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This time is different
The global financial crisis of 2008 took us by surprise. As Bernanke (2013) pointed out “almost

universally, economists failed to predict the nature, timing, or severity of the crisis”. To illustrate
the point, not long before the outbreak of the turbulence, Olivier Blanchard2 declared “the state of
macro is good”.

However, the surprise element is not really a surprise. Crises are recurrent and they are hard
to predict. To the point that they became “business as usual” as discussed by Mattick (2011). The
markets (and eventually, economists) are said to have short memory. Events such as the 2000
Internet crisis or the 1998 LTCM crisis quickly faded away in history.

But “this time is different”, as Krugman (2009) summarizes the sentiment shared by many
economists. The most unexpected elements of the 2008 crisis were its severity and magnitude.
Worldwide, 71 countries plunged into recession, according to OECD (2015). The total loss was
unprecedented. The U.S. suffered heavy consequences until this day: $20 trillion included output
losses, more than its entire annual GDP (Luttrell et al. (2013)). Full recovery is not yet reached
10 years afterward (Barnichon et al. (2018)). And after all, these consequences were not the worst
scenario. An emergency rescuing package of $1 trillion was issued right after the peak of the crisis.

This event demonstrates the emergence of a new threat, inconceivable until recently: a potential
systemic collapse of the world financial and economic system (systemic risk). All of it was started
by a small shock in the U.S. housing market. How was this possible? This question is the central
theme of this thesis.

Financial fragility
The term financial fragility is used to designate the phenomenon of “small shock, large crisis”,

as summarized by Gorton and Ordonez (2014). In other words, it reflects how the system as a
whole (financial markets or macroeconomic state) is sensitive to small shocks. This idea has been
formalized by various works appeared in the same period such as Diamond and Rajan (2001);
Lagunoff and Schreft (2001); Allen and Gale (2004). The literature on systemic risk also started to
grow, with the pioneer works of Allen and Gale (2000); Freixas et al. (2000); Eisenberg and Noe
(2001). That was well before the crisis.

Then, as Krugman asked, “How Did Economists Get It Wrong?” To their defense, one possible
argument is that the theories were in accordance with the circumstances of their time3. An essential
ingredient is yet to come: complexity.

In the early 2000s, the global financial system has rapidly transformed. Two of the main rea-
sons were the exponential advance of technology and heavy financial deregulation4. Financial
complexity escalated in two directions: connectivity and opacity.

2soon to be Chief Economist of the IMF by that time. The article is published one year later in Blanchard (2009)
3there are other arguments which involve ideological assertions that take a lot of space to explain, interested readers

can see Krugman (2009, 2011)
4following the efforts of the Fed to pull the U.S. economy out of the 2000 Internet crash
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First, financial linkages increased rapidly, as observed by Haldane (2013). Obviously, it became
easier to make transactions across all distances. More than that, the Glass-Steagall act was repealed.
Financial institutions were then allowed to combine commercial banking, securities intermediation
and insurance operations. There were more transactions to make.

Second, complex financial contracts which emerged in the 1990s became widespread (Gorton
(2008, 2009)). Along with financial deregulation and improved computational power, a new bank-
ing paradigm replaced the old one: originate-to-sell rather than originate-to-hold. In consequences,
derivatives such as Assets-Backed-Securities and Collateralized-Debt-Obligation flooded the mar-
kets. These are financial contracts whose payoffs depend on the payoffs of the underlying products,
such as loans or mortgages. Securitization then became even more sophisticated: combine deriva-
tives to issue higher order derivatives. This trend reinforced the first mechanism, making more
connections at the same time with more opacity.

Overall, the system became highly sensitive. Higher connectedness among financial institutions
increases potential direct shock transmission and indirect exposure through asset prices. Higher
opacity increases the risk of runs and panics, if any shock takes place. Furthermore, these mecha-
nisms have self-amplifying effects. Combined with high leverage and massive short-term funding,
this environment has produced one of the most severe economic downturns in history.

10 years after the crisis, economic literature on this subject has been growing rapidly. However,
many questions remained unanswered, there are still a lot of work to be done.

The two approaches
To tackle new problems, this thesis employed and combined tools from two relatively recent

streams of literature: economics of networks and behavioral economics.
Obviously, one might question the motivation to these approaches. An apparently straightfor-

ward argument is to evoke Kuhn’s law: when anomalies accumulate and existing theories cannot
explain these anomalies, there will be a shift in scientific paradigms. For economics, this argument
is, at most, inaccurate. Empirically, a glance on economic literature does not indicate any paradigm
shifting soon, or maybe at all. On the philosophical standpoint, economics differs from physics.
Physics is about discoveries of permanent and universal truth, therefore physicists dream of the
“Theory of everything”. Unexplained anomalies are unacceptable, new paradigm should replace
the old one. On the contrary, economics studies people, human organizations and societies. It is
fair to say nothing of the above is permanent nor universal, rather continuously changing and diver-
sified in many aspects. Indeed, the ideal economic science should be built upon the “many-model
thinking” paradigm (Miller and Page (2009)). All economic theories are partial and more partial
theories are better than one partial theory.

More specifically, there are two motivations for these new approaches. The first argument
is that many respectable economists, such as Krugman (2009); Bernanke et al. (2010); Haldane
(2013) among others, have advocated the application of these tools. The second motivation is that
they probably make a point, as developed in the following paragraphs.

The application of network analysis is straightforward. It addresses two main assumptions
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of neoclassical economics which limits the scope of the analysis of financial fragility. The first
assumption is that agents are assumed to freely interact with other agents. This is not the case in fi-
nancial networks, where possible interactions are conditioned by the structure of financial linkages.
For some specific problems such as loss spillover, financial contracts also determine the nature of
interactions: debtors diffuse losses while creditors take losses (Elliott et al. (2014); Glasserman
and Young (2015)). The second assumption is that there is a continuum of agents and they are
homogeneous. This is also not the case in the financial system. Merges and bailouts give way to
a few systemically important financial institutions (SIFIs). They clearly differ in size, connectivity
and market power compared to others. Network analysis, especially computational network models
(Nier et al. (2007); Gai and Kapadia (2010); Battiston et al. (2012a)), has shed new light on the link
between financial complexity and financial fragility. Moreover, quantitative models are already in
use to monitor systemic risk (DebtRank of Battiston et al. (2012b), Contagion Index of Cont et al.
(2010)).

The behavioral approach is perhaps more controversial. It addresses the most central assump-
tion of mainstream economics: perfect rationality. This assumption is the main workhorse of eco-
nomic theories. It asserts that economic agents are infinitely intelligent and have stable preferences,
they always act in such a way to maximize their utilities in a precise and invariable manner. Basi-
cally, it can be split into several usual implicit assumptions: agents know a lot of information, have
infinite computational power to process the needed information and deliver the optimal solution,
no matter how complex is the problem. However, in the context of financial complexity, Haldane
(2012) argued that “humans follow simple rules” and “less may be more” by using a simple anal-
ogy. A dog can easily catch a frisbee without knowing or applying Newton’s mechanics. All it takes
are simple rules. Bernanke et al. (2010) pointed out another idea: “at certain times, decision makers
simply cannot assign meaningful probabilities to alternative outcomes – indeed, cannot even think
of all the possible outcomes – is known as Knightian uncertainty”. In other words, there might not
be enough information to compute rational expectation. In consequences, the point is that agents
are rational, but not perfectly5. This is known as bounded rationality, a term coined by Simon
(1972). Experimental economics is exploring the effects of biases and bounded rationality on bank
runs and panics. One direct theoretical consequence of bounded rationality is non-linear dynam-
ics and chaos. This subject is at the core of computational economics, which attracts increasing
attention as summarized in Battiston et al. (2016).

It is worth stressing two important points. First, computational models are rigorous mathemat-
ical models, despite the apparent “lazy thinking” by letting the machines do the job, as one might
suspect. These models address problems where it is impossible to derive analytical solutions, or
such solutions require tremendous time and computational power. This is exactly what bounded
rationality entails. Simplicity is elegant, but sometimes, “economists will have to learn to live
with messiness”, pointed out by Krugman (2009). This immediately leads to the second point as

5After all, the point is not to say that economists should stop doing models with rational expectation. The reason is
twofold. First, there is only one way to be rational (the perfect way). Economists need a benchmark to compare models
and to detect “anomalies”. Second, in some situations such as absence of complexity, perfect rationality might work.
It is imperative to leave the debates open with a lighten comment from Krugman (2011) “my problem is obvious: I’m
an economist, and it seems that we need some kind of sociologist to solve our profession’s problems.”
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discussed by Haldane (2012) “as you do not fight fire with fire, you do not fight complexity with
complexity”, to remind that one should not treat complexity with over-complex models. Technical
complexity is a double-edge knife, it should be employed only when necessary. Indeed, simplicity
would be the ultimate complexity, where simple computational models can generate rich patterns
that we actually observe, as the pioneer work of Brock and Hommes (1998).

Finally, Bernanke et al. (2010) offered a satisfactory summary: “both older and more recent
ideas drawn from economic research have proved invaluable to policymakers attempting to diag-
nose and respond to the financial crisis”.

Methodology & Contributions
This thesis consists of 3 related chapters. The methodology and contributions of these chapters

are summarized in what follows.
Chapter 1 studies how the presence of transitive cycles in the network affects the extent of

financial contagion. In a regular network setting, where the same pattern of links repeats for each
node, we allow an external shock to propagate losses through the system of linkages. The extent
of contagion (contagiousness) of the network is measured by the limit of the losses when the initial
shock is diffused into an infinitely large network. This measure indicates how a network may
or may not facilitate shock diffusion in spite of other external factors. Our analysis highlights two
main results. First, contagiousness decreases as the length of the minimal transitive cycle increases,
keeping the degree of connectivity constant. Second, as density increases the extent of contagion
can decrease or increase, because the addition of new links might decrease the length of the minimal
transitive cycle. Our results provide new insights to better understand systemic risk and could be
used to build complementary indicators for financial regulation.

Chapter 2 proposes a dynamic model in which bank runs arise as cascades of withdrawals.
The aim is to better understand the patterns of how bank runs occur. With bounded rationality,
agents employ a switching strategy that combines strategic complementarity and heuristics. When
a fraction of random agents withdraw, under the right conditions, some depositors preemptively
withdraw in response, increasing the probability that other depositors will run subsequently. The
model is able to characterize two distinct patterns of runs. Immediate runs develop instantly follow-
ing the shock with a stable trajectory. On the contrary, sudden runs occur “out of nowhere”, with
massive withdrawals concentrate in a very short time window after a period of apparent inactivity.
We provide analytical calculation of the tipping point, where the panic burst out.

Chapter 3 studies bank runs in a dynamic and behavioral setting. Current theoretical models
mainly consider bank run as mis-coordination in simultaneous games. From another perspective,
bank runs arise in this model as dynamic cascades of withdrawals, through strategic complemen-
tarity and herding. Within a network, agents can observe the actions of their neighbors. Agents
make decisions based on (i) their types, (ii) their private signals and (iii) the observed actions of
others. The model is able to characterize the frequency, speed and abruptness of bank runs. Par-
ticularly, there are two distinct patterns: sequential withdrawals build up progressively or massive
withdrawals suddenly occur “out of nowhere”. Regarding the behavioral aspect, increase herding
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generates a tension between activation and speed, runs are more frequent but also slower to build
up. By contrast, increase heterogeneity facilitates both activation and speed of runs.
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Chapter 1

Shock diffusion in large regular networks:
the role of transitive cycles
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1 Introduction
Financial contagion is commonly regarded as the hallmark of the 2007-2008 financial crisis.

Since the pioneering works by Allen and Gale (2000); Freixas et al. (2000), many studies have ana-
lyzed how the structure of financial networks affects the propagation of shocks3. The literature has
uncovered the role played by certain characteristics of the network, focusing notably on density,
which relates to the average number of neighbors or average degree in the network4. With different
methodologies, this stream of literature shows that the effect of network density on shock diffu-
sion is non-monotonic and depends on factors as the size of the shock, the presence of financial
acceleration, level of integration, or the diversification of the system5.

Nevertheless, little is known about the effect of other characteristics of the network with the
exceptions of Craig et al. (2014) and Rogers and Veraart (2013) on individual centrality, or Allen
et al. (2012) on clustering. We contribute to this literature by studying the role of transitive cycles
in facilitating or restraining the propagation of a shock in financial networks. Our model shows that
the length of transitive cycles is an important factor that shapes the relationship between network
density and shock diffusion.

To lay out the intuitive foundation, consider two different structures of financial networks as
depicted in Figure 1.1. We will provide formal definitions in the next section. An arrow from bank
1 to bank 2 indicates that bank 2 will take a loss if bank 1 fails. We call bank 1 an in-neighbor of
bank 2 and bank 2 an out-neighbor of bank 1. In both networks represented below, each institution
has two in-neighbors and two out-neighbors. Nevertheless, these two networks are not identical, or
isomorphic, due to the different structure of cycles they each possess.

Figure 1.1: Same degree, different cycle length. The network (a) is on the left, (b) is on the right.

We observe cycles of different length for each structure. In network (a) 1 can affect 2, 2 can af-
fect 3, and 1 can affect 3. We call this transitivity of loss-given-default among financial institutions
a transitive cycle. In network (b) the transitive cycles always include at least four banks, while in

3see Summer (2013); Cabrales et al. (2015); Glasserman and Young (2016) for reviews of this stream of literature.
4Acharya (2009); Gai et al. (2011); Battiston et al. (2012a); Elliott et al. (2014); Acemoglu et al. (2015); Gofman

(2017); Castiglionesi and Eboli (2018), among others.
5A higher density implies higher individual diversification but it does not necessarily mean more systemic diversity.
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network (a) they only include three banks. Therefore, the length of the minimal transitive cycle is
smaller in network (a) than in network (b).

We model the structure of financial liabilities as a directed network. When a bank defaults after
taking a large external shock, it will impose losses on other banks to which it has liabilities. The
losses-given-default in turn may cause these banks to fail. Thus, losses propagate into the network
as a flow through a system of linkages. Inspired by Morris (2000), we assume that the population
is infinite but each bank has a finite number of links, in our case with an identical pattern6. This
type of structure is what we consider a large regular network. In this setting, we measure how a
structure facilitates shock diffusion by computing the limit of the individual loss when the distance
between a bank and the initial shock goes to infinity. A small value of this measure indicates that
the structure itself is robust and can restrain the diffusion of the initial shock to a long distance. We
therefore take this measure as an indicator of the contagiousness of the network.

In our setting, we show that the contagiousness of the network decreases as the length of the
minimal transitive cycle increases, while keeping the number of links equal and constant for all
nodes. Furthermore, increasing the connectivity of the network can have ambiguous effects on
contagiousness. This ambiguity arises because when connectivity increases, additional links may
or may not decrease the length of the minimal transitive cycle. On the one hand, when additional
links do not change the length of minimal transitive cycle (long links are added), contagiousness
decreases as connectivity increases. On the other hand, when additional links are made to banks
at a closer distance than the length of minimal transitive cycle (short links are added), the length
of the minimal transitive cycles decreases. In this case, contagiousness decreases as connectivity
increases if and only if the length of the minimal transitive cycle is above a certain threshold. If the
length of the minimal transitive cycle is lower than the threshold, increasing connectivity by adding
links to banks that are relatively close will result in an increase in contagiousness.

To extend our analysis, we study the contagiousness of regular networks versus different struc-
tures having some related characteristics. First, we compare regular networks to tree networks with
the same out-degree. The contagiousness of the tree networks always tends to zero as long as the
out-degree of each node is greater than 1. We note that the contagiousness of regular network ap-
proaches the one of tree networks as the length of the minimal transitive cycles approaches infinity.
We next use complete multipartite networks as a benchmark for comparison. Complete multipar-
tite networks have the property of keeping the losses constant as the initial shock diffuses into the
system. This constant loss is equal to the reduction in asset value of the direct neighbors of the first
defaulted bank. Again we find a threshold for the length of the minimal transitive cycles, above
which the contagiousness of regular structures is smaller than the one of the multipartite networks.

These results suggest some policy implications. First, many systemic-risk indicators have been
developed, with several ones that take into account the structure of the financial system together
with financial acceleration (for example, DebtRank by Battiston et al. (2012b), or Contagion Index
by Cont et al. (2010)). Our measure, focusing solely on the structure of the network, could be

6The assumption of an infinite population allows us to draw more general conclusions about the effect of the length
of the minimal transitive cycle. If each bank has assets and liabilities to a finite number of other banks, and the total
number of banks is finite, a few values of length of minimal transitive cycle are compatible. By allowing the total
number of banks to be large enough we also allow for the length of the minimal transitive cycle to go from 3 to infinity.
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useful to build complementary indicators. Knowing which region has high potential for shock
diffusion may help regulators to devise appropriate interventions in time of crisis. Furthermore,
as the measure is derived without complex financial mechanisms, its application can be adapted to
other type of financial interdependencies, such as networks of payments.

Second, the Basel Committee on Banking Supervision has compiled a set of global standards
for financial institutions since 1982. One of the most important objectives is to improve the banking
sector’s ability to absorb shocks arising from financial and economic stress. In response to the 2007
global financial crisis, Basel III specifies extra recommendations for systemically important finan-
cial institutions (SIFI). Going one step further, the European Commission has decided to transpose
some of the Basel III recommendations into laws that will be enforced starting in 2019 for the
European Union. These recommendations focus mainly on variables at the individual level such
as capital requirement, liquidity, and leverage ratio, with surcharge to SIFIs due to their potential
important impact to the financial system. In what concerns the results presented in this paper, it
would be useful to have complementary regulations on the structure itself of the financial linkages.
Banks have to be more careful when choosing their diversification strategies, as increasing the level
of diversification might facilitate the diffusion of potential shocks, especially when the length of
the minimal transitive cycle decreases.

This paper is organized as follows. We introduce the setting in Section 2. The results are stated
in Section 3. We provide a discussion of our results in Section 4 and conclude in Section 5.

2 The model

2.1 The financial interdependencies
In this section we introduce the basic notions and definitions that are needed in the subsequent

analysis. More exhaustive definitions and measures can be found in Goyal (2012); Jackson (2010).
Let N = {1,2, ...,n} denote the set of financial institutions (or banks, for short). Each bank

i 2 N holds a capital buffer wi � 0, owns external assets for an amount of ai � 0, and has liabilities
to other banks li j � 0, where j 2 N, j 6= i. The total interbank liability held by bank i is given by
Li = Â

j
li j. Bank i’s total assets are therefore given by ai +Â

k
lki and banks i’s total liabilities are

given by wi +Â
j
li j.

This interdependence can be represented by a directed graph over N where the set of links g is
defined by i j 2 g for i 2 N and j 2 N if and only if li j > 0. To keep the model tractable, we have
taken some regularity assumptions regarding the financial interdependence network.

Given a bank i, we define i’s out-neighborhood to be the set of banks to whom i has a liability,
i.e., Nout

i (g) = { j 2 N such that li j > 0}. The cardinality of i’s out-neighborhood is called i’s out-
degree and denoted by kout

i . Similarly, let i’s in-neighborhood be the set of banks that have a liability
with i, i.e., Nin

i (g) = { j 2 N such that l ji > 0}. The cardinality of i’s in-neighborhood is called i’s
in-degree and denoted by kin

i .
A path in the network (N,g) is a set of consecutive links {i1i2, i2i3, ..., ir�1ir}✓ g with is 2 N
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for all s = 1, ..,r and isis+1 2 g for all s = 1, ..,r� 1. The length of a path is the number of links
in it. We say that j is connected to i if there is a path {i1i2, i2i3, ..., ir�1ir} ✓ g, such that i1 = i
and ir = j. The distance between i and j in the network (N,g), denoted d(i, j), is the number of
links in the shortest path that connects i to j or vice versa (the path with smallest distance between
two players is called a geodesic). A subset of nodes S ✓ N is connected in the network (N,g) if for
every pair of nodes i and j in S either i is connected to j or j is connected to i. The network (N,g)
is connected if N is connected in (N,g). We denote by Nout,•

i the set of nodes that are connected to
i in (N,g) and by Nin,•

i the set of nodes to whom i is connected in (N,g).
A transitive cycle in the network is a path such that there exists distinct nodes {i1, ...,1c} ✓ N

satisfying that {i1i2, i2i3, ..., ic�1ic, i1ic} ✓ g. An intransitive cycle in the network is a path such
that there exists distinct nodes {i1, ...,1c}✓ N satisfying that {i1i2, i2i3, ..., ic�1ic, ici1}✓ g. Note
that our cycles are “minimally” defined because in our definition the nodes in the cycle are distinct
(a node cannot be visited several times). The length of a cycle is the number of links in the cycle,
which by our definition of a cycle is also equal to the number of participants in the cycle. Figure
1.2 below shows a transitive and an intransitive cycle of length c = 4.

Figure 1.2: Cycles of length 4

To keep the model tractable, we make some regularity assumptions regarding the structure of
the network. A financial network is homogeneous if all banks have the same and equal out-degree
and in-degree, i.e. kin

i = kout
i = k and it is transitive if (i) all cycles are transitive and (ii) for any two

nodes i and j in N, if i is connected to j then j is not connected to i. For simplicity, we assume that
all positive claims are of equal value, normalized to 1.

2.2 Bankruptcy and shock diffusion
Define xi as the total loss in external and interbank assets that bank i receives in case of a shock.
We use the standard defaulting rules in the literature, as inEisenberg and Noe (2001). Creditors

have priority over shareholders and interbank liabilities are of equal priority. When a bank receives
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a shock, the losses on its external and interbank assets are reflected in capital loss. When its capital
is depleted, the bank defaults. The condition of default of bank i is given by xi � wi. Then, the total
loss-given-default that bank i impose on its creditors is

LGDi = xi �wi � 0

A bankruptcy event is organized as follows: the defaulted bank liquidates all of its remaining
assets and the liquidation proceeds are shared among creditors proportionally according to bank i’s
relative liabilities. We assume that for all assets, liquidating value is identical to book value, so that
defaulted banks do not generate additional losses. Then, sharing liquidation proceeds is equivalent
to share loss-given-default proportionally among creditors. Let’s consider an example, depicted in
Figure 1.3.

Figure 1.3: The shock and LGD

When bank i defaults from the external shock xi, its liquidation proceeds are ai +Â
k

lki �xi. The

loss-given-default that bank j suffers from the default of bank i is the difference between nominal
liability and proportional repayment made by bank i to bank j.

LGDi
j = li j � (ai +Â

k
lki � xi)

li j

Li

=
li j

Li

"
Li � (ai +Â

k
lki)

#
+ xi

li j

Li

=
li j

Li
(�wi)+

li j

Li
xi = LGDi li j

Li

Thus, the shock is distributed proportionally according to relative liabilities. If the network
is transitive, the shock diffuses in waves that do not come back to nodes who have been already
affected by it.
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3 Results

3.1 Limiting behavior of the shock
In order to compute the limit of losses in homogeneous, transitive networks as the number of

banks gets large (when n ! •), we define regular networks of degree k and minimal transitive
cycles of length c as follows.

Definition 1. We say that a homogeneous, transitive network is a regular network with degree k
and minimal transitive cycle of length c � 3 if (i) all nodes have in-degree and out-degree equal to
k and (ii) starting from any bank b 2 N we can relabel the banks in a way such that for any i 2 Nout

b

Nout
i = {i+1, i+ c�1, i+ c, i+ c+1, ..., i+ c+ k�3}

and
Nin

i = {i�1, i� c+1, i� c, i� c�1, ..., i� c� k+3}.
Figure 1.4 shows parts of (infinite) regular networks of degree k = 2 and minimal transitive

cycle of length c = 3, c = 4, and c = 5, respectively. Each of the patterns shown below is assumed
to be repeated infinitely because n ! •.

Figure 1.4: Regular networks of degree 2

The term minimal transitive cycle of length c is used because a regular network, as defined
previously, has many transitive cycles if k > 2. For example, if k = c = 3 and labeling the nodes
as in the examples shown in Figure 1.4, we have that {12,23,13}✓ g (transitive cycle of minimal
length 3). Nevertheless, {12,23,34,14}✓ g is also a transitive cycle, but of length greater than 3.

We have the following result regarding the limit behavior of a single shock.
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Figure 1.5: The limiting value of xi
x j

as d(i, j) goes to infinity and j receives the unique initial,
external shock, for k = 2, ...,9 and c = 3, ...,10

Theorem 1. Let wi be equal to 0 for all i 2 N and assume one single external initial shock: there
is one unique j 2 N such that (i) x j > 0, and (ii) if xi > 0 for i 6= j then i 2 Nout,•

j and xi =

Âm2Nin
i (g)

1
k xm. If the interdependency network of liabilities is a regular network of degree k � 2

and minimal cycle length c � 3 then for i 2 Nout,•
j

xi ! 2k
2k+(k�1)(k+2c�6)

x j as d(i, j) ! •

The proof is in the Appendix and it is built considering a natural relabeling/ordering of the
nodes from their position/distance with respect to the node suffering the initial shock j 2 N. We
can then consider xi for i 2 Nout,•

j = {2,3,4, ....} as an infinite sequence in ¬+. This sequence is
convergent in ¬+ and its limit depends on x j, k, and c as stated in Theorem 1. Figure 1.5 shows a
numerical example of the behavior of the limit xi

x j
as c and k vary.

Theorem 1 shows that the losses received by banks that are connected to the node receiving
the initial shock j 2 N do not go to zero even if banks are located infinitely far from j (as far as
k and c are finite). A large value for the limit of the sequence xi indicates that the structure itself
facilitates the propagation of the losses without further consideration of other factors. Therefore
we can consider the limit value of the losses as a measure of the contagiousness of the network.
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3.2 Comparative statics
We discuss now how the limiting value of xi

x j
, where j is the bank with the external, initial shock

and i 2 Nout,•
j changes as k and/or c vary.

We observe from Theorem 1 that the limit of xi
x j

decreases with higher values of k or higher
values of c (recall that c � 3). Therefore, according to Theorem 1, we can make two statements
regarding the contagiousness of the network. First, increasing the length of minimal transitive
cycles, while keeping the degree of connectivity constant, will make the network more robust, in
the sense that it will dissipate a larger fraction of the shock during the diffusion process. Figure 1.4
provides an example of networks with degree equal to 2 but different lengths of minimal transitive
cycles. Secondly, increasing the degree of connectivity, while keeping the length of the minimal
transitive cycle constant, will also reduce the contagiousness of the network. Both of these effects
can be observed in figure 1.5, as we move down along either one of the axis from any point.

Increasing the degree of connectivity might nevertheless decrease the length of the minimal
transitive cycle. An example can be found in Figure 1.6 below. Starting from a regular network
with k = 2 and c = 4, increasing the degree to k = 3 can be done in two different ways, such that
the network remains regular as previously defined. First, we could add the link i, i+2 to the initial
network, which would decrease the length of the minimal transitive cycle to 3. Secondly, we could
also add the link i, i+4 to the initial network, which would keep the length of the minimal transitive
cycle equal to 4. In general, to obtain a regular network of degree k+1 by adding one link per node
to a regular network of degree k and minimal transitive cycle length c, there are two possible results.
If we add the link i, i+c�2 for each i � 1 to the initial network (new short links) the length of the
minimal transitive cycle decreases to c� 1. If we add the link i, i+ k+ c� 2 for each i � 1 to the
initial network (new long links) the length of the minimal transitive cycle stays equal to c.

With regard to the addition of short links, we have the following proposition for the limit of
losses, when the degree increases by one unit while the length of minimal transitive cycle decreases
by one unit.

Proposition 1. Let x̄(k,c) = 2k
2k+(k�1)(k+2c�6) . We have that x̄(k+ 1,c� 1) < x̄(k,c) if and only if

c > 3+ k(k�1)
2 .

The proof of Proposition 1 is straightforward and therefore omitted. Proposition 1 states that
there is a threshold for the length of the minimal transitive cycle such that the addition of a short
link to each node reduces the contagiousness of the network.

Summing up, if the length of the minimal transitive cycle c is large enough, the contagiousness
of the network is reduced if we consider an increase in degree, regardless of the type of additional
links. When the length of the minimal transitive cycle is low, increasing the degree of connectivity
has ambiguous results. If short links are added, the network becomes more contagious, while if
long links are added then the network is less contagious.

This result allows us to identify another factor that contributes to the non-monotonic relation-
ship between density and systemic risk. Proposition 1 shows that increasing density may decrease
or increase the extent of contagion depending on how the length of transitive cycles in the network
changes as density varies.
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Figure 1.6: Increasing the degree of a regular network might decrease the length of the minimal
transitive cycles

4 Discussion
In this section, we extend our analysis of contagiousness and compare the regular networks with

other families of networks that share some characteristics: the tree and the complete multipartite
network. The families of networks that serve as benchmarks are all connected, transitive networks.
This analysis will provide more insights to better understand the effect of the length of transitive
cycles on the contagiousness of the network. Let us define the following two types of networks.

First, a connected, transitive network is considered to be a tree of out-degree k if (i) all nodes
have out-degree equal to k and in-degree equal to 1, and (ii) for any two nodes i and j in N, if i is
connected to j there is a unique path from j to i. Secondly, a connected, transitive, homogeneous
network of degree k is a complete multipartite network of degree k if for any node b 2 N we can find
(i) a set Sb of k�1 nodes such that for all i 2 Sb it holds that Nout

i = Nout
b , and (ii) a sequence of sets�

St
b
 

t=2,3,4,... such that for all t and i 2 St
b it holds that Nout

i = St+1
b . Figure 1.7 shows an example of

a tree of out-degree 3, a complete multipartite network of degree 3, and a regular network of degree
3 and minimal transitive cycle length equal to 3.

It is easy to see that in the case of the tree of out-degree equal to k the shock received by banks
that are far from the source approaches zero when wi = 0 for all i 2 N. Recall that in a tree there
will be a unique path connecting any i 2 Nout,•

j to j (the bank receiving the unique external shock).
For any i 2 Nout,•

j , each node in the path connecting i to j diffuses 1
k of the shock received because

wi = 0 for all i 2 N. Hence, xi =
1

kd(i, j) x j, where, recall, d(i, j) is the distance from i to j (in this
case the length of the unique path connecting them). As d(i, j) tends to infinity for i 2 Nout,•

j , we
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Figure 1.7: Networks with out-degree equal to 3

see that xi tends to zero.
The case of the complete multipartite network of degree k is also easy to compute. The node

receiving the initial external shock, j, diffuses 1
k x j to each i 2 Nout

j . Each i 2 Nout
j diffuses 1

k2 x j to
each h 2 Nout

i . By definition of the complete multipartite network, each h 2 Nout
i is connected to all

i 2 Nout
j , hence receiving xh = Âi2Nout

j
1
k2 x j =

1
k x j. The shock received and transmitted by i 2 Nout

j

is always equal to 1
k x j and hence, as d(i, j) tends to infinity for i 2 Nout

j , xi stays equal to 1
k x j.

These two types of networks, the tree and the complete multipartite one, illustrate well the role
that in and out degrees have in the contagiousness properties of financial networks. If k = 1 both the
tree and the complete multipartite network are equal to the infinite line {12,23,34,45,56,67, ...}
(up to a relabelling of the nodes) and the shock received and transmitted by any i 2 Nout,•

j ( j being
the bank receiving the unique external, initial shock) is constant and equal to x j. When k � 2
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the tree and the complete multipartite network have a different shape which results in a different
diffusion of the shock. In the tree, the shock received and transmitted by any i2Nout,•

j is decreasing
exponentially until it reaches zero because the out-degree being greater than the in-degree helps
spread the shock, making it smaller as it travels further through the network. In the complete
multipartite network the in-degree and the out-degree are equal. This creates the possibility of
connecting banks in Nout,•

j to j through many different paths.7 This multiplicity of paths prevents
the shock to decrease to zero as it gets further away from j because there is accumulation without
amplification through the multiple paths connecting the nodes.

This distinct behavior of shock diffusion in these two networks can also be related to the neigh-
borhood growth in Morris (2000). In the tree, the bank receiving the initial external shock has
k out-neighbors. Each of these k out-neighbors have k distinct out-neighbors, the initial external
shock has an effect over k2 new nodes after two iterations of the set of out-neighborhood. We
note that after l iterations of the set of out-neighborhood kl nodes are newly added. In the com-
plete multipartite network, the bank receiving the initial external shock also has k out-neighbors,
but each of these k out-neighbors have the same k out-neighbors. After l iterations of the set
of out-neighborhood we still find k new banks being affected by the initial external shock in the
multipartite network. Morris (2000) shows that in social coordination games (coordination games
played on a network) new behaviors are potentially more contagious in networks where there is
slow neighborhood growth, which means that the number of new out-neighbors at each iteration of
the set of out-neighborhood does not grow exponentially. The diffusion behavior of the shock is
consistent with this view. The tree is less contagious because the shock goes to zero as we get far
from the initial shock in our analysis and the neighborhood growth is exponential. The complete
multipartite network is very contagious because the shock does not go to zero as we get far from
the initial shock in our analysis and the neighborhood growth is constant.

What happens in the case of the regular network? It is also true that the neighborhood growth
is constant given the regularity of the network: after the node j+ c�1 is reached, there are always
k + c� 3 new out-neighbors added at each iteration step. It might be tempting to assume that
the regular network is less contagious than the complete multipartite network by looking at the
neighborhood growth, as c � 3. We have the following proposition comparing the two limiting
values of the shock as we get far from the bank receiving the initial shock.

Proposition 2. Recall that x̄(k,c) = 2k
2k+(k�1)(k+2c�6) . We have that x̄(k,c) < 1

k if and only if c >

3+ k
2 .

The proof of Proposition 2 is straightforward and therefore omitted. Proposition 2 states that
there is a threshold for the length of the minimal transitive cycle such that a regular network can
be less contagious than a complete multipartite network. For an illustration, Figure 1.8 shows that
with the same degree of 3, the regular network with c = 5 is less contagious than the multipartite
network, while the regular network with c = 3 is more contagious.

In particular, if c = 3 the regular network will be more contagious than the complete multi-
partite network for any value of k > 1. As c approaches infinity the shape of the regular network

7This multiplicity of paths does not imply the existence of cycles in the network because links are directed.
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Figure 1.8: The value of xi
x j

as a function of the distance d(i, j) to bank j receiving the unique initial,
external shock, for networks of degree equal to 3

approaches the one of the tree. We also note that the value of the threshold increases with the
degree of the network. If the network gets denser (in the sense of higher in and out degree) the
minimal transitive cycle length has to be greater too so that the regular network is less contagious
than the complete multipartite network of the same degree. This result demonstrates another im-
portant role of minimal transitive cycles. Networks with very similar patterns and characteristics
can have different behaviors regarding shock diffusion, depending on the value of the length of
minimal transitive cycles.

5 Concluding comments
Our analysis provides new insights on shock diffusion in financial networks, by focusing on

the role of minimal transitive cycles. Using large regular networks, where all nodes have equal
in-degree and out-degree and with the same pattern of links repeated infinitely, we allow an initial
shock to diffuse as a flow into the system. The contagiousness of a network is measured by the
limit of the losses of banks that are located infinitely far to the first defaulted bank. This measure
captures how a pattern of links may or may not facilitate the propagation of losses.

This analysis allows variations of the length of the minimal transitive cycle as far as the number
of financial institutions tends to infinity. We find that contagiousness is decreasing in the length of
the minimal transitive cycle. Increasing the degree has ambiguous effects, depending on whether
the length of minimal transitive cycle decreases or not after the addition of new links. Finally,
similar network structures can have different level of contagiousness when the length of minimal
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transitive cycles is above or below a certain threshold.
The results contribute to the literature by showing that beside density, transitive cycles have

important effects on the extent of contagion, independently of financial factors. The results might be
useful to build better indicators for systemic risks. Further work would include applying numerical
methods to compute how the extent of contagion in more realistic financial networks depends on
the length of transitive or intransitive cycles.

Appendix
Proof of Theorem 1
Let us fix i = 1 to be the institution receiving the unique external shock. Given the transitivity

nature of our network, only nodes in Nout,•
1 can potentially receive a shock from their in-neighbors.

Given the regularity of our network, we can now label the nodes following the natural order defined
by the network. Formally, the labeling satisfies that (i) Nout,•

1 = {2,3,4,5, ....}, and (2) for every i
and j in Nout,•

1 : i < j if and only if j 2 Nout,•
i . The regularity of the network and the transitivity

requirements guarantee that the labeling makes sense. The examples shown in Figure 1.4 are an
illustration of such a natural labeling of the nodes.

We make use of the following Lemma.

Lemma. Let (N,g) be a regular network of degree k and minimal cycle length c. Assume
wi = 0 for all i 2 N. We fix i = 1 as the label for the node that receives the unique external shock.
Starting from i = 1 we consider a labeling of nodes as explained above. Recall that xi denotes
total loss in assets that bank i receives in case of a shock (coming from the external asset or from
interbank assets). We have that if c = 3 then

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 + xk = x1,

while if c � 4 then

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 +

k�1
k

(xk + ...+ xk+c�4)+ xk+c�3 = x1.

Proof of Lemma. We consider first the case when c = 3. Recall that wi = 0 for all i 2 N. Hence
node k receives a fraction 1

k x j from each j 2 Nin
k . By definition of the network and the labeling of

the nodes the only nodes j 2 Nin
k such that x j > 0 are the ones in the set {1, ...,k�1}. Hence,

xk =
1
k

k�1

Â
j=1

x j.

Substituting xk we obtain

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 + xk =

2
k

x1 +
3
k

x2 + ...+
k�1

k
xk�2 + xk�1.
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We proceed to substitute xk�1. Following the same argument as before,

xk�1 =
1
k

k�2

Â
j=1

x j.

Substituting xk�1 we obtain

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 + xk =

3
k

x1 +
4
k

x2 + ...+
k�1

k
xk�3 + xk�2.

Applying the argument recursively, we arrive to

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 + xk =

k�1
k

x1 + x2.

Given that x2 =
1
k x1 we obtain, by substituting x2, that

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 + xk = x1.

We consider now the case when c � 4. We apply a similar argument as before. Recall that
wi = 0 for all i 2 N. Hence node k+ c�3 receives a fraction 1

k x j from each j 2 Nin
k+c�3. We note

that, by definition of the network and the labelling of the nodes, the only nodes j 2 Nin
k+c�3 such

that x j > 0 are the ones in the set {1, ...,k�2,k+ c�4}. Hence,

xk+c�3 =
1
k

k�2

Â
j=1

x j +
1
k

xk+c�4.

Substituting xk+c�3 we obtain

1
k x1 +

2
k x2 + ...+ k�1

k xk�1 +
k�1

k (xk + ...+ xk+c�4)+ xk+c�3 =
2
k x1 +

3
k x2 + ...+ k�1

k xk�2 +
k�1

k xk�1 +
k�1

k (xk + ...+ xk+c�5)+ xk+c�4.

We proceed to substitute xk+c�4. Following the same argument as before,

xk+c�4 =
1
k

k�3

Â
j=1

x j +
1
k

xk+c�5.

Substituting xk+c�4 we obtain

1
k x1 +

2
k x2 + ...+ k�1

k xk�1 +
k�1

k (xk + ...+ xk+c�4)+ xk+c�3 =
3
k x1 +

4
k x2 + ... k�2

k xk�3 +
k�1

k (xk�2 + xk�1 + xk + ...+ xk+c�6)+ xk+c�5.

Applying the argument recursively for j � c, noting that c 2 Nout
1 but i /2 Nout

1 for 2 < i  c�1, we
arrive to

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 + xk =

k�1
k

(x1 + ...+ xc�2)+ xc�1.
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Given that xi =
1
k xi�1 for 1 < i  c�1 we obtain, by substituting recursively, that

1
k

x1 +
2
k

x2 + ...+
k�1

k
xk�1 +

k�1
k

(xk + ...+ xk+c�4)+ xk+c�3 = x1.

This completes the proof of the Lemma. ⇤

We proceed now to prove the statement of Theorem 1. Recall that we have labeled the nodes
such that (i) i = 1 is the node receiving the unique external shock, (ii) Nout,•

1 = {2,3,4,5, ....}, and
(iii) for every i and j in Nout,•

1 : i < j if and only if j 2 Nout,•
i .

We can rewrite the sequence x1,x2,x3, ... in matrix form as

x[i+1] = Ax[i]

with x[i+1] =

0

BBB@

xi+1
xi+2

...
xi+k+c�3

1

CCCA
, x[i] =

0

BBB@

xi
xi
...

xi+k+c�4

1

CCCA
and

A(k+c�3⇥k+c�3) =

0

BBBBBBBBBB@

0 1 0 · · · 0 0 · · · 0 0
0 0 1 · · · 0 0 · · · 0 0
0 0 0 · · · 1 0 · · · 0 0
0 0 0 · · · 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 · · · 1 0
0 0 0 · · · 0 0 · · · 0 1
1
k

1
k

1
k · · · 1

k 0 · · · 0 1
k

1

CCCCCCCCCCA

.

In the last row of matrix A we find the first k�1 elements and the last element to be equal to 1
k

(so k elements are equal to 1
k ) and the rest of elements to be equal to 0. It is easy to see that

x[n] = Anx[1] (1.1)

with x[1] =

0

BBB@

x1
x2
...

xk+c�3

1

CCCA
.

Given that A is a row stochastic matrix we have that 1 is a simple eigenvalue of A and that the
spectral radius of A is equal to 1. We also know that A is irreducible and primitive.8 Hence, by

8A nonnegative n⇥n matrix A is irreducible if and only if the graph G(A), defined to be the directed graph on nodes
1,2, ...,n in which there is a directed edge leading from i to j if and only if ai j > 0, is strongly connected (see Meyer
2000, p. 671). A nonnegative n⇥n matrix A is primitive if it is irreducible and at least one diagonal element is positive,
i.e., the trace of the matrix is positive (see Meyer 2000, p. 678). Furthermore, we also know that Ak+2c�6 is a positive
matrix.
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equation (8.3.10) in Meyer (2000b), we have that

Lim
n!•

An =
r.lT

lT .r
(1.2)

where r and l are, respectively, the right and left eigenvectors corresponding to the eigenvalue 1, lT

is the transpose of l (l is written as a column vector, so lT is a row vector).
Given that A is row stochastic, the right eigenvector is equal to the vector of ones. To compute

the left eigenvector we solve

(l1, ..., lk+c�3)

0

BBBBBBBBBB@

0 1 0 · · · 0 0 · · · 0 0
0 0 1 · · · 0 0 · · · 0 0
0 0 0 · · · 1 0 · · · 0 0
0 0 0 · · · 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 0 · · · 1 0
0 0 0 · · · 0 0 · · · 0 1
1
k

1
k

1
k · · · 1

k 0 · · · 0 1
k

1

CCCCCCCCCCA

= (l1, ..., lk+c�3) ,

and obtain
li = i

k , for 1  i  k�1
li = k�1

k , for k�1 < i  k+ c�4
lk+c�3 = 1.

Substituting in (1.2) to compute the limit of An we obtain

Lim
n!•

An =
1

Âk+c�3
i=1 li

0

BB@

l1 l2 · · · lk+c�3
l1 l2 · · · lk+c�3
· · · · · · · · · · · ·
l1 l2 · · · lk+c�3

1

CCA

Hence,

Lim
n!•

(xn) =
1

Âk+c�3
i=1 li

k+c�3

Â
i=1

lixi

Note that
k+c�3

Â
i=1

lixi =

⇢ 1
k x1 +

2
k x2 + ...+ k�1

k xk�1 + xk, if c = 3
1
k x1 +

2
k x2 + ...+ k�1

k xk�1 +
k�1

k (xk + ...+ xk+c�4)+ xk+c�3 if c � 4.

Hence, by Lemma,

Lim
n!•

(xn) =
1

Âk+c�3
i=1 li

x1 =
2k

2k+(k�1)(k+2c�6)
x1.

This completes the proof of Theorem 1. ⇤
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Chapter 2

The dynamics of bank runs by a simple
cascade model

Disclaimers1

1This chapter is a joint work with Emmanuelle Augeraud-Veron
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1 Introduction
Bank runs and panics are at the heart of financial crises. Bernanke (2013) and Gorton (2008)

stressed that the global crisis started in 2007 was similar to a large-scale bank run, akin to the Panic
of 1907. “The forces that hit financial markets in the U.S. in the summer of 2007 seemed like a
force of nature [. . . ] something beyond human control” (Gorton (2008)). This quote showed a
widely shared sentiment among economists: the crisis took us by surprise. The question that how
a small shock in subprime mortgages can suddenly trigger a generalized panic remains troubling.
This paper aims to shed some light on this question.

Theoretical literature on bank runs, and panics more generally, is built upon the coordination
game framework of Diamond and Dybvig (1983). The main driving force is strategic complemen-
tarity: in the panic equilibrium, all depositors withdraw because they expect others would also
withdraw and the bank will fail.
While this elegant framework provides many insights to understand bank runs, there is one short-
fall. Symmetric and simultaneous actions make it difficult to study the dynamics of bank runs. By
design, the panic state is achieved instantly in equilibrium. However, sequentiality of actions is an
important feature, as Brunnermeier (2001) pointed out that withdrawals are made sequentially in
reality. Existing literature has paid little attention to some important questions: how withdrawals
are made over time? How fast a bank defaults from a run? When and how depositors synchronize
their actions? Better understanding of these matters might be useful to devise interventions in time
of crisis.

This paper proposes a dynamic model of bank runs to address these issues. In a finite hori-
zon, depositors can withdraw at any point in time. Depositors have private information on total
withdrawal with some errors. As Bernanke (2013) observed, in time of crisis, agents often have
to face Knightian uncertainty. Therefore, we assume that agents do not know the distribution of
private information. With bounded rationality, agents make decisions by following a switching
strategy that combines strategic complementarity and heuristics. A depositor withdraws when her
perceived total withdrawal reaches a precautionary threshold, which is determined by liquidity of
the bank. Bank runs in this model are purely panic-driven. When a fraction of random agents
withdraw, under the right conditions, signals get worse and trigger preemptive withdrawals from
some other depositors. The additional fraction of withdrawals in turn increases the probability to
withdraw for remaining depositors. By this feedback mechanism, bank runs arise as dynamic cas-
cades of sequential withdrawals.
The model generates two stylized patterns of bank runs. Immediate runs take place when with-
drawals build up following a stable increasing pattern. On the contrary, after a period of apparent
inactivity, sudden runs occur “out of nowhere” without any visible sign. One important result of
the paper is the explicit computation of the tipping point, where the panic burst out.
The second pattern of runs is interesting because it might explain the phenomenon commonly re-
ferred as “the calm before the storm”. Sometimes, panics do not manifest immediately following
a shock. Only tiny changes build up over time, then a generalized panic suddenly breaks out as if
there is an unexpected shift at the aggregate level. The idea can be illustrated with a popular game
called Jenga. A wooden tower is constructed from removable rectangular blocks beforehand, then
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each player takes turn to remove one block at a time, until the tower collapse. In the early stage,
when each block is removed, the fragility of the tower increase by an imperceptible margin. From
a moderate distance, it would be impossible to tell whether the tower has some blocks removed.
At some critical point, where enough blocks are removed, the tower becomes visibly unstable.
Removing one more block would make the tower collapse.

Our paper contributes to the literature in two directions. First, the model is able to replicate
and characterize the patterns of bank runs that can be observed empirically. It provides a possible
explanation on why massive withdrawals suddenly occur, as if depositors synchronize their actions,
even if they don’t have to. To our limited knowledge, this issue has not been addressed in existing
theoretical models. Second, this paper offers a novel approach to study bank runs and panics more
generally, with unconstrained sequence of actions. Bank runs arise as path-dependent cascades
rather than being instantly achieved. It is worth noting that the model is simplistic in some aspects.
It is an attempt toward building a quantitative model that might be useful to detect and identify
panic patterns for policy interventions.

With respect to existing literature, this paper is linked to both empirical and theoretical re-
searches on bank run. Recent empirical works showed that the sequentiality of withdrawals is im-
portant and has influences on the outcomes (Schotter and Yorulmazer (2009)). Furthermore, there
are evidences that decision of depositors are affected by the past withdrawals (Garratt and Keister
(2009); Kiss et al. (2012)). Among a few exceptions, Gu (2011) proposed a bank run model with
sequential actions. However, in her model, only one agent can take action at a time. The majority
of existing theoretical models are built upon simultaneous coordination game and do not take into
account these features. This is the main reason that our model introduces continuous, unconstrained
sequence of actions and partial observability of past withdrawals. Although conceptually different,
the model presented here share some features with theoretical work on global games (see Carlsson
and Van Damme (1993); Morris and Shin (2001)). The framework of global game has been applied
to model panic events such as panic-based bank run (Goldstein and Pauzner (2005)) and currency
attack (Morris and Shin (1998)). These models use a setting of coordination game with structural
uncertainty, where payoffs are random variables and agents receive signals on the payoffs. The
common mechanism with our model is the switching strategy: agents choose an action by default
and switch to the other action if they observe a signal above a critical threshold. However, the
central assumption of these models is that the structure of information is common knowledge, such
that agents can infer the distribution of signals of others to apply iterative deletion of dominated
strategy. In our model, agents have bounded rationality and do not know the complete structure of
information. The threshold comes from individual perception of risk, rather than strategic deduc-
tion of beliefs. Our assumption retains rational behaviors while simplifies the strategic aspect of
the problem, to focus more on the dynamic aspect of panics.
On the technical side, this paper is inspired by models of collective behavior (Granovetter (1978))
and dynamic diffusion (Bass (1969)). The pioneer work of Granovetter (1978) introduced a global
interaction “all-to-all” mechanism: agents use simple rules to adopt an action based on the “pop-
ularity” of that action on the aggregate scale. Each individual action can affect the decision of
all other agents. Under the right conditions, the same action is adopted at the individual level over
time. The collective behavior then emerges as if there is a shift on the aggregate scale. In a different
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setting, Bass (1969) modeled the speed of diffusion of a new product when a fraction of agents try
to imitate others. The diffusion process is path dependence: new adoptions depend on the fraction
of past adoptions made by others. Our model makes use of these features to model the dynamics
of bank runs as a cascade mechanism.

The remainder of the paper is organized as follows. Section 2 presents the model, then es-
tablishes the dynamics of bank runs and characterizes these dynamics. Section 3 discusses some
real-world examples and policy implications. Section 4 concludes the paper.

2 Model

2.1 Setting
The economy. A continuum of agents are depositors to a common bank. The time horizon T
is finite with n periods. The time step is denoted by Dt = T

n . If Dt = 1, then time is indexed by
t 2 {1,2, . . . ,n} and n = T .

Depositors. By default, each agent has one unit of deposit in the bank. Depositors decide to keep
their deposit in the bank (wait) or to withdraw (run) in each period. To simplify the analysis, each
depositor can only withdraw all of her deposit at once. Depositors who withdrew cannot put their
deposit back in the bank and become inactive. Let rt 2 [0,1] denote the fraction of agents who

withdraw at date t and Rt =
t
Â

k=0
rk with Rt 2 [0,1] denote the total fraction of withdrawals up to the

end of date t.
In each period, depositors have private information on the total fraction of withdrawal : R̃it =

Rt�1 + z̃it . The distribution of private information represents diversity in opinion and capacity to
process aggregate information. For technical simplicity, z̃it are i.d.d and uniformly distributed in
the interval [�e,e]. In the remaining of the paper, R̃it are labeled as signals and z̃it are labeled as
noises.

Bank & deposit contract. A fraction of deposits L 2 (0,1) is kept as liquidity reserve to meet
liquidity demand at short term. The remaining fraction of deposits is invested in illiquid assets. The
investment yields positive profit with certainty at T . The bank has better investment opportunity
and offers demandable debt-deposit contracts to depositors. Deposit contracts have maturity T .
The time horizon T represents the maturity mismatch between short-term demandable deposits and
the long-term investment.

The model assumes an implicit deposit contract and agents behave as if they are offered the
contract described here. For each unit of deposits, there is a positive return at maturity, the payoff
is C > 1 at t = T . At any interim period, depositors can choose to forgo the interest at maturity
to get back their deposit, the short-term payoff is normalized to 1. Thus, L equals the fraction
of the population to which the bank can pay back at short term without going bankrupt. If the
total withdrawal is greater than the available liquidity at any period t⇤ < T , the bank defaults and
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liquidates the long-term investment. Depositors are paid in a first come first served basis. Each
late runner get a payoff c < 1 until the liquidation proceeds are depleted. If 0 < c < 1 < R, the
structure of the payoffs is sufficient to generate strategic complementarity. The payoffs per se have
little influence on the results of the model.

Timeline. At t = 0, a fraction r0 of random agents withdraws. At t > 0, active agents choose to
wait or withdraw in each period. The bank fails if at any time t⇤ < T , total fraction of withdrawals
exceeds liquidity reserve i.e. Rt > L. Otherwise, the bank survives. The parameter r0 reflects a
“random” liquidity shock, when the bank already committed to the investment.

Decision-making. Since the distribution of noises is not assumed to be common knowledge,
each particular depositor can not deduce the distribution of signals of other agents using her own
signal. Payoff maximization will depend on individual-specific additional priors. The solution of
the dynamic optimization problem would be subjected to a large confidence interval and require
tremendous amount of computational power.

Subjected to this large amount of uncertainty, agents follow a switching strategy to approximate
payoff maximization. Let ait the action of agent i in period t. If ai,t�k 6= withdraw, 8k = 1,2, . . . , t
then:

ait(R̃it ,ti) =

(
withdraw if R̃it > ti

wait otherwise

where R̃it is taken as the perceived expected total withdrawal and ti is the precautionary thresh-
old.

In a broad sense, the threshold reflects individual perception on the fragility of the bank, as if
agents “discount” the true liquidity level. Let qi be the discounting factor of agent i. The precau-
tionary threshold is obtained by a convex transformation fqi : L ! ti such that 3 conditions must be
satisfied:

1. ti < L:

2. if L ! 0, then ti ! 0

3. if L ! 1, then ti ! 1

These 3 conditions make sure that individual behaviors are rational: (1) agents always withdraw
before the perceived total withdrawal reaches the true liquidity reserve; (2) when the bank has little
liquidity, agent has low incentive to wait, as any small fraction of withdrawals could make the bank
fail; (3) vice-versa, agents have high incentive to wait when the bank has high liquidity reserve.

Specifically, the precautionary threshold is given by:

ti = Lqi

with L 2 (0,1) and q > 1.
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The discounting factor reflects characteristics of depositors that influence their willingness to
wait. To simplify mathematical operations, let assume that depositors share a unique discounting
factor, such that qi = q . This unique value can be regarded as the mean of the distribution of
individual values. Therefore, the switching threshold has a unique value:

ti = t = Lq

A higher value of q implies a larger precautionary gap, such that agents are more sensitive to
withdraw. Figure 2.1 illustrates an example of precautionary threshold. Empirically, the parameter
q can be linked to bank-client relationship, for example. Iyer and Puri (2012) found that depositors
with better relationship with the bank delay their decisions to withdraw in a bank run.

Liquidity (L)

Threshold (ti)

0

(1;1)

1

1

L

L

ti

t =
L

ti = Lqi

Pr
ec

au
tio

na
ry

ga
p

Figure 2.1: Precautionary threshold, q > 1. Higher value of q make the curve bend downward,
resulting in a larger precautionary gap.

The decision-making process is built upon both strategic complementarity and heuristics. Strate-
gic complementarity reflects rationality in individual decisions. As withdrawals drain liquidity, the
bank becomes more sensitive to failure. Depositors withdraw preemptively as if their expected
payoffs are decreasing with the perceived total withdrawal. However, given the large amount of
uncertainty, the threshold can not be strategically determined. This model assumes that agents have
bounded rationality and thresholds are determined by characteristics of depositors, as suggested by
empirical evidences. This assumption does not rule out the case that thresholds can have a common
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R̃it
Rt�1 Rt�1 + eRt�1 � e

R̃it = Rt�1 + z̃it

t = Lq

Pr(z̃it +Rt�1 > L)

Figure 2.2: Probability to withdraw. When total withdrawal increases, the distribution shifts to the
right, making the probability larger.

value, which coincides with the unique threshold determined by strategic deduction of beliefs as in
global games (interested readers can see Morris and Shin (2001) for more details).

Intuitively, the switching strategy can be understood as a set of simple rules. First, agent avoid
running too late, when the bank already failed. Secondly, agents also avoid running too early, when
liquidity reserve is sufficiently high compared to the perceived total withdrawal. Running early is
to deny the highest payoff when the chance of bankruptcy in the next period is low. Therefore,
agents wait as long as possible, in an attempt to get the highest payoff. Only when the perceived
total withdrawal becomes large enough, agents will run to avoid losses. There are experimental
evidences that depositors use cutoff thresholds to make withdrawals (Garratt and Keister (2009)).

Interactions. In this model, the dynamics are driven by a feedback mechanism. The aggregate
information Rt acts a global interaction device. Whenever a fraction of depositors with high signals
withdraw early, these withdrawals make Rt slightly larger, thus increases the chance to have a
larger signal R̃i,t+1 to all other agents. This stochastic feedback mechanism can generate a cascade
of actions, when a relatively small fraction of withdrawals has positive probability to induce a larger
fraction of depositors to run. Over time, depositors might be caught up in a generalized panic and
forced to run.

2.2 Dynamics of withdrawals
Given the switching strategy, the probability that an agent withdraws in period t is Pr

�
R̃it > t

�
.

Since R̃it =Rt�1+ z̃it , signals are uniformly distributed in [Rt�1 � e,Rt�1 + e]. Figure 2.2 illustrates
the individual probability to withdraw.

As a thought experiment, the analysis begins with an extreme case, in which e = 0. The dis-
tribution of signals collapses into a vertical line. When the noises disappear, agents have the same
information and they always know the true value of total withdrawal. Moreover, agents also have
the same threshold. If the shock is larger than the unique threshold, then everybody withdraws.
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Otherwise, nobody withdraws at all. The outcomes are two symmetric equilibria: all agents run if
r0 > t and all agents wait if r0 < t . It is important to notice that the economy reaches equilibrium
state immediately in this case, there is no sequential withdrawals.

In what follows, we assume that e > 0. By the law of large numbers, the fraction of withdrawal
in period t is the individual probability to withdraw times the fraction of remaining (waiting) agents
:

rt = Pr (z̃it +Rt�1 > t)(1�Rt�1) (2.1)

Given that signals are uniformly distributed, the probability to withdraw is zero if t is greater
than the highest possible signal Rt�1 + e at any period t. Hence, Lemma 1 characterizes the no-
withdrawal condition.

Lemma 1. Given an initial shock r0, no additional withdrawal is made if the following condition
holds:

Lq � r0 + e

Proof. From equation (2.1): Pr (z̃i1 + r0 > t) = 0 when r0 + e  Lq , then r1 = 0 and R1 = r0. By
forward induction: 8t > 0,rt = 0 and Rt = r0.

Lemma 1 states that if the discounted liquidity reserve is higher than the maximum signal,
no depositor will withdraw at all. In other words, following the initial withdrawals, if the most
pessimistic depositor (with the highest signal) does not think that the bank will fail in the next
period, then no one withdraws. Given that no depositor withdraws in the past period, the same
argument applies recursively and no withdrawal is ever made.

Otherwise, given the condition Lq < r0 + e , there is always a positive fraction of withdrawal
every period. The dynamics of sequential withdrawals are described by the following system:

8
<

:

rt+1 = 1
2e (e �Lq +Rt)(1�Rt)

Rt =
t
Â
j=0

r j
(2.2)

with initial condition 1 > r0 > Lq � e .
The system (2.2) is similar to a discrete logistic map. The sequence (r0,r1, . . . ,rt) may exhibit

chaotic behaviors and has no closed-form solution. To simplify the analysis, an approximation in
continuous time is used for the remaining of the paper.

For any time step Dt < 1, the fraction of withdrawal per time step is given by

rt+Dt =
1

2e
(e �Lq +Rt)(1�Rt)Dt = rtDt

By definition, rt+Dt is the change in the cumulative fraction of withdrawal: rt+Dt = Rt+Dt �Rt .
The change in cumulative fraction of withdrawal per time step is given by

Rt+Dt �Rt

Dt
= rt
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For a finite time horizon T , time steps become smaller when the number of periods increases. Small
time periods allow for an approximation of the system (2.2) in continuous time.

Lim
Dt!0

(
Rt+Dt �Rt

Dt
) =

dR
dt

= rt

Therefore, the accumulation of sequential withdrawals is given by the following differential
equation (law of motion):

R0(t) =
1

2e
(e �Lq +R(t))(1�R(t)) (2.3)

with initial condition 1 > r0 > Lq �e . As the RHS of equation (2.3) is a quadratic concave function
of R(t) which becomes zero at Lq � e and 1, R(t) is always non-decreasing.

The solution of equation (2.3) will provide a complete description of the dynamics of sequential
withdrawals.

Proposition 3. (Dynamics of withdrawals) The total withdrawal at time t is given by

R(t) =
�
r0 + e �Lq�eht �

�
e �Lq�(1� r0)�

r0 + e �Lq
�

eht +1� r0
(2.4)

where h = 1
2e (e �Lq +1), with initial condition r0 > Lq � e .

Proposition (3) states that for a range of parameters, the cumulative total fraction of withdrawals
can be described by a generalized logistic function. From equation (2.4), when the no-withdrawal
condition does not hold, the economy is set into motion toward the steady-state R(t) = 1 by a
cascade mechanism: any positive fraction of withdrawals will induce more withdrawals.

Most importantly, Proposition 1 shows how withdrawals are made over time. There are two
stylized dynamics of runs depicted in Figure 2.3. For some cases, runs are apparent immediately
after the shock and follow a stable increasing trajectory. On the contrary, after a period of inactivity,
sudden runs occur “out of nowhere” without any visible sign. At first, the shock may not seem to
trigger any visible fraction of withdrawals, then a massive withdrawal takes place. In what follows,
we refer to sudden run as “tipping”.

Immediate runs occur when the shock is relatively high compared to liquidity reserve. On the
contrary, sudden runs require a certain degree of balance between liquidity reserve and shock. Tip-
ping only occur when parameters break the no-withdrawal condition by a small margin. Intuitively,
when r0 = e �Lq , there is no withdrawal and R(t) is a flat line. With a small perturbation, infinites-
imal fractions of withdrawals take place, each time raising the probability to withdraw by a small
margin. As the term (1�R(t)) remains close to 1, the cumulative process builds up with increasing
speed. When the panic becomes visible, its growth rate is already high. This high growth rate
produces an apparent jump in total withdrawal, compared to the previous periods. This is the “sur-
prise effect”: following imperceptible changes, the cascade bursts out in a very short time window,
making a bank run seemingly occurs out of nowhere.

41



Figure 2.3: Stylized dynamics of bank runs.

2.3 Defaulting patterns
Given the evolution of cumulative withdrawal and the liquidity reserve, it is possible to de-

termine the hitting time t⇤ when the liquidity reserve is completely exhausted. Visually, it is the
moment that the curve R(t)hits the horizontal line L. Proposition 4 gives existence conditions and
characterizes the hitting time.

Proposition 4. (Hitting time) If the conditions r0 < L < (r0 + e)
1
q are satisfied, the hitting time is

well defined and given by

t⇤ =
2e

e �Lq +1
ln

"�
e �Lq +L

�
(1� r0)�

r0 + e �Lq
�
(1�L)

#
(2.5)

In this model, the bank only defaults within the time horizon T . Therefore, the hitting time is
also the defaulting time if 0 < t⇤ < T .

Following equation (2.5), the condition L > r0 ensures that t⇤ will only take strictly positive
values. The lower bound of the defaulting time is 0, when L = r0. By design, this condition is
consistent with the definition of default: if the initial shock already depletes the liquidity reserve,
the bank fails immediately. There is no upper bound for t⇤. If L approaches the limit (r0 + e)

1
q ,

the hitting time tends to infinity. This result agrees with Lemma 1: when liquidity is too high,
no additional withdrawal is made, thus the bank never defaults. Proposition 4 establishes that if
the conditions r0 < L < (r0 + e)

1
q holds, continuous withdrawals are made following the dynamics

described in Proposition 3 and the exact time that total withdrawal reaches the liquidity level is
explicitly given. The following corollaries analyze the survival duration of the bank with respect to
the parameters, when the conditions in Proposition 4 hold.

Corollary 1. The hitting time t⇤ is strictly increasing with L and strictly decreasing with r0.
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If a bank run occurs, more liquidity helps to satisfy more withdrawals, thus increasing the time
needed to deplete liquidity reserve. On the contrary, higher shocks imply higher initial conditions
for the dynamic process R(t), making cumulative withdrawal reach any predetermined level sooner
with the same speed.

Corollary 2. The hitting time t⇤ is decreasing with e , for small values of e such that t⇤ (e)< l (e) ,
with l (e) = 2e2(L�r0)

(r0+e�Lq)(L+e�Lq)(1�Lq)
.

The dependency of t⇤ with respect to e is more ambiguous, technical details are provided in the
Appendix. Intuitively, this result follows the mechanism depicted in Figure 2.2. When e is small
initially, an increase in e significantly boost the probability to withdraw in the early stage, leading
to a higher early growth rate of cumulative withdrawal. Everything being equal, liquidity reserve
is depleted sooner when withdrawals accumulate faster.

The next step is to find out how much liquidity the bank must hold in order to survive the time
horizon T . From Proposition 4, it is possible to determine the liquidity level that will be depleted
at a given time. However, solving the equation (2.5) for L involves a Lambert W function, which
has no analytical solution. Thus, it is necessary to use an implicit function.

Definition 2. Define the set I such that for any L 2 I then r0 < L < (r0 + e)
1
q . Let the function

of hitting time j : I ! R+ be defined by the equation (2.5): t⇤ = j(L). Because j(L) is strictly
increasing in L, the inverse function of hitting time is uniquely defined by j�1 : R+ ! I

L = j�1(t⇤)

In other words, for a specific value t⇤, the function j�1(t⇤) gives the value of L that satisfies the
equation (2.5) such that R(t⇤) = L. In what follows, we use the notation L⇤(t) to indicate the
liquidity level that will be depleted at time t.

Because j(L) is strictly increasing in L, thus L⇤(t) is also strictly increasing in t. In other
words, to survive longer in a bank run, the bank must hold more liquidity. Using this monotonicity
of inverse function, it is possible to characterize the defaulting patterns and occurrence of bank
runs.

Proposition 5. (Defaulting patterns) For a given triplet (L,r0,e), with any values of t and T that
satisfy 0 < t < T, the following conditions hold:

r0 < L⇤(t)< L⇤(T )< (r0 + e)
1
q

such that a bank run occurs when r0 < L < (r0+e) 1
q and the bank always defaults from a bank run

when r0 < L < L⇤(T ).

The proof is straightforward and therefore omitted. Proposition 5 establishes four possible
outcomes for the bank when hit by a “random” liquidity shock. The results are depicted in Figure
2.4. When liquidity reserve is lower than or equal to the shock, the bank defaults immediately.
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Liquidity (L)
0

Immediate default Default

0 < t⇤ < T

Survive

T < t⇤

No withdrawal

r0 L⇤(T ) (r0 + e) 1
q

Bank run

Figure 2.4: Defaulting patterns.

By contrast, when liquidity is above the no-withdrawal threshold, the bank never defaults and the
economy reaches a steady state immediately. When liquidity is moderate compared to the shock,
a bank run occurs dynamically. The bank fails if the liquidity reserve is lower than a critical value
L⇤(T ), because withdrawals will deplete the liquidity before the maturity. The relative distances
between the critical values are important because they determine the probability of bank run and
the probability of default.

2.4 Comparative statics
The next step is to study how the regions in Figure 2.4 vary with the main parameters. Even

without an explicit expression of L⇤(t), it is possible to derive properties of this function to advance
the analysis.

Corollary 3. Longer maturities (T ) strictly increase the probability of default from a bank run

The proof is straightforward: since the function j�1(·) is strictly increasing, for any T 0 > T,
it is true that L⇤(T 0) > L⇤(T ). While the conditions for run do not change, when T increases, we
have L⇤(T )! (r0+e) 1

q such that the survival region shrinks. When the maturity increases, if a run
is triggered, it has more time to reach the predetermined liquidity level. If T is large enough, the
chance to survive a run is almost zero. Recall the assumption that the bank cannot obtain additional
liquidity in the time horizon T . In practice, banks can sell liquid assets or borrow at short term
to face withdrawals, but these measures are costly and may deteriorate fundamentals of the bank,
increasing the speed of withdrawals. Thus, reducing the illiquid time horizon could be an effective
measure against panic runs. This result may explain why financial institutions without access to
low-cost liquidity (such as Fed funds) increasingly turn to short-term funding. However, relying
too much on short-term funding can lead to inefficient outcomes, such as the “maturity rat race”
pointed out by Brunnermeier and Oehmke (2013).
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Corollary 4. Larger shocks (r0) strictly increase the probability of default. However, the probabil-
ity of bank run increases with r0 if and only if r0 < q

q
1�q � e .

Using the implicit function theorem, it is possible to show that ∂L⇤

∂ r0
> 0, therefore the default

region expands with higher r0. However, increasing r0 will also shift the other critical values
forward. When the condition r0 < q

q
1�q �e holds, we have ∂

∂ r0
(r0+e) 1

q > 1 such that the bank-run

region expands with higher r0. Otherwise, the critical value (r0+e) 1
q advances slower than the first

boundary, making the bank-run region shrink.
The probability of bank run increases simply because the no-withdrawal condition is tighten-

ing: for larger shocks, it requires more liquidity to keep even the most pessimistic depositor from
withdrawing. Everything being equal, a larger shock provides a higher initial condition for the
dynamic process R(t), as if the trajectory of R(t) shifts to the left with a higher starting point. For
small shocks, this mechanism will increase the probability of default because total withdrawal can
reach a higher level of liquidity for the same time horizon. However, above a certain threshold,
large shocks will more likely make the bank default immediately rather than trigger a bank run.

Corollary 5. Larger magnitudes of noises (e) increase both the probability of default and the
probability of bank run, for small values of e .

Similar to the precedent result, it is trivial that ∂
∂ r0

(r0 + e) 1
q > 0. The probability of bank

run increases with e because depositors have more “extreme” signals, such that withdrawals can
be triggered even when liquidity is high. For small values of e , recall that t⇤ (e) is a decreasing
function, then it is possible to show that ∂L⇤

∂e > 0. Intuitively, higher dispersion of private signals
increases the chance to draw high signals, especially in the early stage, thus making the probability
to withdraw larger. This early boost of withdrawals makes the bank more likely default.

2.5 Abruptness & tipping point
The previous results provide some insights on the factors that facilitate the occurrence of bank

runs. Given that the bank-run conditions hold, one interesting question is how the run would occur.
Figure 2.3 showed that there are two patterns: immediate runs and sudden tipping. This section
studies the abruptness of these dynamics.

The first element is the steepness of the fast ascending phase of the trajectory. A steeper curve
implies that the run is more abrupt: a large fraction of withdrawals is concentrated in a small time
window. Given that cumulative withdrawal follows a generalized logistic function described by
equation (2.4) , the term eht mainly determines the speed of growth of the trajectory R(t). This
leads to the following proposition.

Proposition 6. (Abruptness) The abruptness of runs is decreasing with liquidity (L) and magnitude
of noises (e), given that the bank-run conditions hold.

Precisely, the higher value of the exponent h = (e�Lq+1)
2e , the trajectory will be steeper in its fast

ascending phase. It is straightforward that h is decreasing with both L and e . The first element is
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obvious: a higher liquidity level makes a higher threshold, such that depositors withdraw less in
every time step. Therefore, the cumulative withdrawal takes more time to build up.

The second result may seem counter-intuitive. The explanation resides in the law of motion,
equation (2.3) . Given that the bank-run conditions hold, a lower magnitude of noises decreases
the probability to withdraw in the early stage. This effect is more apparent in the beginning, when
the probability to withdraw is minimal. Therefore, the early growth rate of the trajectory is signifi-
cantly slower. This low growth rate in turn makes the probability to withdraw increase very slowly.
However, this effect preserves the fraction of waiting depositors. When cumulative withdrawal is
large enough to make an apparent shift in the probability to withdraw, the fraction of waiting de-
positors is still large. Therefore, the multiplicative effect of these factors produces a large fraction
of withdrawals in a small time window. On the contrary, large magnitude of noises generates high
early growth rate. When the probability to withdraw reaches a high level, the fraction of waiting
depositors is already small. The speed of growth is more stable because the two terms in the law of
motion balance each other over time.

Given that bank runs can be abrupt, there is little to do for an immediate run. However, sudden
runs are interesting for two reasons. First, these runs are triggered by small shocks that are hard
to detect and could be ignored until it is already too late. Second, as the early growth rate of the
panic is very low, it requires less costly intervention to avoid bankruptcy, if interventions are made
on time. Further analysis of tipping trajectories requires some definitions.

Definition 3. Define the curvature k of the graph R(t) at a specific point (t,R(t)) as the measure
of sensitivity for the slope of the tangent line at the point (t,R(t)). Specifically, the curvature of a
curve (t,R(t)) is given by

k (t) =
R00 (t)

⇣
1+R0 (t)2

⌘ 3
2

Higher curvature at a point implies that the tangent line “turns” faster around that point. Define the
tipping time (t̂) as the moment where the curvature of the graph R(t) is maximum. The level of
total withdrawal R̂ = R(t̂) is labeled as tipping point.

Proposition 7. (Tipping point) The tipping time is given by

bt = 2e
m+1

ln

2

4

⇣
bR+m

⌘
(1� r0)

(r0 +m)
⇣

1� bR
⌘

3

5

and the tipping point is given by

R̂ =
1�m

2
�
p

r

with m = e �Lq and r is the only positive solution of

12r3 �5(m+1)2 r2 +

 
(m+1)4

4
� 12

a2

!
r+(m+1)2

 
1
a2 +

(m+1)4

16

!
= 0
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Explicit computation is given in the Appendix. The prominent feature of tipping trajectories is
the low growth rate in the early stage. Proposition 7 gives explicit computation of the tipping point,
where a trajectory turns into a sudden tipping. The tipping time marks the end of the early stage
of the crisis, beyond which the panic will burst out. Theoretically, it is possible that the tipping
time is close to zero or even negative. This simply indicates that under some conditions, such
as a noticeably large shock, the “acceleration” of the panic is already very high at the beginning.
Otherwise, the tipping point is positively defined and the trajectory R(t) is very sensitive around
this point. Any small perturbation in the neighborhood of the tipping point could substantially
change the course of the trajectory. It is worth noting that the cascade process can have a “mixed”
trajectory, meaning that the tipping point is positively defined and the first segment of the curve is
not flat.

3 Discussions
From an empirical perspective, we will discuss some real-world examples to illustrate how

small shocks can trigger large crises following the two patterns shown in the model.
The first pattern is immediate run, where a panic take off instantly after the shock. One example
is the Russian-LTCM crisis in 1998 (Allen and Gale (2009)). LTCM was one of the largest invest-
ment firms of Wall Street. Its success was spectacular by the end of 1997. However, in August
1998, their fortunes changed when Russia unexpectedly defaulted on its government debts and de-
valued its currency. Being highly leveraged, LTCM lost half of its value in one month. Despite
the small scale of the loss in total value, this shock triggered an instant panic in financial markets.
The cascade pattern was recognizable: investors “run” away from risky assets, make asset prices
depreciate and induce more runs (sales). If LTCM was liquidated, the resulted drop in asset prices
could make the system collapse. The Federal Reserve Bank of New York organized a bailout with
major banks to avoid the potential systemic crisis.
The second pattern is tipping, where a bank run suddenly occurs after a period of apparent calm
following the shock. One example is the run on Lehman Brothers in repurchase agreement (repo)
markets in September 2008 (Copeland et al. (2014)) .Three months prior to the bankruptcy, Lehman
Brothers reported unprecedented losses. However, there was no panic. The repo division of
Lehman Brothers was able to secure uninterrupted funding by tri-party repos with unchanged bor-
rowing conditions for weeks. Repo remained as one of the main sources of funding for Lehman
Brothers. Then it suddenly collapsed : in 5 days, investors pulled out massively, took away about
40% of short-term funding. This synchronized massive withdrawal pushed Lehman Brothers to
declare bankruptcy subsequently.

From a policy perspective, the model showed that there is an optimal time window for inter-
ventions. If one admits the cascade argument, then panics are path dependent. This implies that
it is possible to dissolve or at least dampen some large crises with relatively small effort, if inter-
ventions are made at the right moment. In this model, we have identified the tipping point, above
which the panic will burst out. It would be either too late or very costly to react if this point is
reached. It is obvious that this simple model cannot provide the exact mathematical description

47



of the underlying mechanism, it could only generate the stylized dynamics. However, it puts for-
ward the importance of building a descriptive model that able to identify panic-sensitive patterns to
minimize the required efforts when interventions are inevitable.

4 Conclusions
This paper has studied the dynamics of bank runs in a model that allows unrestricted continuous

actions. Panic bank runs arise as cascades of withdrawals by partial observability and strategic
complementarity.

There are two distinct patterns of runs. For immediate runs, noticeable withdrawals take place
right after the shock and follow stable increasing trajectories. On the contrary, for sudden runs,
massive withdrawals burst out in a very short time window without visible signs. The paper is
able to characterize how fast and how frequent bank runs occurs. Furthermore, we provide explicit
computation of the critical point where the panic burst out, defined as tipping point. These results
might be useful to devise interventions in time of crisis.

The model is simple and has several limitations. First, in time of crisis, individual decisions
are likely to be correlated. To make the model more realistic, one can allow depositors to observe
and learn from the actions of others. Second, the bank does not react to runs. One can introduce
short-term borrowing with liquidity cost or fire sales of assets to have a richer set of dynamics.
These ideas serve as directions for future research.

Appendix

Proof of Proposition 1
Solve the following differential equation by integration

dR
dt

=
1

2e
(e �Lq +R(t))(1�R(t))

Define a = 1
2e and m = e �Lq , we obtain

dR
(m+R(t))(1�R(t))

= adt

The fraction on the LHS can be expressed as a sum:

1
(m+R(t))(1�R(t)

=
A

m+R(t)
+

B
1�R(t)

It is easy to show that A = B = 1
m+1 . Define k = 1

m+1 and integrate both side. The LHS is given
by
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Z k
m+R(t)

dR+
Z k

1�R(t)
dR = k.ln(m+R(t))� k.ln(1�R(t))+ c1 + c2

where c1,c2 are integration constants. It is straightforward for the RHS:
Z

adt = at + c3

Taking exponential of both sides and rearranging terms yield
✓

m+R(t)
1�R(t)

◆k
= eat .e(c3�c1�c2)

To solve for R(t), take both sides to the power of 1
k , define C = e

c3�c1�c2
k , we obtain the result

after arraging terms:

R(t) =
Ceht �m
Ceht +1

with h = a
k = a(m+1) = e�Lq+1

2e .
Plug the initial condition R(0) = r0 into the equation yields: C = r0+m

1�r0

Proof of Proposition 2
To find the exact time when liquidity reserve is depleted, we solve the following equation for t:

L =
C.eht �m
C.eht +1

with m = e �Lq ,h = 1
2e (m+1),C = r0+m

1�r0
.

Arranging terms yields

eht =
1
C
· m+L

1�L
Taking natural logarithm of both sides and arraging terms yield the final result

t⇤ =
2e

e �Lq +1
ln

"�
e �Lq +L

�
(1� r0)�

r0 + e �Lq
�
(1�L)

#
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Proof of Corollary 1-2
Let us remind that the condition (r0 > Lq � e) holds.

If r0 > L then we have (e�Lq+L)(1�r0)

(r0+e�Lq)(1�L)
< 1, that is t⇤ < 0. It implies that R(t⇤) = L only holds

for r0 < L.
From the equation of t⇤, it is trivial that t⇤ is strictly decreasing with respect to r0.

Let denote t⇤(L) = 2e
e�Lq+1 ln


(e�Lq+L)(1�r0)

(r0+e�Lq)(1�L)

�

We have

dt⇤

dL
=

2eqLq�1

e �Lq +1
ln

"�
e �Lq +L

�
(1� r0)�

r0 + e �Lq
�
(1�L)

#

+
2e

e �Lq +1

 
1

L+ e �Lq +
L

1�L
+qLq�1

 
L� r0�

r0 + e �Lq
��

L+ e �Lq
�
!!

None of these terms can be negative for any L 2
⇣

r0,(r0 + e)
1
q
⌘

with 0 < r0 < 1 and q > 1,

therefore dt⇤
dL > 0.

The dependency of t⇤ with respect to e is more ambiguous. It is worth denoting t⇤ as t⇤ (e)

dt⇤

de
=

2
�
1�Lq�

�
e �Lq +1

�2 ln

"�
e �Lq +L

�
(1� r0)�

r0 + e �Lq
�
(1�L)

#
� 2e

e �Lq +1
L� r0�

r0 + e �Lq
��

L+ e �Lq
�

Devide both side by t⇤ yields

✓
1
t⇤

◆
dt⇤

de
=

1
e
�
e �Lq +1

�
"⇣

1�Lq
⌘
� 2e2 (L� r0)�

r0 + e �Lq
��

L+ e �Lq
�
✓

1
t⇤

◆#

The first term is always positive, the second term is negative if and only if

1�Lq <
2e2 (L� r0)�

r0 + e �Lq
��

L+ e �Lq
�
✓

1
t⇤

◆

Define

t (e) = 2e2 (L� r0)�
r0 + e �Lq

��
L+ e �Lq

��
1�Lq

�

If t⇤(e) < t (e) , then dt⇤
de < 0. It is straighforward that for small e, we have t (e) < t (e) , thus

t (e) is a decreasing function of e.
To obtain a general result, we need to consider

t 0 (e) = 2
L� r0

1�Lq

✓
�Lq +

L+ r0

2

◆
e +
⇣

L�Lq
⌘⇣

r0 �Lq
⌘�
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If Lq � e < r0 < 2Lq �L and ln
⇣

1�r0
1�L

⌘
< L�r0

1�Lq , then t (e) is a decreasing function of e and its
graph is above the graph of t (e). Then t (e) is an increasing function of e.

If Lq � e < r0 < Lq and ln
⇣

1�r0
1�L

⌘
> L�r0

1�Lq , it implies that there exists a unique e⇤ such that
t⇤ (e) is a decreasing function of e if e < e⇤ and t (e) is an increasing function with e if e > e⇤.

If 2Lq �L < r0 < Lq and ln
⇣

1�r0
1�L

⌘
< L�r0

1�Lq , then t (e) has a minimum value and crosses twice
the graph of t (e) . It means that for small values of e, then t (e) is a decreasing function of e, then
for greater values it is an increasing function of e, then a decreasing function of e when e increases.

Proof of Corollary 4-5

Compute the derivative of (r0 + e) 1
q with respect to r0 yields:

∂
∂ r0

(r0 + e)
1
q =

1
q
(r0 + e)

1
q �1

The bank run zone expands with r0 if the derivative is greater than 1

1
q
(r0 + e)

1
q �1 > 1

r0 + e < q
q

1�q

r0 < q
q

1�q � e

The sign changed because q > 1.
Next, we procced to prove that ∂L⇤

∂ r0
> 0. Denote the function of hitting time in equation (2.5) as

:
F(L⇤,r0) = t⇤

Consider the relation:
f(L⇤,r0) = F(L⇤,r0)� t⇤

The following conditions are satisfied:

1. f(L⇤,r0) = F(L⇤,r0)� t⇤ = 0

2. ∂f(L⇤,r0)
∂L⇤ = ∂F

∂L⇤ > 0

Thus, there exist an implicit function L⇤(r0) such that:

F(L⇤(r0),r0) = t⇤
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Using implicit differentiation with respect to r0:

∂F
∂ r0

+
∂F
∂L⇤ .

∂L⇤

∂ r0
= 0

∂L⇤

∂ r0
=�

∂F
∂ r0
∂F
∂L⇤

We have ∂F
∂ r0

< 0 and ∂F
∂L⇤ > 0, therefore ∂L⇤

∂ r0
> 0. The proof for e is similar and therefore

omitted.

Proof of Proposition 5
The curvature of a curve (t,R(t)) is defined as

k (t) =
R00 (t)

⇣
1+R0 (t)2

⌘ 3
2

Denote R0(t) = f (R) = 1
2e (1�R)(m+R), with m = e �Lq . We can express the curvature as a

function of R:

ek(R) = f (R) f 0(R)

(1+ f (R)2)3/2

It is worth seeing that ek(R) is anti-symmetric according to m�1
2 (that is ek(R) =�ek(1�m�R)).

We can therefore consider r(R) = ek(R+ 1�m
2 )

r 0(R) =

⇣
f 0
�
R+ 1�m

2
�2 �2 f

�
R+ 1�m

2
�2 f 0

�
R+ 1�m

2
�2 �2 f

�
R+ 1�m

2
�
�2 f

�
R+ 1�m

2
�3
⌘

�
1+ f (R+ 1�m

2 )2
�5/2

The maximum of the curvature is reached at bR = 1�m
2 �

p
r, where r is a positive solution of

12r3 �5(m+1)2 r2 +

 
(m+1)4

4
� 12

a2

!
r+(m+1)2

 
1
a2 +

(m+1)4

16

!
= 0

Explicit computation gives

r =�18
a
(A+

(w2 +27)
A

� 5
2

w+ i
p

3(A� (w2 +27)
A

)

where

A =

✓
�w3 +

81
4

w+
9
4

p
�24w4 �351w2 �3888

◆1/3

w = a(m+1)2
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1 Introduction
Bank runs have been and remain an important threat to financial stability. Lindgren et al. (1996)

document that 133 countries have experienced severe banking crises between 1980 and 1996. Large
financial institutions such as Bear Stearns, Northern Rock, IndyMac Bank and Wachovia were
subjected to massive runs in 2007-2008.

Theoretical literature on bank runs is mainly built upon the coordination game of Diamond
and Dybvig (1983). In this common framework, two notable features are simultaneous moves
and symmetric equilibria. In the panic equilibrium, all depositors withdraw simultaneously as
they expect others would also withdraw and the bank would fail. Bank runs arise from strategic
complementarity.

While this framework provides many insights to understand bank runs, there are two short-
falls. First, the absence of sequential actions makes it difficult to study the dynamics of bank runs.
Reducing the set of possible actions of depositors to one single decision might overlook relevant
issues. Second, beyond strategic complementarity, empirical studies show that behavioral factors
also play an important role. Typically, decisions of depositors are influenced by actions that they
observe3, their social network4 and their heterogeneity5.

The strategic dimension of bank runs has been extensively studied by the literature. However,
the dynamic and behavioral aspects have received little attention, leaving several questions unan-
swered: how does the panic start out? How fast and frequent does the economy reaches the panic
equilibrium? How do behavioral factors affect bank runs?

This paper develops a dynamic and behavioral model of bank runs to address these questions.
Within a network, depositors can observe the actions of their direct neighbors. The network is
localized, such that each agent can observe a small subset of other agents. The time horizon is finite
with multiple periods. Every period, active depositors choose to withdraw or wait based on (i) their
types, (ii) their private signals on total withdrawal and (iii) the observed actions of others. Agents
make decision by following a switching strategy that combines rationality and heuristics. This
decision-making mechanism is inspired by the hybrid system of thinking proposed by Kahneman
(2003) and is supported by empirical evidences. This setting allows for a wide range of features that
affect the dynamics of bank runs: continuous sequential withdrawals, heterogeneity of depositors,
herding and partial observability.

Bank runs in this model are purely panic-based. Initially, a fraction of random agents withdraw.
If this fraction is large enough, the bank becomes vulnerable to bankruptcy, signals get worse and
increase the probability to withdraw for remaining agents. Furthermore, agents are more likely to
withdraw when they observe their neighbors doing so. Thus, bank runs can emerge as cascades of
withdrawals through these two feedback mechanisms.

There are two sets of results. Regarding the dynamics, there are two distinct patterns of cas-
cades: slow runs in which withdrawals build up progressively or sudden run in which massive
withdrawals occur abruptly “out of nowhere”. Regarding the behavioral dimension, this model

3Schotter and Yorulmazer (2009); Kiss et al. (2012)
4Kelly and O Grada (2000); Iyer and Puri (2012); Atmaca et al. (2017)
5Iyer et al. (2016)
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considers two main factors: degree of herding and diversity of depositors. Diversity is defined in a
broad sense, with respect to information and types. Increase herding has non-monotonic effects on
bank failure, because runs are more frequent but slower to reach the bankruptcy level. In contrast,
increase diversity makes runs more frequent and faster, such that the probability of failure is strictly
increasing.

This paper contributes to existing literature in two directions. First, the model is able to char-
acterize not only the frequency, but also the speed and abruptness of bank runs. While recent
theoretical models successfully eliminate the multiplicity of equilibria to determine the probabil-
ity of bank run, the issues that how and why bank runs can occur in different manners are not
addressed, to my limited knowledge. Furthermore, the abruptness of bank runs is often assumed,
because all depositors take action simultaneously. This model offers a possible explanation on why
massive withdrawals occurs as if depositors synchronize their actions, even if they don’t have to.
Second, the model shows how behavioral factors affect the trajectory of bank runs, making poten-
tial bridges between recent empirical findings and theoretical research. It is an attempt to build a
descriptive framework on how bank runs occur to complement existing theoretical models. The
results have several policy implications and could serve to build a quantitative model that would be
able to monitor and detect panic-sensitive patterns.

This paper is related to three streams of literature. First, it takes inspirations from the empirical
literature on bank runs. Several empirical features are integrated into the framework: sequential
withdrawals (Schotter and Yorulmazer (2009); Kiss et al. (2014)); diversity of depositors’ char-
acteristics (Iyer and Puri (2012); Iyer et al. (2016)); herding through social networks (Kelly and
O Grada (2000); Iyer and Puri (2012)) and partial observability (Garratt and Keister (2009); Kiss
et al. (2012)). Furthermore, the model might provide background to discuss recent experimental
findings, for examples, the indeterminacy zone in Arifovic et al. (2013) and the group-size effect in
Arifovic et al. (2018).

Although conceptually different, this paper shares some features with recent developments in
theoretical literature on bank runs. Goldstein and Pauzner (2005) employed a switching strategy
in a context of global game (see Carlsson and Van Damme (1993); Morris and Shin (2001)) to
eliminate the multiplicity of equilibria. In their model, the cutoff threshold is uniquely derived
by symmetric deduction of beliefs. By contrast, thresholds in the present model are determined
by agents’ characteristics and reflect their diversity. Gu (2011) proposed a herding model that
allows for dynamic withdrawals. Depositors withdraw if their expected payoffs are below a cutoff
threshold that is determined by a perfect Bayesian equilibrium. However, there is an exogenous
sequence, such that only one agent can take action every period and actions are observable to all
other agents. Her model focuses more on herding rather than the dynamics of bank runs per se.

On the technical side, this paper takes inspiration from the literature on cascades of actions and
collective behavior. Schelling (1971) proposed a pioneer model of local interaction, in which agents
are influenced by their direct neighbors. By contrast, Granovetter (1978) proposed an “all-to-all”
interaction model, in which every agent is equally influenced by all other agents. In a different
direction, Banerjee (1992) studied herding as cascades of information by sequential actions on a
line. Using random graph theory, Watts (2002) introduced an explicit network dimension to cascade
models. This literature is large and growing, see Watts and Dodds (2009); Miller and Page (2004)
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for comprehensive reviews, among others. The present paper combines various features of cascade
models to integrate dynamics and behavioral factors into the analysis of bank runs.

The remainder of the paper is organized as follows. Section 2 presents the general model and
explains the main mechanism. Section 3 derive analytical results from a simple version of the
model. Section 4 studies the complete model using numerical simulations. Section 5 discusses
policy implications and concludes.

2 General Model
The economy. N agents are depositors to a common bank. Depositors are linked together in an
undirected network, in which they can observe the actions of their direct neighbors.

The time horizon T is finite with multiple periods to allow for quasi-continuous actions (e.g.
online banking). Periods are indexed by t = 0,1,2,3 . . . ,T .

Depositors. By default, each agent has a unit of deposit in the bank. Agents choose to keep their
deposit in the bank (wait) or to withdraw (run). Each depositor can only withdraw all of her deposit
at once. Depositors who withdrew cannot put their deposit back in the bank and become inactive,
their actions remain observable. Let rt 2 [0,1] denote the fraction of agents who withdraw at date t

and Rt =
t
Â

k=0
rk denote the total fraction of withdrawals up to the end of date t.

In each period, depositors have private information on the total withdrawal: R̃it =Rt�1+ z̃it . The
distribution of private information represents diversity in opinion and capacity to process aggregate
information. The random variable z̃it are i.d.d, have mean zero and the standard deviation will be
specified in relevant sections. In the remaining of the paper, R̃it are labeled as signals and z̃it are
labeled as noises.

Finally, depositors differ in their types, which is defined by qi. Types are private information
and normally distributed. Types determine the sensitivity to make withdrawals. Agents with higher
values of qi are more likely to withdraw.

Bank & deposit contract. A fraction of deposits L 2 (0,1) is kept as liquidity reserve. The
remaining fraction of deposits is invested in illiquid assets. The investment yields positive profit
with certainty at T . The bank always has better investment opportunity and offers debt-deposit
contracts to depositors. Deposit contracts have maturity T . The time horizon T reflects the maturity
mismatch between short-term demandable deposits and the long-term investment.

The model assumes an implicit deposit contract and agents behave as if they are offered the
contract described here. For each unit of deposit, there is a positive return at maturity, the payoff
is C > 1 at t = T . At any interim period, depositors can choose to forgo the interest at maturity
to get back their deposit, the short-term payoff is normalized to 1. Thus, L equals the fraction
of the population to which the bank can pay back at short term without going bankrupt. If the
total withdrawal is greater than the available liquidity at any period t⇤ < T , the bank defaults and
liquidates the long-term investment. Depositors are paid in a first come first served basis. Each
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late runner get a payoff c < 1 until the liquidation proceeds are depleted. If 0 < c < 1 < R, the
structure of the payoffs is sufficient to generate strategic complementarity. The payoffs per se have
little influence on the model.6

Timeline. At t = 0, a fraction r0 of random agents withdraws. At t > 0, active agents choose to
wait or withdraw in each period. The bank fails if at any time t⇤ < T , total fraction of withdrawals
exceeds liquidity reserve i.e. Rt > L. Otherwise, the bank survives. The parameter r0 reflects a
“random” liquidity shock, when the bank already committed to the investment.

Decision-making. Since the distributions of noises and types are not assumed to be common
knowledge, rational expectations will depend on individual-specific additional priors. The solution
of the dynamic optimization problem would require tremendous amount of computational power
and would be subjected to a large confidence interval.

Subjected to this large amount of uncertainty, agents follow a switching strategy to approximate
payoff maximization. Let ait the action of agent i in period t. If ai,t�k 6= withdraw, 8k = 1,2, . . . , t
then:

ait(sit ,ti) =

(
withdraw if sit > ti

wait otherwise

where sit is taken as the perceived expected total withdrawal and ti the precautionary threshold.
The perceived total withdrawal of agent i in period t is given by:

sit = (1�h).R̃it +h.ni,t�1 (3.1)

with h 2 [0,1] is the herding factor, ni,t�1 the fraction of neighbors who withdrew up to period
t �1 and R̃it = Rt�1 + z̃it the private signal on total withdrawal. To some extent, the perceived total
withdrawal is a weighted average of two channels of information: private signal and information
embedded in the observed actions of neighbors.

The precautionary threshold ti reflects individual perception on the fragility of the bank, as if
agents “discount” the true liquidity level. Let qi be the type of agent i, her precautionary threshold
is obtained by a convex transformation fqi : L ! ti such that 3 conditions must be satisfied:

1. ti < L:

2. if L ! 0, then ti ! 0

3. if L ! 1, then ti ! 1

These 3 conditions make sure that individual incentives are rational : (1) agents always withdraw
before the perceived total withdrawal reaches the level of liquidity reserve; (2) when the bank has
no liquidity, agent has low incentive to wait, as any small withdrawal could make the bank fail; (3)
vice-versa, agents have high incentive to wait when the bank has high liquidity.

6Optimal contracts have short-term payoff greater than 1, but the payoff structure remains similar.
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Specifically, the precautionary threshold is given by:

ti = Lqi (3.2)

with L 2 (0,1) and qi > 1,8i . The distribution of qi represents individual characteristics of
agents that influence their perception on the bank. Notice that a higher value of qi implies a lower
threshold, hence higher sensitivity to run. With respect to theoretical literature, q i can be regarded
as the inverse of degree of patience in Azrieli and Peck (2012). Empirically, Iyer and Puri (2012);
Iyer et al. (2016) documented that individual characteristics and relationships with the bank have
significant influences on the decision to withdraw. Figure 3.1 illustrates the features of precaution-
ary thresholds.

Liquidity (L)

Threshold (ti)

0

(1;1)

1

1
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L
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L

ti = Lqi
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Figure 3.1: A precautionary threshold, qi > 1. Higher value of qi make the curve bend downward,
resulting in a larger precautionary gap.

In this setting, the decision function has two dimensions, similar to the hybrid system of think-
ing as in Kahneman (2003). First, strategic complementarity reflects rationality in individual de-
cisions. As withdrawals drain liquidity, the bank becomes more sensitive to failure. Depositors
withdraw preemptively as if their expected payoffs are decreasing with the perceived total with-
drawal. However, given the structural uncertainty and heterogeneity, cutoff thresholds can not be
computed as in global games. This model assumes that individual thresholds are linked to individ-
ual characteristics of depositors, as suggested by empirical evidences. This assumption does not
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rule out the case that thresholds can have a common value, that coincides with the unique thresh-
old determined by strategic deduction of beliefs as in global games (see Carlsson and Van Damme
(1993); Morris and Shin (2001) for more details).

Second, individual decisions can be directly influenced by the observed actions of others. In
a broad sense, let define this behavior as herding7. Herding is the phenomenon in which agents
follow what they observe rather than taking decision independently based on their private infor-
mation. One can rationalize herding as in Banerjee (1992): agents extract additional information
from the observed actions of others using quantitative belief-updating mechanism. There are other
explanations for herding, such as mechanisms characterized by “animal spirits” as in Akerlof and
Shiller (2010). In this model, herding is broadly defined and encompasses both views.

Intuitively, the switching strategy can be understood as a set of simple rules. First, agent avoid
running too late, when the bank already failed. Secondly, agents also avoid running too early, when
liquidity reserve is sufficiently high compared to the perceived total withdrawal. Running early is
to deny the highest payoff when the chance of bankruptcy in the next period is low. Therefore,
agents wait as long as possible, in an attempt to get the highest payoff. Only when the perceived
total withdrawal becomes large enough, agents will run to avoid losses. There are experimental
evidences that depositors use cutoff thresholds to make withdrawals (Garratt and Keister (2009)).

Interactions. In this model, the dynamics are driven by two feedback loops, as depicted in Figure
3.2. The public information Rt acts a global interaction device. Whenever an agent with high qi
withdraws early, this action makes Rt slightly larger, thus increases the chance to have a larger
signal R̃i,t+1 to all other agents. Meanwhile, the agent who withdrew also increases the desire to
run of her neighbors due to the observability of her action, this is the local mechanism.

The global interaction has unlimited range and ignores the network structure, but the effect of
each individual withdrawal is small. Furthermore, the global effect is stochastic because a higher
value of Rt increases the chance but does not ensure a larger signals for remaining agents. On the
contrary, the local interaction has very limited range, but each withdrawal has significant impact
on the set of neighbors. In addition, the local effect is deterministic and results in a direct increase
in decision score of connected agents. These feedback mechanisms can generate a cascade of
decisions, when relatively small numbers of withdrawals have positive probability to induce a larger
fraction of agents to run. Over time, waiting agents might be caught up in a generalized panic and
forced to run.

7see Baddeley (2010) for an extensive review on how individual behavior is influenced by actions of others
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Figure 3.2: Feedback mechanisms

3 Mean-field analysis
This section studies a simplified version of the model to derive some insights, before getting

into higher order of complexity. The following temporary assumptions are used:

1. There is no herding i.e. h = 0. In this case, the network has no effect.

2. Agents have their types equal to the mean: qi = q̄ such that ti = t . Furthermore, let q̄ = 1.

3. The noises are uniformly distributed around 0: zit ⇠ U [�e,e].

The first hypothesis allows us to focus on the strategic complementarity feature. The second and
third hypotheses are made to simplify mathematical expressions, in order to derive explicit ana-
lytical results. These hypotheses do not alter the qualitative results and they will be removed in
the next section. For the moment, the parameter space of the model is reduced to 3 dimensions:
magnitude of noises, liquidity reserve and shock.

Given private signals and the switching strategy, the probability that an agent withdraws in
period t is given by Pr

�
R̃it > t

�
= Pr (Rt�1 + z̃it > L). By the third temporary assumption, signals

are uniformly distributed R̃it 2 [Rt�1 � e,Rt�1 + e]. Figure 3.3 illustrates the individual probability
to withdraw.

As a thought experiment, our analysis begins with an extreme case, in which e = 0. The dis-
tribution of signals collapses into a vertical line. When the noises disappear, agents have perfect
information on total withdrawal. Moreover, agents also have the same threshold as they are per-
fectly homogenous in type. If the shock is larger than the common threshold, then everybody
withdraws. Otherwise, nobody will withdraw at all. The resulting outcomes are two symmetric
equilibria: all agents run if r0 > t and all agents wait if r0  t . It is important to notice that the
economy reaches a steady state immediately at t = 1 in this case.
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R̃it
Rt�1 Rt�1 + eRt�1 � e

R̃it = Rt�1 + z̃it

ti = L

Pr(z̃it +Rt�1 > L)

Figure 3.3: Probability to withdraw. When total withdrawal increases, the distribution shifts to the
right, making the probability larger.

Then, we proceed to the case where e > 0. By the law of large numbers, the fraction of with-
drawal in period t is the probability to withdraw times the fraction of remaining agents :

rt = Pr (z̃it +Rt�1 > L)(1�Rt�1) (3.3)

From equation (3.3), it is straightforward that if e + r0  L, then rt = 0,8t because the prob-
ability to withdraw is always zero. In other words, following the initial withdrawals, if the most
pessimistic depositor (with the highest signal) does not think that the bank will fail in the next
period, then no one withdraws. Given that no depositor withdraws in the past period, the same
argument applies recursively and no withdrawal is ever made.

Otherwise, if L < e + r0 then rt > 0 and Rt is non-decreasing. Over time, if Rt increases, the
probability to withdraw becomes larger as the distribution of signals shifts to the right, while the
fraction of remaining agents decreases. Conditional on e > L� r0 > 0, the dynamics of sequential
withdrawals are described by the system of equations:

8
><

>:

rt = 1
2e (e �L+Rt�1)(1�Rt�1)

Rt�1 =
t�1
Â
j=0

r j

with initial condition r0 2 [0,1].
The mean-field dynamics are depicted in Figure 3.4. L⇤

1 is a critical value for L, below which the
bank immediately fails in period 1. L⇤

1 is obtained using the binding condition of r0 + r1 = L. The
value of L⇤

1 indicates that if liquidity is too low compared to the shock, the fraction of withdrawal in
period 1 will be large enough to entail bankruptcy. L⇤

N is another critical value for L, above which
no additional withdrawal is made after the initial shock. L⇤

N is obtained by the condition r1 = 0.
The value of L⇤

N indicates that if liquidity is very high compared to the shock, the risk of bankruptcy
is zero.
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Figure 3.4: Mean-field dynamics of bank runs

For intermediate values of L, the switching zone emerges, in which sequential withdrawals build
up over time, putting the economy in motion toward bankruptcy. There exists an ordered sequence
L⇤

1  L⇤
2  . . . L⇤

T  L⇤
N such that if L⇤

t  L< L⇤
t+1 with (t = 1, ..,T �1), the bank survives t periods

and defaults in the next period. Thus, the probability of default is 1 in such cases. Otherwise, if
L falls between L⇤

T and L⇤
N , the bank survives T periods despite continuous withdrawals. In this

model, we only consider defaults within the time horizon T . Given that the illiquid investment will
be realized at date T , the bank will always have enough liquidity if it survives T periods. However,
L⇤

T converges to L⇤
N as T increases, so Pr(L⇤

T  L < L⇤
N) tends to zero. If T is reasonably large,

L⇤
N can be used as an approximation for L⇤

T , such that Pr(default)! 1 in the switching zone. Any
critical value L⇤

t can be obtained by using the binding condition r0 + r1 + . . .rt = L. As rt � 0, it
is straightforward that the sequence L⇤

t is non-decreasing. The analytical solution to the sequence
(rt) is not the focus of the paper, interested readers can see Chiarella (2012) for example.

Finally, varying the value of e will affect the relative positions of the critical values L⇤
1,L

⇤
2, . . . ,L

⇤
N .

It is straightforward that 0 <
∂L⇤

1
∂e <

∂L⇤
N

∂e = 1. In Figure 3.4, when e increases, both critical values
move forward but L⇤

N advances faster than L⇤
1. Thus, the immediate-failure zone and the switching

zone expand, both bank runs and bank failure are more frequent. Vice versa, when e decreases,
the boundaries move backward and closer to each other. The extreme case is when e = 0, all the
boundaries collapse into one unique critical value, as in the thought experiment. The switching
zone disappears along with sequential withdrawals in this case.

Although obtained from a simple setting, these analytical results provide two main insights.
First, liquidity reserve and shock are important factors that determine not only the probability
but also the dynamics of runs, particularly for intermediate liquidity compared to shock. Second,
perfect symmetry across agents virtually eliminates sequential moves.
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4 Numerical analysis
This section studies the complete model using numerical experiments, with three additional

dimensions: herding, diversity and network. The aim of this section is to consolidate previous
findings and investigate how the main parameters affect the dynamics of bank runs.

4.1 Calibration
There are N = 1000 agents. The time horizon is T = 30, according to 30 calendar days specified

in Basel III. The distribution of types is given by qi sN (µq = 2,sq = 0.25). Noises are normally
distributed around zero z̃it sN (µz = 0,sz = gRt�1), with g = 0.25, as if agents perceive available
information on total withdrawal with reasonable variation in opinions. Furthermore, noises are
endogenized with respect to the total withdrawal, as if quality of information declines when the
crisis builds up. On the technical side, endogenized noises avoid the implicit bias that fixed noises
impose on the economy, when high (low) noises bring up (down) the perceived total withdrawal
on average8. The network is a two-dimension lattice, every agent has four direct neighbors: north,
south, east, west. The network is localized in the sense that every agent only has a small set
of neighbors that are close together. Incremental steps are 0.01 for liquidity and shock, 0.1 for
herding. Each vector of parameters is used 100 times.

The results are studied through three generated variables: probability of default, survival time
and tip measure. Probability of default is the percentage of failures. Survival time indicates how
many periods the bank survives before going bankrupt. Tip measure is a metric for the abruptness
of runs. If tmax is the period in which daily withdrawals reach the maximum level, tip measure is
defined as the ratio between the maximum daily withdrawal and the average of daily withdrawals
up to tmax. For example, a tip measure of 5 indicates that in one particular day, daily withdrawal is
maximum and equal 5 times the averaged withdrawal up to that day included.

4.2 Stylized dynamics
Numerical experiments show four stylized trajectories of bank runs, illustrated in Figure 3.5.

1. All depositors withdraw almost simultaneously (immediate run)

2. Insignificant additional withdrawal (no-run)

3. Stable sequential withdrawals over time (slow run)

4. Massive run is triggered abruptly (sudden run)

These trajectories can be put into two groups: immediate convergence and state-switching.
First, immediate convergence occurs when the economy precipitates toward a steady state, in which

8It is possible that some agents might get a signal higher than 1, when total withdrawal is very large. Theses signals
can be treated as 1 to avoid erratic behaviors. Similarly, negative signals might also be drawn, they are treated as 0.
These implementations do not alter the model in any significant way.
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(a) Immediate convergence. Tip measure is zero for both cases.

(b) State-switching. Tip measure is 1.2 for the slow run and 11.5 for the sudden run.

Figure 3.5: Stylized dynamics of bank runs. Initial shock is 0.15 for all cases.
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all depositors either withdraw or wait, depicted in Figure 3.5(a). The intuition follows from the
properties of thresholds. When liquidity is low, agents are very sensitive to any small amount
of noises or fraction of withdrew neighbors. It takes only one or a few periods for all agents to
withdraw. The reasoning is similar for high liquidity. To some extent, these instantaneous outcomes
are related to symmetric equilibria in existing literature. Agents synchronize their action as if they
move simultaneously.

Second, state-switching occurs when withdrawals are made sequentially. There are two distinct
state-switching patterns: slow transition or sudden tip, depicted in Figure 3.5(b). Slow runs happen
when withdrawals build up smoothly over time. In this case, daily withdrawals are visibly positive
and remain stable in a large time window. By contrast, sudden runs occurs in an abrupt manner.
Daily withdrawals stay close to zero and suddenly jump to the maximum level. Switching pattern
is driven by the interplay between local and global mechanisms. Local interactions favor smooth
transition while global interactions facilitate sudden tip. More explanations will be provided in
subsequent sections.

To distinguish these scenarios, survival time and tip measure are used. Survival time is close to
zero for immediate run, while maximum for no-run. By convention, tip measure is zero for these
trajectories. By contrast, switching trajectories have intermediate survival times with positive tip
measures. Slow run has very low tip measure, the more sudden the run is, the higher its tip measure.

To summary, the stylized dynamics complement findings of the mean-field analysis, showing
how dynamic bank runs occur in different ways. In some cases, they span over a large time window.
In other cases, they occur suddenly without any visible sign. The following sections investigate the
effects of the main parameters on the occurrence and characteristics of bank runs.

4.3 Liquidity vs. shock
The baseline model is studied in this section to focus on the interplay between liquidity reserve

(L) and initial shock (r0). Herding is fixed at h = 0.5. The main findings are presented in Figure
3.6.

First, by survival time, panel 3.6(a) shows three distinct regions. Closest to the 45 degrees line,
the deep blue region corresponds to the immediate failure zone, in which runs occurs instantly, such
that survival time is close to 0. Conversely, the deep red region corresponds to the no-run zone,
in which the bank always survives to the last period. This region is occupied mostly by no-run
trajectories. Finally, the region with mixing colors from light blue to light red corresponds to the
switching zone, in which survival time follows a positive and rather smooth evolution with relative
liquidity. These 3 regions confirm the previous findings, showing that dynamic bank runs occurs
when liquidity level is moderate compared to shock.

Second, pannel 3.6(b) identifies a very abrupt transition of bank failure, similar to a phase tran-
sition. The outcomes are very stable for a wide range of parameters, then abruptly switches to
another state. Furthermore, a closer look at the frontier shows a very narrow subregion, character-
ized by Pr(default) 2 (0,1). This subregion can be defined as the indeterminacy corridor, where
switching trajectories occur randomly. The bank fails when switching occurs, otherwise no-run
trajectories take place and the bank survives.
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Figure 3.6: The dynamics of bank runs, baseline model h = 0.5. Higher temperature color repre-
sents higher value for the variable of interest.
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The indeterminacy corridor might be explained by stochastic elements in the model. There are
3 random factors: thresholds, signals and relative positions of runners. In general, the law of large
numbers stabilizes the outcomes, which are determined by whether liquidity or shock dominates
the other. But when the two opposing forces are in balance, the system becomes sensitive to small
events. The course of a trajectory can be altered by successive events that boost the number of
withdrawals, such as: agents with low thresholds draw high signals in an ordering manner, runners
are clustered together within an optimal distance that increases contact with waiting agents and
facilitates local activation. To some extent, this finding is similar to the indeterminacy zone docu-
mented in Arifovic et al. (2013), in which the experimental economy randomly switches between
no-run and run equilibria for the same parameters. While their setting is different from this model,
one common feature of the two findings is the path dependence property of bank runs trajectories.

Third, pannel 3.6(c) show the colored region in which tip measure is positive. This region is an
approximation for the switching zone, allowing the distinction between sudden runs and slow runs.
Sudden run occurs for low liquidity levels, because the average threshold is low. A moderate jump
in total withdrawal is enough to make a large fraction of depositors withdraw in the subsequent
period. For high liquidity level, the argument is simply reversed. Tip measure is highest around the
transition frontier, particularly within the indeterminacy corridor because of random switching.

Finally, the fitted curve in pannel 3.6(d) shows that the abruptness of runs is non-monotonic
with respect to liquidity buffers (L�r0). Switching trajectories become closer to immediate run for
higher shocks or lower liquidity levels, vice-versa for no-run. Combined with the phase transition
frontier, this result implies that banks need to hold liquidity above a critical level to avoid panic
runs. Otherwise, the surplus of liquidity makes runs delayed but more abrupt.

Overall, these results are aligned with previous findings and provide a general view on the
dynamics of bank runs. Clearly low liquidity leads to immediate run, while clearly high liquidity
leads to no run. For moderate liquidity, there are two distinct patterns: progressive withdrawals or
sudden massive run.

4.4 Herding
This section investigates the effects of herding on the dynamics and the occurrence of bank

runs. When the herding factor (h) decreases, individual decision is inclined toward private signals
that are related to the available liquidity of the bank. On the contrary, when h increases, agents
will progressively disregard their own information and put more weight on the observed actions of
their neighbors. Variation of the herding factor will alter the micro behaviors and have impact on
the aggregate dynamics. The main results are presented in Figure 3.7, the stacked heat maps show
regions where tip measure is positive.

First, there is a very clear trend regarding the colors: runs become less abrupt as herding in-
creases. This can be explained by the range of feedback mechanisms. When herding is strong, local
interactions build up the panic similarly to the spread of contagious diseases. Depositors are more
likely to be infected through direct contact with withdrew neighbors. Large clusters of runners
develop progressively and infect depositors who reside close to the boundaries of those clusters. In
consequence, the panic takes time to spread out. By contrast, for weak herding, global mechanism

69



Figure 3.7: Effect of herding on tip measure. High temperature colors represent high values of tip
measure.
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Figure 3.8: Effects of herding on averaged probability of default. The shock (r0) is decomposed
into 5 quintiles. Each line represents the averaged probability of default for one specific quintile of
shock.

make signals diffuse “over the air” and bypass the localized network structure. Total withdrawal
accumulates slowly but it eventually reaches a critical mass, such that the chance to receive signals
higher than the average threshold is significant. Then, global interaction creates a generalized panic
instantly.

Second, runs are more frequent with strong herding. From bottom to top layers, the no-run
region shrinks (upper left triangle). Furthermore, the switching region expands on the left (low r0)
and becomes flatten on the right (high r0). This change in aggregate behavior shows that the system
does not respond monotonically to different shock regimes, as herding increases.

To further investigate this effect, Figure 3.8 decomposes the distribution of shocks into 5 quin-
tiles. There are 2 distinct macro behaviors with regard to shocks of different sizes. For the first
quintile of shocks i.e. r0 2 (0.01,0.2), the average probability of default increases with h. On the
contrary, for the third and fourth quintiles, the tendency is clearly reversed. This observation shows
that the bank becomes more fragile to small shocks and more robust to large shocks as herding
increases.

These results can be explained as follows. Except for extreme values of h, the liquidity shock
has two initial impacts. First, agents surrounded by initial runners are likely to withdraw by local
interactions. Second, if the shock is not too small, it will generate enough noises that make other
random agents withdraw. The combined impact sets the initial condition for the cascading process.

For small shock, the initial withdrawals generate low signals on average. When herding is
weak, small shocks can hardly make random agents withdraw by the global mechanism. However,
when herding increases, small number of initial runners can trigger their neighbors to withdraw
with certainty. The global mechanism is weak in the beginning, but the local mechanism fills in to
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build up cumulative withdrawal. In consequence, particularly for small shocks, increasing herding
favors the occurrence of runs, making the bank more fragile.

For large shocks, the initial withdrawals generate high signals on average. If liquidity is low, the
bank defaults immediately, only high liquidity levels are relevant to the discussion. When herding
is weak, random agents have high probability to withdraw regardless of their distance. However,
when herding is strong, only agents located around initial runners will withdraw. Moreover, for
large shocks, initial runners are more likely to form large clusters, their total contact with the
remaining agents is further reduced. In consequence, increasing herding will reduce the early
impact of large shocks. Combined with the loss in speed due to herding, the reduction in early
activation makes large shocks less dangerous for banks, conditional on having high liquidity.

Overall, herding generates a tension between activation and speed, such that increase herding
make runs more frequent but less abrupt. Strong herding favors early activation, but the cascade is
slow because local interaction has limited range. By contrast, weak herding facilitates tipping. It is
more difficult for runs to start out, however, at some critical level, global interaction causes a panic
instantly. Depending on other parameters, these two opposing effects of herding may result in a
higher or lower probability of default.

4.5 Diversity: noises & thresholds
As shown in the mean-field analysis, to have switching dynamics, it is necessary that agents

have different inputs to their decision-making process. To some extent, the differences across
agents can be defined as diversity, with respect to information and type. In this model, g captures
the variations of private signals and sq captures the differences in types that results in variations of
thresholds. This section will show how these two parameters affect dynamic bank runs.

Rt�1 t̄
Pr(R̃it > ti)

R̃it ⇠ N (Rt�1,gRt�1) ti

Figure 3.9: Signals vs. thresholds. When diversity increases, the distributions have fatter tails.
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Before getting into the results, it is important to show how the distributions of signals and
thresholds shape the trajectories of runs. The effect of g is stronger with low values of h, as more
weight is put on private signals. To derive some insights, let consider the extreme case in which
h = 0, depicted in Figure 3.9. The probability to withdraw is the joint probability to draw high
signals and low thresholds. The distribution of thresholds is fixed while the distribution of signals
is endogenous and evolves over time. When total withdrawal increases, the distribution of signals
shifts to the right and get larger tails, proportional to g . The probability to withdraw determines the
magnitude of the shift and how fat the tails become in the next period. This mechanism is similar
to the mean-field case while allowing us to visualize the effect of diversity.

First, when diversity is low, the two distributions concentrate around their means, the proba-
bility to withdraw is likely to be very small or even zero in early periods. On the contrary, more
diversity makes fatter tails, such that the probability to withdraw is likely to be high. Hence, other
things being equal, high levels of diversity will trigger more activation.

Second, as the distribution of signals evolves, diversity plays an important role in the abruptness
of runs. The key element is the expansion of the joint area. With low diversity, early fractions of
withdrawals will be very small, as the two distributions have very thin tails. However, if total with-
drawal keeps building up, the two distributions come progressively closer together. The overlapped
area suddenly gets very large around the means. This is the surprise effect: the jump in probability
to withdraw produces a massive fraction of run compared to previous periods. Therefore, runs will
be delayed and abrupt if they occur in low diversity environment. On the contrary, high diversity
will make the joint area grow faster in a more stable way from the beginning.

Figure 3.10 shows the discussed results. Accordingly, increases in either g or sq (left panels)
result in a higher average default rate. Furthermore, averaged tip measures decreases with respect
to both parameters (right panels). The average tip measure decreases because runs are faster, by
contrast with the effect of herding. It may seem counterintuitive, but abruptness requires slow early
accumulation of withdrawals. High diversity accelerates the speed of accumulation, raising the
initial slope of switching trajectories, making runs more apparent but less abrupt. Thus, increase
diversity makes runs occur more frequently and faster, strictly increasing the probability of default.

The idea that more diversity increases vulnerability may appear counterintuitive. It is helpful
to think in probabilistic dispersion. More diversity implies that there is a high chance that some
depositors are extremely “impatient” compared to others. There is also a high chance that some de-
positors have very bad opinions about the robustness of the bank, compared to the average opinion.
Together, these factors are more likely to trigger early withdrawals. The same process can apply
sequentially, making the panic cascade over the population. On the contrary, when depositors are
symmetric, they behave like one representative agent. There is strength in unity, because it is hard
to make some depositors withdraw before others. When necessary conditions are met, depositors
are likely to withdraw simultaneously. Although using a different setting, the financial cascade
model of Iori et al. (2006) has a similar finding, in which heterogeneity among agents increases the
fragility of the system.

The result on heterogeneity of this model might provide alternative explanation to a recent
finding in Arifovic et al. (2018). In their experiment, subjects play a repeated version of the si-
multaneous game and have many decisions to make over time. They found that larger groups of
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Figure 3.10: Effects of diversity. Increase diversity will result in a higher average default and a
lower average tip measure. The base line model is the setting with h = 0.5,g = 0.25,sq = 0.25.
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subjects generate more bank runs compared to smaller groups, conditional on moderate liquidity
(high early payoffs). To some extent, larger groups might imply larger intervals for the sensitivity
to withdraw. For example, there is a higher chance to have subjects with extreme loss aversion.
There are two consequences of high dispersion of sensitivity in large groups. First, the perceived
riskiness of the “wait” option might increase for any depositor, when they believe that some other
depositors (even a small number) will withdraw with certainty. Second, when subjects make many
decisions over time and they know the total withdrawals in the past, there is a potential cascade
process similar to this model. As discussed previously, distribution of sensitivity with fatter tails
facilitate activation of cascades. When depositors with extreme sensitivity withdraw in an early
round, other highly sensitive depositors will follow in subsequent rounds. Over time, the average
depositors are caught up in the cascade, when they learn that a large fraction of depositors withdrew
in the last round.

4.6 Herding vs. diversity
To complete the picture, this section investigates the interaction between diversity and herding.

At a first glance, diversity and herding have the same qualitative effects: they both facilitate ac-
tivation and reduce abruptness of runs. However, there is a main difference: the speed of runs is
increased with high diversity while reduced with high herding. Runs are less abrupt in both cases
by design of the tipping measure.

Figure 3.10 shows the interplay between diversity and herding. It appears that strong herding
reduce the impacts of diversity, such that all the curves converge when h increases. By design, it
is obvious that the effects of noises are washed out for high values of h. But why it is also the
case for thresholds? The answer comes from the network, precisely the small number of direct
neighbors. The idea can be illustrated with an extreme case in which h = 1. When local interaction
is the only active force, each withdrawing neighbor has very large impact on individual decision.
The variance in thresholds among waiting agents makes little difference when these agents are
surrounded by many withdrew neighbors. Unless the variance of thresholds is unusually large,
such that the population is polarized: one group has very low thresholds and the other group has
very high thresholds. In such case, the latter group will form clusters of resistance, like islands in a
sea of runners.

Furthermore, different levels of diversity can counter or enhance the effects of herding on bank
failure. Low diversity implies weak global mechanism, leaving the two opposing effects of herd-
ing compete with each other. This combination generates non-monotonic effects when herding
increases (lowest curves in the left panels). By contrast, high diversity brings in additional boost
for activation and speed. This boost is maximal when herding is low, but it fades out quickly when
herding increases. Thus, in high diversity environment, the effect of herding is quasi-monotonic
rather than non-monotonic as in low diversity environment.
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4.7 On network topology
As discussed in previous sections, the network plays a significant role in channeling herding

behavior. The network acts as a platform on which herding operates. The topology of the network
and the parameter h go hand in hand to determine the extent of local interactions. However, this
paper focuses more on herding. There are many different network topologies with a wide range of
characteristics, a complete network analysis is beyond the scope of this paper. Some comparative
statics for different topologies can be found in the appendix. The results remain qualitatively robust
to changes in network topology. This section provides some reflections on the network dimension
of the model.

First, observations are essential for herding. A reasonable assumption is that monitoring the
actions of many agents at the same time is costly. Furthermore, it is also difficult to observe agents
that are far way. These limits are not applied only to spatial dimension, but also to social and
sectorial dimension, if depositors are firms or financial institutions. Therefore, to capture the effect
of herding, the network should be localized. Furthermore, this type of topology is also consistent
with empirical findings (Iyer and Puri (2012); Atmaca et al. (2017)), in which only close neighbors
or family members have significant effects on depositors’ decision.

Second, the effect of the topology become dominant only when herding is strong. Then, the
decision-making process approach naïve learning, where agents strongly incline to imitate their
neighbors. However, actions are costly in bank run, unlike other social phenomena such as fashion
or opinion diffusion. Thus, very strong herding appears to be unrealistic for this model. The effects
of the network will be more influential when herding is endogenized, such that agents determine
their tendency to herd base on the structure of links and their local position. This will be a future
extension of the model.

5 Discussion and conclusion
This paper has studied bank runs in a dynamic and behavioral setting. Panic bank runs arise as

cascades of decisions by both strategic complementarity and herding.
The model is able to characterize the frequency, speed and abruptness of runs. Depending on the

parameters, there are three distinct patterns: immediate run, no-run and switching. For low, or high
liquidity reserve respectively, all depositors either withdraw immediately, or don’t withdraw at all.
For moderate liquidity, there are two patterns of bank runs: slow runs with sequential withdrawals
build up over time or sudden runs with massive withdrawals occur abruptly. Increase herding
generates a tension between activation and speed, such that runs are more frequent but also slower to
spread out. Because of this tension, the overall effect of herding on bank failure is non-monotonic.
By contrast, increase diversity facilitates both activation and speed, such that the probability of
bank failure is strictly increasing.

From a policy perspective, banks are currently required to hold at least 1% of certain liabili-
ties, mainly customer deposits, as liquidity reserve. The liquidity requirement has a maintenance
window of 2 weeks in the US and 6 weeks in the EU. This paper suggests several implications for
banks and policies makers.
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First, it is important to actively monitor day-by-day withdrawals and adjust dynamically liquidity
reserve, in addition to the minimum reserve requirements. The reason is that sequential withdrawals
are path-dependent, a small change in early withdrawals can have large impact on the trajectory of
runs. Therefore, it might be useful to develop a quantitative framework that is able to detect run-
sensitive patterns of withdrawals, to devise interventions that dissolve or at least dampen potential
panics in the early stage.
Second, there might exist a trade off between stability and uncertainty. Increase liquidity holding
and restrain herd behavior can reduce the probability of runs, but also make potential runs more
unpredictable. Furthermore, banks may face double layers of uncertainty on whether a run might
occur (random switching), but also when it could occur (sudden tip) if it is on the way. Any measure
aiming at increasing the robustness of banks should also be followed by efforts to reduce uncer-
tainty in forecasting sudden large withdrawals. One direct measure is to supervise factors that affect
the behavior of depositors such as social networks, tendency to herd and degree of heterogeneity.
This paper showed that these specific factors play an important role in generating bank runs.

It is worth stressing that the present model is simple in some aspects. It serves as a first step
toward building a dynamic framework for panic events. There are several limitations that can be
addressed.
The first limit is the exogenous nature of important elements, such as the herding factor and the
static information network. Furthermore, depositors stick with simple decision rules and do not
change their behaviors during the crisis. To make the model more realistic, one can use a so-
phisticated decision-making by allowing several features: endogenous herding with respect to the
network and withdrawals; memory with weighted averaged signals; dynamic evolution of network;
exchange of information among connected agents. These features will allow the model to focus
more on the individual aspect, such as learning and social interactions.
The second limit is the absence of reactions from the bank. In practice, banks do not sit still and
wait for their liquidity reserves to be depleted. One can introduce an interbank market such that
banks can borrow liquidity to face withdrawals. This feature can be used to study the systemic
aspect, such as market freeze and contagious bank runs. When a bank experiences withdrawals,
depositors might panic and run preemptively from connected banks, creating a generalized banking
panic. Furthermore, when banks fear that depositors might herd, they will be reluctant to lend to
others, creating a feedback cycle.

Overall, integrating dynamics and behavioral factors to models with strategic complementarity
is an important step for future research, at both micro and aggregate level.

Appendix

A. Network topologies
The network used in the model is a two-dimension grid. This section introduces 4 additional

structures: random network, small-world, circle, regular-8. The random network and small-world
both have average degree of 4, similar to the grid network used in the model. The average degree
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Figure 3.11: Macro behaviors of networks

of the circle is 2 and 8 for the regular-8.
Circle is a regular network with degree 2, in which every agent has one neighbor each side:

left and right. All agents form a closed ring. Regular-8 is similar to the circle, but each agent is
connected to 4 other agents on each side, instead of 1. Small-world starts out as a regular network
with degree 4. Then, every link has a small probability to be rewired, such that some shortcuts are
made inside the ring. Random network starts out as a regular network with degree 4. Every link
has a probability 1 to be rewired, such that all links are random.

Figure 10 compares the macro behavior for all networks, including the grid network as the
benchmark. Networks with the same average degree (grid, random, small-world) behave very
similarly, regardless the structure. Higher average degree (regular-8) appears to decrease fragility
but increase abruptness, vice-versa for low average degree. These observations suggest that the
average number of neighbors might play an important role, otherwise the pattern of links has little
influence in this model.
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