Le terme source des panaches de téphras : applications radars aux volcans Etna et Stromboli (Italie)

par Valentin Freret-Lorgeril

Thèse de doctorat en Volcanologie

Sous la direction de Franck Donnadieu et de Jean-François Lénat.

Soutenue le 23-11-2018

à Clermont Auvergne , dans le cadre de École doctorale des sciences fondamentales (Clermont-Ferrand) , en partenariat avec Laboratoire Magmas et Volcans (laboratoire) .

Le président du jury était Pierre Briole.

Le jury était composé de Mario Montopoli, Lucia Gurioli.

Les rapporteurs étaient Pierre Briole, Sylvie Vergniolle.


  • Résumé

    Les panaches volcaniques de téphras constituent un des aléas volcaniques majeurs. Pour prévoir leur dispersion et les zones d'impacts de leurs retombées, des modèles numériques sont utilisés en opérationnel et basés sur des paramètres éruptifs, regroupés sous la notion de terme source, caractérisant l'émission des panaches. L'ensemble du terme source est cependant difficile à mesurer en temps réel. C'est pourquoi les modèles de dispersion sont souvent basés sur des scénarios d'éruptions passées et utilisent des lois empiriques reliant la hauteur des panaches avec les flux massiques à la source. Cependant, les résultats qui découlent de ces modèles sont peu contraints, moyennés sur la durée des éruptions, et souffrent de larges incertitudes. Dans cette optique, les radars Doppler, capables de sonder l'intérieur des colonnes éruptives avec des échelles spatio-temporelles fines, peuvent fournir des contraintes cruciales sur le terme source des panaches en temps réel. Ce travail de thèse traite des applications de radars volcanologiques dédiés, potentiellement transposables aux radars météorologiques communément utilisés, afin de fournir des paramètres éruptifs à la source des panaches de téphras en surveillance opérationnelle mais également pour contraindre la dynamique des colonnes éruptives et les charges internes des panaches et de leurs retombées. Une campagne de mesures au volcan Stromboli a permis de montrer les capacités d'un couplage innovant entre un disdromètre optique (Parsivel2) avec un nouveau radar Doppler à onde millimétrique (Mini-BASTA). Grâce à l'excellente résolution spatio-temporelle de Mini-BASTA (12,5 m et 1 s), des figures intermittentes de sédimentation ont été observées dans les retombées de panaches transitoires dilués. Observées également au disdromètre mesurant la vitesse et la taille des retombées, ces figures ont été reproduites en laboratoire grâce à un modèle analogique. Un modèle conceptuel de formation de thermiques de sédimentation inversés est proposé pour expliquer ces figures et implique que les processus menant à une sédimentation irrégulière typique des panaches soutenus et concentrés peuvent s'appliquer à des panaches dilués, y compris ceux issus d'éruptions Stromboliennes normales en régime transitoire. Ensuite, une caractérisation physique d'un grand nombre de particules de cendres échantillonnées à Stromboli a permis de valider les mesures de tailles et de vitesses terminales de chutes par disdromètre sur le terrain et en laboratoire, justifiant par ailleurs son utilisation opérationnelle. A partir de ces contraintes, une loi reliant les concentrations de cendres avec les facteurs de réflectivité calculés a pu être comparée aux mesures radar in situ. Les concentrations internes modale et maximale des panaches de Stromboli sont respectivement autour de 1 × 10-5 kg m-3 et 7,45 × 10-4 kg m-3, largement supérieures au seuil fixé pour la sécurité aérienne. Les concentrations en cendres des retombées s’étalent entre 1,87 × 10-8 - 2,42 × 10-6 kg m-3 avec un mode vers 4 × 10-7 kg m-3.Finalement, ce travail de thèse montre les applications opérationnelles du radar UHF VOLDORAD 2B dans le cadre de la surveillance de l'activité de l'Etna. Une méthodologie, applicable à tout radar Doppler, a été développée pour obtenir des flux de masse de téphras en temps réel à partir d’un proxy de masse, uniquement basé sur les vitesses d'éjection et puissances mesurées, calibré avec un modèle de colonne tenant compte de l'influence du vent sur les panaches. La gamme de flux trouvée pour 47 paroxysmes entre 2011 et 2015 s’étend de 2.96 × 104 à 3.26 × 106 kg s-1. A partir d’un autre modèle de colonne éruptive, Plume-MoM, les flux radar ont permis de modéliser des hauteurs des panaches de téphras émis lors de quatre paroxysmes de l'Etna cohérentes avec les observations faites en temps réel par imagerie visible et par radar en bande-X. (...)

  • Titre traduit

    The source term of tephra plumes : radar applications at Etna and Stromboli volcanoes (Italy)


  • Résumé

    Volcanic tephra plumes are one of the major volcanic hazards. To forecast their dispersion and the impact zones of their fallout, the numerical models used in operational monitoring are based on eruptive parameters, called the source term, characterizing the plume emission. Source term parameters are challenging to measure in real time. This is why dispersion models are often based on past eruptive scenarios and use empirical laws that relate plume heights to source mass fluxes. However, the model outputs are not well constrained, averaged over the eruption duration, and suffer from large uncertainties. In this topic, Doppler radars are capable of probing the interior of eruptive columns and plumes at high space-time resolution and can provide crucial constraints on the source term in real time. This thesis deals with applications in operational monitoring of dedicated volcanological radars, potentially transposable to most common meteorological radars, to provide eruptive parameters at the source of tephra plumes but also to constrain the dynamics and internal mass load of eruptive columns, volcanic plumes and their fallout.A measurement campaign at Stromboli volcano has shown the capabilities of an innovative coupling between an optical disdrometer (Parsivel2) and a new 3-mm wave Doppler radar (Mini-BASTA). Owing to its high spatio-temporal resolution (12.5 m and 1 s), intermittent sedimentation patterns were observed in the fallout of dilute transient plumes typical of normal strombolian activity. These features, also recorded with the disdrometer, measuring the particle settling speeds and sizes, were reproduced in the laboratory using an analog model. A conceptual model for the formation of reversed sedimentation thermals is proposed to explain these features. It implies that processes leading to irregular sedimentation typical of sustained concentrated strong plumes can be applied to dilute weak plumes, including those formed by normal transient Strombolian activity. Then, a physical characterization of a large number of ash particles sampled at Stromboli allowed the validation of particle size and terminal velocity measurements by the disdrometer in the field and in the laboratory, arguing in favor of its operational use. Then, a physical characterization of a large number of ash particles sampled at Stromboli allowed to validate the measurements of size and terminal velocity of falls by disdrometer in the field and in laboratory, justifying also its operational use. From these constraints, a law relating ash concentrations with calculated reflectivity factors was found and compared to in situ radar measurements inside ash plumes and fallout. The modal and maximum internal concentrations of Strombolian plumes are at about 1 × 10-5 kg m-3 and 7.5 × 10-4 kg m-3 respectively, well above the threshold for aviation safety. Ash concentrations in the fallout range from 1.9× 10-8 to 2.4 × 10-6 kg m-3 with a mode at about 4 × 10-7 kg m-3.Finally, this thesis work shows operational applications of the UHF VOLDORAD 2B radar for the monitoring of explosive activity at Etna. A methodology, applicable to any Doppler radar, has been developed to obtain tephra mass eruption rates in real time from a mass proxy, based only on measured ejection velocities and power, and calibrated with an eruptive column model taking crosswinds into account. Tephra mass fluxes found for 47 paroxysms between 2011 and 2015 range from 3 × 104 to over 3 × 106 kg s-1. Then, tephra plumes heights of four Etna paroxysms were simulated using the eruptive column model Plume-MoM from the radar-derived mass eruption rates and were found consistent with real-time observations made by visible imagery and by X-band radar. This last part demonstrates the capabilities of VOLDORAD 2B to provide quantitative input parameters for dispersion models in the case of future Etna paroxysms. (...)


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.