Load balancing in multichannel data collection wireless sensor networks

par Hamadoun Tall

Thèse de doctorat en Informatique

Sous la direction de Michel Misson et de Gérard Chalhoub.

Le jury était composé de Thierry Val, Saoucene Mahfoudh.

Les rapporteurs étaient Hervé Rivano, Nathalie Mitton.

  • Titre traduit

    Répartition de trafic équitable dans un réseau de capteurs sans fil multicanal dédié à la collecte de données


  • Résumé

    Les Réseaux de Capteurs Sans Fil (RCSF) sont de plus en plus exploités par des applications diverses grâce à leur facilité de déploiement et d’auto-configuration. Les applications de collecte de données qui utilisent les RCSF ont souvent un profil convergecast : l’ensemble des données récoltées par tous les capteurs du réseau sont acheminées vers un puits de collecte, grâce à une communication multi-saut. Pendant l’acheminement des données des nœuds de collecte vers le puits, des goulots d’étranglement sont fréquemment observés, principalement au voisinage du puits. Cela est du à la congestion et au phénomène d’entonnoir couramment observé sur le trafic de données ayant un profile convergecast. Outre un risque accru de collision, cela entraîne le débordement des files d’attente des nœuds concernés conduisant à des pertes de données. Cette perte réduit le taux de livraison au puits entraînant une baisse du débit du réseau. Afin de réduire ces pertes et de permettre un meilleur taux de livraison au puits, le trafic doit être équitablement réparti au niveau de chaque saut pendant l’acheminement. Dans cette thèse, nous avons d’une part proposé S-CoLBA (Single channel Collaborative Load Balancing Algorithm), un protocole mono-canal de routage dynamique avec équilibrage de la charge. Sa métrique de routage est basée sur le délais moyen d’accès au medium radio par nœud. Chaque nœud choisit comme prochain saut à destination du puits, un de ses voisins ayant le délais d’accès le plus court. S-CoLBA intègre également une surveillance permanente des files d’attente des nœuds afin de prévenir la congestion et d’éviter le débordement de ces files. D’autre part, nous avons adapté S-CoLBA pour le rendre utilisable dans un réseau multicanal. Cette version du protocole s’appelle M-CoLBA (pour Mulitchannel CoLBA). M-CoLBA évite la congestion en équilibrant la charge grâce à une répartition du trafic au niveau de chaque saut du réseau. Dans un réseau multicanal, le problème de support de diffusion se pose. M-CoLBA introduit des périodes de synchronisations où tous les nœuds utilisent le même canal pour échanger les informations de routage. Ces périodes de synchronisation contribuent à allonger les délais de bout en bout des paquets. Nous avons ainsi optimisé M-CoLBA en "surchargeant" les acquittements des trames avec les informations de routage ( piggybacking) et les états des files d’attente. Cela évite de passer par des périodes de synchronisation pour diffuser ces informations. Cette version optimisée s’appelle ABORt ( Acknowledgement-Based opportunistic Routing protocol). Dans un cas de trafic de type convergecast, ABORt induit une diversité des routes prises par les données collectées, ce qui est bénéfique à la quantité de données transportées et à la robustesse de la solution. Les contributions ont été évaluées par simulation et expérimentation dans un réseau monocanal et multicanal. Les résultats montrent que nos contributions améliorent le taux de livraison des données au puits, optimisent le délais de bout en bout et réduisent la quantité de trafic de contrôle comparé à des solutions déjà existantes.


  • Résumé

    The popularity of wireless sensor networks (WSNs) is increasing due to their ease ofdeployment and auto-configuration capabilities. They are used in different applica-tion domains including data collection with convergecast scenarios. In convergecast,all data collected in the network is destined to one common node usually called thesink. In case of high carried traffic load and depending on the used routing policy,this many-to-one data collection leads to congestion and queue overflow mainly innodes located near the sink. Congestion and queue overflow reduce delivery ratiothat negatively affects the network efficiency.Wireless sensor nodes are resource constrained devices with limited buffers sizeto store and forward data to the sink. Introducing multichannel communication inWSNs helps to increase the carried traffic load thanks to allowing parallel data trans-mission and reduction of contention and interference. With high traffic load, thenumber of data packets travelling from leaf nodes towards the sink becomes higher.In case the routing scheme does not balance the traffic load, it will be unfairly dis-tributed between forwarding nodes. Thus, nodes that are in part of the routing will beoverloaded while others are less used. Overloaded nodes increase the risk of conges-tion and queue overflow leading to data loss that reduces the throughput. Therefore,we need to couple the routing protocols with traffic load balancing scheme in hightraffic load network scenarios.The goal of this thesis is to propose an efficient routing solution to prevent con-gestion and queue overflow in high data rate convergecast WSNs, in such a way, tooptimize data delivery ratio at the sink node.On the one hand, we proposed a single channel traffic load balancing routingprotocol, named S-CoLBA (Single channel Collaborative Load balancing routing).It relies on data queueing delay metric and best score (according to the value of themetric) next hop neighbors to fairly distribute traffic load in per hop basis in the net-work. Since the carried traffic load increases in multichannel communication, onthe other hand, we adapted our contribution to cope with multichannel WSNs andwe named it as Multichannel CoLBA (M-CoLBA). As broadcasting information isnot straightforward in multichannel, we optimize M-CoLBA to use piggybackingscheme for routing information sharing in the network. This enhanced version iscalled ABORt for Acknowledgement-Based opportunistic Routing protocol and re-lies on ACK frames to share routing information. Doing so helps to optimize dataframe end-to-end delay and to reduce the transmitted beacons in the network. ABORtfairly distributes traffic load in the network and avoids congestion and queue over-flow.We evaluated the performance of our contributions in both simulation using Con-tiki OS Cooja simulator and experiment (only for S-CoLBA) on TelosB motes. Ob-tained results in both simulation and experiment confirm the efficiency of our routingprotocols in term of packet delivery ratio and queue overflow compared to some ex-isting routing protocols in the literature.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Clermont Auvergne. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.