Contributions to Monocular Deformable 3D Reconstruction : Curvilinear Objects and Multiple Visual Cues

par Mathias Gallardo

Thèse de doctorat en Vision par ordinateur

Sous la direction de Adrien Bartoli.

Soutenue le 20-09-2018

à Clermont Auvergne , dans le cadre de École doctorale des sciences pour l'ingénieur (Clermont-Ferrand) , en partenariat avec Institut Pascal (Aubière, Puy-de-Dôme) (laboratoire) .

Le président du jury était Vincent Lepetit.

Le jury était composé de Sylvie Chambon, Toby Collins.

Les rapporteurs étaient Vincent Lepetit, Peter Sturm.

  • Titre traduit

    Contributions à la reconstruction 3D déformable monoculaire : objets curvilinéaires et indices visuels multiples


  • Résumé

    La reconstruction 3D monoculaire déformable est le problème général d'estimation de forme 3D d'un objet déformable à partir d'images 2D. Plusieurs scénarios ont émergé : le Shape-from-Template (SfT) et le Non-Rigid Structure-from-Motion (NRSfM) sont deux approches qui ont été grandement étudiées pour leur applicabilité. La première utilise une seule image qui montre un objet se déformant et un patron (une forme 3D texturée de l'objet dans une pose de référence). La seconde n'utilise pas de patron, mais utilise plusieurs images et estime la forme 3D dans chaque image. Les deux approches s'appuient sur le mouvement de points de correspondances entre les images et sur des a priori de déformations, restreignant ainsi leur utilisation à des surfaces texturées qui se déforment de manière lisse. Cette thèse fait avancer l'état de l'art du SfT et du NRSfM dans deux directions. La première est l'étude du SfT dans le cas de patrons 1D (c’est-à-dire des courbes comme des cordes et des câbles). La seconde direction est le développement d'algorithmes de SfT et de NRSfM qui exploitent plusieurs indices visuels et qui résolvent des cas réels et complexes non-résolus précédemment. Nous considérons des déformations isométriques et reconstruisons la partie extérieure de l'objet. Les contributions techniques et scientifiques de cette thèse sont divisées en quatre parties.La première partie de cette thèse étudie le SfT curvilinéaire, qui est le cas du patron curvilinéaire plongé dans un espace 2D ou 3D. Nous proposons une analyse théorique approfondie et des solutions pratiques pour le SfT curvilinéaire. Malgré son apparente simplicité, le SfT curvilinéaire s'est avéré être un problème complexe : il ne peut pas être résolu à l'aide de solutions locales non-holonomes d'une équation différentielle ordinaire et ne possède pas de solution unique, mais un nombre fini de solutions ambiguës. Une contribution technique majeure est un algorithme basé sur notre théorie, qui génère toutes les solutions ambiguës. La deuxième partie de cette thèse traite d'une limitation des méthodes de SfT : la reconstruction de plis. Cette limitation vient de la parcimonie de la contrainte de mouvement et de la régularisation. Nous proposons deux contributions qui s'appuient sur un cadre de minimisation d'énergie non-convexe. Tout d'abord, nous complétons la contrainte de mouvement avec une contrainte robuste de bord. Ensuite, nous modélisons implicitement les plis à l'aide d'une représentation dense de la surface basée maillage et d'une contrainte robuste de lissage qui désactive automatiquement le lissage de la courbure sans connaître a priori la position des plis.La troisième partie de cette thèse est dédiée à une autre limitation du SfT : la reconstruction de surfaces peu texturées. Cette limitation vient de la difficulté d'obtenir des correspondances (parcimonieuses ou denses) sur des surfaces peu texturées. Comme l'ombrage révèle les détails sur des surfaces peu texturées, nous proposons de combiner l'ombrage avec le SfT. Nous présentons deux contributions. La première est une initialisation en cascade qui estime séquentiellement la déformation de la surface, l'illumination de la scène, la réponse de la caméra et enfin les albédos de la surface à partir d'images monoculaires où la surface se déforme. La seconde est l'intégration de l'ombrage à notre précédent cadre de minimisation d'énergie afin de raffiner simultanément les paramètres photométriques et de déformation.La dernière partie de cette thèse relâche la connaissance du patron et aborde deux limitations du NRSfM : la reconstruction de surfaces peu texturées avec des plis. Une contribution majeure est l'extension du second cadre d'optimisation pour la reconstruction conjointe de la forme 3D de la surface sur toutes les images d'entrée et des albédos de la surface sans en connaître un patron.


  • Résumé

    Monocular deformable 3D reconstruction is the general problem of recovering the 3D shape of a deformable object from monocular 2D images. Several scenarios have emerged: the Shape-from-Template (SfT) and the Non-Rigid Structure-from-Motion (NRSfM) are two approaches intensively studied for their practicability. The former uses a single image depicting the deforming object and a template (a textured 3D shape of this object in a reference pose). The latter does not use a template, but uses several images and recovers the 3D shape in each image. Both approaches rely on the motion of correspondences between the images and deformation priors, which restrict their use to well-textured surfaces which deform smoothly. This thesis advances the state-of-the-art in SfT and NRSfM in two main directions. The first direction is to study SfT for the case of 1D templates (i.e. curved, thin structures such as ropes and cables). The second direction is to develop algorithms in SfT and NRSfM that exploit multiple visual cues and can solve complex, real-world cases which were previously unsolved. We focus on isometric deformations and reconstruct the outer part of the object. The technical and scientific contributions of this thesis are divided into four parts. The first part of this thesis studies the case of a curvilinear template embedded in 2D or 3D space, referred to Curve SfT. We propose a thorough theoretical analysis and practical solutions for Curve SfT. Despite its apparent simplicity, Curve SfT appears to be a complex problem: it cannot be solved locally using exact non-holonomic partial differential equation and is only solvable up to a finite number of ambiguous solutions. A major technical contribution is a computational solution based on our theory, which generates all the ambiguous solutions.The second part of this thesis deals with a limitation of SfT methods: reconstructing creases. This is due to the sparsity of the motion constraint and regularization. We propose two contributions which rely on a non-convex energy minimization framework. First, we complement the motion constraint with a robust boundary contour constraint. Second, we implicitly model creases with a dense mesh-based surface representation and an associated robust smoothing constraint, which deactivates curvature smoothing automatically where needed, without knowing a priori the crease location. The third part of this thesis is dedicated to another limitation of SfT: reconstructing poorly-textured surfaces. This is due to correspondences which cannot be obtained so easily on poorly-textured surfaces (either sparse or dense). As shading reveals details on poorly-textured surfaces, we propose to combine shading and SfT. We have two contributions. The first is a cascaded initialization which estimates sequentially the surface's deformation, the scene illumination, the camera response and then the surface albedos from deformed monocular images. The second is to integrate shading to our previous energy minimization framework for simultaneously refining deformation and photometric parameters.The last part of this thesis relaxes the knowledge of the template and addresses two limitations of NRSfM: reconstructing poorly-textured surfaces with creases. Our major contribution is an extension of the second framework to recover jointly the 3D shapes of all input images and the surface albedos without any template.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.