Dynamics of driven and spontaneous transport barriers in the edge plasma of tokamaks

par Nicolas Nace

Thèse de doctorat en Mécanique et physique des fluides

Sous la direction de Guido Ciraolo et de Patrick Tamain.

Le président du jury était Peter Beyer.

Le jury était composé de Fulvio Militello, Laure Vermare, Eric Serre, Michael Komm.

Les rapporteurs étaient Alain Ghizzo, Jens Juul Rasmussen.

  • Titre traduit

    Etude de la dynamique des barrières de transport spontanées et forcées dans le plasma de bord des tokamaks


  • Résumé

    Les réacteurs à fusion thermonucléaire sont une des solutions à moyen - long terme pour transiter vers un monde dominé par des énergies décarbonées. Les réactions de fusion requièrent des températures si extrêmes que le plasma d'isotopes d'hydrogène doit être confiné magnétiquement dans une forme torique. Le maintien d'un tel niveau élevé de confinement des particules et de l'énergie reste un problème clé. Les réacteurs devraient opérer dans un régime de confinement avancé, le mode H, dans lequel le transport turbulent est réduit par la présence d'une barrière de transport dans le plasma de bord. Ce régime est observé dans toutes les machines actuelles mais demeure en partie incompris. Dans cette thèse, plusieurs mécanismes impliqués dans la transition vers le mode H sont étudiés. Pour cela, plusieurs outils de simulation numériques sont utilisés avec une complexité croissante. Des mécanismes de base, supposés jouer un rôle dans le développement des barrières de transport et impacter la turbulence, sont détaillés et analysés avec des modèles simples. En allant vers des modèles plus complexes, la pertinence de cette physique pour le mode H est discutée au regard des observations expérimentales. La géométrie magnétique et notamment le cisaillement magnétique sont en particulier désignés comme étant des acteurs clés.


  • Résumé

    Thermonuclear fusion reactors are one of the mid to long term solutions to transit towards a world dominated by carbon-free energy. Extreme temperatures are required for fusion reactions and the plasma of hydrogen isotopes must be magnetically confined in a torus shape. Sustaining such high level of particle and energy confinements is a key issue. Reactors are expected to operate in a high confinement regime - the H-mode - in which turbulent transport is reduced by the presence of a transport barrier in the edge plasma. This regime is observed in all current devices but remains largely miss-understood. In this thesis, we investigate several mechanisms involved in the transition towards H-mode. For that purpose, we use a range of numerical simulation tools of increasing complexity. Using simple models, we first highlight and analyze basic mechanisms likely to play a role in the on-set of transport barriers and in their impact on turbulence. Moving progressively to more complex models, we discuss the relevance of these physics in explaining experimental observations. The magnetic geometry and especially the magnetic shear are pointed out as key players.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université d'Aix-Marseille. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.