt( j) � max

i
vt−1(i)ai j b j(Ot).

We can then backtrack to find the corresponding states; the last state is

ST � arg max
i

vT(i),

27



Chapter 2 State of the art

and then
∀t , St � arg max vt(i)aiSt+1 .

This algorithm can be extended to find the n most optimal sequences, with n arbitrary
as described by Seshadri and Sundberg in [Seshadri and Sundberg 1994]. The naïve
parallel implementation of this idea requires n time more storage and computation than
the simple Viterbi algorithm. The article proposes a serial algorithm which requires T
times more storage and T times the number of states more computations.

The third problem, that of training a model to fit the data, can be solved by the
Baum-Welch algorithm [Baum and Petrie 1966; Sundaram 2000]. The algorithm uses
the forward-backward procedure described above to compute the forward and backward
probabilities and then uses these results to re-estimate the values of A, B, and π. First
we compute two temporary values:

γi(t) �
αi(t)βi(t)∑
J α J(t)β J(t)

,

and
ξi j(t) �

αi(t)ai jβ j(t + 1)b j(Ot+1)∑
I
∑

J αI(t)aI Jβ J(t + 1)b J(Ot+1)
.

The model can then be updated with:

πi � γi(1),

ai j �

∑
t ξi j(t)∑
t γi(t)

,

bi(o) �
∑

Ot�o γi(t)∑
t γi(t)

.

Starting from a model with random values for A, B, and π, these steps can be repeated
until the model has sufficiently converged.

This algorithm, however, does not try to adjust the size of the model. For that task,
other methods are necessary. There are a number of criterion which can be used to mea-
sure the performance of a given HMM, such as the Akaike Information Criterion [Akaike
1974] or the Bayes estimators presented by Schwarz in [Schwarz 1978]. H. Tong presents,
in [H. Tong 1975], a method using the Akaike Information Criterion to find the order of
a Markov chain. And Hernando, Crespi, and Cybenko presents, in [Hernando, Crespi,
and Cybenko 2005], method to compute the entropy of the HMM for a given observa-
tion sequence, which reflects the uncertainty of the current model in tracking the hidden
states. In order to be efficient, this method uses a trellis similar to the one used in the
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Viterbi algorithm.

HMMs fit our situation well. We want to model the evolution of APTs but attackers
do not inform us of what they are doing and why, so that, even when we detect an attack,
we cannot be sure of the state of the APT. Instead, we can use the detected attacks as
observations and use those to infer the evolution of APTs. The hidden part of the model
becomes the different steps in an APT while the visible part are the types of attacks that
have actually been found.

2.3.2 Different scores for HMMs

While the context of [Posada and Buckley 2004] is phylogenetics, the arguments pre-
sented by Posada and Buckley in favor of the use of the Akaike Information Criterion
(AIC) and the Bayesian Information Criterion (BIC) do hold in the field of information
security. The article starts from the observation that during model selection, none of
the models represent reality, they are, rather, approximations of reality. However, like-
lihood ratio tests are instead looking for the model representing reality exactly. On the
other hand, model selection using AIC or BIC can compare multiple models simultane-
ously and can take into account the model selection uncertainty. They also allow for
model-averaged inference, which means that the inference is done using several of the
best fitting models instead of using only the best one.

In [Biem, Ha, and Subrahmonia 2002], Biem, Ha, and Subrahmonia presents a new
score specific for the selection of HMM topology. The score is based on the BIC, but
points that the BIC does not account for the prior of the topology or the fact that pa-
rameters may not be homogeneous. Thus, they propose the HMM-oriented BIC (HBIC).
HBIC starts from the BIC and adds terms to take into account the prior on the topology
and the specific distribution of each parameter. They show that this score chooses bet-
ter topology than standard BIC, achieving better results with simpler topologies. The
same authors present another score in [Biem 2003] : the Discriminative Information Cri-
terion (DIC). DIC is appropriate when selecting models representing classes of data. This
time, the objective to optimise for raw performance without taking into consideration
the size of the model. The differentiating characteristic of the DIC is that it takes into
account the capacity of the model to generate data belonging to competing classes. In
their tests, models selected using DIC had better recall at the price of increased model
complexity.

Siddiqi, Gordon, and Moore presents, in [Siddiqi, Gordon, and Moore 2007] a new al-
gorithm, STACS, for learning both the topology and the parameters of an HMM. STACS
construct an HMM by alternating between parameter learning and model selection while
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increasing the number of states. Candidates models are generated by splitting existing
states and then optimising the parameters. They are then evaluated for selection using
the BIC. The splitting algorithm is also novel because it takes into account both the
contextual and the temporal structure of the data. The results show that STACS consis-
tently returns larger HMMs than existing techniques. However, these HMMs also have
higher classification accuracy.

MacKay Altman shows a graphical technique for assessing the goodness-of-fit of a
stationary HMM in [MacKay Altman 2004]. Their technique involves plotting the esti-
mated univariate distribution against the empirical univariate distribution. If the model
is correctly specified, this plot will converge to the 45° line through the origin. In order
to check the correlation structure, they also plot the bivariates distributions, which will
also converge to the 45° line through the origin. The multivariates distributions (up to
twice the number of hidden states in the model) can also be plotted to better check the
fit of the model. However, the technique does not include a formal method of assessing
the degree of variability in the obtained plots, i.e. whether the observed scatter around
the 45° line is acceptable or not.

In [Titman and Sharples 2008], Titman and Sharples present a general goodness-of-fit
test for both Markov and Hidden Markov Models. It is based on the work of [Aguirre-
Hernández and Farewell 2002] which presents a Pearson-type goodness-of-fit for progres-
sive Markov models. It generalise the test by taking into account absorbing states and
censored observations. The test obtained is further extended to account for misclassified
states. The final test is then used to assess the fit of data which could not be tested
before. However, the test is not completely general but can be useful in cycles where the
model is first estimated and then evaluated.

In [Flores, Antolino, and Garcia 2009], Flores, Antolino, and Garcia use HMMs to
monitor the network for anomalies. They concentrate on the building of the HMMs.
Instead of using the Baum-Welch algorithm, which cannot change the topology, they
use genetic algorithms and show that they outperform Baum-Welch. They then improve
their contribution in [Flores, Calderon, et al. 2015] by replacing genetic algorithms by
evolutionary programming, and by also adding the time as one of the inputs of the
HMMs. Switching to evolutionary programming enables better modeling of the HMMs
for evolution which, in turn, improves the exploration of the solution space. By adding
the time, the HMMs are now capable of identifying that a pattern may be normal during
certain times and abnormal during others. Once again, the models obtained were more
accurate than those obtained with Baum-Welch, and they were also more accurate than
those created by experts.

As we can see, there are a number of scores available when trying to select the best
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performing model. However, we are trying to compare the fit of different chains of
potential APTs on the same model. We have not found any score appropriate for this
task which means we will have to create our own score.

2.3.3 HMMs used in security

Hidden Markov model have already been used for intrusion detection. Ye, Y. Zhang,
and Borror, in their 2004 article [Ye, Y. Zhang, and Borror 2004] present a framework
for using Markov chain models to detect anomalies. The Markov chain represents the
normal usage of the system, and any attack or anomaly should make the behaviour of
the system deviate from the norm. The states considered in the Markov chain are the
audit events from the system. To reduce the amount of computation, only the window of
the last N events is considered when computing the fit to the model. This article shows
that this Markov model approach works better for smaller windows and if the dataset is
cleaner. It also shows that Markov models can be used to model the baseline behaviour
of computer systems.

In [Ioannou et al. 2013], in 2013, Ioannou et al. maps the phases of an APT to a cyber
attack kill chain. A Markov multi-phase transferable belief model is then used to fuse
incoming data from a variety of sources. It is used to show what the attacker has been
doing and also predict their next steps. The model is constructed phase by phase. First,
a number of attacks are assigned to a given phase, then each attack is linked to every
attack in the previous phase which could enable the attacker to perform the current
attack. This forms a tree. Then, when an attack is detected, the nodes it corresponds to
on the tree and their subtrees are kept and the rest are pruned. The same is done when
the next attack happens, and, as more and more attacks happen, the tree becomes more
and more sparse and the next step in the APT can be predicted with a better precision.
This approach is close the what we want to do. It shows that an Markov chain can be
used to model attack campaigns. However, the preliminary steps of listing and linking
every attack possible is not reasonable, and we think it could be avoided by using Hidden
Markov chains.

Jain and Abouzakhar, in their 2012 article [Jain and Abouzakhar 2012] show an ex-
ample of using Hidden Markov chains to model attack chains. It focuses on the network
and uses Hidden Markov chains to model TCP services. Models are trained for each
TCP session for each service. They are then used to detect anomalies. This article fo-
cuses on the learning phase, and more specifically on the feature selection. Features are
selected using a J48 decision tree. This leads to a substantial reduction in error rates
and an increase in detection rates. This article shows that HMM can be used to model
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scenarios such as protocols.

Ourston et al. attempts to detect multi-stage attacks using a HMM, in [Ourston et al.
2003] in 2003, and compare its performance to that of decision trees and neural networks.
The article explains that HMMs are suited to multi-steps attacks because each step is
dependent on the outcome of the previous state. In their experiments, they show that
HMMs outperform both decision trees and neural networks even with a low number of
training example. This exacerbated by what they call the “rare data problem”, i.e. the
fact that the most dangerous attacks happen the least often and are thus hard to train
for. Q. Zhang, Man, and Wu base the work they do in [Q. Zhang, Man, and Wu 2009]
on this article in order to discover the intent of the attackers. Their first assumption is
that each sensor in a system could be mistaken. To compensate for this, they create a
HMM for each sensor and then apply a decision algorithm on the output of the HMMs
and obtain a guess of the attacker’s intent. Both of these articles show that HMMs are
effective for modeling the evolution of attacks. However, they do not take into account
the possibility of having several attack campaign active at once, in which case the HMM
would evaluate the evolution seen as if there was only one attack campaign.

The aim of [Arnes et al. 2006] in 2006 is to assess the impact of certain events on
the security status of an entire network. To do so, Arnes et al. use a HMM to model
the state of each system in the network and the transitions between states. The HMM
contains four states: “good”, “probed”, “attacked” and “compromised”. Each system in
the network is given a cost vector, which represents the cost of having the system in each
of the state at given time. The cost vector and the HMM are used to compute the risk
factor of the host. The total risk for the network is the sum of the individual risks of
each system. This shows that HMMs can be used to model the state of a system without
making assumptions about the transitions between attacks.

In 2006, in [Khanna and H. Liu 2006], Khanna and H. Liu present a system to detect
intrusions in ad hoc networks. It collects data about the network, clusters and classifies
it to create observations and then use a profile estimator to estimate the state of intrusion
of the system. A HMM using the same states and observations is then used as a feedback
loop for the profile estimator and to compute the drifts of the different profiles. The
states considered are “normal”, “hostile intrusion attempt”, “friendly intrusion attempt”,
“intrusion in progress” and “intrusion successful”. The authors refine this approach
in [Khanna and H. Liu 2008]. The number of states is reduced to three: “normal”,
“intrusion in progress” and “intrusion successful”, and a PID controller is added to the
feedback loop of the profile estimator to reduce the rate of false positives.

In 2007, Haslum, Abraham, and S. Knapskog present their article [Haslum, Abraham,
and S. Knapskog 2007] on a distributed network intrusion prevention system which in-
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cludes a HMM in order to make predictions about attacks. The HMM contains four
states, “normal”, “intrusion attempt”, “intrusion in progress” and “successful attack”.
The results of the model are used to assess risk using fuzzy inference systems. In [Haslum,
Moe, and S. J. Knapskog 2008], they switch to a Continuous Time HMM (CTHMM) in
order to model the interactions between the attacker and the monitored system. They
keep the same states. This approach results in a lower false positive rate from the IDS.
This is even further improved in [Haslum, Abraham, and S. Knapskog 2008], where there
is now a different HMM for each sensor. The state of each individual HMM as well as
the state of the global HMM are all used to determine the risk level using fuzzy logic.

Recent attacks contain anti-forensics measures targeting the identification and acqui-
sition phases of forensic analysis. Maggi, Zanero, and Iozzo, in [Maggi, Zanero, and Iozzo
2008] in 2008, propose to build Markov models of processes based on the sequences of sys-
tem calls they use. Profiles need to be learnt for each application in advance. Then,
the live system is monitored and each system call is analysed. Two probabilities are
computed, the probability that the execution sequence fits in the model and the proba-
bility of the system call appearing at that point in the sequence. These probabilities are
compared to the anomaly threshold in order to decide if anti-forensic measures are being
used.

In 2012, in [C.-M. Chen, Guan, et al. 2012], C.-M. Chen, Guan, et al. feed heteroge-
neous logs to a three-state HMM in order to detect attacks against machines in the cloud.
The states are “reconnaissance” where the machine is being probed, “intrusion” where the
machine is being compromised and finally “attacking” where the machine is being used to
attack other machines. The authors use a similar approach in [C.-M. Chen, Hsiao, et al.
2013] to protect Industrial Control Systems (ICS). The aim is to detect attacks where
the target is first attacked by a botnet trying to find credentials. Once credentials are
found, a human attacker connects to the target and makes it part of the botnet, which
means it will be used in subsequent attacks. Such a scenario is possible because ICS of-
ten use weak password susceptible to brute force attacks. In this case, the HMM used
has three states: “normal” when the target is not under attack, “intrusion” when the
target has been compromised and “joint attack” when the target is used to perpetrate
further attacks. In [C.-M. Chen, P.-Y. Yang, et al. 2014], the authors focus even more on
finding the link between the bruteforce attack by a botnet to find the password and the
attacker using that stolen password from a different machine. In order to differentiate an
attacker using a stolen password from a normal user login, their proposed system moni-
tors the network for passwords being exfiltrated. Alerts are raised whenever a bruteforce
attack is detected and whenever an exfiltrated password is being used. These alerts are
sent to a HMM which differentiates between an attacker and a normal user. These re-
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sults are interesting to us because we want to use HMMs to model the links between
attacks in an attack chain.

While Katipally, L. Yang, and A. Liu does not mention APTs in their 2011 article [Kati-
pally, L. Yang, and A. Liu 2011], their aim is to analyse the behaviour of attackers during
multi-stage attacks which is a more general vision of APTs. They define five categories of
attackers such as the criminals trying to make money, the terrorists trying to destroy and
the insider with knowledge of the organisation. They then use one Hidden Markov Model
for each kind of attacker, and are able to classify attackers into one category. The actual
defense can then be adapted depending on the category. The models use five phases for
attacks: scanning, enumeration, and then three types of exploitation, access, malware
or denial of service. This is really interesting, because it shows that HMM are precise
enough that they can be used to classify different kinds of attackers.

Even earlier, in 2003, in [Gao, Sun, and Wei 2003], Gao, Sun, and Wei explore the
capabilities of HMM to make predictions about intrusions. They use Hidden Markov
chains to model application-level protocols. They show that these models can be used
to predict attacks before the full payload is seen. However, during model creation,
each application must be analysed manually in order to extract interesting features.
Even though the training can be automated, and the results show that attacks can
be predicted, the fact features have to be extracted manually makes this solution less
automated than it should be.

As we can see, HMMs can be used to model attack campaign. However, none of
these experiments take into account the possibility that there are several active attack
campaigns in a system at any given time. This is not acceptable when working on
the detection of APTs as those are usually long-lasting campaigns which increases the
odds that other campaigns will be active at the same time. This is why we use IFT to
reconstruct potential attack campaigns and then use HMMs to evaluate these potential
attack campaigns. In addition, since APTs are the work of skilled attackers, not every
attack will be detected. This means that our usage of HMMs must be able to take into
account possibly missing observations when evaluating whether a given chain is an APT.

2.4 Data generation for machine learning and security

Machine learning approaches often require large datasets for training and validation.
In security, there are public datasets available for the evaluation and testing of Intrusion
Detection System. The most well known is the IDEVAL dataset from 1999 [Lippmann
et al. 2000; Haines et al. 2001]. This is a comprehensive dataset, including data for the
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evaluation of both network-based and host-based IDS. However, it is not without flaws,
highlighted in numerous articles such as [McHugh 2000; Mahoney and Chan 2003; Engen
2010]. Despite its age and inherent shortcomings, it is still being used [Z. Chen et al.
2016; Little, Mountrouidou, and Moseley 2016]. There have been proposal to fixes the
flaws and update the dataset, such as the one by Qian, Xu, and Shi [Qian, Xu, and Shi
2006], but a 2014 study by Koch, Golling, and Rodosek [Koch, Golling, and Rodosek
2014] shows that available dataset are still not satisfactory. The one cited as the most
realistic is the PREDICT, recently renamed to IMPACT [DARPA 2016], however, it is
not a public dataset. Hence, the community requires better public data in order to
properly evaluate and compare IDS solutions. This is compounded by the results of
Maxion and Tan [Maxion and Tan 2000] which shows that the performance evaluation
of an IDS can differ by an order of magnitude simply by changing the dataset.

Cordero, Vasilomanolakis et al. have worked on the creation of datasets for the eval-
uation of IDS [Cordero et al. 2015; Vasilomanolakis et al. 2016; Vasilomanolakis 2016].
They start by identifying four requirements that make a dataset qualified for the evalua-
tion of IDS. The dataset must contain labeled attacks. The dataset must contain modern
normal and attack data. The dataset must be publicly available or reproducible. The
dataset must be flexible and allow testing different scenarios. In this light, they propose
ID2T, a tool generating labeled datasets from network packet captures while making
sure to retain realistic properties. The tool is interesting, and the datasets produced
can be used to evaluate any network-based IDS. However, this is limited exclusively to
network-based IDS.

In 2015, Małowidzki, Bereziński, and Mazur start by listing and analysing the datasets
used in articles, when they are disclosed. Then, in [Małowidzki, Bereziński, and Mazur
2015], they identify the two main shortcomings of these datasets. Namely, they are often
stale and often lack labeled attacks. From these shortcomings, they define four criteria
as essential to a good dataset. It must be recent. It must include attacks labeled with
precisions. The attacks must be varied. And the dataset must be correct. They also
add the bonus criterion of a balanced dataset, containing both attacks as well as normal
data. They analyse existing datasets and come to the conclusion that the best datasets
are collected in actual production environment.

Datasets collected in production environments are rare and usually not public. Instead,
we are interested in tools to generate the datasets. These tools should be available so
that anyone can generate the datasets. Such tools already exist and we will describe a
few.

Béla Genge et al.; Siaterlis, Béla Genge, and Hohenadel focus, in [Béla Genge et al.
2012; Siaterlis, Béla Genge, and Hohenadel 2013], on Industrial Control Systems (ICS).
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They propose an environment for experiments on the security of ICS. They identify
generic requirements such as reproducibility, automation and controlled environment.
There are also ICS specific requirements such as a wide range of physical processes, a wide
range of ICS or at least the typical ones, real software support so that actual SCADA and
malwares can be run, accurate representation and safe disruptive experiments. The last
one is particularly important for ICS as these are systems which act on the physical world,
and attacks can cause unpredictable results. It is necessary that these unpredictable
results do not cause harm or cripple the experiment framework. Their solution is to have
physical models for the real world interactions and simulate them during the experiments.

MACE [Sommers, Yegneswaran, and Barford 2004] is a 2004 framework for recreating
malicious packet traffic by Sommers, Yegneswaran, and Barford. This is done by defin-
ing a model of the malicious traffic. The model contains three parts. The exploit model,
which describe the vulnerabilities part of the attack. The obfuscation model, which de-
tails how the payloads are morphed in order to avoid detection. The propagation model,
which details how the victim are chosen and in which order. There is an additional
model describing the background traffic which represents the normal usage of the net-
work. MACE then uses these models to generate network traffic which can be analysed
by whatever tool is being developed. However, the tool is not publicly available because
the authors fear that it could be used for malicious purposes.

In 2006, Mirkovic et al., in [Mirkovic et al. 2006], design a benchmark for Distributed
Denial of Service (DDoS) defense evaluation. The benchmark can be configured on three
points: the type of DDoS attack, the legitimate traffic and the network topology. The
type of DDoS attack is important because depending on the attack, the network packets
and the traffic shape will be completely different. The legitimate traffic is important
because it may or may not resemble the malicious traffic, which means that it can be
more or less easy to pick it out and allow it through. Lastly, the network topology also
has a big impact on the effectiveness and the architecture of the DDoS defense. These
settings are defined from a set of collected DDoS traces in order to offer a collection of
typical DDoS attack scenarios. The benchmark also includes performance metrics and
measurement methodology so that the results are more directly comparable.

These tools are interesting, but we find that they do not offer enough variety in the
datasets they can generate. The first one is focused on ICS, the second on network traffic
and the third on DDoS attacks. In light of this, we propose our own tool, Moirai [Akheros
2016a]. This tool does not actually collect data to create a dataset. Instead, this tool
is meant to replay scenarios. Whatever IDS is to be tested can be installed on the
appropriate VMs in the scenario and will collect the data. The tool is described in more
details in Section 5.2 on page 81, and the scenarios used with it to evaluate our solution
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in Section 3.2 on page 50 and Section 4.2 on page 68 are available [Akheros 2016b].

2.5 Summary

We have seen that APTs are a dangerous threat and that they are difficult to detect.
While there are works trying to do just that, there is no definitive solution. The tool we
present hereafter to reconstruct APT campaigns builds on the findings of these earlier
solutions and in particular uses the same decomposition in phases of attack campaigns:
“reconnaissance”, “compromise”, “establish presence”, “privilege escalation” and “mis-
sion completion”. We will then use IFT to link separate attacks together in potential
attack campaign. The intuition is that in an attack campaign, the attacker uses one
phase of an attack in order to set up the next. This means that there should be flows of
information from the first attack to the second one. Using IFT, we can track those and
thus reconstruct attack campaigns. However, IFT also has a lot of false positives and
we need to filter those out. To do this, we use an HMM, with a custom made score in
order to be able to compare the fit of different chains to the model, even if some of these
chains have missing observations. HMMs fit our use case because the phases of an attack
campaign are the values we are interested in; however, they are not directly observable.
Instead, we can deduce the phase of an attack campaign by the type of attack that is
observed. Since the other Akheros modules detect and qualify individual attacks, we can
use those qualified attacks as the observations. Additionally, attack campaign should fit
the Markov hypothesis rather well since the actions of an attacker depend on whether
the current attack succeeds. If the current attack succeeds, the attacker will move on to
the next phase; if it fails, they will either stay in the same phase, or they will go back
to a previous phase. In either case, the progression of the campaign is only dependent
on the result of the current attack. Our work on IFT will be described and evaluated
in Chapter 3 on page 39 and the work on HMM is detailed in Chapter 4 on page 55.

In addition, we have seen that, while there all datasets to evaluate IDS with, they
are heavily criticised. We decided to create our own tool, Moirai, which concentrates on
defining and replaying scenarios. We use it to create APT campaigns and assess how
our IFT and HMM based attack campaign reconstruction and evaluation tool performs.
Moirai is detailed in Chapter 5 on page 77, accompanied the description of the rest of
the supporting architecture we developed.
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Chapter 3

Information Flow Tracking – Finding links
between attacks

In this chapter, we describe the IFT system used to link attacks together
in order to build chains of attacks. We list the containers of information, files,
processes and sockets, and explain how we extract flows of information from the
raw data. We then add a taint whenever a new attack is detected and use those
taints to link attacks together: whenever a taint is on the inputs of a flow part of
an attack, this means there is a link between this attack and the attack represented
by the taint. This is how, by the end of this chapter, we will have extracted
potential attack campaign. However, this is only the first of two steps as our
implementation of IFT leads to over-approximations. A second step, explained
in the next chapter, is needed to filter the results.

3.1 Method

3.1.1 Concept presentation

When programs run in an information system, they exchange data with the system
and with other programs. The idea behind Information Flow Tracking is to track those
data exchange in order to follow the data. The aims can differ, but an obvious example
would be to check that some specific data does not reach some specific place, e.g. that
sensitive data is not sent on the network. The flows of information can be tracked at
different levels of granularity, with finer granularity requiring more resources but giving
more precise results. In order to track these pieces of information inside the system, IFT
implementations attach some metadata, usually called taint or tag, to these pieces of
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information. This metadata indicates through which components of the system the data
has travelled. We can then apply policies on the metadata in order to safeguard the data.
Taking the same example as before, we would have a specific taint for sensitive data and
specify that data with this taint should not be sent through a network device. As the
system run, some programs would handle sensitive data, and any data derived from this
sensitive data would also gain the “sensitive” taint. If any program were to send data
with the “sensitive” taint on the network, then the IFT implementation would raise an
alert. This would happen regardless of how the “sensitive” taint arrived on the data. In
particular, the IFT implementation does not care when and how taint are attached to
the data; this means that IFT implementation do not need to know how a given taint
could reach a given point of the system, it only needs to track flows of information in
order to protect the system.

Concretely, an IFT implementation must define a number of concept. The first one
is the granularity of the tracking; this is defined through the concept of “containers of
information”. Containers are the smallest unit of data that can be tracked. Depending
on the implementation, it can be a byte or it can be a whole file or program. The second
concept are the taints, and more specifically, how taints are added inside the system.
This could mean taints based on the location of the original data for example. Lastly,
the implementation must define rules for propagating the taints inside the system. This
is similar to defining the flows of information as well as defining the rules governing
how taints are merged on containers, i.e. what happens when a container that already
contains tainted data receives data with a different taint.

Let us present an example based on our usage of IFT and illustrated in Figure 3.1 on
page 42. We start by enumerating all the containers. In this example, the containers
are files on a computer and there are four of them. We then add the initial taints to the
appropriate containers. In this case, we want to see how the data in two files is being
used so we give a unique taint to File 1 and another one to File 2. We define the rules of
propagation as a simple union of the taints already present on the container with the new
taints added from the flow of information. The last stage of the initialisation is adding
the flows of information, in chronological order. In this example, there are four flows of
information which are created when a program reads from one file and writes to another.
The result is 3.1a on page 42. We can then start propagating the taints. The first flow
goes from File 3 to File 2, but since File 3 does not have a taint, nothing is propagated
to File 2 and File 2 just keeps its taint, as shown in 3.1b on page 42. The second flow
propagates the taint of File 1 to File 3. Since File 3 did not have a taint, it simply takes
the taint of File 1, as shown in 3.1c on page 42. Similarly, the third flow puts the taint
of File 2 on File 4 as shown in 3.1d on page 42. The fourth flow propagates the taint
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of File 1 on File 2. Since File 2 already had a taint, its new taint is a union of both, as
shown in 3.1e on the following page. We now know from the final taints that File 2 and
3 contain information originating from File 1 and that File 4 contains information from
File 2. There is no way to know that File 2 contains information from File 3 because we
did not give a taint to File 3; this is fine because we do not care about the information in
File 3 to begin with. The exact propagation rules depend on the implementation and the
requirements. For example, the rules could define that in the fourth flow, the new taint
of File 2 is only the taint of File 1 instead of a combination of both taints. A security
system using IFT could define rules to be satisfied in the system, such as specifying that
File 4 cannot contain information from File 1 or that information from File 1 and File
2 should not be mixed. Those rules can be checked after each information flow and an
alert raised whenever one rule is violated.

3.1.2 Definitions

The IFT module receives as input the data from an Intrusion Detection System (IDS)
which also captures the low-level data required for tracking flows of information. The
data it receives is composed of events in chronological order. Some of these events are
marked as being part of an attack. Hence, an attack can be seen as a list of events such
as is shown in Table 3.1 on page 43. Some of the types of events can also be interpreted
as flows of information. The list of such events is in Table 3.2 on page 43. Each line in
the table indicates that information is passed from the input objects of the event to its
output objects. Most events only have one input and one output object, but some have
more. For example, the “Read file” events indicates that the current process reads a file.
In terms of information flow, this means that there is a flow of information from the file,
the input object, to the process, the output object. As such, events are considered as
tuples with four values: the timestamp, the event type, the list of references of input
objects and the list of references of output objects. If either of the list of objects is
empty, then the event cannot be interpreted as an information flow. These events do not
appear in Table 3.2 on page 43. Objects are the elements of the monitored system which
either contain data, the files and processes, or are communication channels, the sockets;
information flows from and to objects.

By processing these events in chronological order, our IFT system is able to recon-
struct the flows of information through the monitored system. Note, however, that there
is no way for our Information Flow Tracking system to know how the data read by pro-
cesses are handled. The system has to make an over-approximation and assume that any
information coming out of a process, or any other object, is a function of all the infor-
mation that went into the process before. Thus, the system assumes there is a flow of
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(a) Initial setting, with containers, taints and flows.
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(b) Propagating the taint of flow 1.
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(c) Propagating the taint of flow 2.

File 1 File 2 File 3 File 4
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(d) Propagating the taint of flow 3.
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(e) Propagating the taint of flow 4.

Figure 3.1: An example of taint propagation.

42



3.1 Method

Table 3.1: A sample of the input for Information Flow Tracking

Timestamp Type of
event

Input
objects

Output
objects Attack

1458208373036307835 open file – – –

1458208376131582000 receive
packet

10.0.51.100:
38201

10.0.51.101:
80 –

httpd (1184)
1458208376133138842 close file – – –

1458208376131582000 receive
packet

10.0.51.100:
38201

10.0.51.101:
80 Yes

httpd (1184)
1458208376139787235 read file /var/www/cgi-

bin/shell.sh
httpd (1184) –

1458208378187978439 write file httpd (1184) /tmp/pwnme –
1458208379179691846 execute file /tmp/pwnme pwnme

(1463)
Yes

Table 3.2: List of events and their information flows
Type of event Input objects Output objects

Create process current process new process
Execute file filename current process
Change permissions current process filename
Change owner current process filename
Create file current process filename
Read file filename current process
Write file current process filename
Receive packet remote socket local socket

current process
Send packet local socket remote socket

current process
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information between all the information that entered the object before an information
comes out and that information coming out.

3.1.3 Implementation

Working from the list of events from the IDS and the detected attacks, we aim to
highlight chains of attacks. As already mentioned, our work is based on the intuition
that if two attacks are consecutive steps in an attack campaign, then there must be a
flow of information from the outputs of the events part of the first attack to the inputs
of the events of the second attack. For example if the first attack installs a RAT, the
second attack can use that RAT to exfiltrate sensitive data. When the first attack installs
the RAT, there will be an information flow from the attack to the process running the
RAT. Then, when the second attack uses the RAT, there will be an information flow
from the RAT to the data exfiltration. Thus, in order to link attacks and recreate attack
campaign, we need to know which flows of information were part of which attack. The
solution is to create a tag for each new attack. These tags are immutable and represent
one attack, and each attack is represented by one tag. By propagating these tags through
the flows of information and attaching them to objects, we will be able to follow where
the information from attacks goes.

The tags representing each attack are propagated by the flows of information. Each
flow of information is processed in chronological order. The propagation depends on
whether the inputs are tagged and whether the event is part of an attack. The instruc-
tions are summarised in Algorithm 1 on the facing page:

1. The inputs are not tagged and the event is not part of an attack: there is nothing
to do;

2. the inputs are tagged and the event is not part of an attack: the tags on the inputs
are propagated to the outputs (Propagate);

3. the inputs are not tagged and the event is part of an attack: a new chain of attacks
containing only this attack is added to the list of chains of attacks (CreateChain)
and the tag representing the attack is propagated to the outputs (Propagate);

4. the inputs are tagged and the event is part of an attack: the attack is appended
to the appropriate chains of attacks (AppendAndMergeChains) and the tag
representing the attack is propagated to the outputs (Propagate).

As an example, we can apply this algorithm to the events in Table 3.1 on the previous
page. The propagation is represented in Figure 3.2 on page 46. First, we establish the
list of objects, of which there are 6 in this example. We can then start to insert and

44



3.1 Method

Algorithm 1 Rules of tag propagation
if NOT event is part of an attack then

if NOT inputs are tagged then
continue

else
Propagate(inputs, outputs)

end if
else

if NOT inputs are tagged then
CreateChain(attack)
Propagate(attack tag, outputs)

else
AppendAndMergeChains(inputs, attack)
Propagate(attack tag, outputs)

end if
end if

propagate tags. For the first flow of information, there are no tags in the system and
no attacks so no objects are tagged, as shown in 3.2a on the next page. The second
flow is part of an attack. Since there are no pre-existing tags in the system, we create
a new tag and propagate it to the outputs of the flow as in 3.2b on the following page.
In particular, we see that the process httpd (1184) is tagged with the tag of the first
attack. We continue propagating tags, as shown in 3.2c on the next page. We see that
httpd (1184) writes to the /tmp/pwnme file which becomes tainted with the tag from the
first attack. This file is then executed, which is detected as a second attack. This means
that the resulting process is tagged with the tag of this second attack. Additionally, a
link is established between the first and the second attack.

The Propagate function merges the tags already present on the outputs with the tags
on the inputs as in Equation (3.1), where I is the set of inputs and O is the set of outputs.

∀O ∈ O, Tags(Otn ) � Tags(Otn−1) ∪
⋃
I∈I

Tags(Itn−1) (3.1)

The AppendAndMergeChains puts the latest attack in the appropriate attack
chains. In some cases, this includes merging separate chains of attacks that become
linked by this new attack. It proceeds as follows. Let LCA be the list of chains of attacks
( Equation (3.2) on page 47). First, all the tags of the inputs of the new attack are put
in a set, T ( Equation (3.3) on page 47). Then, each chain in LCA finishing with a tag
in T is moved to Lnew, a new list ( Equation (3.4) on page 47). Then, each chain in
LCA containing at least one tag of T is copied; each copy is truncated after the last tag
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10.0.51.100:38201 10.0.51.100:80

httpd (1184)/var/www/cgi-bin/shell.sh

/tmp/pwnmepwnme (1463)

1

1

(a) Propagating the first flow.

10.0.51.100:38201 10.0.51.100:80

httpd (1184)/var/www/cgi-bin/shell.sh

/tmp/pwnmepwnme (1463)

Attack
2

2

(b) Propagating the second flow.

10.0.51.100:38201 10.0.51.100:80

httpd (1184)/var/www/cgi-bin/shell.sh

/tmp/pwnmepwnme (1463)

Attack

3

4

5

(c) Propagating the rest of the flows.

Figure 3.2: Propagating taints and finding links between attacks in our IFT implemen-
tation.
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LCA � {A1 − A4 ,A2 − A5 ,A3} (3.2)

new attack: A6, T � {2, 4} (3.3)

LCA � {A2 − A5 ,A3}
Lnew � {A1 − A4}

(3.4)

LCA � {A2 − A5 ,A3}
Lnew � {A1 − A4 ,A2}

(3.5)

LCA � {A2 − A5 ,A3}
Lnew � {A1 − A2 − A4}

(3.6)

LCA � {A2 − A5 ,A3}
Lnew � {A1 − A2 − A4 − A6}

(3.7)

LCA � {A1 − A2 − A4 − A6 ,A2 − A5 ,A3} (3.8)

of T in it; the truncated copies are put in Lnew ( Equation (3.5)). Then, all the chains
in Lnew are merged by creating a new chain with all the attacks in chronological order
( Equation (3.6)); the new attack is appended to this chain ( Equation (3.7)); this new
chain is added to LCA ( Equation (3.8)).

This is also illustrated in Figure 3.3 on the following page. The initial LCA is shown
in 3.3a on the next page. Attack6 is detected and linked to Attack2 and Attack4 in 3.3b
on the following page. The chain Attack1 – Attack4 is removed from LCA and added to
Lnew. The chain Attack2 – Attack5 is copied and truncated, leaving only Attack2 and
added to Lnew. The chains in Lnew are then merged and added to LCA giving the results
in 3.3c on the next page.

3.1.4 Pros and cons: why we use Information Flow Tracking

The principles behind IFT can seem simple: if a given bit of information is copied
from one place to another, then there is a flow of information between those two places.
However, this is only the simplest case of flow: a direct flow of information. There are
also indirect flows of information, where the information contained in a given bit is not
copied to a second location, but instead that first bit influences the value that is being
copied to the second location. An example is the first bit being used as a condition in
execution branches. Depending on its value, the program will take one of two branches
and the value of the second location, set during these branches, will be different in each
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Attack1

Attack2

Attack3

Attack4

Attack5

(a) Chains of attacks before the new attack is detected.

Attack1

Attack2

Attack3

Attack4

Attack5

Attack6

new attack

(b) A new attack is detected and new links are created.

Attack1 Attack2

Attack2

Attack3

Attack4

Attack5

Attack6

(c) Chains of attacks are updated with the new attack.

Figure 3.3: AppendAndMergeChains in action.
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case. There is an implicit flow of information from the first bit to the second one. Thus,
IFT is capable of following flows of information even if the attack only modifies the logic,
and not the data, of the attacked program.

If we consider a perfect IFT system, it is able to follow the changes of any bit in
the system. This means that if it finds that the information contained in a number
of bits originated in one attack and travelled through the system until it was used in
another attack, then those attacks are linked. This means that the second attack used
information originating from the first attack, which means they are almost certainly
linked. This is the reason we use IFT. If it finds a link between two attacks, then
there is an actual physical link between these two attacks. However, this link does not
immediately translate to those two attacks being part of the same attack campaign. For
example, the second attack could be attacking a program that was modified by the first
attack. This is compounded by the fact that if a service is vulnerable, several attackers
could take advantage and use this same service as an entry point, which, in some cases
could create links between the attacks. Thus, while IFT does show a physical link, it
cannot know the cause of the link and cannot infer the intent of the attackers. This can
create spurious links between attacks.

Our implementation of IFT is not perfect. Creating a perfect IFT system would require
hardware assistance and incur a high overhead as a lot of computations are necessary
to follow the information flows of every single instruction. Hence, our implementation
has an additional drawback. As discussed already, it has to make over-approximations
because it cannot follow information at the granularity of the size of a bit. Instead our
implementation works at the granularity of the files and processes. Every bit in a file has
the same tags, every bit in a process has the same tags. So, once a process reads a file
with a tag, it will stay tagged until it dies, even if the part of memory where the content
of the file was stored and processed is removed. In this case, if a service is vulnerable
and the target of several attacks, these attacks will always be linked by IFT. Even if the
service processes the data from the attack and then discards it before the next attack, it
remains tagged which links the two attacks together.

Another interesting property of IFT is that it is resilient in case we miss attacks. If
the flows from Attack1 lead to Attack2 which then lead to Attack3 , what happens if
the IDS does not detect Attack2 ? There are actually two cases to consider, and both
are illustrated in Figure 3.4 on page 51. In the first case, the flows linking Attack1 to
Attack2 are parents of the flows linking Attack2 to Attack3 , as in 3.4a on page 51. In
this case, if Attack2 is not detected, since the flows from Attack1 are parents of the flows
from Attack3 , IFT will establish a link between the two attacks, as in 3.4b on page 51.
This is what we mean when we say that IFT is resilient in case we miss attacks. There
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is also a second case to consider. We have defined attacks as a list of events. This means
we can have a configuration of events as shown in 3.4c on the next page. The flows of
Attack2 which are parents of flows of Attack3 are not descendants of flows of Attack1 .
In that case, if we miss Attack2 then we end up with the configuration in 3.4d on the
facing page where there are no links established between Attack1 and Attack3 . In that
case, IFT is not resilient. However, in our experiments, we studied the behaviour of IFT
when the IDS requires only one event to detect an attack. This is the worst case for
IFT when trying to establish links as attacks made of more events will lead to broader
diffusion of tags, but this matches the first case which means that for our application,
we can consider that IFT is resilient to missing attacks.

All in all, IFT is not perfect but it does highlight physical links between attacks.
And since our implemented system integrates with an IDS that already collects all the
necessary information, there is no additional cost in adding IFT. Of course, that means
IFT is only the first step in finding attack campaigns. Subsequent steps are necessary to
filter out false positives in the links created.

3.2 Evaluation on APTs

In this evaluation, we use the scenario presented in Chapter 5 on page 77. This
scenario is a naïve but representative example of an APT: we include all the usual steps
in the right order but exclude any cycle. Figure 5.3 on page 87 gives a visual overview.
It follows a website encountering four different types of users: there are legitimate users
but there are also three attackers, one of which is conducting an APT. It is the actions
of this last actor that we want to link together.

As explained before the aim of this IFT step is to find links between attacks and
reconstruct potential attack campaigns. We start with the data from the IDS and extract
the flows of information. From the flows of information, we create links between the
containers and propagate the tags associated with attacks. For example, between the first
attack of the scenario and the second attack, we find the containers shown in Figure 3.5
on page 52. In the figure, the tags are represented by colours. Since the first attack is
a shellshock attack against the web server, we see that the httpd process is tagged with
the tag of the attack (blue in the figure). A number of processes are then executed and a
small Remote Access Tool is spawned, disguising itself as sshd, a legitimate and usually
installed service. This process is used to check the system and create a reverse shell,
which is the second attack. From then on, the tag of the second attack is propagated
(red in the figure). This establishes a link between Attack1 and Attack2 .
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C1 C2 C3 C4

Attack1 Attack2 Attack3

(a) All attacks have been detected and are on the same path.

C1 C2 C3 C4

Attack1 Attack3

(b) IFT is resilient even if the attack in the middle is not detected

C1 C2 C3

C4 C5 C6

Attack1

Attack2
Attack3

(c) All attacks have been detected and are not on the same path.

C1 C2 C3

C4 C5 C6

Attack1

Attack3

(d) IFT is not resilient in this case.

Figure 3.4: Examples showcasing the resilience of IFT.
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httpd/var/log/httpd/access_log

/var/log/httpd/error_log

10.0.51.100:dyn

shell.sh perl sh curl /tmp/core

perl

/usr/sbin/sshd

10.0.51.100:6667id ip ls

pwnme

Attack2

Attack1

10.0.51.100:2222

Figure 3.5: Tracking the flows of information from the shellshock attack to the opening
of a reverse shell. Arrows represent flows of information and ellipses are
containers. A double arrow means that the flow is part of an attack. Each
colour represent the tag of an attack, blue being Attack1 and red being
Attack2 .

Once we discover a link between attacks, we use the AppendAndMergeChains
strategy to find the potential attack campaign. Figure 3.6 on the facing page shows
the step-by-step evolution of the potential attack campaign whenever we detect an at-
tack. For example, when we detect Attack3 , as in 3.6c on the next page, there is a link
between Attack1 and Attack3 but none between Attack2 and Attack3 . Thus we end up
with two potential chains of attacks, one with Attack1 and Attack2 and one with Attack1

and Attack3 .

At the end of this phase, we obtain the potential attack campaigns that we must evalu-
ate. In this scenario, we have two potential attack campaigns: “Attack1 –Attack2 –Attack4 –Attack6 ”
and “Attack1 –Attack3 –Attack5 ”. Since we created the scenario, we know that the first
one is a real attack campaign, it is the APT campaign we devised, and that the second
one is not a real attack campaign. Instead, it is composed of three independent attacks
on the same software, namely httpd. This is as expected. IFT found the right attack
campaign but also found spurious links. This is why we need the HMM step.
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(c) Chains after Attack3
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(d) Chains after Attack4
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(e) Chains after Attack5
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(f) Chains after Attack6

Figure 3.6: Potential chains of attacks obtained through Information Flow Tracking.
Dashed arrows show the links found by IFT, and full arrows the link re-
tained by the AppendAndMergeChains procedure.
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Chapter 4

Hidden Markov Models – Assessing link
plausibility

In this chapter, we present the second step of our approach used for
filtering the false positives of the previous step. We explain how we create the
Hidden Markov Model with the phase of an attack campaign as the hidden states
and the categories of attacks as the observations. We establish the matrices
by leveraging public APT reports and polling experts. We then design a score
using a modified Viterbi algorithm and the probability p that an attack is not
detected in order to take into account those potentially missing observations
when ranking the potential attack campaigns found by the previous step. By the
end of this chapter, we will have a list of potential attack campaigns ranked from
most probably an APT to least probably an APT.

4.1 Method

4.1.1 Concept presentation

A Hidden Markov Model (HMM) is a two-level stochastic process. The first level is a
Hidden Markov chain that cannot be directly measured. A Markov chain is a stochastic
process following the Markov property, meaning that the process is memoryless, i.e. the
future state st+1 of the process, conditional on the current and past states, depends only
on the current state st :

P(st+1 � Sit+1 |st � Sit , st−1 � Sit−1 , . . . , s0 � Si0) � P(st+1 � Sit+1 |st � Sit ).
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While the Hidden Markov chain cannot be directly measured, its states do generate
observations which can be measured. These observations form the second level of the
HMM, and the observation at a given time depends only on the state at that time:

P(ot � Ot |st � St , st−1 � St−1 , . . . , s0 � S0 , ot−1 � Ot−1 , . . . , o0 � O0) � P(ot � Ot |st � St).

Thus, a HMM is defined by:

1. The N states of the system, denoted as

S � {S1 , S2 , . . . , SN}.

This is the Hidden Markov chain. The L states of a given chain of length L of a
HMM are written as s � s1 , s2 , . . . , sL.

2. The M observations of the system, denoted as

O � {O1 ,O2 , . . . ,OM}.

These are generated by the states of the Markov chain. The L observations of a
given chain of length L of a HMM are written as o � o1 , o2 , . . . , oL.

3. The state transition probability matrix A � [ai j], where

∀t , P(st+1 � S j |st � Si) � ai j for i , j ∈ ⟦1,N⟧. (4.1)

A is a N × N matrix, and ∀ i ,
∑

j ai j � 1.

4. The observation probability matrix B � [bi j], where

∀t , P(ot � O j |st � Si) � bi j for i ∈ ⟦1,N⟧ and j ∈ ⟦1,M⟧.

B is a N × M matrix, and ∀ i ,
∑

j bi j � 1.

5. The initial probability vector π � [πi], where

P(s1 � Si) � πi for i ∈ ⟦1,N⟧. (4.2)

π is a vector of length N and
∑

i πi � 1.

We will denote an HMM as λ � (A, B, π).

A concrete example of an HMM application is described in [Stamp 2004]. The idea is
that we want to know whether past years were hot or cold. However, the target years
predate temperature records. Hence we do not have access to measurements. Instead,
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we use the size of tree rings for those years to try and determine whether they were hot
or cold. In hot years, trees will tend to grow more and have larger tree rings and in colder
years they grow less and have smaller rings. In this example, the Hidden Markov chain is
the sequence of yearly temperature, and we have N � 2 states which are S � {hot, cold}.
The observations are the tree rings and we have M � 3 and O � {small,medium, large}.
The example also specifies the matrices:

A �

[
0.7 0.3
0.4 0.6

]
, B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
, π �

[
0.6 0.4

]
.

Given an HMM λ and a sequence of observations o, we can use Baum’s forward-
backward algorithm [Devijver 1985] to efficiently compute the probability that this se-
quence of observations was generated by the model:

P(o |λ) �
∑

S

P(o |s , λ) · P(s |λ) �
∑

S

P(oL |sL) · P(sL |sL−1) · · ·P(o1 |s1) · P(s1).

In addition, we can also compute the most probable sequence of states which generated
that sequence of observations as well as its probability in the model using the Viterbi
algorithm [Forney 1973]. The Viterbi algorithm is executed by walking forward in the
trellis of possible transitions and computing the maximum probability of reaching each
state at each time step, taking the observations into account. Once the end of the chain is
reached, the trellis is walked backward starting from the highest probability and finding
which state in the previous step lead to it and so on until the beginning of the chain is
reached.

Using the tree example on the facing page, let us walk through the Viterbi algorithm
for the following chain of observations: o � “S”, “M”, “S”, “L”. We abbreviate hot as
“H”, cold as “C”, small as “S”, medium as “M” and large as “L”. The trellis is shown
in Figure 4.1 on the next page. From Equation (4.2) on the facing page, we know directly
that P(s1 � “H”) � π“H” � 0.6 and that P(s1 � “C”) � 0.4. We can then compute the
probability that the chain is at either state and generates the first observation “S”:

P(o1 � “S”|s1 � “H”) · P(s1 � “H”) � 0.06, (4.3)

P(o1 � “S”|s1 � “C”) · P(s1 � “C”) � 0.28. (4.4)

Then, for each state, we use the result of Equation (4.3) and Equation (4.4), multiply by
the transition probability and take the maximum of the two. For example, if the second
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“H”

0.06

“C”

0.28

“S”

“H”

0.0448

“C”

0.0336

“M”

“H”

0.003136

“C”

0.014112

“S”

“H”

0.002822

“C”

0.000847

“L”

0.6

0.4

0.018

0.168

Figure 4.1: Walking the trellis in the Viterbi algorithm for the “temperature of the year
and tree ring size” example. We abbreviate hot as “H”, cold as “C”, small
as “S”, medium as “M” and large as “L”.

state is “C”:

max (0.06 · P(s2 � “C”|s1 � “H”), 0.28 · P(s2 � “C”|s1 � “C”)) � 0.168.

We then multiply this result by the observation probability 0.168 · P(o2 � “M”|s2 � “C”) �
0.168 · 0.2 � 0.0336. We do this for every state at each step and obtain the num-
bers in Figure 4.1. We then retrace the trellis by selecting the state with the highest
probability (“H” in this case) and finding which state at the previous step led to this
probability (“C” in this case). We then do the same for that state and so on until we
reach the first step. In our case this leads to the finding that the chain of observa-
tion “S-M-S-L” was most probably generated by the state sequence “C-C-C-H” and that
P(o � “S-M-S-L”, s � “C-C-C-H”|λ) � 0.002822.

4.1.2 Definitions

As we have seen in the previous section, using a Hidden Markov Model, we can de-
termine the most probable state sequence based only on the measured observations. To
apply this method to the problem of recognising attack campaigns, we must first define
what are the states and what are the observations. If we go back to the problem defini-
tion, we want to find which attacks are part of the same attack campaign. We know the
different phases in the typical life cycle of an attack campaign is thanks to Section 1.2
on page 3. And using IFT, we can obtain links between attacks; however, some of these
links are spurious so we need to identify the real links. Moreover, the IDS detects attacks
and characterise them, but each of those characteristics does not map to only one phase
of an attack campaign. This is where we aim to use an HMM. We want to know the
state of the system, i.e. in which phase of an attack campaign the attack is. However,
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we do not have direct access to this information. Instead, we know the characteristics of
each attack. By creating a HMM, we can use it to infer the phase of an attack based on
its characteristics and the evolution of the whole chain. Hence, we must create a HMM
with the phase of an attack campaign as its hidden states and the characteristics of the
attacks as observations. In summary, there are N � 5 states S � { “reconnaissance”,
“compromission”, “establish presence”, “privilege escalation”, “mission completion” }
and there are M � 7 observations O � { “scan”, “arbitrary execution”, “credential
theft”, “application exploit”, “backdoor”, “remote access tool”, “data exfiltration” }.
There is a last condition required in order to create a HMM: the underlying process
must respect the Markov property. In an attack campaign, the attackers have a goal and
are trying to reach it. Hence, in each phase, depending on its results, we can assume
that the attackers will either be able to move forward with their plan or will have to
backtrack and find another angle of attack. This decision will only depend on the results
of the current step; whatever steps where needed to reach this step are irrelevant. Thus,
we can assume that the steps of an attack campaign do respect the Markov property.

Once we have defined the states and the observations, the next step is the determina-
tion of the matrices. The first source of information for the creation of the matrices are
the APT reports written by security companies. While these do a great job of analysing
the tools used in each campaign, they do not detail the evolution of the attack cam-
paigns. Hence, we use them to create the observation probability matrix, but we require
more information for the transition probability matrix and the initial probability vector.
For those matrices, we decided to use expert knowledge. We created a website, detailed
in Section 5.3 on page 83, which displays randomly generated attack scenarios. Experts
were asked to rank scenarios as “Strongly APT”, “Weakly APT” and “Not APT”. In ad-
dition, experts could remove some steps in the scenario before evaluating it in order to
make it more APT-like. This was necessary because most randomly generated scenar-
ios do not look like APT. Using these evaluations, we were able to create the transition
matrix and the initial probability vector.

4.1.3 The base length-independent score

We are using the HMM to filter the potential attack campaigns found by IFT. This
means that we aim to rank the different potential campaigns from most probably an
APT to least probably an APT. In particular, we must be able to compare campaigns
of different lengths. However, most scores used for HMM are used to do model selec-
tion, i.e. find the best matching model for a given chain. This means they are used to
compare models and not chains. In effect, scores such as the Akaike Information Crite-
rion (AIC) [Akaike 1974] or the Bayesian Information Criterion (BIC) [Schwarz 1978],
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)
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try to balance the accuracy of the model (measured through the log-likelihood L) with
its complexity (measured through the number of parameters of the model), the aim be-
ing to find a model that is accurate enough but not too complex. The BIC, furthermore,
aims to limit the amount of data required for model creation. Since this is not what we
require, we must introduce a new score adapted to our APT detection problem. In par-
ticular, we must be careful that this new score is not sensitive to the length L of the
Markov chain since the log-likelihood, the basis for AIC and BIC, is sensitive to it and
we want to be able to compare chains of different lengths.

The log-likelihood L of a given chain is defined as L � ln(P(o , s |λ)), where s is ob-
tained using the Viterbi algorithm, meaning it is the most probable chain of states having
generated these observations. This definition of the log-likelihood, instead of the more
usual L � ln(P(o |λ)), is specific to the use of the Viterbi algorithm. Since we have access
to the most probable state sequence, we can compute the log-likelihood of the sequence of
observation having been generated by the sequence of state in the given model. See [For-
ney 1973] for details on why the state sequence is a given in the probability in this case.
We then have:

L � ln(P(o , s |λ)) � ln(P(oL |sL) · P(sL |sL−1) · · ·P(o1 |s1) · P(s1))

�

L∑
l�1

ln(P(ol |sl)) +
L∑

l�2
ln(P(sl |sl−1)) + ln(P(s1)).

The log-likelihood is, thus, a sum of negative terms, and the number of terms increases
with the length L of the chain. We can easily find an upper and a lower bound on the
log-likelihood (see Equation (4.5)). These bounds are dependent on L but the ratio L

L is
bounded by values independent of L (see Equation (4.6)). In keeping with the spirit of
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AIC and BIC we define our score as:

S � −L
L
.

4.1.4 Adapting the score for missing observations: a naïve approach

Now that we have a base score, we also have to take into account the fact that we may
miss observations. As we have seen, APTs are executed by skilled actors, this means
some steps of the attack will probably escape detection, and the score must account for
this possibility. We do this by modifying the Viterbi algorithm.

Due to the Chapman-Kolmogorov equations for homogeneous HMMs, the transition
probability of going from state Si to state S j in two steps is

P(st+2 � S j |st � Si) �
∑

k

aik · ak j � A2(i , j). (4.7)

One can then generalise Equation (4.7) and show that the transition matrix of taking k
steps when going from one observation to the next is Ak . Similarly, the initial probability
vector when reaching the first observation in k steps is π·Ak−1. Thus, we denote the HMM
where we take k steps from one observation to the next as λ(k) � (A(k) , B, π(k)) where
A(k) � Ak � [a(k)i j ] and π(k) � π · Ak−1. Note that A(k) denotes the transition matrix for
the case where there are k steps between one observation and the next, and Ak is the
standard matrix power notation.

The idea is to modify the Viterbi algorithm to include the additional transitions de-
scribed by A(k), i.e. transitions where k − 1 observations are missed in a row. We denote
the state Si reached in k steps as S(k)

i . Thus we have:

P(st+1 � S(k)
j |st � S(l)

i ) � P(st+1 � S(k)
j |st � Si) � a(k)i j .

Note, in particular, that this does not depend on the value of l which means it does not
depend on how many steps it takes to arrive on Si but only on how many steps are taken
going from Si to S j. If we simply rewrite the Viterbi trellis by adding the states reachable
in up to K steps, then we duplicate each state Si K times in the trellis. Hence, we have
to divide each transition probability by K to compensate the effect of this duplication.
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This means replacing Equation (4.1) to Equation (4.2) on page 56 with, respectively:

for i , j ∈ ⟦1,N⟧, l ∈ ⟦1,M⟧, k ∈ ⟦1, K⟧,

∀t , P(st+1 � S(k)
j |st � Si) �

a(k)i j

K
, (4.8)

∀t , P(ot � Ol |st � S(k)
i ) � bil , (4.9)

P(s1 � S(k)
i ) �

π(k)i

K
. (4.10)

We can use Equation (4.8) to Equation (4.10) on this page in the new trellis to compute
the Viterbi path and its associated log-likelihood. We note the log-likelihood computed
with the Viterbi algorithm allowing for up to K steps from one observation to the next
as L(K), and the score computed from this log-likelihood is:

S(K)
� −L(K)

L
.

If we adapt the tree example on page 56 with K � 2, we have the following matrices:

A(1)
� A �

[
0.7 0.3
0.4 0.6

]
, A(2)

� A2
�

[
0.61 0.39
0.52 0.48

]
,

B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
,

π(1) � π �

[
0.6 0.4

]
, π(2) � π · A �

[
0.58 0.42

]
.

Walking the tree is done as in the previous case but using the new equations. From Equa-

tion (4.10), we have P(s1 � “H”(1)) � π(1)“H”
K �

0.6
2 � 0.3, P(s1 � “C”(1)) � 0.2, P(s1 � “H”(2)) � 0.29

and P(s1 � “C”(2)) � 0.21. We can then compute the probability for each state that the
chain generates the observation “S”:

P(o1 � “S”|s1 � “H”) · P(s1 � “H”(1)) � 0.015, (4.11)

P(o1 � “S”|s1 � “C”) · P(s1 � “C”(1)) � 0.07, (4.12)

P(o1 � “S”|s1 � “H”) · P(s1 � “H”(2)) � 0.0145, (4.13)

P(o1 � “S”|s1 � “C”) · P(s1 � “C”(2)) � 0.0735. (4.14)

Then, for each state, we take Equation (4.11) to Equation (4.14) on the current page,
multiply that by the transition probability from Equation (4.8) on the facing page and
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take the maximum:

max(0.015 · P(s2 � “H”(2) |s1 � “H”), 0.07 · P(s2 � “H”(2) |s1 � “C”),
0.0145 · P(s2 � “H”(2) |s1 � “H”), 0.0735 · P(s2 � “H”(2) |s1 � “C”))

�0.03822.

We then multiply this result with the observation probability from Equation (4.9) on the
preceding page and obtain 0.01911 · P(o2 � “M”|s2 � “H”(2)) � 0.01911 · 0.4

2 � 0.003822.
We do this for each state at each step and once we reach the end of the trellis, we
start at the state with the highest probability and walk back to find which succession of
states leads to this probability. In this case, we find that the chain “S-M-S-L” was most
probably generated by the sequence “C(2)-H(2)-C(2)-H(2)” which actually means that the
observation sequence is “X-S-X-M-X-S-X-L” and the state sequence is “Y-C-Y-H-Y-C-
Y-H”, where “X” means that the observation was not observed and ‘Y” that the state is
unknown because the associated observation was not observed. It is interesting to note
that if we compare this second result to the initial one of “C-C-C-H”, the only known
state that changed is the second one, going from “C” to “H”. The associated observation
is “M” which is the most ambiguous one; small rings are almost always due to a cold
year and large rings to hot years, but medium rings could be either. Seeing only the
state associated with this ambiguous observation change when the information is slightly
modified, here simply making allowances for incomplete information, is remarkable.

Adjusting the value of K

Now that we have defined a score, we aim to find an optimal value of K for our ap-
plication. There is no universal correct value for K because it represents a trade-off
between enabling the possibility of missing observations and being able to discriminate
matching and non-matching chains. The larger K is the more observations we can con-
sider missing in a row, but the harder it gets to discriminate because the score of every
chain gets better. It is important to note that the value of K is capped by N, the num-
ber of states. This can be shown easily by demonstrating that if a state appears twice
between observations, the chain between the two appearances can be removed, including
the second appearance, to improve the transition probability. Let us consider a HMM
with N � 4 states S � {A, B, C,D}. We take K � 5 and want to find the best transi-
tion from A to D. One possibility is A − B − C − B − D and the associated transition
probability is P(A) · P(B) · P(C) · P(B) · P(D). Since those are probabilities, we have

0 ≤ P(C) · P(B) ≤ 1.
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Figure 4.2: Trellis of the Viterbi algorithm with up to K � 2 steps from one observation
to the next, for the “temperature of the year and tree ring size” example.
We abbreviate hot as “H”, cold as “C”, small as “S”, medium as “M” and
large as “L”.

which in turns means that we have

P(A) · P(B) · P(C) · P(B) · P(D) ≤ P(A) · P(B) · P(D).

This means that whatever the transition probabilities between the states, A − B − D has
a better transition probability than A − B − C − B − D. This explains why each state
may only appear once between each observation, including the observed states, which
caps the value of K by the value of N.

The test is meant to show that for actual APT chains, the score taking into account
missing observations can be a good approximation of the score of the original chain
when the value of K is chosen properly. More concretely, we use the chains labeled as
“Strong APT” and “Weak APT” (the full dataset is explained in detail in Section 4.2 on
page 68). We remove observations randomly and then compute the score for K from 1
to 3. In order to be able to directly compare the scores computed with different values
of K, we need to adjust them a little. Looking at Equation (4.6) on page 60, we see that
our score is bounded by values of the form:

ln
(
min

i j
(bi j)

)
+ ln ©­«min

i j
(
a(k)i j

K
,
π(k)i

K
)ª®¬ � ln

(
min

i j
(bi j)

)
+ ln

(
min

i j
(a(k)i j , π

(k)
i )

)
− ln(K).
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Figure 4.3: The adjusted score increases when we remove states and then comes back
closer to the original value as we increase K.

This shows that if we want to compare the scores with different values of K, we must
remove ln(K) from the score. The adjusted scores are shown in Figure 4.3. They show
that when we remove random observations and compute the score S(1) then the score is
worse. However, as the value of K increases, we see that the score comes back to about
the same value as the original score.

This method of choosing K is completely subjective, so we tried to apply a more
rigorous method. We chose the elbow method. The elbow method consists plotting a
metric to optimize against the parameter to choose. We then identify the point on the
plot where an increase of the parameter goes from having a large influence on the metric
to having a small influence. We must choose a metric for qualifying the quality of the
score. For this we use an automatic clustering technique, k-means. Since we want to
split the chains of attacks into two classes, “APT” and “Not APT”, we do a k-means
clustering with two cluster for various values of K and plot the percentage of variance
explained by the clustering. A larger percentage is better, so this is the metric we
want to optimise. We apply the elbow method on that plot. The result of the k-means
clustering on the labeled chains with random states removed is shown in Figure 4.4 on
the next page and the plot used for the elbow method is in Figure 4.5 on page 67. We
can see immediately, from the first plot, that values of K > 3 do not change much to
the clustering. In the second plot, we can see that, indeed, the percentage of variance
explained is roughly the same whether K is 3, 4 or 5. From this plot, we see that K � 2
explains less variance than K � 3, so we would choose K � 3, which is what we already
did previously. It is important to note that we cannot choose the case where K � 1
even though it has a higher percentage. This is because S(1) does not take into account
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Figure 4.4: k-means clustering with 2 clusters for different values of K.

missing observations which is crucial for our use case. In addition, we should also note
that we have no ground truth to judge the quality of the clusters. We know the original
classification of each chain, but for this plot, random observations have been removed so
that the original classification is not representative anymore.

Thus, this score is interesting in evaluating whether a chain of observations fits a given
model even if there are potentially missing observations. However, the approach has one
big flaw. When we inserted the additional S( j)

i and needed to normalise the transition
matrices, we gave equal weight to every matrix by dividing them by K. In effect, this
means that we decided that the probability of missing k observations in a row is always
1
K , whatever the value of k as long as k ≤ K and 0 if k > K; we then chose K in an
arbitrarily fashion. The semantics of such a choice are hardly justified, and we would
rather have a probability p of missing an observation and use that in our weighing of the
matrices. This approach is detailed in the following and will lead to the final score used.

4.1.5 A more thoughtful approach

The basis of this approach is the same as before and makes use of the A(k) and π(k)

matrices. However, this time, instead of weighing each matrix equally, we will use the
probability p of missing an observation in the value of the weight. In that case, the
probability of going from one measured observation to the next in one step is 1 − p, the
probability of doing so in two steps is p · (1 − p) and the probability of doing so in k steps

66



4.1 Method

S(1) S(2) S(3) S(4) S(5)

Scores

55%

60%

65%

70%

75%
Pe

rc
en

ta
ge

of
va

ria
nc

e
ex

pl
ai

ne
d

Figure 4.5: Plot of the percentage of explained variance for various values of K.

is pk−1 · (1 − p). We will use these as the basis for the weight of the matrices. However,
we still need a K which is the maximum number of steps taken from one measured
observation to the next. This is necessary because we cannot compute the matrices
for k ∈ ⟦1,+∞⟦. However, in this case, when k becomes larger, pk−1 · (1 − p) becomes
smaller. By setting a limit K, we simply decide how good of an approximation we want
for the score. Once we have the weights, we do need to normalise them. Equation (4.8)
to Equation (4.10) on page 62 become:

for i , j ∈ ⟦1,N⟧, l ∈ ⟦1,M⟧, k ∈ ⟦1, K⟧,

∀t , P(st+1 � S(k)
j |st � Si) � a(k)i j ·

pk−1∑K
n�1 pn−1

,

∀t , P(ot � Ol |st � S(k)
i ) � bil ,

P(s1 � S(k)
i ) � π(k)i ·

pk−1∑K
n�1 pn−1

.

We note those matrices as A(k)
p and πk

p. We use the tree example on page 56 with this
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score, choosing K � 2 and p � 0.8, and we obtain the following matrices:

A(1)
p � A · 1

1 + p
�

[
0.389 0.167
0.222 0.333

]
,

A(2)
p � A2 ·

p
1 + p

�

[
0.271 0.173
0.231 0.213

]
,

B �

[
0.1 0.4 0.5
0.7 0.2 0.1

]
,

π(1)p � π · 1
1 + p

�

[
0.333 0.222

]
,

π(2)p � π · A ·
p

1 + p
�

[
0.258 0.187

]
.

The trellis obtained is shown in Figure 4.6 on the next page. We find that the chain “S-
M-S-L” was most probably generated by the sequence “C(1)-C(1)-C(1)-H(2)” which actually
means that the observation sequence is “S-M-S-X-L” and the state sequence is “C-C-C-
Y-H”, where “X” means that the observation was not observed and “Y” that the state
is unknown because the associated observation was not observed.

As we can see, the results with this score differs from both the original Viterbi and
from the first iteration of our customised score. In terms of states only, this second score
matches the original score, however, it does add to the interpretation by showing that
there probably is a missing observation between the third and fourth ones. While this
example using trees is contrived, especially with p � 0.8, in the case of APTs, due to
the skills of the attackers, there will be missed observations. By choosing an appropriate
value for p, we can take them into account.

4.2 Evaluation on APT classification

In this case study, we want to apply the model and the score defined above to the
problem of APT detection. More specifically, we receive as input a number of sequence
of observations and we must determine which of these sequences are more probably APTs.
This means that the score must order the sequences from most probably an APT to least
probably an APT. Additionally, the model should show the hidden states, including the
number of unobserved states, if any.
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Figure 4.6: Trellis of the Viterbi algorithm with up to K � 2 steps from one observation
to the next and a probability p � 0.8 of missing an observation, for the
“temperature of the year and tree ring size” example. We abbreviate hot as
“H”, cold as “C”, small as “S”, medium as “M” and large as “L”.
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The proposed model

The first step is to define the list of states S and observations O. Our model uses the
five phases we identified for APTs in Section 2.1 on page 11: N � 5 and S � { “reconnais-
sance (R)”, “compromission (C)”, “establish presence (EP)”, “privilege escalation (PE)”,
“mission completion (MC)”}. For the observations we use the output of a tool which
defines seven categories of observations: M � 7 and O � { “scan”, “arbitrary execution”,
“credential theft”, “application exploit”, “backdoor”, “remote access tool”, “data exfil-
tration” }. Once we have the states and observations, we require statistics about the
transitions and observations in order to compute the matrices. There are two sources of
information that we leverage. First, there are publicly available APT reports. They are
useful in knowing which tools are used in which phase, but they are not precise enough
in the evolution of the APT. Hence, we use them to create the observation matrix B.
For the initial probability vector π and the transition matrix A, we use expert knowl-
edge. We setup a website where experts are shown scenarios created at random. Each
scenario can be rated as “strongly an APT”, “weakly an APT” or “not an APT”. The
scenarios are shown as chains of states with an observation presented for each state as
an indication. For example, the scenario “R”, “C”, “PE”, “EP” and “MC” was rated
as “strongly an APT” while the scenario “MC”, “C”, “MC”, “EP” and “R” was rated
as “Not an APT”. Thanks to these two sources of information, we obtain the following
HMM model λ � (A, B, π):

A �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.045 0.091 0.318 0.5 0.045
0.071 0.071 0.643 0.143 0.071
0.045 0.182 0.045 0.682 0.045
0.16 0.04 0.04 0.04 0.72
0.2 0.4 0.267 0.067 0.067

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.3 0.02 0.02 0.02 0.6 0.02 0.02
0.5 0.14 0.01 0.1 0.13 0.07 0.4
0.01 0.3 0.01 0.3 0.05 0.03 0.3
0.05 0.4 0.05 0.05 0.05 0.1 0.3
0.4 0.03 0.01 0.09 0.01 0.4 0.06

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

π �

[
0.7 0.21 0.03 0.03 0.03

]
.

Experiment 1: Model adequacy checking

The aim of this first experiment is to check that the model differentiates APT chains
from non-APT chains. To do so, we compare the scores of various scenarios rated as
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Figure 4.7: The score separates APTs from non-APTs

APT and as non-APT by our expert raters. We can then plot the scores and check that
non-APT chains score higher than APT chain. In this first experiment, our score does
not take into account possible missing observations. This means that we use the score
S(1). During the poll we explicitly told the expert raters to consider the steps shown as
the whole APT, with no missing step, so this matches how the model was created.

The results can be seen in Figure 4.7. The “Strong APT” chains appear in blue, the
“Weak APT” chains in green and the “Not APT” ones in red. They show that both the
proposed model and the associated score are able to separate APT from non-APT, with
all APT chain below 1.5 and all non-APT above that mark.

We also created one chain of each kind with a length of 50 and 100 to check that the
score is still consistent when chains are that long. Indeed, we see that the score does not
depend on the length of the chain L, which was another crucial goal of our score.

Experiment 2: Analysing the impact of missing observations

The aim of this second experiment is to check the impact of taking into account possible
missing steps on the score and, more importantly, on the rank of each chain evaluated.

We display the same chains as in Figure 4.7 but using S(3) instead of S(1) and with
different values of p in Figure 4.8 to Figure 4.16 on pages 72–76. As we can see, the higher
p is, the more some “Not APT” are on the same level as “APT” chains. This reflects
that the higher p is, the higher the probability of missing one or even two consecutive
observations is too, which means that our score will consider missing observations more.
This is exactly what we wanted: by inserting well chosen and positioned unobserved
states in the chain, their likelihood of being APTs is much higher. This means that if we
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Figure 4.8: S(3) with p � 0.1 of the original scenarios.

have an APT where we did not observe some of the attacks, we can still reconstruct the
probable unobserved attacks and evaluate that chain as an APT. For example, if we have
a chain for which Viterbi gives us S(1) � 1.62 and the states “reconnaissance”-“establish
presence”-“mission completion”. From Figure 4.7 on the previous page, this chain is on
the “Not APT” side, and there are phases missing in the APT, between “reconnaissance”
and “establish presence” for example. Switching to S(3), if p � 0.3, S(3) � 1.87 and
the states do not change; from Figure 4.10 on the facing page, the chain is still on the
“Not APT” side, and there are still missing phases. However, if p � 0.7, S(3) � 2.04, the
states become “compromission”-undetected-“privilege escalation”-“mission completion”.
From Figure 4.14 on page 75, this is now on the “APT” side. This is explained by the
fact that if we replace the undetected state by an “establish presence” phase, we now
have a very reasonable chain of attacks for an APT.
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Figure 4.9: S(3) with p � 0.2 of the original scenarios.
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Figure 4.10: S(3) with p � 0.3 of the original scenarios.
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Figure 4.11: S(3) with p � 0.4 of the original scenarios.
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Figure 4.12: S(3) with p � 0.5 of the original scenarios.
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Figure 4.13: S(3) with p � 0.6 of the original scenarios.
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Figure 4.14: S(3) with p � 0.7 of the original scenarios.
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Figure 4.15: S(3) with p � 0.8 of the original scenarios.
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Figure 4.16: S(3) with p � 0.9 of the original scenarios.

76



Chapter 5

Evaluation scenario and tooling

The aim of this chapter is to detail both the tools and the actual scenarios
used to evaluate the methods presented in Chapter 3 on page 39 and Chapter 4
on page 55.

The first tool is the Intrusion Detection System (IDS) which also collects
flows of information. This IDS is the result of three PhD thesis, including this
one. In this chapter, we only present how we built the data collection agent,
which forms the basis of this IDS and was a requirement for all three PhD thesis.

The second tool is used to define and play attack scenarios. There are
no public datasets of Advanced Persistent Threat (APT) scenarios, so we had
to create our own scenarios, and this tool is meant to reproduce those scenarios
exactly and easily.

The third and last tool is a website for polling experts. When creating
a Hidden Markov Model (HMM) of APTs, we asked experts to rate randomly
generated attack scenarios. This knowledge was used in the determination of
the initial probabilities and the transition probabilities of the model.

Lastly, we will walk through the creation of a scenario from scratch
using the tools described in this chapter in order to collect data and evaluate our
methods. This is the scenario which will subsequently be used for the evaluation
of our methods.

77



Chapter 5 Evaluation scenario and tooling

5.1 Getting the raw data for the IDS

5.1.1 Merging data from multiple sources

As mentioned, the IDS collecting flows of information was a collaboration project
between three PhD students, including me. The first part that was developed are the
probes collecting data about the system to monitor. These data are used by all three
projects and so the probes were developed by all three students at the beginning of their
PhD.

The initial focus was on building a modular system to collect data from multiple source
and make sure that the data remains in chronological order. We knew we wanted to
aggregate data from multiple sources but did not know how many. Hence we created
a system that can take streams of data from any number of sources as input, makes
sure that the ordering is consistent and outputs the merged streams to a single file or
database, as shown in 5.1a on the facing page. In order for the system to be able to
merge the streams in chronological order, each point of data must contain a timestamp
in the same place, whatever its source. At the base of each data point, we inserted
metadata containing the timestamp and also the size of the data point and its type,
as shown in 5.1b on the next page. The merging system operates as follows. Each
probe has a dedicated circular buffer. When a probe collects new data, it writes it
to the circular buffer and wakes the merger. The merger then check each buffer for
available data, copies the raw data, using the size indicated in the data point itself, in an
internal buffer where all the data is in chronological order. For performance reasons, this
is implemented as a linked list because we often need to insert data at arbitrary position.
Then, regularly, a second thread in the merger will check to see if there is any data point
older than a predefined time, 1 second in our case, and dump that data to the file or
the database. This delay is needed because some probes could be slower than others and
in that case, their data points could arrive after newer data points from other streams.
When dumping the data, the merger must, finally, know the structure of the data point
it is currently dumping. This is where the type of data, indicated in the data point, is
used to convert the complete data structure to a dictionary, which can then be converted
to the specified format.

In our case, we used the JSON format for the flat file. This format is particularly
adapted to representing dictionaries, especially since each data source has different keys
in the dictionary.

One of the criticism of this architecture is that if the merger is too slow compared to
the data sources, there is a risk of losing data. This is compounded by the fact that
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Figure 5.1: Data collection

there is a single merger for several probes. In our case, we decided to keep the newer
data, i.e. the data streams overwrite old data if they reach the end of the circular buffer.
However, in effect, we never lost any data because of this in any of our experiment.

An additional criticism is that the merger may be unnecessary when writing to a
database. Once the data is in the database, the data points can be queried in chrono-
logical order with the appropriate query. While this is true, in our case, we needed an
architecture capable of merging the logs in chronological order and writing them to a
flat file. Hence the merger is necessary for our use case. It is also useful if we want to
send the data to several outputs at the same time, such as a flat file and a database or
two different databases.

5.1.2 Collecting the data

Once the merger is in place, we need to write the probes to do the actual data col-
lections. Integrating a new probe with the merger is easy. Each probe runs in its own
thread and writes its collected data in its circular buffer. The merger takes care of the
rest. The following is a quick overview of each probe and how it collects data. Most
probes are self contained, but two require external modules, which we will describe in
more detail.

The simplest module is the performance module. Periodically, it collects values about
the system. For each process in the system, it measures its CPU and RAM usage as
well as the amount of input/output (IO) from/to storage. The process itself is described
through its name, its PID and the PID of its parent. The second module follows the
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creation, connection and closing of sockets inside the system. The third module collects
information about packets sent and received by the system. In particular, it matches the
packet with the sending or receiving process on the host. The fourth module collects udev
events. udev is the subsystem in Linux which originally managed devices. Its purview
has been expanded and now includes events such as the mounting of a new partition and
the loading of a kernel module.

The fifth module collects data from PAM, and it is the first one which requires an
external module. PAM is the Linux Pluggable Authentication Modules system. PAM
handles authentication events and when a new event must be evaluated, this event is run
by a number of modules depending on its origin. Each module can decide whether to
allow or disallow the authentication, and depending on the order and options associated
with each module, PAM will decide whether the authentication is authorised or not. In
order to collect authentication attempts as well as their results, we have inserted a PAM
module which reports all attempts to the merger module via named UNIX socket.

The sixth module is where we collect data from the kernel. To do so, we created a
kernel module using Kprobes [Keniston, Panchamukhi, and Hiramatsu 2005]. Kprobes
are a part of the Linux kernel made to audit the kernel. We use it to collect information
on a number of system calls. The kernel module communicates with the merger module
through a file in the proc virtual file system and uses that to create a shared memory
mapping. For performance reasons, there are actually one merger module thread per
CPU core and thus one file in proc and one shared memory mapping per core. We
use the Kprobes to collect data on process creation and execution, monitor file systems
for new files or metadata changes, and all types of sockets. In addition, the kernel
module is smart enough to not monitor the process it is talking to, i.e. the merger, which
would cause trouble as the merger writing to the flat file would trigger Kprobes events
which would then be written and so on, launching a never ending circle of events being
logged. Kprobes are originally made for debugging the kernel so we expected potential
performance issues. In particular, if there are too many Kprobes being triggered, the
system stops processing them and emits a warning. In our tests, we never saw that
warning. However, we should investigate the use of eBPF [Schulist, Borkmann, and
Starovoitov 2016] instead if we were to rewrite that part of the code. eBPF is originally
a packet filter facility and is made with performance in mind instead of debugging which
should alleviate the performance concerns, and it should be possible to do everything
that we do with Kprobes with eBPF.

An equivalent of all these probes has also been developed for the Windows platform.
The software architecture and the data collected are both the same as the Linux probes.
The only differences are in how the data are collected. Since we did not participate in
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5.2 Reproducible scenarios with Moirai

Measures in ms Average
time

Standard
deviation

First
quartile

Last
quartile

Without Akheros 5.21 0.41 4.87 5.56
With Akheros 6.28 2.77 4.14 8.00
Difference (%) 120% 677% 85% 144%

Table 5.1: Response time of the website

their development, we will not be detailing them. However, we will use them in some of
my tests.

5.1.3 Performance evaluation

As the merger collects a lot of data from the system, we want to check that its impact
does not disrupt the original functions of the system. To do this, we setup a Virtual
Machine (VM) with a web server on it and measured the impact of the probes and
merger on the responses of the system. This means that we consider the impact as a
user of the service and not by measuring usage on the server directly. More precisely,
we used the apache benchmark, called ab, and instruct it to make a hundred thousand
requests to the web server using thirty concurrent requests at a given time. The command
was executed from another VM running on the same host. The results can be seen
in Table 5.1. On average, the probes and merger add a 20% overhead to the response
time. However, these results are for response times on the same host, which means they
do not take into account the network latency. Typically the network latency will be in
the tens to low hundred of milliseconds on the web. In that case, adding about 1ms
means less than 5% overhead, which is reasonable.

5.2 Reproducible scenarios with Moirai

In order to test the solution we propose for the detection of APTs, we needed a
dataset of APT scenarios. However, no such dataset exists, and even if it did, we do not
know whether it would contain the necessary data for the Information Flow Tracking.
The solution we adopted was to create a tool, Moirai, to make it easy to define and
replay scenarios. In addition, this tool makes it easy to share, update and improve those
scenarios, thus creating a dataset of APT scenarios that the community can use to check
the performance of their solution and compare it with others.

One of the aim of Moirai is to keep the tool as simple as possible and to reuse existing
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technologies as much as possible. Thus, Moirai takes a text file, in the ini style, as input
and plays the scenarios described therein by orchestrating VMs. For the management,
and sharing, of VM, Moirai uses Vagrant [HashiCorp 2010]. Vagrant is a tool created
to build portable development environments using VMs. Since it is widespread, there
is a large library of VMs available in their online repository. This means we can use
these VMs as the base of our scenarios. We can then install the necessary software,
including the IDS to be tested, on these VMs and play our scenarios. Moirai has a
[Cluster] section in its configuration file to list of the machines which are then described
in corresponding [machine] sections. When sharing the configuration file, one can either
upload a machine with all the installed software on it to Vagrant’s repository, or one
can share the name of the base box with the list of software to install on it as well
as the associated configuration files. In that second case, which is the case we use,
we recommend the use of automation software, such as Ansible [Ansible 2012], to make
the installation and configuration of additional software as easy and as faithful to the
original as possible.

Once Moirai knows which VMs to fetch from the Vagrant’s repository, it sets up
the VMs according to the network topology written in the configuration file under the
[machine] sections. In addition, Moirai will have its own router VM to allow redirecting
and spoofing IPs and domain names. This VM will be shared as is on the Vagrant’s
cloud. This is useful in the case where a malware sample always tries to connect to
the same host. We can then transparently redirect any traffic for that host to the VM
supposed to emulate it.

Similarly to how Moirai defines the list of VMs in one section and then each VM has
its own section, Moirai defines the list of task in the [Scenario] section and then each
individual task is specified in its [task] section. Additionally, the [Scenario] section
contains scenario wide settings which can, for example, control the maximum run time
of the scenario. Each [task] section requires a timing and a target. This indicates
when and on which machine to execute the task. Task can be composed of up to three
components: one or several actions to execute on the target, a list of files to send from
the host to the target before the action is executed and a list of files to fetch from the
target once the action has been executed.

Listing 1 on page 84 shows an example of a working configuration based on the
shellshock scenario available here [Akheros 2016b]. Moirai itself is open source and
available here [Akheros 2016a]. It is written in python3 and should be cross-platform. It
can control UNIX based machines using ssh and Windows based machines using winrm,
even older versions up to Windows XP. If we follow the listing, we can see that it
includes two machines (line 2) based on the same box (lines 5 and 9). There are three
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tasks (line 13) and the scenario will not last more than 10 minutes (line 14). This is
necessary because the [botmaster] action (line 19) will run forever otherwise. We can
see that the first attack, the [shellshock] action, starts at 1 minute (line 24) and that
the second attack starts 5 minutes after that (line 30). If one wanted to play this scenario,
there is a one time setup to perform. The instructions are on the website where the
scenario is first downloaded. The setup requires the user to start the two VM and then
use Ansible to configure them. Once the VM are configured, the user should repackage
them with Vagrant and modify the lines specifying the base boxes accordingly (lines 5
and 9). Once this initial setup is done, and it only needs to be done once, playing the
scenario can be done in a single Moirai command and left unattended. A choice worth
noting in this listing is the fact that we decided that for each attack, the attack script
will be sent to the attacker right before the action rather than during the setup. This
can seem wasteful but it enable tweaking the attacks easily without having to redo the
whole setup, and the scripts are small enough that the waste is limited.

5.3 Website to poll experts about APTs

In order to create the state transition matrix for the HMM, we needed statistics about
the evolution of APTs. Quite a few APTs have been studied extensively and reports have
been written about them [Mandiant Intelligence Center 2013; Fireeye Labs 2015; McAfee
Labs 2013; Trend Micro 2013]. These reports contain details about which malwares are
used in which stages of an APT. However, they do not detail the evolution of each APT
campaign, which is why we decided to poll security experts who had experience with
APTs on what APTs typically look like. To do this, we built a web application [Brogi
2016], shown in Figure 5.2 on page 86, which displays attack scenarios. These scenarios
are generated at random. Security experts can then look at the scenarios and decide
whether it looks like an APT by rating it as “not an APT”, “weakly an APT” and
“strongly an APT”. For example, looking at 5.2a on page 86, we can see a scenario with
one step establishing presence on a server, the attacker then moving to another server (in
what is called a lateral movement), four more steps, another server, another four steps
and a last server and a last step. The expert seeing this scenario has the option to label
it “Not at all”, “Maybe” or “Yes” or to “SKIP” to another scenario. In addition, experts
have the option of removing a few steps, such as the struck out steps 3 and 6 in 5.2b
on page 86. This allows them to transform a scenario that is definitely not an APT to
one that is. This is necessary because randomly generated scenarios are not very likely
to look like APTs and this option means that experts needed to look at fewer scenarios
before labelling one as an APT. Overall, this reduced the time spent by experts while

83



Chapter 5 Evaluation scenario and tooling

Listing 1 Example Moirai configuration
1 [Cluster]
2 machines = attacker, victim
3

4 [attacker]
5 box = TFDuesing/Fedora-20
6 ip = 192.168.51.5
7

8 [victim]
9 box = TFDuesing/Fedora-20

10 ip = 192.168.51.100
11

12 [Scenario]
13 tasks = botmaster, shellshock, pupy
14 duration = 10m
15

16 [botmaster]
17 target = attacker
18 timing = 0
19 actions = ./botmaster.py
20 files = botmaster.py
21

22 [shellshock]
23 target = attacker
24 timing = 1m
25 actions = ./shellshock.sh 192.168.51.100
26 files = shellshock.sh
27

28 [pupy]
29 target = attacker
30 timing = +5m
31 actions = ./download-pupy.sh
32 files = download-pupy.sh
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increasing the number of APT like attack scenarios at our disposal.

In order to increase experts’ engagement and in the hope of obtaining more rated
scenarios, we added gamification elements. Experts could chose a pseudonym and a
score, displayed on a leaderboard, was associated with their name. The score is an
agreement score between raters [Banerjee et al. 1999], and is useful in our own rating
of the raters. In particular, if we see that some raters agree with each other on some
models, we can have more confidence in the rating. On the other hand, if we see that a
rater never agrees with other raters we can decide to ignore their results. In order to be
able to compute a useful score, we had to make two assumptions. First, while the models
are generated at random, each rater had a chance to rate an already rated scenario at
each step instead of getting a newly generated one. This is necessary because otherwise,
different raters would almost never rate the same scenarios and we could not compute
the score. The second assumption we made is that if one rater removed some steps of
a scenario and marked it as an APT, then, the next rater who marked it as an APT
would remove the same steps. In other words, when computing the score, we ignored
whether steps had been removed or not. This is, once again, necessary to be able to
compute the score. Otherwise, two raters removing different steps of the same attack
scenarios could not be compared. This score is not only used for the gamification but
is also crucial to our evaluation of the results and of the raters. Finally, once we have
collected enough data for the creation of the state transition matrix, we can also use the
best rated scenarios as inspiration for the creation of evaluation scenarios to play with
Moirai.

5.4 Data generation

5.4.1 Creating a scenario

With all the tools in place, we must now setup an APT scenario that we can use to
evaluate the solutions we propose in this thesis. The first when creating a scenario is
choosing a sequence of attacks for the APT we want to represent. In this scenario we
keep it simple. We use the typical APT life cycle presented in Section 1.2 on page 3,
and remove the cycles. We are left with the following steps: “reconnaissance”, “com-
promission”, “establish presence”, “privilege escalation” and “mission completion”. We
can then decide what to use at each step. In our case, since the scenario was created
a short while after the shellshock attack became famous, this is the vector we decided
to use for the “compromission”. This means that the target has to be an apache web
server. For the “establish presence”, we use Remote Access Tool (RAT) which connects
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(a) A scenario with all the steps selected. The raters
can choose any of the colored answer or even skip
the scenario.

(b) A scenario with some steps removed. Notice the
stroked out steps in gray and the grayed out
“Not at all” button.

Figure 5.2: Screenshots of the web application

to IRC and waits for instructions there. This tool was found by one of our business part-
ners in the wild, so it is a real world RAT. For the “privilege escalation”, we can code
a small program which uses to fact that the apache server is slightly mis-configured to
open a root level shell. That shell can then be used to export the database as well as
the file containing the system’s users’ passwords. We now have the working core of the
scenario. We start by implementing this core. We create one victim Virtual Machine
(VM) and one VM for the attacker. The victim’s VM must have a version of apache that
is vulnerable to the shellshock attack. The attacker’s VM must run an IRC server so
that the RAT can connect to it. We create provisioning scripts for each VM so that their
configuration can be automated. Once the VM are setup, we must automate each step
of the attack chain by writing scripts. After the scripts are written, we can check that
the scenario works by running it by hand, i.e. by triggering each step of each attack by
hand. If some of the scripts require additional packages or configurations, we must add
that to the provisioning scripts. Once we have verified that the APT campaign works
when each phase is triggered independently, we can automate it with Moirai. We want
to make sure that we can play the whole scenario with a single command.

Once we have the base scenario working and automated, we want to add noise. The
idea is that in a normal system, we would expect every day users doing completely normal
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APT attacker

Opportunistic attacker 1

Opportunistic attacker 2

Normal users

Web server and database

1-6: Viewing web pages

1: Shellshock attack2: Open a reverse shell4: Install a RAT6: Retrieve sensitive data
3: SQL injection

5: Shellshock attack

Figure 5.3: The complete scenario base, with one APT, several other attackers and nor-
mal traffic.

things as well as other attackers. Even if the attackers are not full-blown APT campaigns,
we cannot assume that the system will only ever be under attack by one attacker at a
time. To simulate normal website users, we can use web crawlers and website benchmark
utilities to program semi-random page views. These page views simulate several users
so they should be able to happen at the same time. For the additional attackers, we
will create two, each with their own attack. The first one will use an SQL injection
to dump the database of the website; we can add that vulnerability to the website.
The second one will use the shellshock vulnerability, it is a well known and powerful
vulnerability, to download the system’s users’ password file. We script those attacks and
add the required configuration to the provisioning scripts. Once both attacks and the
normal traffic simulation work, we add them to the Moirai scenario. We end up with the
scenario described in Figure 5.3.

5.4.2 Generating raw data

Since the scenario is now fully defined, including provisioning scripts for the VMs and
Moirai configuration, we only need to add the IDS to test. We install it on the web
server being attacked and make sure it starts when the VM does. Note that we could
instead have Moirai start it at the beginning of the scenario, but this means modifying
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the Moirai configuration file for each IDS to test which we try to avoid. Once the VM
are ready, we can play the scenario with a single moirai spin command. We can then
retrieve the IDS’ logs after the scenario finishes. This could also be done automatically
by Moirai but it would entail changing the configuration for each IDS.

5.4.3 Preparing the raw data for exploitation

Ideally, the data outputted by the IDS could be used without changes as the input
to our IFT and HMM modules. However the part of the IDS taking the data from the
probes and finding the individual attacks has not been completely implemented. This
means that we have to take the raw data from the probes and emulate the part that
finds the individual attacks. This can be done because we know exactly which attacks
are played in the scenario. For each attack, we can define the earliest signs which should
be detected as the individual attack. Then, in the raw data, we can find the signs of
every attack and mark it as if the IDS had indeed detected them.

88



Chapter 6

Concluding discussion

In the introduction, we presented Advanced Persistent Threats. While attack cam-
paigns are not new, the fact that these attack campaigns are performed by highly skilled
actors with powerful backings certainly makes them a bigger threat. Current Intrusion
Detection Systems are beginning to try to detect them but there are a lot of challenges
remaining. Akheros is a company created specifically to design an IDS capable of detect-
ing them. The project is divided in three thesis. The first one, by Matthieu Hourbracq,
concentrates on modeling the system as it evolves in an unsupervised manner. This
model of the behaviours of the system is then used to detect incongruous events, i.e.
events that cannot be explained by any of the known behaviours of the system and thus
could not have been anticipated. The results are interesting and form the base of the
Akheros IDS. The thesis will be defended soon. The second thesis analyses these in-
congruous events to check if they are a security risk. Events that are deemed a security
risk are seen as attacks and are classified. This is being developed by Mark Angoustures
and shows promise too. It will also be defended soon. The third thesis, this thesis, looks
for links between attacks in order to reconstruct attack campaigns. This is done in a
two-step process and results in a list of potential attack campaigns ranked from most
probably an APT to least probably an APT.

In the first step of our approach, we use Information Flow Tracking to link related
attacks together. This gives us potential attack campaigns. In contrast with the IFT
schemes presented in Section 2.2 on page 22 where it is used either to detect policy
violations or to analyse a single malware, our contribution is showing that IFT can be
used to link attacks that are part of the same attack campaign. As far as we can tell,
this is the first time that IFT is used as a forensic tool in order to highlight whole attack
campaigns, such as APTs. Compared to traditional forensic approaches where a human
operator looks for clues once a severe attack has had an impact on the system, using
IFT means that the forensic is being done in real time. This is especially important
since attackers remove as many signs of their presence as possible. A human operator
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examining a system after an attack will only be able to find clues that the attackers forgot
to remove. Our method instead analyses the system in real time so that it does not
matter if attackers later clean up their traces. In addition, manual forensic takes time
which means that an analyst will not be deployed for every small attack. Our always-on
method will be able to link related attacks whatever their impact. By linking several
seemingly low-impact attacks as part of the same campaign, their actual impact can be
more properly assessed, and a human operator deployed before an attack with a large
impact on the system is executed as part of this campaign. On top of all this, our
IFT-based method is not dependant on the time elapsed between attacks: it is able
to link related attacks whether five minutes or five months elapsed between the two
attacks. By comparison, a human operator would have a lot more things to check if
five months had elapsed and finding the link would take much longer and would be less
likely produce results. In this way, IFT acts like a timeless memory, able to follow the
flows of information months or years after they start and for a small cost: storing the
taints. Finally, as part of the Akheros IDS, tracking flows of information at the OS level
has the advantage that our probes already collect all the necessary information, which
means that there is no tracking overhead on top of the IDS and that the only overhead
is the propagation of the taints which is not computationally intensive. In terms of
deployment, the probes are in kernel module which can be compiled separately and
activated at runtime. However, this approach does have false positives. Collecting data
at the OS level means we do not follow flows of information inside a process, whereas
CPU, compiler and code based approaches are capable of doing so. This is a trade-off
we accepted because of the ease of deployment which is primordial for the Akheros use
case. False positives manifests as unrelated attacks being linked together, and in order
to reduce their numbers, we added a second step to our approach.

The second step is there to filter the real attack campaign from the erroneously linked
attacks. This is done using a Hidden Markov Model. Our contribution regarding HMM
is twofold. First we show that APTs can be modeled with an HMM. This was already
done by Ourston et al. in [Ourston et al. 2003] for multi-step attacks, and we simply show
that even though APT are executed by skilled attackers, they can still be modeled by an
HMM. The second, and more novel, contribution is the definition of a new score to rank
potential attack campaigns from most likely an APT to least likely an APT. This score
has two properties that other scores do not possess and which necessitated its creation.
The first is that it is used to compare how different chains fit the model. Usually, scores,
even recent ones such as the HBIC [Biem, Ha, and Subrahmonia 2002] and the DIC [Biem
2003] are used to compare how different models are fitted by a single chain. The main
difference between the two use cases is that in our case, we must be able to compare
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chains of different lengths. Our score is the only score, as far as we are aware, that can
be used to compare the fit of chains of different lengths. The second property is that
our score takes into account potentially missing observations. Since APTs are executed
by skilled actors, even advanced IDS will probably not detect every attack. We created
our score with this in mind, and as far as we know, this is the only score where we can
specify a probability of missing an observation and the score takes that into account. In
order to establish the matrices of the HMM itself, we use data from two main sources.
The observation matrix is created from the APT reports that are freely available on the
web. The transition matrix and the initial probabilities are obtained by polling experts.
This score, with the first step of linking attacks through IFT, shores up a weakness of the
approach of Ourston et al. in [Ourston et al. 2003] which is also present in the improved
version of Q. Zhang, Man, and Wu in [Q. Zhang, Man, and Wu 2009]: these approaches
only work if all the attacks have been detected and are part of the same attack campaign.
In contrast, our approach only analyses chains of attacks found by IFT and takes into
account the probability of missing observations.

There is a third contribution in this thesis: Moirai. Moirai is a tool we designed to
orchestrate scenarios in order to test our approach for identifying APTs. The motivation
behind this tool is the realisation that, while there are reference datasets for evaluating
IDS, they are often criticised, and none of them were made with APTs in mind. This
is well summarised by Małowidzki, Bereziński, and Mazur in [Małowidzki, Bereziński,
and Mazur 2015]. In addition, using a dataset forces the IDS to use the same sources
that are included in the dataset. In our case, if the dataset does not include the infor-
mation necessary for IFT, then we cannot use it. While there are tools for generating
evaluation data, they are specific. For example, the tool proposed by Béla Genge et al.
in [Béla Genge et al. 2012] targets Industrial Control Systems while the tool proposed
by Sommers, Yegneswaran, and Barford in [Sommers, Yegneswaran, and Barford 2004]
is specific to network based IDS. With all this in mind, we decided to instead design
a generic tool for playing scenarios. With the advances in network and virtualisation,
it is now easy to share Virtual Machines (VMs). As a matter of fact, Vagrant is a tool
created for this exact purpose: it can download VMs from a remote repository, set it up
and launch it. We based Moirai on top of this tool. In addition to Vagrant capabilities
for setting up and configuring VMs, Moirai is capable of executing arbitrary actions at
set times on those VMs. The scenarios used by Moirai are described in a single text file
and can thus easily be shared. By using VMs, the scenario will be executed in the same
conditions each time. The only difference, from one execution to the next, is the IDS
being evaluated. This means that we can now compare IDS even if they use different
sources of data as the IDS will be run in the evaluating environment and will be free to
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collect its own data however it requires.

Scenarios played with Moirai are used to evaluate the two steps presented above. The
scenarios are played with our probes installed on the system to protect. In our evaluation,
we have shown that IFT is capable of finding the links between attacks part of the same
campaign. However, we also see that IFT also finds links between unrelated attacks.
This motivates the second step of the process: using an HMM to find which potential
attack campaigns highlighted through IFT are more probably APTs. In evaluation, we
show that the base score we created is capable of ordering APTs from most probably to
least probably an APT regardless of the length of the chain; this was the first reason for
designing our own score. The second reason was to take into account possible missing
observations, since we cannot guarantee that every attack will be detected. IFT is
relatively immune to undetected attacks since flows of information are always measured,
but HMM is sensitive to missing observations. The evaluation shows that our full score
can take into account possible missing observations given a probability of missing an
observation. The point is to give a better score to an attack campaign if it is potentially
only missing a few observations.

Future work

The results obtained by our various contributions are interesting. However, they are
still several areas that could be furthered.

The first point, and the weak point of this thesis, is the evaluation. While the ap-
proaches have been evaluated on a complex scenario, the number of different scenarios
is lacking. In particular there are no large scenarios. We want to create a scenario con-
taining at least two APTs happening at the same time and frequent unrelated attacks.
Moirai makes sharing and replaying scenarios easy, but the creation of each scenario still
requires time. In addition, in order to be able to use existing malware in scenarios, Moirai
must be further developed to include network spoofing for example. Some existing RAT
software will always try to connect to the same C&C server with no way to configure
it; thus, Moirai must enable us to easily and transparently redirect the network traffic
intended for that C&C server to a VM part of the scenario. By sharing Moirai with the
community, we are hoping that more scenarios are created and enhanced which would
benefit the whole community. While the initial response to the Moirai presentation was
good, we are not aware, at this time, of other users.

The second area that we would like to improve is the integration between the two steps.
For now, the two steps work mostly independently. In particular, the IFT step does not
know when the HMM step finds that a potential attack campaign is not, actually, an
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attack campaign. Since the HMM step is designed to filter the real attack campaigns
from the false positives, it would be interesting to add a feedback mechanism so that the
output of the HMM would be used by the IFT step to remove taints and sever erroneous
links between attacks. This should reduce the amount of false positives in the IFT step
which should make the filtering through the HMM easier.

The third idea that we want to explore is the addition of a feedback loop to the HMM.
Our current implementation does not include learning of the model while the HMM is
active. We would like to add a feedback mechanism so that a human operator could
indicate to the HMM which chains of attacks are really APTs. This feedback would be
incorporated into the model to improve it. The advantages of this would be that the
matrices established from the experts and the APT reports would only be the seed of
the model. Once installed in a specific system, the model would evolve with each APT
targeting the system and would be better tailored to protecting that specific system,
while also following the evolution of the APT as time passes.
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Guillaume BROGI

Real-time detection of Advanced
Persistent Threats using Information
Flow Tracking and Hidden Markov

Models

Abstract:
In this thesis, we present the risks posed by Advanced Persistent Threats (APTs) and propose a two-step approach
for recognising when detected attacks are part of one. This is part of the Akheros solution, a fully autonomous
Intrusion Detection System (IDS) being developed in collaboration by three PhD students. The idea is to use
machine learning to detect unexpected events and check if they present a security risk. The last part, and the
subject of this thesis, is the highlighting of APTs. APT campaigns are particularly dangerous because they are
performed by skilled attackers with a precise goal and time and money on their side.
We start with the results from the previous part of the Akheros IDS: a list of events, which can be translated
to flows of information, with an indication for events found to be attacks. We find links between attacks using
Information Flow Tracking. To do so, we create a new taint for each detected attack and propagate it. Whenever a
taint is on the input of an event that is part of another attack, then the two attacks are linked. However, the links
are only potential because the events used are not precise enough, which leads to erroneously propagated taints.
In the case of an undetected attack, no taint is created for that attack, but the other taints are still propagated as
normal so that previous attack is still linked to the next attack, only skipping the undetected one.
The second step of the approach is to filter out the erroneous links. To do so, we use a Hidden Markov Model
to represent APTs and remove potential attack campaign that do not fit the model. This is possible because,
while each APT is different, they all go through the same phases, which form the hidden states of our model. The
visible observations are the kind of attacks performed during these phases. In addition, the results in one phase
dictate what the attackers do next, which fits the Markov hypothesis. The score used to rank potential attack
campaign from most likely an APT to least likely so is based on a customised Viterbi algorithm in order to take
into account potentially undetected attacks.

Keywords:
Intrusion Detection System, Advanced Persistent Threat, Information Flow Tracking, Hidden Markov Model

Résumé :
Dans cette thèse, nous présentons les risques posés par les Menaces Persistantes Avancées (APTs) et proposons

une approche en deux temps pour distinguer les attaques qui en font partie. Ce travail fait partie d’Akheros, un
Système de Détection d’Intrusion (IDS) autonome développé par trois doctorants. L’idée est d’utiliser l’appren-
tissage machine pour détecter des évènements inattendus et vérifier s’ils posent un risque de sécurité. La dernière
étape, et le sujet de cette thèse, est de mettre en évidence les APTs. Les campagnes d’APT sont particulièrement
dangereuses car les attaquants sont compétents et ont un but précis ainsi que du temps et de l’argent.
Nous partons des résultats des parties précédentes d’Akheros : une liste d’évènements traduisibles en flux d’infor-
mation et qui indique quand des attaques sont détectées. Nous faisons ressortir les liens entre attaques en utilisant
le Suivi de Flux d’Information : nous ajoutons une nouvelle teinte pour chaque attaque. Lors de la propagation, si
une teinte se trouve en amont d’un flux qui fait partie d’une attaque, alors les deux attaques sont liées. Certaines
attaques se trouvent liées par erreur car les évènements que nous utilisons ne sont pas assez précis, d’où l’approche
en deux temps. Dans le cas où certaines attaques ne sont pas détectées, la teinte de cette attaque n’est pas créée,
cependant, les autres teintes sont propagées normalement, et l’attaque précédent l’attaque non détectée sera liée à
l’attaque lui faisant suite.
Le deuxième temps de l’approche est de retirer les liens erronés. Nous utilisons un Modèle de Markov Caché pour
représenter les APTs et retirons les campagnes qui ne suivent pas le modèle. Ceci fonctionne car les APTs, quoique
toutes différentes, passent par les mêmes phases. Ces phases sont les états cachés du modèle. Les observations
sont les types d’attaques effectuées pendant ces phases. De plus, les actions futures des attaquants dépendent des
résultats de l’action en cours, ce qui satisfait l’hypothèse de Markov. Le score utilisé pour classer les campagnes
potentielles de la plus proche d’une APT à la plus éloigné est basé sur l’algorithme de Viterbi qui est modifié pour
prendre en compte les attaques non détectées potentielles.

Mots clés :
Système de Détection d’Intrusion, Attaque Persistente Avancée, Suivi de Flux d’Information, Modèle de Markov

Caché
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