Une région intrinsèquement désordonnée dans OSBP contrôle la géometrie et la dynamique du site de contact membranaire

par Denisa Jamecna

Thèse de doctorat en Interactions moléculaires et cellulaires

Sous la direction de Bruno Antonny et de Joëlle Bigay.

Soutenue le 12-12-2018

à Côte d'Azur , dans le cadre de École doctorale Sciences de la vie et de la santé (Sophia Antipolis, Alpes-Maritimes) , en partenariat avec Université de Nice (établissement de préparation) , Institut de pharmacologie moléculaire et cellulaire (Sophia Antipolis, Alpes-Maritimes) (laboratoire) et de Institut de pharmacologie moléculaire et cellulaire (laboratoire) .

Le président du jury était Laurent Counillon.

Le jury était composé de Laurent Counillon, Anne-Claude Gavin, Vesa Olkkonen, Daniel Lévy.

Les rapporteurs étaient Anne-Claude Gavin, Vesa Olkkonen.


  • Résumé

    La protéine OSBP est un transporteur de lipides qui régule la distribution cellulaire du cholestérol. OSBP comprend un domaine PH, deux séquences « coiled coil », un motif FFAT (deux phénylalanines dans un environement acide), et un domaine de liaison de lipides (ORD) à son extrémité C-terminale. Le domaine PH interagit avec le PI(4)P et la petite protéine G Arf1-GTP au niveau du Golgi, alors que le motif FFAT interagit avec la protéine VAP-A, résidente du réticulum endoplasmique (RE). En liant simultanément tous ces déterminants, OSBP stabilise des sites de contact membranaire entre RE et Golgi, permettant ainsi un contre-échange cholestérol / PI(4)P par l'ORD. OSBP contient également une longue séquence N-terminale d’environ 80 aa, intrinsèquement désordonnée, composée principalement de glycine, proline et d'alanine. Nous démontrons que la présence de ce N-terminus désordonné augmente le rayon de Stoke de OSBP tronquée du domaine ORD, et limite sa densité d’association sur la membrane portant le PI(4)P. La protéine dépourvue du N terminus favorise l'agrégation symétrique des liposomes PI(4)P (mimant la membrane du Golgi) par les deux domaines PH du dimère OSBP, alors que la présence de la séquence désordonnée empêche cette association symétrique. De même, nous observons que la distribution d’OSBP sur la membrane de vésicules unilamellaires géantes (GUV) varie selon la présence ou l'absence du N-terminus. En présence de la séquence désordonnée, la protéine est répartie de manière homogène sur toute la surface du GUV, alors que la protéine sans N-terminal a tendance à s'accumuler à l'interface entre deux GUV de type Golgi. Cette accumulation locale ralentit fortement la mobilité de la protéine à l’interface. Un effet similaire du N-terminal sur la dynamique des protéines est observé lorsque l’association de membranes de type ER et Golgi est assuré par des protéines monomériques (dépourvue du coiled coil) en présence de Vap-A. Les résultats de nos expériences in vitro ont été confirmés en cellules vivantes, où la séquence intrinsèquement désordonnée contrôle le recrutement d’OSBP sur les membranes Golgiennes, sa mobilité et sa dynamique d’activité au cours des cycles de transfert de lipides. La plupart des protéines de la famille d’OSBP contiennent des séquences N-terminales de faible complexité, suggérant un mécanisme général de régulation.

  • Titre traduit

    An intrinsically disordered region of OSBP controls membrane contact site geometry and dynamics


  • Résumé

    Oxysterol binding protein (OSBP) is a lipid transfer protein that regulates cholesterol distribution in cell membranes. OSBP consists of a pleckstrin homology (PH) domain, two coiled-coils, a “two phenylalanines in acidic tract” (FFAT) motif and a C-terminal lipid binding OSBP-Related Domain (ORD). The PH domain recognizes PI(4)P and small G protein Arf1-GTP at the Golgi, whereas the FFAT motif interacts with the ER-resident protein VAP-A. By binding all these determinants simultaneously, OSBP creates membrane contact sites between ER and Golgi, allowing the counter-transport of cholesterol and PI(4)P by the ORD. OSBP also contains an intrinsically disordered ~80 aa long N-terminal sequence, composed mostly of glycine, proline and alanine. We demonstrate that the presence of disordered N-terminus increases the Stoke’s radius of OSBP truncated proteins and limits their density and saturation level on PI(4)P-containing membrane. The N-terminus also prevents the two PH domains of OSBP dimer to symmetrically tether two PI(4)P-containing (Golgi-like) liposomes, whereas protein lacking the disordered sequence promotes symmetrical liposome aggregation. Similarly, we observe a difference in OSBP membrane distribution on tethered giant unilamellar vesicles (GUVs), based on the presence/absence of N-terminus. Protein with disordered sequence is homogeneously distributed all over the GUV surface, whereas protein without N-terminus tends to accumulate at the interface between two PI(4)P-containing GUVs. This protein accumulation leads to local overcrowding, which is reflected by slow in-plane diffusion. The effect of N-terminus is also manifested in monomeric OSBPderived proteins that tether ER-like and Golgi-like membranes in the presence of VAP-A. Findings from our in vitro experiments are confirmed in living cells, where N-terminus controls the recruitment of OSBP on Golgi membranes, its motility and the on-and-off dynamics during lipid transfer cycles. Most OSBP-related proteins contain low complexity N-terminal sequences, suggesting a general effect.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Nice Sophia Antipolis. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.