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Abstract
The fundamental research interest in nanometric pieces of noble metals is mainly due to the

localized surface-plasmon resonance (LSPR) in the optical absorption. Different aspects re-

lated to the theoretical understanding of LSPRs in ‘intermediate-size’ noble-metal clusters are

studied in this thesis. To gain a broader perspective both the real-time ab initio formalism

of time–dependent density-functional theory (RT-TDDFT) and the classical electromagnet-

ics approach are employed. A systematic and detailed comparison of these two approaches

highlights and quantifies the limitations of the electromagnetics approach when applied to

quantum-sized systems. The differences between collective plasmonic excitations and the

excitations involving d-electrons, as well as the interplay between them are explored in the

spatial behaviour of the corresponding induced densities by performing the spatially resolved

Fourier transform of the time-dependent induced density obtained from a RT-TDDFT simula-

tion using a δ-kick perturbation. In this thesis, both bare and ligand-protected noble-metal

clusters were studied. In particular, motivated by recent experiments on plasmon emergence

phenomena, the TDDFT study of Au-Cu nanoalloys in the size range just below 2 nm produced

subtle insights into the general effects of alloying on the optical response of these systems.

Résumé
L’intérêt de la recherche fondamentale pour les morceaux nanométriques de métaux no-

bles est principalement dû à la résonance localisée des plasmons de surface (LSPR) dans

l’absorption optique. Différents aspects, liés à la compréhension théorique de la LSPR dans le

cas de clusters de métaux nobles de taille dite intermédiaire, sont étudiés dans ce manuscrit.

Afin d’avoir une vision plus large nous utilisons deux approches : l’approche électromag-

nétique classique et le formalisme ab initio en temps réel de la théorie de la fonctionnelle

de la densité dépendant du temps (RT-TDDFT). Une comparaison systématique et détaillée

de ces deux approches souligne et quantifie les limitations de l’approche électromagnétique

lorsqu’elle est appliquée à des systèmes de taille quantique. Les différences entre les excita-

tions plasmoniques collectives et celles impliquant les électrons d, ainsi que leurs interactions,

sont étudiées grâce au comportement spatial des densités correspondantes. Ces densités sont

obtenues en appliquant une transformée de Fourier dans l’espace à la densité obtenue par les

simulations DFT utilisant une perturbation delta-kick. Dans ce manuscrit, des clusters de mé-

taux nobles nus et protégés par des ligands sont étudiés. En particulier, motivé par de récents

travaux sur les phénomènes d’émergence de plasmon, l’étude par TD-DFT de nano-alliages

Au-Cu de taille tout juste inférieure à 2nm à fourni de subtiles connaissances sur les effets

d’alliages sur la réponse optique de tels systèmes.
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Resumen

La aparición de resonancias de plasmón de superficie localizado (LSPR de sus siglas en in-

glés) en el espectro de absorción ha recibido gran atención en la investigación básica de las

propiedades de estructuras nanométricas compuestas de metales nobles. En esta tesis estudi-

amos diferentes aspectos de las LSPRs en agregados de metales nobles de tamaño intermedio.

En particular, para obtener una perspectiva amplia sobre la generación y propiedades de las

LSPRs en estos sistemas, usaremos el formalismo ab-initio basado en la Teoría del Funcional

de la Densidad en tiempo real (RT-TDDFT), pero también métodos basados en el electromag-

netismo clásico. Así, compararemos de manera sistemática y detallada ambas prescripciones,

resaltando y cuantificando las limitaciones del electromagnetismo clásico cuando se aplica

a sistemas en los que su tamaño hace emerger fenómenos típicamente cuánticos. A su vez,

estudiaremos como las diferencias entre excitaciones colectivas (plasmónicas) y aquellas que

involucran a electrones d localizados, así como su interrelación, se manifiestan en la densidad

de carga inducida representada espacialmente. Tal densidad de carga se obtendrá a partir de

la transformada de Fourier de la densidad de carga inducida por una perturbación tipo delta

de Dirac en t = 0. Finalmente, en esta tesis analizaremos agregados de metales nobles encap-

sulado por ligandos. En concreto, motivados por recientes experimentos, el estudio TDDFT

de Au-Cu nanoaleaciones en el rango de tamaños del orden de 2 nm permite profundizar en

los efectos debidos a la composición de la aleación en las propiedades de respuesta óptica de

estos sistemas.
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L’intérêt de la recherche fondamentale pour les fragments nanométriques de métaux nobles

est principalement dû à la résonnance localisée des plasmons de surface (localized surface-

plasmon resonance, LSPR) dans l’absorption optique. Les LSPRs apparaissent dans le spectre

d’absorbance optique de nanoparticules de métaux nobles comme les caractéristiques spec-

trales dominantes, larges et lisses, dans les domaines du visible et de l’ultraviolet. La LSPR

est utilisée dans de nombreux domaines de recherche en biologie et en chimie, et est la base

de certaines nouvelles technologies en optique, électronique ou médecine, pour la thérapie

comme pour le diagnostic [1–6].

Les études théoriques sur les LSPRs des nanoparticules sont effectuées en utilisant différents

niveaux de théorie, en fonction de la taille des nanoparticules. En particulier, la transi-

tion à partir des nanoparticules de grand taille, avec des bandes électroniques et des spec-

tres optiques lisses, vers des clusters de petite taille et se comportant comme des molécules

(dis molecule-like), avec des états électroniques discrets dans le spectres, reflète la nature

quantique des clusters [7–9]. De plus, dans certains métaux nobles, Au par exemple, nous

obersvons le phénomène d’émergence de LSPR dans cette gamme de taille, appelée gamme

de taille intermédiaire. Ce sont ces clusters de métaux nobles de taille intermédiaire qui ont

été principalement étudiés dans ce travail de thèse.

Différentes communautés, ayant différents intérêts et contextes, ont travaillé sur la réponse

optique de particules de métaux nobles de taille intermédiaire. En particulier, la communauté

de la plasmonique, très active, a utilisé des approches basées sur les théories électromagné-

tiques. Toutefois, avec la miniaturisation progressive des objets pouvant être produits, ma-

nipulés et utilisés, il est de plus en plus important d’ajouter des corrections quantiques à la

http://www.university.com
http://www.university.com
http://department.university.com
http://department.university.com
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description purement classique. Cependant, des études précises des limites et problèmes liés

à ces méthodes ne sont que rarement disponibles.

D’un autre côté, la description quantique de clusters de métaux nobles de taille intermédiaire a

été développée en utilisant principalement la théorie de la fonctionnelle de la densité (density-

functional theory, DFT), à la fois statique et dépendant du temps. En pratique, les calculs

de la théorie fonctionnelle de densité dépendant du temps (time– dependent DFT, TDDFT)

contiennent nécessairement des approximations, notamment les différentes fonctionnelles ou

kernels d’échange et corrélation. De plus, de nombreux effets sont soit complètement négligés

(comme souvent la température), soit approximativement prises en compte (la structure de

la surface/interface par exemple).

Cette thèse est consacrée à la LSPR, et comprend différents aspects de la recherche actuelle

sur les interactions des ondes électromagnétiques avec des clusters de métaux nobles à des

échelles de taille atomique.

L’étude des propriétés optiques de clusters de métaux nobles de taille intermédiaire est

ici effectuée en utilisant deux méthodes : la méthode ab initio, et l’approche classique de

l’électromagnétique, afin d’obtenir une plus large perspective sur l’utilisation de ces différentes

méthodologies. Les calculs ab initio sont effectués en TDDFT en temps réel (real-time TDDFT,

RT-TDDFT) dans le régime de réponse linéaire, alors que les calculs électromagnétiques clas-

siques sont effectués pour différentes descriptions de la permittivité des métaux.

L’un des objectifs de cette thèse est d’explorer les avantages et les limites de la méthode op-

tique classique pour expliquer les propriétés optiques de clusters de métaux nobles de taille

intermédiaire, en comparant systématiquement cette méthode aux approches de TDDFT ab

initio. Pour cela, les structures atomistiques doivent être remplacées par des géométries équiv-

alentes dans les calculs optiques classiques. Nous avons donc développé un modèle simple

et intuitif (à la fois des formes et des dimensions) afin de permettre l’équivalence entre les

structures atomistiques de dimensions latérales sub-nanométriques et les géométries corre-

spondantes pour les calculs électromagnétiques.

Pour représenter au mieux la terminaison correspendant à un seul atome des bâtonnets atom-

istiques, une géométrie en « cigare » est choisie pour les régions métalliques dans les calculs

électromagnétiques. La densité électronique dans les cigares est définie comme étant iden-

tique à la densité des électrons s moyenne dans le système infini, et le volume du cigare est fixé

de telle sorte que le nombre d’électrons à l’intérieur soit le même que le nombre d’électrons

s dans les structures atomistiques. Enfin, le rapport d’aspect (RA) du cigare est également

déterminé de façon identique à celui du système atomistique.
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Les spectres d’absorption de différents clusters d’Au et d’Ag de tailles intermédiaires sont ainsi

calculés par TDDFT ab initio et par la théorie électromagnétique. Les calculs électromagné-

tiques sont effectués à la fois sur les descriptions locales et non locales (modèle hydrody-

namique) pour la permittivité des métaux. La comparaison des spectres d’absorption calculés

avec ces deux méthodes révèle les observations intéressantes suivantes :

• Comme on le sait, pour les systèmes à RA élevé, le comportement de l’absorption de

Au et Ag est similaire : apparition d’une LSPR forte et bien définie dans l’infrarouge.

En effet, dans les deux cas (Ag et Au), pour un RA élevé, la LSPR apparaît bien en

dessous du début de la transition interbande. La comparaison systématique montre

que, pour les structures en bâtonnets d’Ag avec un RA > 5 et d’Au avec un RA ' 8

(dont la réponse est dominée par la LSPR), la position spectrale de la LSPR ainsi que

les forces d’absorption calculées en TDDFT et par les approches électromagnétiques

sont en excellent accord, même si les systèmes possèdent une dimension latérale sub-

nanométrique, manifestant une inhomogénéité atomistique.

• La comparaison avec les prédictions ab initio s’améliore encore lorsque la section effi-

cace d’absorption électromagnétique est calculée en utilisant la permittivité hydrody-

namique non locale du métal, sauf pour les chaînes atomiques linéaires, où les calculs

optiques locaux semblent meilleurs.

• Lorsque le RA des systèmes est réduit, l’accord entre la TDDFT et les calculs électromag-

nétiques commence à se dégrader de manière significative. Cette dégradation semble

être due au décalage vers le bleu de la LSPR avec la diminution du RA, ce qui provoque

le couplage entre la LSPR et les transitions interbandes. Ce couplage est plus visible

dans l’Au que dans l’Ag, en raison du plus faible seuil d’énergie des transitions inter-

bandes dans l’Au.

• Dans les systèmes en bâtonnets, à mesure que le RA diminue, les calculs de TDDFT

montrent le couplage entre la LSPR et les transitions interbandes lorsque les LSPRs

sont fragmentées. Comme le début des transitions interbandes ne dépend pas de la

taille des clusters [10], le couplage de la LSPR et des transitions interbandes est prin-

cipalement régi par la position spectrale RA-dépendante de la LSPR. Ce couplage n’est

pas capté par les calculs électromagnétiques non locaux. Par conséquent, dans les bâ-

tonnets d’Au et d’Ag, c’est principalement la forme (c’est-à-dire le RA) qui détermine le

couplage de la LSPR et des transitions interbandes, et donc l’accord entre les approches

électromagnétiques non locales et la TDDFT.

En conclusion, nous avons comparé les méthodes optiques classiques, locales et non locale,

et la méthode de la mécanique quantique ab initio pour calculer les positions spectrales et les

forces des LSPR dans des systèmes allongés de taille quantique préservant le rapport d’aspect

et le nombre d’électrons Drude (ou s). La comparaison montre une similatité remarquable
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entre ces deux approches lorsque la LSPR est largement découplée des transitions interban-

des. C’est le cas pour les bâtonnets d’Ag de RA > 5 et les bâtonnets d’Au de RA ' 8. De plus,

nous pouvons conclure que c’est la forme qui détermine la qualité de cette similarité, et non

la taille globale (c’est-à-dire le nombre d’atomes).

Par la suite, nous avons comparé la dépendance des LSPRs au rapport d’aspect, calculé par

des approches classiques, avec les calculs ab initio correspondants dans différentes struc-

tures atomiques d’Ag et d’Au (bâtonnets, chaînes atomiques et clusters icosaédriques). Cette

comparaison est particulièrement intéressante. En passant de structures minces (chaînes) à

épaisses (bâtonnets) pour le même RA, l’énergie relative de la LSPR excitée selon l’axe lon-

gitudinal des systèmes augmente. Cette tendance d’augmentation de l’énergie de la LSPR

lorsque la taille augmente n’est observée que dans les calculs ab initio pour les systèmes al-

longés, alors que les calculs optiques non locaux classiques montrent le comportement connu

opposé : augmentation de l’énergie de la LSPR avec la diminution de la taille absolue du sys-

tème. Ainsi, bien que l’optique classique obtienne les mêmes positions et forces spectrales des

LSPRs dans des systèmes allongés de taille quantique, de subtils effets de mécanique quan-

tique modifient le comportement classique de la LSPR en fonction de la taille du système.

Dans les chaînes monoatomiques d’Ag, les LSPRs se révèlent exemptes de contamination de

transition d, même pour des chaînes de 6 atomes seulement. En revanche, les spectres TDDFT

pour des chaînes d’Au indiquent que les excitations collectives quasi-unidimensionnelles ne

sont pas bien résolues pour des chaînes ayant un nombre d’atomes inférieur à douze. Cepen-

dant, lorsque le nombre d’atomes dans les chaînes d’Au diminue, on observe un transfert

du poids spectral du pic le plus bas en énergie vers différents pics fragmentés de plasmon.

Cela manifeste l’émergence d’un couplage de la LSPR avec des excitations d’électrons d; les

prédictions de l’optique classique décrivent une moyenne spectrale approximative des pics

fragmentés.

De plus, nous avons étudié les densités de charges induites aux fréquences de LSPR à partir

des calculs classiques et de TDDFT. Cela a permis d’étendre l’étude comparative des deux

approches théoriques différentes (électromagnétisme et TDDFT) au-delà des caractéristiques

de champ lointain et de vérifier la validité des résultats également dans le régime de champ

proche. En comparant les densités de charges induites des LSPRs intégrées selon les directions

perpendiculairs à l’axe du bâtonnet et en fonction de la longueur du bâtonnet, nous avons dé-

montré que les descriptions des charges induites aux énergies LSPR par la mécanique classique

et par la mécanique entièrement quantique concordent remarquablement avec les systèmes

allongés d’Ag. Ceci nous a permis de conclure que, en raison du haut caractère plasmonique

des structures allongées, elles supportent des LSPRs collectives bien définies (à la fois comme

modes de surface dans les bâtonnets, et comme modes collectifs quasi-unidimensionnels dans

les chaînes), exempt de contamination par des excitations d’électron-trou.
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Pour une structure moins allongée (plus compacte) d’Ag19, où la haute fréquence LSPR est

visible dans son spectre d’absorption ( 3 eV), la même comparaison des densités de charges

induites à la LSPR entre les approches électromagnétique et TDDFT montre que les transitions

d’électrons d jouent un rôle clé dans la réponse optique. En effet, dans les clusters compacts

de métaux nobles, les charges induites calculées par TDDFT se propagent significativement le

long de la longueur du bâtonnet vers son plan médian. Ce résultat est en désaccord complet

avec la prédiction électromagnétique, même si les spectres calculés avec les deux méthodes

(TDDFT et optique non locale) présentent une ressemblance surprenante.

Suite à la divergence entre les prévisions obtenues par TDDFT et l’électromagnétisme sur les

densités de charge induites à la LSPR dans un cluster compact d’Ag19, une vérification de la

qualité des calculs ab initio utilisant la fonction PBE AGGA est effectuée pour des bâtonnets

de différentes longueurs, en comparant avec une fonctionnelle d’échange et de corrélation

hybride corrigée à longue portée, LC-M06L. Cette fonctionnelle est plus appropriée pour le

traitement des excitations d’électrons d et fournit des spectres précis pour les petits clusters

d’Ag. Malheureusement, son utilisation nécessite également un effort numérique beaucoup

plus important, par comparaison avec les simples fonctionnelles GGA ou LDA. Cette analyse

nous a permis de conclure que, pour des systèmes allongés (comme des bâtonnets d’Ag67), les

spectres obtenus à partir des calculs TDDFT-PBE et ceux obtenus en utilisant LC-M06L ne sont

pas différents. En revanche, pour des clusters compacts comme Ag19, ils sont complètement

différents. Ainsi, pour les clusters compacts comme Ag19, les calculs TDDFT-PBE ne sont pas

fiables et la correspondance spectrale entre les résultats classiques et entièrement quantiques

est en partie une coïncidence. Ils ne parviennent pas à décrire les structures dans lesquelles

les LSPRs et les électrons d se couplent fortement. Par conséquent, dans le traitement ab

initio de ces systèmes, il est nécessaire d’avoir une meilleure description de l’échange et de la

corrélation que les fonctionnelles AGGA.

La distribution spatiale du champ électrique induit, ou la densité de charge induite, fournit un

aperçu plus profond d’une excitation optique donnée. Dans les approches électromagnétiques,

les calculs sont généralement effectués dans le domaine fréquentiel, et le champ électrique

induit (et donc la densité induite) à une énergie donnée peut être calculé. En RT-TDDFT, la

réponse optique est calculée dans le domaine temporel, et la densité de charge induite cor-

respondant à une excitation optique à une énergie donnée n’est pas facilement disponible.

Cependant, la plupart des simulations RT-TDDFT utilisent une perturbation δ-kick. Celle-ci

produit une densité de charge induite dépendant du temps qui est la superposition des den-

sités induites qui correspondent à toutes les excitations qui apparaissent dans le spectre.

En effectuant la transformée de Fourier résolue spatialement de la densité induite dépendant
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du temps obtenue à partir d’une simulation RT-TDDFT, nous avons récupéré le profil spatial

de la densité induite à n’importe quelle énergie d’intérêt donnée. Nous avons discuté des

différences entre les excitations plasmoniques collectives et les excitations impliquant des

électrons d, ainsi que l’interaction entre plasmon et électrons d dans le comportement spatial

des modes correspondant respectivement à ces excitations.

- Une comparaison de la densité induite par laser à l’énergie LSPR avec la densité induite

par un champ électrostatique montre le criblage dynamique par les électrons d. Nous

sommes arrivés à la conclusion générale que pour la LSPR dipolaire, les contributions

principales des modes de la densité induite viennent de la région de surface du cluster.

En revanche, les électrons d répondent au champ généré par cette contribution de

surface avec la même fréquence LSPR et une oscillation déphasée par π/2.

- En utilisant les densités transformées par la transformée de Fourier, nous sommes en

mesure d’étudier les contributions spatiales à des caractéristiques individuelles dans

le spectre d’absorption. Par exemple, dans un cluster plus complexe protégé par un

ligand, Ag29P4S24C144H108, la transformée de Fourier résolue spatialement de la den-

sité induite dépendant du temps révèle que les excitations à basse énergie sont plus

confinées au noyau d’Ag du composé que l’excitation forte à haute énergie, dont la

contribution principale vient des anneaux benzéniques des ligands environnants.

Une autre partie du travail effectué dans cette thèse est consacrée à la compréhension de

l’absorption optique dans une catégorie particulière de clusters d’Au et de Cu d’environ 1,8

nm. Des expériences récentes sur des clusters de type Au144(SR)60 ont démontré l’émergence

d’un pic d’absorption à 550 nm (2,25 eV) lors de l’ajout de cuivre aux échantillons d’Au pur;

dans certains cas, un seul atome de Cu semble avoir cet effett [11, 12]. Cette découverte est

intéressante car, à cette taille, les clusters nus d’Au et de Cu (par exemple Au147Ih) ne présen-

tent pas de fortes spécificités d’absorption dans les spectres.

Pour tenter d’expliquer ces résultats, des calculs ab initio des nano-alliages de type

Au(144,145)−xCux(SR)60 ont également été réalisés par Malola et al. [13], qui affirmaient que

« Copper Induces a Core Plasmon in Intermetallic Au(144,145)−xCux(SR)60 Nanoclusters ». Pour

mieux comprendre et vérifier cette affirmation, nous avons réalisé des calculs ab initio simi-

laires sur ces clusters. Cette étude ab initio minutieuse et détaillée présente des idées subtiles

sur les effets de l’alliage ainsi que l’émergence de LSPRs dans les clusters Au(147)−xCux nus et

les clusters d’Au(144,145)−xCux(SR)60 recouverts de ligands.

Un certain nombre de situations différentes sont considérées : aussi bien la relaxation à l’état

fondamental des structures (LDA & PBE), que le choix du groupement tronqué restant des

ligands thiolate (R = H, & R = CH3), ou encore les différences subtiles de symétrie (ou

géométrie) de l’Au144(SR)60. Nous avons montré que l’addition de cuivre n’induit pas le
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développement de résonance proéminente, plasmonique ou autre. Les principaux change-

ments sont faibles et consistent principalement en (a) la suppression de l’intensité spectrale

dans la gamme comprise entre 2,0 et 3,5 eV (620 à 350 nm), et (b) un décalage vers le

rouge des caractéristiques spectrales les plus basses. De plus, nous avons démontré que les

changements faibles mais visibles liés à l’insertion d’un unique atome de cuivre dans la lacune

centrale de l’Au144(SR)60 pur sont presque entièrement dus à l’effet géométrique de l’insertion

du cuivre et non à la différence chimique entre le Cu et l’Au.

Les résultats ne dépendent que très peu des détails du modèle structurel, de la nature du

groupement « rest » (de repos) utilisé pour le ligand ou des approximations utilisées dans

les calculs. Ceci permet de conclure de façon générale que l’alliage avec le cuivre ne crée pas

de résonances plasmoniques dans les clusters d’or dans cette gamme de taille (autour de 1,8

nm) où les spectres ne montrent pas encore de LSPR claire. Ces résultats signifient que les

expériences dans lesquelles le développement d’un pic de type LSPR a été observé ne peu-

vent pas être expliquées par l’hypothèse que l’insertion de cuivre modifie la réponse optique

en induisant une résonance plasmonique. D’autres hypothèses devront être explorées afin

d’obtenir une compréhension fondamentale des effets mis en jeu dans les expériences.
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Chapter 1

General Introduction

Noble metals are undoubtedly an indelible part of the history of human civilization. The

plethora of their contributions to the civilization ranges from their uses as ‘the’ materials for

coinage, jeweleries, medallions, to their effervescent uses in nanometric pieces, in present day

science, which is the context of this thesis. The physical properties of noble metal nanoparti-

cles differ from bulk metallic properties in many respects. In this thesis, we study the optical

properties in noble metal particles having nanometric and subnanometric dimensions.

1.1 Historical Introduction

Historically, noble-metal nanoparticles, mostly gold, were employed as colouring agents. An

outstanding example of such colouring is the Lycurgus cup which dates from probably the

4th century AD and is shown today in the British Museum. The presence of gold and silver

nanoparticles, typically of the order of 50 to 100 nm, endows the glass with a surprising

dichroism: in reflection, the cup appears green, while when lighted from behind, it appears

red [14]. In some of the medieval brilliantly coloured stained-glass church windows, noble

metal nanoparticles are likewise at play.

Polychroism of Colloidal Gold Nanoparticles. The physics behind the colour of a substance

is the absorption and re-emission of light by the material of that substance. The absorption

and re-emission of light depend on its wavelength. In bulk form gold and copper have low

reflectivity at short wavelengths, whereas yellow and red are preferentially reflected, making

them appear in those colours. Silver has good reflectivity in the visible that does not vary

with wavelength, and therefore appears very close to white. However, in nanometric clusters

and nanoparticles absorption depends of several parameters, namely, size, shape, chemical

composition & configuration, and the nature of the surrounding environment. Thus the same

noble metal can give rise to different colours. Ranging from ruby red to blues to black and

finally to clear and colorless, nanoparticles of gold in solutions may exhibit a wide range of
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colors. Also, gold can be colored blue, brown, and black, by creating surface oxide layers

using some metal, like iron. A collection of blue gold "Hearts" is presented by jeweler Ludwig

Muller of Switzerland [15]. Although these colouring effects of noble metals were known

since ages the real reasons behind those were not sought for until the 19th century.

It was Michael Faraday who accidentally created a ruby red solution while mounting pieces

of gold leaf onto microscope slides in his laboratory at the Royal Institution. He later de-

termined the composition of the ‘ruby’ gold [16] which was sought for long time. In 1898,

Richard Adolf Zsigmondy prepared the first colloidal gold in diluted solution [17]. The rig-

orous physical understanding of the properties of metal nanoparticles started later on in the

20th century, based on classical electrodynamics. Building on the works of L. Lorenz and J. C.

M. Garnett, Gustav Mie published in 1908 his famous article [18] “Beiträge zur Optik trüber

Medien, speziell colloidaler Metallösungen” (“Contribution to the optics of turbid media, par-

ticularly of colloidal metal solutions”) in Annalen der Physik. Using classical electrodynamics,

i.e., the solutions of Maxwell’s equations, his seminal work calculates the scattering of an

electromagnetic plane wave by a spherical metal particle. It became so influential that even

today, the (localized) surface plasmon, the most prominent optical phenomenon observed in

metallic nanoparticles, is often referred as Mie plasmon.

1.2 Application of Surface Plasmon and Localized Sur-

face Plasmon

The panorama of the present-day use of noble-metal nanoparticles and clusters comprises the

fields of medicine, biological researches, and physical-chemistry-based applications. Noble-

metal nanoparticles and clusters are preferred for these applications because of their chem-

ical inertness and the ability to support surface plasmon resonances (SPRs) in the visible,

in contrast to most of the more reactive simple-metal clusters, where LSPRs occur in the

near-infrared. In addition, in nanometric-size noble-metal clusters, localized surface-plasmon

resonaces (LSPRs) give rise to orders-of-magnitude enhancement of electromagnetic fields,

concentrating energy around them into nanometric or even sub-nanometric regions. This

energy can be used for thermal, catalytic and radiative applications. The heat generated by

highly confined electromagnetic energy at LSPR in spherical gold nanoshells are reported to

be used in cancer therapy (photothermal ablation therapy [PTA]), in order to ablate tumor

cells [19]. Gold nanoparticles and clusters are equally used in several other biomolecular ap-

plications in specific fields which include bioconjugation chemistry [20], protein tagging [21],

biomolecule labeling [22], inhibition of HIV fusion [23], growth inhibition of bacteria [24],

etc.
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Using electron beam lithography and atomic force microscopy, plasmonic arrays of large gold

nanoparticles have been reported to be capable of guiding and controlling highly confined

electromagnetic energy [25]. These nanometric plasmon waveguides can be used to build

nanoscale optical devices of lateral sizes well below the diffraction limit [26, 27]. Noble-

metal nanoparticles of varying sizes have been also reported to enhance the performances of

solar cells [28–30]. A field of extraordinary activity, governed by surface-plasmon resonances,

is nanoplasmonics. It’s applications, nanometric antennas, apply the coupling between light

and nanometric metal structures. Here, surface plasmons are of paramount importance. Con-

nected with nanoplasmonics are the realized and envisioned metamaterials in which optical

resonators are distributed in such a way as to produce a novel material with novel optical

properties exciting new prospects for manipulating light [31].

In molecular level spectroscopic techniques, chemical detections can be achieved through

the detailed information on the vibrational levels of the molecules, obtained from Raman

signals which depend of the strength of the local electromagnetic field. Extremely precise

detection of single or a few molecules can be achieved, when the field strength is million-

fold enhanced by the localized SPRs in sub-nanometric regions, as done in surface enhanced

Raman spectroscopy (SERS). This technology has been used in understanding the complex

environment inside living cells [32], and also applied to other chemical detections [33, 34].

The LSPR frequencies of nanoparticles depend on the frequency dependent dielectric function

of the noble-metal, the size and shape of the nanoparticles, and the dielectric function of the

surroundings of the particles. Thus, monitoring the spectral changes, and controlling the size

and shape of the nanoparticles, allow to detect the changes in the surrounding medium in

biomolecular sensing and labeling [35–37].

Finally, it is well known that gold clusters and nanoparticles are catalytically active [38],

unlike the rather inert bulk material. In addition to the direct catalytic effect, photocatalysis

is also possible with noble metal clusters. Several mechanisms are presently discussed for

this possibility [39–41]. Most of these concepts rely on the excitation of electron-hole pairs

using the SPR, and their subsequent transfer to a substrate like, e.g., TiO2 [42, 43]. Direct

mechanisms, in which the excitation of an SPR aids the catalytic processes directly on the

nanoparticle are likewise envisaged. In general, the photocatalytic activity is due to a highly

complex combination of different mechanisms and far from being completely understood. In

the study of catalytic mechanisms, and in general of the nanoparticles involved, spectroscopic

measurements are a main source of information. Thus even for the nanoparticles which are

not used for their optical properties, the knowledge of their optical response contributes im-

portant pieces of information to their study.
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1.3 Bibliography and State of The Art

Localized surface-plasmon resonance (LSPR) in noble-metal clusters is the particular optical

phenomenon that this thesis is centered around. In order to theoretically understand the

effects of different physical and chemical phenomena on it, both the classical electrodynamics

and the ab initio quantum mechanical approaches are used. The term ‘plasmon’ in general

refers to collective oscillation of interacting mobile charges. Though our focus in this thesis

is LSPRs, in order to contextualize, it is customary to briefly talk about different light-matter

interactions that can excite collective oscillations in metallic systems.

1.3.1 Plasmons

Depending on different lenghth scales of the systems, and on the mode of excitations, different

kind of plasmons are observed, namely, bulk plasmon polaritons, longitudinal bulk plasmons,

surface plasmons, and localized surface plasmons. Collective excitation in a plasma, i.e., a

system of mobile charged particles, were first investigated by Langmuir and Tonks [44–46],

in strongly ionized gases at low pressure. The frequency of oscillations of the electrons in the

plasma, about their equilibrium positions, were found by Langmuir to be in accordance with

the ‘plasma frequency’ proposed by Drude in his electromagnetic theory of metals [47].

In metals, experimental observation of plasmon occurred in electron energy loss experiments,

performed by Ruthemann [48] in 1942. The explanation of these experiments and many other

inelastic electron scattering experiments [49,50], came in the 1950s by the seminal works of

Bohm and Pines, based on a rigorous many–body theoretical approach [51–53]. Their theory

suggested that the energy losses experienced by fast electrons while passing through metals

are due to the excitation of collective oscillations of the valence electrons in metals, similarly

as observed in plasmas by Langmuir. They termed the basic unit of energy associated with this

collective excitation as plasmon : ~ωp = ~
√

(4πnee2/me), where ne is the density of valence

electrons and me is the mass of an electron [54].

While investigating the impact of the boundaries in metallic thin films on the collective ex-

citations described by Bohm & Pines, in 1957, R. H. Ritchie found that a new excitation can

appear at a lower energy, corresponding to the collective oscillation at the boundary of the

surface [55]. The experimental confirmation of this theoretical finding was made by J. C. Pow-

ell and J. B. Swan in characteristic electron energy-loss experiments on Al [56]. The name

‘surface plasmon’ was introduced by E. A, Stern and R. A. Ferrell for the quantum of these sur-

face plasma oscillations at the interface between plasma and vacuum [57], the frequency of

which they found to be ωp/
√
2, in accordance with Ritchie’s frequency (in nonretarded limit).
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In Ritchie’s theory, the surface plasmon frequency shows a dispersive nature having a depen-

dence on the wave vector. Following these findings, the coupling of electromagnetic radiation

with the surface plasmons have been investigated particularly in metal films [58–62]. For the

nonretarded surface plasmon, different theoretical approaches were used to understand the

dispersion. Kanazawa was the first to obtain a quantum mechanical derivation of the disper-

sion relation using Bohm-Pines random-phase approximation (RPA), which simultaneously

accounted for the bulk plasma oscillation [63]. Following this, in 1963, Ritchie proposed the

“hydrodynamic electron theory” [64] based on Bloch’s work [65], in order to explain plasmon

dispersion in a simple manner. He demonstrated that the dispersion of plasmons (both vol-

ume and bulk) depends on the characteristic velocity (β) of propagation of the oscillations in

the plasma. Comparing with the theory of Bohm and Pines, he found this velocity to be equal

to vF
√

3/5, where vF is the Fermi velocity. While Ritchie’s approach was semi-classical, an

RPA-based fully quantum mechanical approach for getting the dispersion of surface plasmons

was done by Beck [66].

1.3.2 Clusters and Localized Surface Plasmons

A cluster is an aggregate of a number of objects. In material science, clusters are nanometric

or subnanometric multi-atom particles which are composed of a certain number of atoms,

ranging from two to a few multiples of 107. Thus, a cluster is intermediate between an atom

(or molecule) and the bulk [67]. Therefore, knowing the properties of clusters helps to know

the transition of the atomistic properties of a material to its bulk properties with increasing

size, or in other words, the gradual development of the physics from quantum mechanical

regime to classical regime.

In describing the optical properties of clusters, the Mie theory appeared to be inadequate

due to its inability to give physical insights into the material properties concerning the mo-

tion of the electrons inside the metal particles or of discrete eigenstates. In 1960s, while

the experimental and theoretical investigations on surface and bulk plasmons in metallic thin

films attracted most of the research attention in material science, the development of cluster

science also began mostly towards the direction of understanding the interaction of elec-

tromagnetic fields with small metal particles beyond Mie’s theory. The variation of electric

polarizability and thus absorption with varying frequency of electromagnetic fields in ‘minute’

metallic particles was studied by Gor’kov and Éliashberg [68]. Excitation of plasma oscillation

due to fast electrons passing through spherical electron gas was theoretically investigated by

Fujimoto and Komaki [69]. Surface plasma resonances in spherical particles of silver and

gold having sizes . 100 nm were first experimentally observed by Kreibig and Zacharias in

electron energy loss experiment [70],and thus localized surface-plasmon resonance (LSPR)

started to gain researchers’ interest. Efforts were made to modify Mie theory and also to go
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beyond it, by considering the effect of spatial dispersion on scattering and absorption in small

metal spheres [71–78]. Many of these works considered the hydrodynamic description of

conduction band electrons, and brought into notice the importance of longitudinal electric

field modes in properly describing the optical properties of small metallic systems.

Cluster science started to advance remarkably after the experimental findings of Knight et

al. They measured alkali metal clusters having < 100 atoms and found abundance of clusters

having number of atoms (and thus, valence electrons), N = 8, 20, 40, 58, and 92, that follow

spherical shell-closing [79], a purely quantum-mechanical effect. At the same time, quantum

mechanical calculation of the absorption in spherical metal clusters, based on random-phase-

approximation (RPA) for the density response function, was proposed by W. Ekardt using a

jellium description for the valence band electrons [80]. Using RPA or time-dependent lo-

cal density approximation (TDLDA), the jellium model has become significantly successful in

describing collective optical responses in clusters of simple metals [81–83] and noble met-

als [84,85], consisting of a few to hundreds of atoms and also was applied to systems having

thousands of atoms [86] to discover electronic shell structures in them.

1.3.3 Realization of LSPR In Different Size Ranges

In present-day scenario, clusters are sub-categorized depending on their size, physical effects

on them, and also on the requirements of suitable theoretical approaches in order to describe

those effects properly. The specialty that physically makes the clusters behave differently than

bulk is the increased surface-to-volume ratio. As we go down in size, quantum mechanical

effects come into play, significantly modifying the optical responses in them.

1.3.3.a Different Sizes Manifest Different Physical Effects

Large noble-metal clusters, having sizes & 10nm, can be considered as charge density dis-

tributions, optically characterized by bulk dielectric functions, and confined within abrupt

boundaries which are separated from the surrounding dielectric. Localized surface-plasmon

resonances (LSPR) in these large clusters are then understood as collective optical response of

the charge densities, giving rise to smooth broadened peak in their absorption spectra, as can

theoretically be found within the framework of classical electrodynamics [87–89]. The effects

of size, shape and alloying on noble-metal clusters in this size limit are well studied and under-

stood using different classical models, e.g., discrete-dipole approximation [90,91], within the

electromagnetics framework. The LSPR at and above this size and within the dipolar size limit

shows no size-dependent shift in spectral position. However, it can shift depending on the ge-

ometrical shape. For instance, LSPR is red-shifted in an ellipsoidal geometry as compared to

its appearance in a spherical geometry having the same volume. The strong red-shift with in-

creasing aspect ratio of elongated structures is well captured by electromagnetics calculations.
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Very small clusters, made up of a few or a few tens of noble metal atoms, are molecule-

like systems and thus, have atomistic resolution which does not permit to consider them as

smooth homogeneous charge distributions within well-defined abrupt classical boundaries.

They can only be properly comprehended as many electron system bound by the ionic poten-

tial, thus having discrete electronic structure describable by quantum mechanics. Therefore,

the absorption spectra of these small clusters consist of discrete peaks, characterizing indi-

vidual transitions between different quantum-mechanical levels. Many of these peaks, or an

ensemble of them, are represented as reminiscent of the LSPR [92]. Theoretically, clusters of

this size range are treated using quantum-chemistry methods. Ab initio optical spectra of very

small clusters were first calculated in the framework of configuration interaction (CI) or, in

the linear response equation-of-motion coupled-cluster (EOM-CC) methods [93,94].

Intermediate-size noble-metal clusters are the ones whose size range falls in between the

size ranges of the large ones (& 10 nm) and the very small ones (having . 50 atoms). They

are of particular interest because the optical absorption in them, on one hand can still show

the reminiscence of the collective classical charge density oscillation: the signature of classical

dipolar LSPR, while on the other hand, the atomic structure and quantum mechanical effects

start to influence their absorption spectra. One of the interesting physical phenomena in the

intermediate-size clusters having size < 5 nm is the size dependence of the LSPR frequency.

In the case of noble-metal clusters in vacuum, a blue shift of the LSPR frequency is observed

with decreasing size [8, 9, 95–98], whereas in alkali-metal clusters a red shift [99, 100] is

observed for the same size effect. While classical local optics can still qualitatively describe

the plasmon (if any) in the absorption spectra of many of the clusters (specially of the al-

kali metals) falling in this size range, the proper explanation of the size dependence of the

surface plasmon in alkali- and noble-metal clusters (of this size-rang) is given by quantum

mechanics [101]. There are primarily two quantum effects that need to be taken into ac-

count, in order to properly understand the size-dependence of LSPR. These are the spill-out

of the electron density of the conduction s electrons, which invalidates the concept of abrupt

classical boundary for the cluster surface; and second, the reduced screening of the plasmon

at the surface of the noble-metal clusters, created by the d-electrons localized to the core of

the clusters. The presence and the interplay of these two counteracting quantum mechanical

effects produce the respective size dependence (red shift in alkali-metal clusters and blue shift

in noble-metal ones), because the surface region becomes more important when the size goes

down. Apart from the shift of the LSPR peak, the effect of decreasing the size also causes

fragmentation of the LSPR peak [102].

The optical spectra and in particular the presence and appearance of the LSPR depend

strongly on the coupling with the so-called interband transitions from the d-electrons. For
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compact (icosahedral/spherical) shapes, where the LSPR can occur in the visible, the cou-

pling between LSPR and interband transitions make the absorption spectrum of a gold cluster

entirely different from that of a silver cluster. This is because of the difference in the onset

of the interband transitions: ∼2eV in gold and ∼4eV in silver [10]. Due to this difference

the absorption spectra of silver clusters smaller than ∼150 atoms still show strong resonances

in the visible, whereas, for gold clusters of the same sizes, no LSPRs are observed in the

spectra [103].

The LSPR energies and, therefore, the degree of coupling with the interband transitions

can be strongly influenced by the geometrical shape of the intermediate-size clusters. The

strong red-shift of the LSPR energy, mentioned above for the large noble-metal clusters, also

occurs at this size-range. In elongated gold clusters, this red-shift can shift the LSPR energy

below the onset of the interband transitions, thus decoupling the LSPR from the interband

transitions. Consequently, the response of high-aspect-ratio gold clusters becomes similar to

that of the corresponding silver structures: appearance of a well-defined LSPR, almost at the

same energy in the infrared [104].

1.3.3.b Description of Intermediate-size Clusters

The properties of clusters depend on their surrounding and surface/interface structure. Over

the last decades, the synthesis and the characterization of very small clusters in gas phase

[105–107], and on rare-gas matrices [108] have been vastly reported in the literature. In

this thesis the focus is made on noble-metal clusters falling in the intermediate-size range. In

addition, small and intermediate-size noble-metal clusters are often wet-chemically synthe-

sized [109], which leads to atomically precise clusters stabilized by a shell of ligands. Re-

cently, the geometries of many of these clusters have been determined experimentally. Also,

the effects of alloying [11–13, 110, 111] on the optical properties have been studied, as well

as of shape [112,113], and of details of the ligand environment [114].

While significant advancements have been made in experimental findings [115], revealing

various novel observations on the optical properties of intermediate-size noble-metal clus-

ters [116], the complete theoretical understanding for many of those findings are yet not

achieved. The reason is that the clusters belonging to this size range have not been accessi-

ble to atomistic calculations until recently. Transition-based quantum mechanical calculations

(e.g., CI or EOM-CC) for these intermediate-size noble-metal clusters appear to be cumber-

some and computationally expensive, if not undoable. For this size range, ab initio time-

dependent density-functional theory (TDDFT) calculations are the methods of choice, and are

employed to give the best possible explanations of the experiments [117]. In these calcula-

tions, the interaction of the electrons with the ion cores is described either using the jellium

model [80, 85], pseudopotential description [118–122], or the projector augmented wave
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(PAW) method [123–126]. While calculations using jellium model are employable for noble-

metal clusters having a wide range of size (from 50 atoms to 5000 atoms), calculations using

pseudopotential descriptions and/or the PAW method are expensive and limited to clusters

having smaller size (≈ upto 500 noble-metal atoms). These TDDFT calculations for obtaining

the optical spectra are of two types: (i) real-time TDDFT (RT-TDDFT) calculations within the

linear response regime, and (ii) transition-based linear-response TDDFT (LR-TDDFT) calcula-

tions. While LR-TDDFT is advantageous as it gives directly the nature and origin of the optical

excitations in the spectrum, RT-TDDFT is preferred for being computational economic because

empty states need not be calculated.

In search of theoretical frameworks that can substitute the computationally demanding ab ini-

tio calculations, quantum-mechanics-aided classical nonlocal optics calculations have been re-

ported in the literature [127–129] in order to calculate the optical response of the intermediate-

size clusters. In addition, nonlocal optics calculations based on a hydrodynamic descrip-

tion [130–132] of the s-electrons have been reported in good agreement with ab initio cal-

culations, particularly in explaining experiments by taking into account quantum mechanical

tunneling effects [133,134].

1.4 On This Thesis

This thesis is a theoretical research work on understanding the optical phenomena in noble-

metal clusters, having nanometric and/or sub-nanometric dimensions, using ab initio and

classical simulations. The classical simulations are done within the electromagnetics frame-

work in frequency domain using the finite element method. The ab initio simulations are

performed using real-time TDDFT (RT-TDDFT) in a real space description. Following the

objectives, the organization of the thesis is described in this section.

1.4.1 Objectives

• In order to understand the optical behaviour of large (> 10nm in size) noble-metal clus-

ter, elctromagnetics-based theoretical approaches are widely used. For obtaining the

optical response in intermediate-size noble-metal clusters, ab initio TDDFT calculations

are well established as the methods of choice. As stated in 1.3.3.b, electromagnetics-

based classical nonlocal optics calculations are also used for intermediate-size noble-

metal clusters, as have been elctromagnetics-based theoretical approaches that take

into account the quantum mechanical effects phenomenologically. These calculations

aim to describe the intermediate-size range normally treated using TDDFT. But they

have not been sufficiently tested and verified, leaving a number of questions open, in

particular the following:
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- Up to what physical extent, the occurrence of LSPRs and their dependence on

shape and size, for intermediate-size noble-metal clusters, can be understood as

the dipolar LSPRs described within electromagnetics?

- What physical parameters determine and control the accuracy of this understand-

ing?

- The quantum mechanical effects, that arise from the atomistic inhomogeneity

and spill out of electron density, transitions from discrete and localized d-electron

states, are apparent in intermediate-size noble-metal clusters. Can the effects

of these on LSPR be recovered by the nonlocal corrections to the local classical

optics?

A substantial part of this thesis is devoted to respond to these questions by compar-

ing the performances of ab initio TDDFT-based and electromagnetics-based theoretical

approaches.

• The near-field characteristics of the LSPR are reflected in the spatial distribution of the

induced charges and fields in and around the system of interest. In RT-TDDFT calcula-

tions, the time–dependent induced density contains the contributions corresponding to

all the excitations (LSPR, interband transitions, and their coupling) present in the ab-

sorption spectrum. A part of this thesis is dedicated to explore the spatial character of

the modes of induced densities at different energies of interest. To this end, we perform

spatially resolved time-to-frequency-domain Fourier transform of the time–dependent

induced density obtained in RT-TDDFT calculations. In particular, the effect of dynamic

screening of the d-electrons on the LSPR, and the coupling between LSPR and interband

transitions are studied.

• Studies on the effects of alloying and ligands in bi-metallic ligand-protected clusters has

brought in surprising observations, many of which is yet not theoretically understood.

One of these observations is the appearance of strong plasmon-like features in the ab-

sorption spectra of Au(144,145)−xCux(SR)60 alloy clusters [11, 12], despite the absence

of plasmonic character in clusters of Au and Cu of the same size. A part of the thesis is

devoted to obtain theoretical insights into this particular phenomenon, by performing

TDDFT calculations.

1.4.2 Organization of the Thesis

The content of the thesis is organized in the following way, where the description of the theo-

retical methods precedes the presentation of the results. In the second chapter, a description

of different types of plasmons, and the realization of LSPR in local and nonlocal optics using

Maxwellian classical electrodynamics is discussed, accompanied by the specific techniques

used to incorporate them in the simulations. The third chapter consists of the discussion of
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ab initio density functional-based theories, the framework of linear response theory, and the

implementation of them in real-time simulations. The next three chapters present the work

done and the results obtained. The fourth chapter talks about the LSPRs in intermediate-size

noble-metal clusters (mainly of Ag and Au), in terms of electromagnetic absorptions, using

both classical and ab initio simulations. The dependence of LSPR on the size and the shape

of the clusters, and the manifestations of different quantum mechanical effects on LSPR are

analyzed, and the results are interpreted to assess the performances of different theoretical

approaches, in properly describing the optical responses in the corresponding systems. In

chapter five, using both the classical and ab initio approaches, the near-field characteristics

of the optical response in intermediate-size noble-metal clusters (of Ag and Au), at different

frequencies (mainly at LSPR) are investigated by studying the spatial behaviour of the charge

densities induced at corresponding frequencies. While chapters four and five are interrelated,

giving a comprehensive analysis of the optical response in clusters, from classical and ab initio

theoretical approaches, the sixth chapter is independent, in the sense that it addresses optical

absorptions in a specific type of bimetallic ligand-protected clusters, Au(144,145)−xCux(SR)60,

and deals with the ab initio investigations on understanding the dubious emergence of LSPR-

like features in their experimental absorption spectra. The general conclusions of the works

performed in this thesis and the perspectives are discussed in the seventh chapter.
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Chapter 2

Classical Approaches

In this chapter, optical response of metal clusters from classical electrodynamics point of view

is discussed. The most noticeable optical character of noble metal clusters is localized surface

plasmon resonances (LSPR). Realization of dipolar LSPR in classical electrodynamics and the

effect of dispersive dielectric constant on it within the hydrodynamic model are discussed

here.

2.1 The Framework of Classical Electrodynamics

Dipole approximation: Within the framework of classical electrodynamics optical excita-

tions are electromagnetic waves interacting with a charge distribution. For an isolated metal

clusters under plane wave illumination, the charge distribution is a localized one, within a

medium having a dielectric constant. As the dimension (d ∼ 3 nm) of this localized charge

distribution is (in general) orders of magnitude smaller than the wavelength (λ ∼ 400− 700

nm) of the electromagnetic wave, the electric field practically remains constant in space over

the charge distribution. Thus, the sole effect of the optical excitation is to induce an electric

dipole moment (p) across the charge distribution. All the higher order moments are negligibly

small to be discarded. In passing, it is worth mentioning that, if the isolated cluster is excited

differently other than using plane electromagnetic waves, for example by electron beams,

higher order electric moments do contribute in the optical response, causing hybridization of

multipolar plasmons [135].

Quasi-static limit: Of course, the electric field continues to oscillate in time, thus swapping

its polarization between plus and minus with the frequency of the electromagnetic wave:

E(r, t) = E0(r)e
−iωt. Within quasi-static approximation, it is assumed that all the tempo-

ral derivatives in the Maxwell’s equations are much smaller than the spacial ones. Thus, E

and H fields are decoupled, making the electrodymanics problem simpler, by allowing to

deal only with the E field within the electrostatic framework. One can do so because of the
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fact that, the spatial extent of the charge distribution (representing the isolated cluster), is

much smaller than the spatial extent over which the time–dependent variations of the fields

take place. Within quasi-static approximation, the induced dipole moment, therefore, suf-

fers no retardation effect and follows the same temporal dependence as of the electric field:

p(r, t) = p(r)e−iωt. Thus, as the temporal dependence does not couple with the spatial one,

one can get the dynamical response ( p(r, t) ) of the charge distribution due to the electro-

magnetic field, by knowing the static response:

p = ε0 εmed αE (2.1.1)

where, α is the static polarizibility. This is the quasi-static approximation, and the size limit

upto which this approximation is valid is called the quasi-static limit. In this thesis, as we are

dealing with clusters having sizes orders of magnitude smaller than the free space wavelength,

λ0, we are always within this limit.

2.1.1 Classical Description of LSPR

Localized surface plasmons are non-propagating excitation modes of nearly-free electrons in

metal clusters and nanoparticles. They are characterized by strong resonance peak (LSPR) in

the absorption spectrum which correspond to field amplification both inside and in the near-

field zone outside the particles. The free-space propagation of the electric plane wave can be

described as,

E0(r) = E0e
ik0·r, (2.1.2)

which can be expanded to give,

E0(r) = E0

(
1− ik0 · r+ · · ·

)
= E0

(
1− 2πi(k̂0 · r̂)

r

λ0
+ · · ·

)
. (2.1.3)

As, cluster dimension is much smaller than free-space wavelength, r � λ0, and all the terms

involving (k0 · r) can be discarded. Thus, within the quasi-static limit, one can calculate

the absorption cross-section of a cluster by calculating the electric fields inside and outside

the cluster, assuming that, the cluster is put in a homogeneous incident electrostatic field

E0. In doing so analytically, one often choses spherical or ellipsoidal geometry for describing

the cluster. The frequency dependence is given by the dielectric function ( ε(ω) ) which

characterize the optical properties of the cluster.

2.1.1.a Spherical geometry

The metal cluster is considered to be a spherical particle of radius a with dielectric function

ε(ω), and surrounded by a dielectric medium of dielectric constant εmed. The system is illu-

minated by a electric plane wave E(t) = ẑE0e
iωt, as shown in Fig.2.1. The field induces an
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a

FIGURE 2.1: Courtesy: Ref. [136]. Schematic representation of electromagnetic plane-wave
illumination on a system of metallic sphere (representing metallic cluster) in a dielectric

medium, in quasi-static limit.

oscillating dipole moment p(t) = peiωt which in turn radiates. The field at any point P due

to this oscillating dipole is given by [137],

E(r) =
1

4πε0εmed

{
k2(n̂× p)× n̂

eikr

r
+

[
3n̂(n̂ · p)− p

](
1

r3
− ik

r2

)}
, (2.1.4)

where, k = 2π/λ, n̂ is the direction of the point P, and r is the distance between the center of

the cluster and P. In the quasi-static limit, kr � 1, and we get,

E(near)(r) =
1

4πε0εmed

[
3n̂(n̂ · p)− p

]
1

r3
, (2.1.5)

where, p is the magnitude of the oscillating dipole moment, the expression of which in non-

retarded case is given by solving the Laplace’s equation for the system shown in Fig.2.1, as,

p = 4πε0εmed a
3 ε(ω)− εmed

ε(ω) + 2εmed
E0ẑ (2.1.6)

Comparing with eq. 2.1.1, we get the expression for the static dipole polarizability as,

α = 4π a3
ε(ω)− εmed

ε(ω) + 2εmed
(2.1.7)

The cross-sections for absorption and scattering corresponding to the field (eq. 2.1.5) gener-

ated by the induced oscillating dipole, can be computed through the corresponding Poynting

vector [138] as,

Cscatt(ω) =
k4

6π
|α(ω)|2 =

8π

3
k4 a6

∣∣∣∣ ε(ω)− εmed

ε(ω) + 2εmed

∣∣∣∣; (2.1.8)
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and, Cabs(ω) = k =α(ω) = 4πka3 =
{
ε(ω)− εmed

ε(ω) + 2εmed

}
. (2.1.9)

For spherical particles having dimension a � λ, the absorption cross-section (which scales

with a3) overrules the scattering cross-section (which scales with a6). The cross-section spec-

trum of LSPR is, therefore, given by the absorption cross-section (eq. 2.1.9). In order to

obtain the spectrum, the key quantity to calculate is the dipole polarizability α(ω). From the

expression of absorption cross-section eq. 2.1.9, it is apparent that the maximum absorption

takes place for the minimum of ε(ω) + 2εmed. If the imaginary part of ε(ω) varies slowly with

respect to frequency, then this condition for maximum absorption can be simplified to,

<{ε(ω)} = −2 εmed (2.1.10)

This is known as Fröhlich condition and the frequency at which it occurs is called the dipolar

LSPR frequency.

2.1.1.b Ellipsoidal geometry

For elongated nanoparticles and clusters, a reasonably good geometrical representation is an

ellipsoid. It is of particular interest for the fact that, one can have analytical expression for the

absorption within quasi-static approximation. An ellipsoid is defined by its equation of plane

as, (x/a1)2 + (y/a2)
2 + (z/a3)

2 = 1, where a1, a2, a3, are the semiaxes as shown in Fig.2.2.

The dipole polarizabilities along the principle axes (i = 1, 2, 3) are given by [138],

FIGURE 2.2: Schematic representation of an ellipsoid.

αi(ω) =
4

3
a1a2a3

ε(ω)− εmed

εmed + Li[ε(ω)− εmed]
, (2.1.11)

where, Li is a geometrical factor which satisfies
∑

i Li = 1, and is calculated as,

Li =
a1a2a3

2

∫ ∞
0

dq
1

(a2i + q)
√

(q + a21)(q + a22)(q + a23)
. (2.1.12)

The absorption cross-section then can be calculated using eq. 2.1.9.
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The analytical expressions discussed above are strictly valid for dipolar LSPR, i.e., when the

quasi-static approximation is valid. The general theory of scattering and absorption for spher-

ical particles of larger dimension (a ∼ λ or a > λ ) was developed by Mie [18] involving

rigorous electrodynamic approach. Of course, for particles having sizes within quasi-static

limit the Mie theory recovers the same expressions as discussed above.

2.1.2 Dielectric Function

As evident from the quasi-static expression of the dipole polarizability ( eq. 2.1.7 ), the elec-

tromagnetic response of the system is completely described by the dielectric function, ε(ω). It

is the frequency dependence of the dielectric function that characterizes the optical property

of a metals, by describing the response of the conduction and valence band electrons, while

interacting with an electromagnetic field. There are different models for describing the di-

electric function of a metal covering different levels of physical aspects.

Drude’s model. The simplest model for dielectric function came from Drude [47], from

his description of electronic conduction in metal. Drude’s model deals only with the nearly-

free conduction-band electrons of a metal and treats them as a plasma of free, noninteracting

electrons. A plasma of electrons is a gas of negatively charged particles characterized by their

mass me and density ne. Under the effect of an oscillating electric field, the plasma parti-

cles respond linearly with a collision frequency γ, which damps their motions. Solving the

equation of motion for the noninteracting electrons particles given as,

me
d2X

dt2
+meγ

dX

dt
= −eE, (2.1.13)

and relating their displacements ( X ) to the macroscopic polarization, the Drude’s dielectric

function is given as,

ε(ω) = 1−
ω2
p

ω2 + iγω
, (2.1.14)

where, ωp =
nee

2

meε0
is called the plasma frequency of metal. Using Drude’s model, the optical

properties of simple metals, like alkalies, are well explained over a wide range of frequencies.

2.1.2.a Lorentz–Drude model

The simplistic Drude’s model for the free electrons is inadequate to describe properly the opti-

cal response of noble metals like gold and silver. The reason is in gold and silver, the interband

transitions involving the localized d-electrons, which are close to the Fermi level, take place

in the visible. A comparison of real and imaginary part of the dielectric function for gold in

Drude’s model and from experimental observation [139] is shown in Fig.2.3. To take into
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account the polarization created by the d-electrons, a dielectric constant ε∞ is incorporated

into Drude’s model to give,

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
, (2.1.15)

where, usually, 1 < ε∞ < 10.

FIGURE 2.3: Courtesy: Ref. [136]. Comparions
of Drude’s dielectric function and experimen-
tal observation of Johnson and Christy [139],

for gold.

In order to have a physically insightful an-

alytical expression of the polarization cre-

ated by the d-electrons in noble metals, that

can account for the effects of the interband

transitions involving d-electrons, the motion

of the d-electrons are modeled by having

a number of Lorentz-oscillators in the dy-

namic equation. Assuming that the bind-

ing forces between the localized d-electrons

and the nucleus behave likewise as in a

spring, the contribution of these forces to

the equation of motion of the electronic sys-

tem is described by adding a number of

force terms having different characteristic

force constants, i.e., different characteristic

frequencies (ωis):

me
d2X

dt2
+meγ

dX

dt
+

k∑
i=1

meω
2
iX = −eE.

(2.1.16)
Solving this equation of motion, and relat-

ing the displacement ( X ) to the macro-

scopic polarization, the contribution from the ith Lorentz oscillator to the dielectric function

appears to be,

εi,Lor−osc(ω) =
fiω

2
p

ω2
i − (ω2 + iγiω)

, (2.1.17)

where, ωi and γi characterize the resonant behaviour of the ith Lorentz oscillator, which must

be taken into account for optical excitation at ωi. The resulting frequency dependent, analytic

form of the Lorentz-Drude dielectric function is thus given by consider the contributions of all

the Lorentz oscillators:

ε(ω) = 1−
ω2
p

ω2 + iγω
+

k∑
i=1

fiω
2
p

(ω2
i − ω2)− iγiω

. (2.1.18)
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There are also other models [140, 141] and extensions to the Lorentz-Drude model, in order

to better describe the electromagnetic response of the noble metals. In this thesis, we have

used a fitted [140] Lorentz-Drude dielectric function for gold and silver. The fitting give ac-

curate description of the bulk optical properties of gold and silver upto 5 eV, when compared

with experimental results of Johnson and Christy [139] .

Remark:

It is instructive to observe that, the absorption given by eq. 2.1.9 with the di-

electric function for a noble metal, given by eq. 2.1.18, does not show any size

dependence, except accounting for the strength of the absorption. All the spherical

particles of the same noble metal, that fall in the quasi-static size limit, give the

same frequency dependence in the strength/volume-normalized absorption spec-

trum. However, if the geometrical shape is changed, keeping the volume unaltered,

the corresponding effect on absorption is obtained. Thus, the aspect-ratio depen-

dence of the LSPR within quasi-static size limit is qualitatively well described using

the model dielectric functions ( eqs.2.1.14 & 2.1.18 ) discussed here. For the descrip-

tion of size-dependence of LSPR, one needs to consider spatially dispersive dielectric

function, discussed later in this chapter. The detailed discussion on the absolute size

dependence of LSPR is done in Chapter 4.
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2.2 Dispersion Relations of Different Types of Electro-

magnetic Modes

In order to better understand the optical properties of metal clusters, a brief descrip-

tion of different electromagnetic excitations in different length-scales of a metallic

system is given in this section. This concerns with three fundamental, yet physically

different types of oscillating modes of conduction band electrons in metal. They are:

• Surface plasmon polaritons (SPPs);

• Modes associated with localized surface plasmon resonances (LSPRs); and

• Bulk plasmons or bulk plasmon polaritons

2.2.1 Surface plasmon polariton

In the previous section, the classical point of view of LSPR in metal cluster is dis-

cussed as dipolar resonant modes that appear in the absorption spectrum. While

doing so, the optical characteristics of the cluster is treated as that of the bulk metal,

through the dielectric function. As the dielectric function does not take into account

any spatial dispersion, the LSPR as discussed in the previous section is strictly a sur-

face mode. For this reason, they can also be realized as confined surface mode of

electromagnetic surface waves, known as the surface plasmon polaritons.

Surface plasmon polaritons (SPPs) are electromagnetic surface waves, evanescent

in the direction perpendicular to the surface, arising due to the coupling of the elec-

tromagnetic field with the conduction band electrons of the metal (or conductor).

It exists and propagates with a propagation constant k = 2π/λSPP at the interface

of a dielectric and a metal (or conductor), as shown in Fig.2.4. The physical prop-

FIGURE 2.4: Schematic representation of surface plasmon polariton at the metal-dielectric
interface.
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erties of SPPs are understood by solving Maxwell’s equation for electric field having

transverse magnetic (TM) polarization, at a flat metal–dielectric interface as shown

in Fig.2.4. The solution is shown in Appendix-B. The SPPs exist when the positive

evanescent decay factors, κ and the dielectric functions in the corresponding media

( εd for the dielectric and ε(ω) for the metal ) fulfill the following relation,

εd
κ1

+
ε(ω)

κ2
= 0. (2.2.1)

As κi is positive, this relation tells that the dielectric functions of the two media have

to be of opposite signs, suggesting, one of them ought to be metal. The wave vector

k, of SPP is related to the frequency ω of optical excitation, through the dispersion re-

lation

FIGURE 2.5: The dispersion relation for surface plasmo
polariton (SPP).

given by,

k =
ω

c0

√
εd ε(ω)

εd + ε(ω)
(2.2.2)

This is shown in Fig.2.5 as the

orange curve. As k −→ ∞, the

curve asymptotically reaches a

frequency called the surface-

plasmon frequency ωsp. The

expression given by 2.2.2, for

the dispersion relation of SPP

is obtained from the full elec-

trodynamic derivation. In the

limit of large k, one gets the

quasi-static dispersion relation

for SPP as,

ε(ω) = −εd (2.2.3)

Considering the dielectric function of the metal to be that for an undamped plasma
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of noninteracting electrons, given by, ε(ω) = 1−
ω2
p

ω2
, the expression for the surface-

plasmon frequency, in quasi-static limit, is obtained as,

ωsp =
ωp√

1 + εd
. (2.2.4)

2.2.1.a LSPR as confined dipolar SPP

In classical optics, the dipolar LSPR is viewed as a confined dipolar mode of SPP. In

dielectric-surrounded metal nanoparticle having size comparable to the SPP wave

length, λ
SPP

= 2π/k
SPP

( as shown in Fig.2.4 ), the SPP can get confined at the

particle surface, such that the surface can accommodate integral numbers of λSPP .

The situation is depicted in Fig.2.6. Of course, an extra constrain on the λSPP

Propagating surface plasmon polariton (SPP)

SPP 
gets 
confined by 
the geometrical
shape of nanparticle

 

   

Going down

          to

  dipolar size

FIGURE 2.6: Schematic representation depicting realization of LSPR as confined dipolar SPP.

appears in order to fit the SPP around the particle surface. And the occurrence of

surface confined SPPs also depends on the geometry of the surface and the mode

of excitation. However, when the particle size becomes such small that only one

SPP wavelength can exist around its surface, it leads to the situation of classical

dipolar LSPR. In this case the SPP oscillates, just like the oscillating dipolar LSPR,

changing its polarization with the frequency ω given by the SPP dispersion relation

( eq. 2.2.2 ). Thus the dipolar LSPR in metal clusters qualitatively follows the same

trend of dispersion relation as that of the SPP. This explains the dependence of LSPR
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on the geometry, or specifically, on the aspect ratio of the cluster. This aspect will be

discussed in details in chapter 4.

2.2.2 Bulk plasmons

While SPPs exist at metal–dielectric interfaces, there are other electromagnetic modes

that can exist in the metal bulk. These bulk electromagnetic modes can be investi-

gated by solving Maxwell’s equations. Starting from Maxwell’s equations, one can

derive the electrodynamic wave equation in its general form as,

∇(∇ ·E)−∇2E =
ε

c20

∂2E

∂t2
. (2.2.5)

Considering plane wave form for the electric field, E = E0e
i(k·r−ωt), the equation

transforms as,

k(k ·E)− k2E = −ε(ω)
ω2

c20
E, (2.2.6)

where, the metal dielectric function ε(ω) is only frequency dependent.

2.2.2.a Transverse solution: Bulk plasmon polaritons

The solution for a transverse electric field is obtained from eq. 2.2.6 by having

k ·E = 0. This gives the corresponding dispersion relation for the transverse elec-

tromagnetic modes as,

k2 = ε(ω)
ω2

c20
. (2.2.7)

The transverse electromagnetic modes, that satisfies this dispersion relation are

propagating bulk modes called as bulk plasmon polaritons. Considering the metal

to behave like an undamped plasma, having a dielecric function of the form ε(ω) =

1−
ω2
p

ω2
, the dispersion relation for the bulk plasmon polaritons takes the form,

ω2 = ω2
p + c20k

2. (2.2.8)

This relation is shown in Fig.2.7 as the black curve.
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FIGURE 2.7: The dispersion relation for the bulk plasmons polaritons, longitudinal volume
plasmons and SPPs.

2.2.2.b Longitudinal solution: Longitudinal volume plasmon

In order to have a solution of eq. 2.2.6 for an electric field E, that propagates longi-

tudinally, such that k ‖ E, we must have,

k(k ·E) = k2E (2.2.9)

The equation 2.2.6 than gives,

ε(ω)
ω2

c20
E = 0. (2.2.10)
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For non-vanishing E, we then must have,

ε(ω) = 0 (2.2.11)

This is the condition for the occurrence of electromagnetic modes in bulk having

longitudinal electric field. Thus the modes are called longitudinal bulk modes or

‘longitudinal volume plasmons’. Again, considering the metal dielectric function to

have the form for an undamped plasma, one gets the dispersion relation for longitu-

dinal bulk plasmons as,

ε(ω) = 1−
ω2
p

ω2
= 0, =⇒ ω = ωp. (2.2.12)

For a spatially non-dispersive (homogeneous) plasma the longitudinal volume plas-

mons exist at ω = ωp, the plasma frequency. The red dashed line in Fig.2.7 represent

this mode.
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2.3 Nonlocal Optics

As stated before in eq. 2.1.1, in classical optics, the optical response in a system is

described by the macroscopic polarization P(r) = ε0χE(r), where, χ is the electric

susceptibility. The susceptibility, and hence the dielectric function ( ε = 1 + χ ),

is intrinsically related to the electron-density distribution, and accounts for the re-

sponse in the system. The theoretical framework of local optics, described in the

previous section ( through the Drude and Lorentz-Drude model ), when applied to

metal clusters, considers the dielectric function to be isotropic and homogeneous,

i.e., χ is described to be spatially local. Therefore, the metal-dielectric interface is

described to be optically abrupt. However, when the cluster size becomes very small

( . 5nm ), due to atomistic resolution the electron-electron interaction becomes im-

portant. At this size limit, thus, one can no longer use local optics descriptions and

the effects of the spatial nonlocality in the electronic response has to be considered.

Nonlocal optics leads to P(r) depending on E(r′), where r′ 6= r. The polarization

at a given point depends on the excitation within a volume surrounding this point.

This is due to electron-electron interactions. Consequently, the electron-density dis-

tribution can no longer considered to be abrupt. The surface to volume ratio for

this size range becomes important and needs to be taken into account properly, by

the proper description of the smooth variation of the electron-density across the

metal-dielectric boundary. The density-density response function becomes nonlocal

in space : χ = χ(r, r′), consequently making the dielectric function spatially disper-

sive: ε(k, ω).

The ideal approach to describe the nonlocal optical response is, of course, to use

ab initio quantum mechanical, or density functional theories for optical excitations.

The density functional framework is discussed in details in chapter 3. Though ab
initio theories can give proper nonlocal response, in practice, the use of it is limited

to systems comprising of small numbers of atoms (∼ 3000 electrons), or for larger

sizes, to the use of simple models, like jellium. However, within the framework of

classical optics, the effect of spatial nonlocality on optical response of the loosely

bound, conduction band electrons in a metal, can be described by the hydrodynamic

model [64,73–75,142–146].
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2.3.1 Hydrodynamic model

The model describes the spatial nonlocal effect on the macroscopic optical response

of the conduction band electrons, by the introduction of an electron pressure term in

the free electron (plasma) model as described by Drude. The electron pressure term

accounts for the Pauli exclusion principle as understood within the Thomas–Fermi

theory.

2.3.1.a Hydrodynamic equation of motion

The equation of motion for the conduction band electrons in the hydrodynamic de-

scription is given as,

me
d2X

dt2
+meγ

dX

dt
+
∇p
ne

= −eE, (2.3.1)

(neglecting the magnetic component of the force)

where, me is the effective mass of a conduction band electron, ne is the density o

conduction band electrons; and p is the electron pressure. The electron pressure

originates from the quantum mechanical fact that electrons are fermions. Due to

the fermionic interaction they follow Pauli exclusion principle, and occupy different

quantum states. As a consequence, they can not be compressed infinitely (as was

possible in Drude’s model of noninteracting plasma of electrons). They occupy a

spatial region that is larger that a sphere having Thomas-Fermi wavelength.

Relating ne to the current density J, through the continuity equation, and then re-

lating J to the macroscpic polarization through,

J =
dP

dt
, (2.3.2)

the eq. 2.3.1 becomes,

d2P

dt2
+ γ

dP

dt
− e

me
∇p =

nee
2

me
E. (2.3.3)
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The last term in the L.H.S. can be expressed in terms of electron density using the

expression of electron pressure p in Thomas–Fermi model:

p(r, t) = ζ

[
ne(r, t)

]5/3

, where, ζ =
h2(3π2)2/3

5me
. (2.3.4)

With this expression of pressure in eq. 2.3.3, we get the hydrodynamic equation of

motion for the conduction band electrons as,

− β2 ∇(∇ ·P) +
d2P

dt2
+ γ

dP

dt
= ε0 ω

2
p E, (2.3.5)

where, ωp =
√
nee2/(ε0me) is the plasma frequency, and β is called the hydro-

dynamic nonlocal parameter which is of the order of the Fermi velocity ( vF ). A

detailed derivation of the hydrodynamic equation of motion is done in Appendix C.

2.3.1.b Electromagnetic response

The response of the electromagnetic field on the conduction band electrons is ob-

tained by solving the Maxwell’s equations. The Maxwell’s equations combines to

give the electromagnetic wave equation as,

∇×∇×E = − ∂

∂t
(∇×B) = − ∂

∂t

(
1

c20

∂E

∂t
+ µJ

)

or, ∇(∇ ·E)−∇2E +
1

c20

∂2E

∂t2
= −µ0

∂2P

∂t2
, (2.3.6)

where, the metal is assumed to be non-magnetic, µ = µ0, and eq. 2.3.2 is used.

In order to obtain the spatial nonlocal response, on the electrons described in the

hydrodynamic model, one needs to solve eq. 2.3.6 simultaneously with eq. 2.3.5.

Considering plane wave propagation for the electric field and hence for the polar-

ization:

E(r, t) = Eei(k·r−ωt), P(r, t) = Pei(k·r−ωt); (2.3.7)

the equations 2.3.6 and 2.3.5 can respectively be written as,

k(k ·E)− k2E +
ω2

c20
= ω2µ0P (2.3.8)
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and, β2k(k ·P)− (ω2 + iγω)P = ε0ω
2
pE. (2.3.9)

Transverse Bulk Plasmon:

The usual transverse solution for the wave equation (2.3.8) is obtained by having

the electric field perpendicular to the direction of wave propagation: k = k⊥, such

that, k⊥ ·E = 0. The wave equation then gives the dispersion relation for the

transverse modes: (
− k2
⊥ +

ω2

c20

)
E = −ω2µ0ε0χT (ω)E

=⇒ k2
⊥ −

ω2

c20
=
ω2

c20
χ
T

(ω)

=⇒ k2
⊥ =

ω2

c20
(1 + χ

T
(ω)) =

ω2

c20
εT (ω) (2.3.10)

This is the same dispersion relation as shown in Fig,2.7 for the transverse bulk plas-

mon polaritons in black.

As, the electric field is transverse, so is the polarization. Thus, having k⊥ ·P = 0 in

eq. 2.3.9 we get,

− (ω2 + iγω)ε0χT (ω)E = ε0ω
2
pE (2.3.11)

which gives,

χ
T

(ω) = −
ω2
p

ω2 + iγω
(2.3.12)

leading to the corresponding transverse component of the dielectric function as,

εT (ω) = 1 + χ
T

(ω) = 1−
ω2
p

ω2 + iγω
. (2.3.13)

Thus, for the transverse electromagnetic modes, the dielectric function remains same

as in the local optics description given by Drude’s model. The spatial nonlocality has

no effect on the transverse bulk plasmon polaritons.

Longitudinal Bulk Plasmon:

For longitudinal solution of the wave equation (2.3.8), the propagation vector
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and the electric field are parallel: k‖ ‖ E. In the previous section, it is discussed

that, having this condition in the wave equation leads to the dispersion relation for

the longitudinal modes as, ε
L

(ω) = 0

As, the polarization corresponding to the longitudinal mode should also be longi-

tudinal, in eq. 2.3.9 we have, k‖(k‖ ·P) = |k‖|2P; and the eq. 2.3.9 takes the form,[
β2|k‖|2 − (ω2 + iγω)

]
ε0χLE = ε0ω

2
pE (2.3.14)

to give the longitudinal susceptibility as,

χ
L

=
−ω2

p

(ω2 + iγω)− β2|k‖|2
(2.3.15)

Thus the dielectric function corresponding to the longitudinal modes are given as,

ε
L

(k, ω) = 1−
ω2
p

(ω2 + iγω)− β2|k‖|2
(2.3.16)
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FIGURE 2.8: The solid red line corrspond to the real part while the dotted red line shows the
imaginary part of the dispersion relation for the longitudinal volume plasmons. The pink
curve shows the modified dispersion relation for the SPP with εd = 1, due the incorporation

of spatial nonlocality. The other curves are the same as explained in Fig.2.7

The dispersion relation for the longitudinal models is then given by,

ε
L

(k, ω) = 1−
ω2
p

(ω2 + iγω)− β2|k‖|2
= 0 (2.3.17)

For, negligible damping ( γ → 0 ), the dispersion relation becomes,

ω2 = ω2
p + β2|k‖|2. (2.3.18)

The real and imaginary part of the dispersion relation of the longitudinal (spatially
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dispersive) bulk modes are shown in the Fig.2.8 as solid and dotted red curves re-

spectively. From this figure (2.8), it becomes clear that in order to account for spatial

nonlocal effects one has to consider both the transverse and longitudinal dielectric

functions. The hydrodynamic form of the dielectric tensor of the conduction band

electron gas is then given by,

εij =

 ε
T

(ω) 0 0

0 ε
T

(ω) 0

0 0 ε
L

(k, ω)

 ; (2.3.19)

where, the direction of the wave propagation is assumed to be along ẑ-direction.

Bound charges (localized d-electrons):

In the hydrodynamic description of metal, only the conduction band electrons of

the system are treated as an interacting gas. However, as discussed in section 2.1.2.a,

dielectric function of a metallic system and specifically of a noble metal has reason-

able contributions in the visible frequencies from the localized electrons of system’s

interior. Within the hydrodynamic description the polarization corresponding to the

localized electrons are treated to be local in space. Thus it contributes to the dielec-

tric function similarly as in local optics description. In the Lorentz–Drude model the

hydrodynamic form for the transverse and longitudinal dielectric functions are

ε
T

(ω) = 1 +

k∑
i=1

fiω
2
p

(ω2
i − ω2)− iγiω

−
ω2
p

ω2 + iγω
(2.3.20)

ε
L

(k, ω) = 1 +

k∑
i=1

fiω
2
p

(ω2
i − ω2)− iγiω

−
ω2
p

(ω2 + iγω)− β2|k‖|2
(2.3.21)

Extra boundary conditions:

Nonlocal optics deals with the introduction of spatially dispersive longitudinal

electromagnetic modes inside the metal, which are left out in local optics, because

of the lack of spatial dispersion in the permittivity of metal. Thus in local optics

the longitudinal modes cannot couple to the transverse ones, and the two sufficient

boundary conditions are: the continuity of the tangential components of the elec-

tric fields E, and of the magnetic field strengths H at the interface of two media.

To describe the dispersive longitudinal fields inside the metal and more importantly
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at the metal-dielectric interface, the usual boundary conditions (which correspond

to transverse wave propagation only) are insufficient and a third additional bound-

ary condition (ABC) is required [147,148], allowing the coupling of transverse and

longitudinal waves. This third ABC is usually taken to be the continuity of the nor-
mal component of the electric fields E, at the interface of two media, and corresponds to
v⊥ = 0 at the interface [149,150]. From the perspective of electrodynamics, this ABC

is intuitive, because it yields a continuous description of the magnitudes of the elec-

tric fields across the boundary. However, the fact that v⊥ vanishes at the interface,

yields a discontinuity in the normal component of the current (J⊥) corresponding to

the polarization of conduction electrons. In this thesis we have considered this ABC

for all the nonlocal calculations performed using hydrodynamic description. There

are, however, other choices of ABC [149], depending on the description of the static

electron density profile at the boundaries.

Nonlocal effect at the metal boundary:

In the local optics description of a metallic system, surrounded by a dielectric,

under the influence of an external electromagnetic field, the free charges that in-

duce the macroscopic polarization are driven to an infinitesimally thin layer at the

metal-dielectric interface. At the dipolar size limit, it is this induced charge distribu-

tion that characterize the dipolar LSPR by giving rise to electric field enhancement

of several orders of magnitude, at LSPR frequency. However, at this size limit, the

optically abrupt description of the metal-dielectric interface is no more valid as the

induced charges spread across the interface. Nonlocal hydrodynamic description of

the metal accounts for this spreading inherently through the repulsive interaction

incorporated in the electron pressure. Thus, in the nonlocal description, the field

enhancement is also reduced due to the spreading out of the induced charges.

A measure of the spreading of the induced charges across the metal dielectric inter-

face is given by the inverse of the wave vector (normal to the interface), which gives

the exponential decaying of the longitudinal component of the electric field parallel

to the interface. It is shown later in the next section in eq. 2.3.28. This wave vector

is given as
√
k2 + q2

L
, which is approximately equal to q

L
as k � q

L
. The expression

for q
L

is obtained as k‖ from the expression of ε
L

in eq. 2.3.21 as,

q
L

=
1

β

√
ω2
p

ε∞(ω)− ε
L

(k, ω)
− (ω2 + iγω), (2.3.22)
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where, ε∞(ω) (including Lorentzians) is the dielectric function describing the back-

ground polarization caused by the bound charges.

2.3.2 Nonlocal Effects On SPP Dispersion

The longitudinal and the transverse modes described within the hydrodynamic de-

scription of the nonlocal optical response, remain decoupled in an isotropic homoge-

neous medium. But, in the presence of an interface they can get coupled by means

of the electromagnetic boundary conditions. This coupling of longitudinal and trans-

verse modes modifies the local-optics dispersion relation of the surface plasmon po-

laritons (SPPs). The magenta curve in the Fig.2.8 demonstrate this modification by

differing from the orange curve, which correspond to the dispersion of SPP in local

optics. In order to understand the coupling of longitudinal and transverse mode, we

need to solve the Maxwell’s equations for a transverse magnetic (TM) wave (which

give rise to SPPs), at a metal dielectric interface, as shown in Fig. 2.9. In the fig-

ure, the region z > 0 correspond to the dielectric having dielectric constant εd = 1;

the region z < 0 correspond to metal where the dielectric function is described by

both the transverse component ε
T

(ω), and the wave vector dependent longitudinal

component ε
L

(k, ω).

X

Z

(I)

(II)

ε(k, ω) = {ε
T

(ω), ε
L

(k, ω)}

εd = 1

FIGURE 2.9: Schematic representation of SPP in a metal-dielectric interface, and the corre-
sponding evanescent electric fields describing the SPP.

The TM modes are given by,

Ex = −i 1

ωε0ε

∂Hy

∂z
, (2.3.23a)
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Ez = − k

ωε0ε
Hy, (2.3.23b)

and, the solution of the wave equation for the TM modes,

∂2Hy

∂z2
+ (εk2

0 − k2)Hy = 0, where, k0 =
ω

c
(2.3.23c)

Having the solutions of the eqs. 2.3.23 in the dielectric (I) and metallic (II) re-

gions, and the electric field components in the metallic region (II) together, the fields

in the two sides of the interface can be presented as follows.

In region (I):

H I
y = A

T
e−z
√
k2−k20 eikx, as, εd = 1 (2.3.24)

EI
x = i

√
k2 − k2

0

k0
A
T
e−z
√
k2−k20 eikx, (2.3.25)

EI
z = − k

k0
A
T
e−z
√
k2−k20 eikx; (2.3.26)

In region (II):

H II
y = B

T
e−zkz eikx, where, kz =

√
k2 − ε

T
(ω)k2

0; (2.3.27)

EII
x =

[
− i kz

ε
T

(ω)k0
B
T
e−zkz − ik0

B
L
ez
√
k2+q2

L√
k2 + q2

L

]
eikx (2.3.28)

EII
z =

[
− k

ε
T

(ω)k0
B
T
e−zkz − k0

k
B
L
ez
√
k2+q2

L

]
eikx. (2.3.29)

where, q
L

is defined in eq. 2.3.22.

Imposing the boundary conditions as the continuity of the fields Hy, Ex, and Ez,

at the interface z = 0, we get,
1 −1 0

i
√
k2 − k2

0

k0

ikz
ε
T

(ω)k0

ik0√
k2 + q2

L

− k

k0

k

ε
T

(ω)k0

k0

k


AT

B
T

B
L

 = 0 (2.3.30)
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The dispersion relation of the SPPs is then given by the nontrivial solution of eq. 2.3.30

as, ∣∣∣∣∣∣∣∣∣∣∣

1 −1 0

i
√
k2 − k2

0

k0

ikz
ε
T

(ω)k0

ik0√
k2 + q2

L

− k

k0

k

ε
T

(ω)k0

k0

k

∣∣∣∣∣∣∣∣∣∣∣
= 0, (2.3.31)

which simplifies to,

kz + ε
T

(ω)
√
k2 − k2

0 +
[ε(ω)− 1] k2√

k2 + q2
L

= 0 (2.3.32)

√
k2 − εT (ω)k20 + εT (ω)

√
k2 − k20 +

[εT (ω)− 1]k2√
k2 +

1

β2

[
ω2
p

ε∞(ω)− εL(ω)
− ω(ω + iγ)

] = 0

(2.3.33)

Considering only the first two terms of in L.H.S. of the eq. 2.3.33, and neglecting the

third one (i.e., neglecting spatial nonlocality by having β = 0), the equation reduces

to the local-optics description of the dispersion relation (eq. 2.2.2) of SSPs, for εd =

1. It is the third term in the L.H.S. of eq. 2.3.33 that accounts for the coupling of the

longitudinal and transverse mode, and modifies the local-optics dispersion relation

as shown by the pink curve in Fig. 2.8.

2.3.3 Local analogue model (LAM)

The numerical implementation of the hydrodynamic model requires to be done in

three dimension due to the k-dependence of ε
l
(k, ω). However, in this thesis, we

have used a local analogue model (LAM) [146] for the hydrodynamic description, in

order to implement it in two dimension, which is computationally more economic.

Within the nonlocal hydrodynamic description, the effect of the longitudinal compo-

nent of the electric field is to spread the surface charge distribution across the metal

boundary. In the LAM, this nonlocal spread is describing the metal-dielectric inter-

face through a fictitious thin layer having a thickness 4d, and a dielectric function

given by,

ε
Layer

(ω) =
εd 4d ε(ω) q

L

ε(ω)− εd
. (2.3.34)
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where, εd is the dielectric constant of the background dielectric. The validity of

LAM implementation to produce the same results as in the full three-dimensional

implementation of the hydrodynamic model is based on the following philosophy.

Mimicking the spatial nonlocality only through the transverse modes (as in local op-

tics), and by playing with the width (4d), and the dielectric function (ε
Layer

) of an

intermediate layer between the metal and the surrounding dielectric, one obtains

the same reflection and transmission coefficients as obtained by treating the non-

local character of the metal-dielectric interface (through the three-dimensional im-

plementation of the hydrodynamical model). It is worth mentioning here, that the

consideration of the intermediate layer has nothing to do with accounting for the

quantum mechanical spill-out of the ground-state electron density. The sole motive

of LAM implementation is to get rid of the cumbersome three-dimensional imple-

mentation of the hydrodynamic model. Thus, the electromagnetic fields, in the LAM

implementation, are purely transverse, and the dielectric function of the bulk metal

is given by ε(ω) = ε
T

(ω). A detailed discussion on the working principles of the LAM

and its implementation for the case of nanoparticles is done in Appendix D.

In passing it is worth mentioning the merits and limitations of LAM. LAM can be

implemented to replace the cumbersome numerical implementation of any nonlocal

model [127,151,152] which reflects the nonlocal spatial dependence of the permit-

tivity. As, mentioned earlier, in this thesis, we have employed LAM to replace the

nonlocal model which is based on the hydrodynamic description of the electrons’

motion. What limits LAM in comparison with the full three dimensional implemen-

tation of a nonlocal model is the fact that LAM implementation is possible only con-

sidering plane wave illumination. The reason behind this is an approximation used

in LAM implementation which works only for the case of plane wave illumination.

In the case of plane wave illumination, the longitudinal plasmon wave-vector ( q
L

) normal to the metal-dielectric interface is much larger than the wave-vector ( k )

parallel to the interface. The latter is comparable with the free-space wave-vector of

light, i.e., k ∼ k0, whereas, q
L
� k0. For this reason,

√
k2 + q2

L
can be approximated

to q
L

as we do in LAM implementation. However, for other optical excitations, e.g.,

microscopic emitters or electron-beams, the wave-vector ( k
in

) associated with the

incident electric field can considerably modify/enhance the wave-vector ( k ) paral-

lel to the interface, making the approximation
√
k2 + q2

L
≈ q

L
erroneous. Therefore,

in these cases, the LAM implementation for the nonlocal model will not be valid and

the spatial (nonlocal) dependence of the metal permittivity should be calculated
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properly considering the influence of k
in

on k. So, in a few words, as far as the non-

local effects on the dipolar LSPR under plane wave illumination is concerned, LAM

gives exact results as can be found using full three dimensional implementation of

any nonlocal model (in the case of this thesis, the hydrodynamic one); but never

beyond that.
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Chapter 3

Ab initio Theoretical
Framework

In this chapter, both the formalism of ground-state Density-Functional Theory (DFT)

and of Time-Dependent Density-Functional Theory (TDDFT) will be presented. Us-

ing TDDFT, the calculation of the optical absorption spectra in linear response theory

(LR-TDDFT) and within the framework of real-time propagation (RT-TDDFT) will be

discussed in the context of its application to metallic clusters. Following this, the

advantages of both the methods (RT- & LR-TDDFT) will be discussed as well. Before

going to the details of TDDFT and also in order to contextualize, a brief recapitu-

lation of the Density-Functional Theory (DFT) is done. After theoretical principles,

different ways of describing the system of interest will be discussed.

3.1 Recapitulation of DFT

The central idea of DFT is that any property of a system of many interacting electrons

(or in general, interacting fermions) can be viewed as a functional of the ground state

density n0(r). DFT allows to get rid of the complexity of solving the Schrödinger

equation for the interacting many–particle system by solving self–consistently one–

electron Schrödinger–like equations representing an equivalent non-interacting aux-

iliary (fictitious) system, known as Kohn-Sham system, that gives exactly the same

ground state density, n0(r), as for the interacting system.
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3.1.1 Hohenberg-Kohn Theorem

The formulation of DFT as an exact theory of any system of interacting electrons un-

der the action of an external potential Vext(r) is based on the two theorems proposed

and proved by Pierre Hohenberg and Walter Kohn [153].

3.1.1.a Many electron Hamiltonian

The total Hamiltonian of the many electron system in the external field generated

by the ions is given as

ĤTot = T̂ion + T̂e + V̂e−ion + Ŵion−ion + Ŵe−e (3.1.1)

where the operator T̂ represents kinetic energy, operator V̂ represents potential en-

ergy, and operator Ŵ represents the contribution to the energy from interaction.

The subscripts correspond to the objects the operators represent. As the mass of

the nucleus is more than three orders of magnitude larger than that of the electrons

around it, we can apply the Born–Oppenheimer (B-O) approximation. Within this

approximation, the motion of the ionic system and that of the electronic system are

decoupled, making it possible to solve the electronic problem for fixed ion coor-

dinates. Therefore, the contribution of the ion-ion interaction Ŵion−ion to ĤTot is

nothing more than an additive constant and can be discarded. Thus the Hamiltonian

of the electronic system that concerns us is,

Ĥ = T̂ + V̂ext + Ŵ (3.1.2)

where, the kinetic energy operator is

T̂ = T̂e = −1

2

∑
j

∇2
j , (3.1.3)

the potential operator is

V̂ext = V̂e−ion =
∑
j

vext(rj), (3.1.4)
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representing the potential created by the ions which are external to the system of

electrons. The operator describing the e-e interaction is

Ŵ = Ŵe−e =
1

2

∑
j,k
j 6=k

1

|rj − rk|
. (3.1.5)

For such a system of N interacting electrons, the ground state wave function is

Ψ = Ψ(r1, r2, ..., rj, ..., rN
), (3.1.6)

which is antisymmetric with respect to permutation, and the ground state electron

density is

n0(r) =

∫ N∑
j=1

δ(r− rj) |Ψ(r1, r2, ..., rj, ..., rN)|2 dr1...drN (3.1.7)

3.1.1.b Theorem I

theorem states:

For any system of interacting particles in an external potential Vext(r), the potential
is determined uniquely up to an additive constant by the ground state density n0(r) of
the system. In other words, because the Vext(r) defines our system, this means that

n0(r) contains in principle all the information about the system.

It can be easily proven by reductio ad absurdum: the counterfactual assumption that

different potentials might correspond to the same density is easily shown to lead to

a contradiction.

Theorem I has an important consequence. Since the external potential of an N -

electron system is determined by its ground-state density, the corresponding ground

state can be expressed as a density functional |Ψ0[n]〉. This means that all the ground-
state properties can be written as functionals of the ground-state density.

3.1.1.c Theorem II

theorem states:

For any N -electron system under the action of a given external potential vext(r), there
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exists a density functional EHK[n(r)] such that: i) The ground-state energy E0 of the
system is the minimum value of EHK[n(r)], minimized with respect to all the N -particle
ground-state densities n(r); ii) the minimizing density is the ground-state density n0(r).

Let |Ψ0[n]〉 be the N -electron ground state corresponding to n(r). The EHK[n] func-

tional is expressed as

EHK [n] = 〈Ψ[n]|T̂ + V̂ext + Ŵ|Ψ[n]〉 = FHK [n] +

∫
d3r Vext(r) n(r) (3.1.8)

where,

FHK [n] = 〈Ψ0[n]|T̂ |Ψ0[n]〉+ 〈Ψ0[n]|Ŵ|Ψ0[n]〉 = T [n] +W [n], (3.1.9)

therefore, by its constructions FHK [n] is universal as kinetic energy (T [n]) and inter-

action energy (W [n]) are functionals of only n. Here universal refers to be indepen-

dent of the system, the different elements that consist the system, and the external

potential.

Now we consider a ground state Ψ(1) having density n(1), of a system corresponding

to external potential V (1)
ext . Following, eq.3.1.8, the energy is

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 = EHK [n(1)] (3.1.10)

For the same system, now we take a different density n(2) corresponding to a differ-

ent state Ψ(2). Clearly, as Ψ(2) is different from Ψ(1), we have,

E(1) = 〈Ψ(1)|Ĥ(1)|Ψ(1)〉 < 〈Ψ(2)|Ĥ(1)|Ψ(2)〉 = E(2). (3.1.11)

This means the correct ground state energy evaluated as E0 = EHK [n] is the lowest

if and only if n = n0.

3.1.2 Kohn-Sham Scheme

Although Hohenberg-Kohn (HK) theorems I and II tell us that in principle we could

restrict ourselves to a treatment of the density, this does not provide a practical

scheme for getting the density of a many–body system’s ground state. It was Walter
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Kohn and Lu Jeu Sham came up with an ansatz [154] in order to facilitate. It

assumes that,

• the ground state density of an interacting many-electron system can be repre-

sented by the ground state density of a fictitious non-interacting many-electron

system, usually referred as to Kohn–Sham system; and

• the Hamiltonian of the Kohn–Sham system is chosen to be expressible in terms

of single–particle Hamiltonians having a kinetic energy term and an effective

potential:

Ĥs = T̂ + V̂s =

N∑
j=1

ĥs =

N∑
j=1

(
−
∇2
j

2
+ vs(r)

)
. (3.1.12)

As Hohenberg-Kohn theorem applies for the Kohn-Sham system, i.e., as there is a

one–to–one correspondence between vs(r) and n0,s(r), the ground state density of

the Kohn-Sham system, we can now write the total energy corresponding to this

Hamiltonian as a density functional following eq.3.1.8,

Es[n] = Ts[n] +

∫
d3r n(r) vs(r) (3.1.13)

where, in this case, the HK functional FHK[n] is substituted by the universal func-

tional Ts[n] which is equal to the expectation energy of the kinetic energy of a non-
interacting N -electron ground state with density n0(r).

The ground state energy of this system is to be found by minimizingEs[n] with re-

spect to n, subject to the constraint that the total number of electronsN =
∫
n(r′) dr′

remains unaltered. While doing so, what one needs is to have some correspondences

between the actual many body system and the Kohn–Sham system, i.e., between

EHK [n] and Es[n], such that after the minimization Es[n0] becomes more tractable

than EHK [n0]. This is done by a clever way of adding and subtracting the concerning

terms at play. From eq.3.1.8 & eq.3.1.9, we recall,

E[n] = EHK [n] = F [n] +

∫
d3r Vext(r) n(r)
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E[n] = F [n]− Ts[n] + Ts[n]− 1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|

+
1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|
+

∫
d3r Vext(r) n(r) (3.1.14)

=

[
F [n]− Ts[n]− 1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|

]
+ Ts[n] +

1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|
+

∫
d3r Vext(r) (3.1.15)

=

[
T [n]− Ts[n] +W [n]− 1

2

∫ ∫
d3r dr′

n(r) n(r′)

|r− r′|

]
+ Ts[n] +

1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|
+

∫
d3r Vext(r) (3.1.16)

E[n] = EXC [n] + Ts[n] + EH [n] +

∫
d3r Vext(r) (3.1.17)

where Ts[n] is the non-interacting kinetic energy, the last term is due to the external

potential, and

EH [n] =
1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|
(3.1.18)

is the classical Coulomb energy, generally referred to as Hartree energy. All that rests

goes into EXC [n] called exchange–correlation (XC) functional, defined as,

EXC [n] =

[
T [n]− Ts[n] +W [n]− 1

2

∫ ∫
d3r d3r′

n(r) n(r′)

|r− r′|

]
. (3.1.19)

For a particular many–electron system, the form of EXC [n] is not exactly known.

Therefore the accuracy of the Density–Functional–Theory methods relies on the

quality the EXC [n]. For most of the realistic situations of describing a many–electron

system, certain levels of approximations (namely, Local Density Approximation, Gen-

eralized Gradient Approximation, etc.) are employed.

Now, according to Kohn–Sham ansatz, Es[n0] = EHK [n0]. And Hohenberg–Kohn

theorem says that to get E[n0], one needs to minimize E[n] with respect to n with

the constraint of keeping the total number of electron unchanged. This can be do
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using Rayleigh–Ritz principle:

δE[n] = 0

or,

∫
δE[n]

δn(r)
δn(r) d3r = 0 (3.1.20)

is to be solved subject to

δN

δn(r)
= 0, where, N =

∫
d3r′ n(r′). (3.1.21)

Using a Lagrange multiplier λ, eq. 3.1.20 & eq. 3.1.21 can be merged to get the

Euler equation: ∫
δn(r)

[
δE[n]

δn(r)
− λ
]
d3r = 0 (3.1.22)

=⇒ δE[n]

δn(r)
= λ. (3.1.23)

For the non-interacting Kohn–Sham system eq.3.1.23 reads as,

δTs[n]

δn(r)
+ vs[n](r) = λ (3.1.24)

( remark: In contrast to eq.3.1.13, here we write vs[n](r) not vs(r) ) For the inter-

acting system following eq.3.1.2, the eq.3.1.23 becomes:

vxc[n] +
δTs[n]

δn(r)
+

∫
d3r′

n(r′)

|r− r′|
+ Vext(r) = λ (3.1.25)

where the exchange-correlation (xc) potential is defined as,

vxc[n] =
δEXC [n]

δn(r)
(3.1.26)

Now comparing eq.3.1.24 & eq.3.1.25 we get the expression for the Kohn–Sham

potential as

vs[n](r) = vxc[n] + vH [n] + Vext(r), (3.1.27)

where

vH [n] =

∫
d3r′

n(r′)

|r− r′|
(3.1.28)
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is the Hartree potential. Thus, the correspondence between the non-interacting fic-
titious Kohn–Sham system and the actual interacting many–electron system is es-

tablished. The following step is to solve for the Kohn–Sham Hamiltonian Ĥs. The

advantage we have now is that as Ĥs is the Hamiltonian of a non-interacting sys-

tem, the total wave function of the Kohn–Sham system can be written as a Slater

determinant:

ΨKS =

∣∣∣∣∣∣∣∣∣∣
ϕ1(r1) ϕ2(r1) . . . ϕN (r1)

ϕ1(r2) ϕ2(r2) . . . ϕN (r2)
...

...
. . .

...

ϕ1(rN) ϕ2(rN) . . . ϕN (rN)

∣∣∣∣∣∣∣∣∣∣
(3.1.29)

where ϕj(r)s are the N lowest normalized single–particle orbitals which satisfy single–

particle Schrödinger equations

ĥsϕj(r) = −
(
∇2

2
+ vs[n](r)

)
ϕj(r) = εjϕj(r) (3.1.30)

known as Kohn–Sham equations. The ground state density for the Kohn–Sham sys-

tem (and therefore also for the actual interacting many electron system) then is

n0(r) =

N∑
j=1

|ϕj(r)|2. (3.1.31)

We note in eq.3.1.30 that as the Hamiltonian is a functional of the density, the Kohn–

Sham orbitals are also functionals of the density, ϕj [n](r). Moreover, in eq.3.1.31,

these orbitals are needed to calculate the ground state density. Therefore, the only

way of solving the Kohn–Sham equations is to do it in an iterative self–consistent

manner.

Once the solutions of the Kohn–Sham equations are obtained, we have access

to the ground state density n0(r) and the eigen–solutions ϕj [n0](r). Then we can

calculate the non-interacting kinetic energy functional as,

Ts[n0] =

N∑
j=1

∫
d3r ϕ∗j (r)

(
− ∇

2

2

)
ϕj(r) =

N∑
j=1

εj −
∫
d3r n0(r) vs[n0](r) (3.1.32)
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following eq.3.1.30. Putting this expression of Ts[n0] into eq.3.1.2 and using eq.3.1.27,

we get a convenient expression of the ground state energy as,

E0[n0] =

N∑
j=1

εj −
1

2

∫
d3r

∫
d3r′

n0(r) n0(r′)

|r− r′|
−
∫
d3r n0(r)vxc[n0](r) + EXC [n0]

(3.1.33)

3.1.2.a Solving Kohn–Sham equations self-consistently

The Kohn–Sham equations are solved self-consistently. We begin with searching

for the ground state density n0(r) of the many–body system by solving the time–

independent Kohn–Sham equation 3.1.30. The iterative self-consistent scheme for

getting the n0(r) is shown in Fig.3.1. The Kohn–Sham orbitals are in general de-

scribed in terms of some basis, for example, plane-wave (widely used for periodic

systems), atomic orbitals, Gaussian basis, etc.

Start with initial guess of density
n0 = n

initial guess (i=0)
0 ,

obtained from the guessed orbitals

−
(
∇2

2
+ vs[n

i
0](r)

)
ϕj(r) = εjϕj(r)

Solving KS eqn.
at ith iteration

n
(i+1)
0 (r) =

∑
j |ϕj(r)|2 Density obtained

after ith iteration

If
∣∣∣∣n(i+1)

0 (r)− n(i)
0 (r)

∣∣∣∣ < 4nthreshold0 Yes
Converged

density
n

(i+1)
0 (r)

No

n
(i+1)
0 (r)

FIGURE 3.1: Schematic representation of solving self-consistently the Kohn–sham equation
in order to get the converged ground state density
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3.1.2.b Intricacies in Kohn–Sham DFT

There are certain subtleties while interpreting the outcomes of the Kohn–Sham

scheme. These subtleties needs to be well understood and have to be properly taken

care of.

• Kohn–Sham orbitals. In the Kohn–Sham scheme, although the exact ground

state density, n0(r), of the interacting many–electron system is obtained from

the occupied Kohn–Sham orbitals (ϕj) (3.1.31), the orbitals do not represent

the actual interacting many–electron system, i.e.,

Ψ(r1, r1, ..., rN) 6= ΨKS(r1, r1, ..., rN) (3.1.34)

• Kohn–Sham eigen–values. Similarly, the eigen–energies (εj) of the Kohn–

Sham orbitals (ϕj) (3.1.30) do also not represent the quantum mechanical

energy levels of the many–electron system, even though they ( εj belonging to

occupied ϕj ) appear in the expression of the total energy of the many–electron

ground state.

– In general, the Kohn–Sham excitation energies (εmn = εunoccm − εoccn ) are

different from the excitation energies of the interacting many–electron

system.

– However, for a finite N–electron system, the highest occupied eigen–

value (εN) equals to minus the exact ionization potential of the sys-

tem [155, 156]. This is because, for a bound (finite) system, the density

in long–range behaves asymptotically and is decided by the highest occu-

pied state. Therefore, as the density is exact in Kohn–Sham DFT, so must

be the eigen–value (εN) of the highest occupied state.

• Kohn–Sham spin DFT. In many cases, the practical use of the Kohn-Sham

scheme is done without considering spin. In this thesis, all the calculations that

will be presented are spin-unpolarized. However, the Kohn–Sham equations

are also used in their spin-resolved form. The spin-dependent ground state

density becomes,

n0(r) = n0↑(r)+n0↓(r) =
∑
σ=↑,↓

Nσ∑
j=1

= |ϕjσ(r)|2, whereN =
∑
↑,↓

Nσ, (3.1.35)
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the Kohn–Sham equation becomes,

−
(
∇2

2
+ vsσ[n↑, n↓](r)

)
ϕj(r) = εjσϕjσ(r), (3.1.36)

where the Kohn–Sham potential is defined as,

vsσ[n↑, n↓](r) = vxcσ[n↑, n↓] +

∫
d3r′

n(r′)

|r− r′|
+ Vextσ (r), (3.1.37)

and the xc energy and potential are defined in terms of individual spin-density

functionals:

vxcσ[n↑, n↓] =
δEXC [n↑, n↓]

δnσ(r)
. (3.1.38)

Apart from handling magnetization and “open–shell” systems; the spin- de-

pendent Kohn–Sham formalism allows dependence of EXC on spin-up and

spin-down densities which is better suited for the construction of approxima-

tions.

• Role of XC functional: Self–interaction. From the expression of EXC [n] we

see that it basically contains the kinetic energy difference between the inter-

acting and the non-interacting systems having the same density n(r) and all

the quantum effects on e-e interactions. In the Kohn–Sham scheme, the term

vH [n] in vs[n] ( or in vsσ[n↑, n↓] ), as is evident from its expression (3.1.28),

includes the self–interaction of the electrons. One role of EXC [n] is that the

contribution of the interaction of an electron with itself be excluded, because

in the e-e interaction term Ŵ in the many–electron Hamiltonian Ĥ it is already

taken care of, and therefore it is an exact condition to be fulfilled in the Kohn–

Sham scheme. However, in most of the widely used approximate forms of the

XC functionals, this condition is only partially fulfilled.

3.1.3 Approximate XC Functionals

Local-Density Approximation. The first approximation for the XC functional was

given by Kohn and Sham [154] and is known as local-density approximation (LDA).

Within this approximation one calculates the EXC [n] of an inhomogeneous system

as the space–integral of the xc energy density εxc(n̄), of an homogeneous system with
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the same density:

ELDAXC [n] =

∫
d3r εxc(n̄)|n̄=n(r). (3.1.39)

The concept of ‘local’ becomes clear as for a particular space point r one takes the

value of n̄ to be n(r). This approximation is exact for a homogeneous electron liquid

and also holds as a sufficiently suitable and numerically economic approximation

for the systems where the electron–density variations are slow, for example simple

metals. Using LDA, many energetic and structural properties of a large range of

materials are surprisingly well described [157]. Total atomic and molecular ground

state energies are found to be close to experimental ones. Lattice constants in solids

and molecular equilibrium distances are predicted well with good accuracy.

Generalized Gradient Approximation. The obvious step towards the improvement

of approximate XC functionals is to take into account fast variation of the density.

Recognizing the local Fermi wave–vector kF (r) as a length scale for density varia-

tion, in LDA the performance of vLDAxc (r) depends on:

|∇n(r)|
kF (r) n(r)

<< 1 (3.1.40)

Therefore, the natural idea of improving LDA was to expand the density functional

in orders of
(
|∇n(r)|
kF n(r)

)
. This scheme is known as gradient expansion approximation

(GEA) [158]. However, in Generalized Gradient Approximation (GGA) one looks for

an xc energy density ε
GGA

xc which depends on n(r) and at the same time on ∇n(r).

Thus, the GGA XC energy is

EGGAXC [n] =

∫
d3r ε

GGA

xc (n(r),∇n(r)). (3.1.41)

Unlike in LDA, in GGA there is no systematic unique way to get an expression for

ε
GGA

xc (n(r),∇n(r)). Over the years, hundreds of GGA functionals have been con-

structed. Some of them which are often found in literature are:

• PBE. One of the most successful GGA has been constructed by Perdew, Burke

& Ernzerhof [159, 160]. In PBE, the XC energy functional consists of separate

exchange and correlation parts.

• BLYP. Like PBE, BLYP also consists of separate exchange and correlation parts.



3.1. Recapitulation of DFT 51

The exchange functional (known as B88) was proposed by Becke [161] em-

pirically in terms of parameters fitted to atomic Hartee–exchange energies.The

correlation energy functional was proposed for closed–shell systems by Lee,

Yang and Parr [162].

• LB94 Potential. Apart from constructing the GGA XC functionals, there are

some works done to get the GGA–exchange–correlation potential (v
GGA

xc ) di-

rectly. The idea behind this approach is to get the correct asymptotic behav-

ior of the v
GGA

xc . A well known example of such potential is the LB94 poten-

tial [163].

GGA is also not free of the problem of asymptotic behavior of the vxc. Yet, the

LDA functional and the functionals obtained in GGA are the ones which are widely

used in DFT. However, different approximations of XC functional are found to be

suitable for the description of different properties of matter. Therefore, the choice

of an approximate density functional is based on experience and comparisons with

benchmark results. In this thesis, LDA and PBE–GGA functionals are used for all the

calculations that will be discussed in the coming chapters.

3.1.3.a Orbital-dependent functionals

For the sake of completeness, it is worth mentioning the further developments in

order to have more accurate XC functionals than GGA, even though this does not di-

rectly concern the works performed in this thesis. In an increasing order of accuracy,

complexity and computational cost, the developments beyond GGA goes as follows.

• Meta–GGA Functionals. The meta–GGA functionals are constructed using

spin densities, their 1st and 2nd order gradients, and the kinetic energy densi-

ties (τ↑, τ↓) of the Kohn–Sham orbitals:

E
MGGA

XC =

∫
d3r ε

MGGA

xc (n↑, n↓,∇n↑,∇n↓,∇2n↑,∇2n↓, τ↑, τ↓) (3.1.42)

The meta–GGA functionals are partially free of self–interactions. An example

of meta–GGA functional is PKZB [164].

• Hybrid Functionals. This type of functionals is made by mixing the exact

exchange energy functional with LDA and/or GGA functionals:

E
hybrid

XC = aE
exact

x + (1− a)EGGAx + EGGAc (3.1.43)
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The exact exchange energy functional is obtained by Hartree–Fock calculation.

Among hybrid functionals, the most popular is B3LYP [165]. This functional is

constructed as,

E
B3LY P

XC = aE
exact

x + (1− a)ELDAx + bE
B88

x + cE
LY P

c + (1− c)ELDAc (3.1.44)

where the parameters have values as, a = 0.2, b = 0.72, and c = 0.81. B3LYP

describes the geometrical and energetic properties of molecules but it under-

performs for systems having homogeneous electron densities [166]. Apart

from the simple hybrid functionals there are also range–separated hybrid func-

tionals [167] which are made by separating the Coulomb interaction in short–

range and long–range parts, like the M06L [168, 169] used in this thesis for

comparioson.

• Attempts have also been made to make the approximate XC functionals to be

free of self–interactions [170]. In the literature the resulting functionals are

known as self–interaction corrected (SIC) functionals. These functionals are

dependent on densities of individual orbitals instead of total density and thus

are less tractable.

All these sophisticated functionals (meta-GGA, Hybrid, SIC) depend explicitly on the
KS orbitals.

3.1.4 Pseudopotential Description

Depending on the physical properties intended to study, there are different ways

of describing a system of interest within the DFT framework, described throughout

this chapter. For the study of plasmonic behaviour, the jellium description ( men-

tioned in Appendix E ) has been of enormous success. A better description of the

constituents of system (solid, cluster, or molecule) is given by the use of pseudopo-

tentials, which are used in this thesis. Among the other descriptions of a system,

there are ultra-soft pseudopotentials [171] which are numerically less demanding,

projector augmented wave (PAW) method [172,173] which are more accurate, and

also descriptions based on using orbitals. Here, a brief synopsis of the pseudopoten-

tial description is given in the following.

The pseudopotential method for the description of a chemical species is one of the

widely used ab initio description based on frozen-core approximation. The strongly
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FIGURE 3.2: Schematic representation of pseudopotential (Courtesy: Wikipedia).

bound “deep” electrons of an atom do not participate in chemical bonding and are

not important for the optical properties. Therefore we consider them as unchang-

ing, which is the frozen-core approximation. As, the chemical properties and the

low-energy part of the absorption spectra of a material are primary governed by the

valence electrons, the idea of pseudopotential method [174,175] is to describe only

them.

In the frozen-core approximation, the valence electrons experience a resulting poten-

tial created by the strongly-bound core electrons and the nucleus together. Though

the core electrons partially screen the charge of the nucleus, the resulting ion po-

tential still has a Coulomb singularity at the nucleus, as shown by the blue dashed

line representing the r−1 behaviour of the resulting Coulomb potential, in Fig.3.2.

This makes the single-particle valence wave functions strongly oscillate in the core

region. To describe this strong oscillation, in real space grids one needs much finer

mesh for the core part. In basis set representation, the description would demand

larger basis sets. In both way, it becomes numerically expensive if not difficult.

The idea of having pseudopotential is solely in order to get rid of the fluctuations of

the valence orbitals around the core. This is done as follows. A cutoff radius, rc, cen-

tering the nucleus is defined such that, all the fluctuation stays within the sphere of

this radius (Fig.3.2). Then, the strongly oscillating valence wavefuction is replaced
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by a pseudo-wavefunction (Ψpseudo) which behaves “smoothly” within the cutoff ra-

dius, and outside the cutoff radius, remains behaving exactly same as the real va-

lence wavefuction. The ionic potential that gives rise to this pseudo-wavefunction
is the pseudopotential (Vpseudo) (Fig.3.2). While generating a pseudopotential care

should be taken that,

• the Kohn-Sham orbitals outside rc and the Kohn-Sham eigen-values remain

unchanged: this is what make a pseudopotential norm-conserving;

• the total charge inside the sphere of radius rc remains unchanged;

• the scattering properties remain unchanged.

For noble metals, the pseudopotentials describe the 11 valence electrons consist-

ing of one s-electron and 10 d-electrons. There are several methods to construct a

pseudopotentials from an all-electron calculation of the isolated atom. In this thesis

norm-conserving pseudopotential of Troullier-Martins (T-M) [176] type are used.
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3.2 Time-Dependent Density-Functional Theory

The Density-functional theory (DFT) is an exact theory for describing the ground

state of a many-body system, but not the excited ones. Moreover, in DFT the energies

of the quantum-mechanical (Kohn-Sham) states of the system have no clear physi-

cal significance, except for the highest occupied state, as mentioned in the previous

section. This is the reason that the DFT-calculated band gaps in some semiconduc-

tors are incorrect, for instance, in Ge, the DFT-LDA gap is not only underestimated

but even zero. To properly calculate the excited states of any system one needs to

incorporate the dynamic behaviour of the system, i.e., the time-dependence should

necessarily be accounted for.

In order to have a time–dependent density–functional theory (TDDFT) such that the

complications of solving the time–dependent Schrödinger equation for an interact-

ing many–electron system can be avoided by solving time–dependent single–particle

equations (like the Kohn–Sham equations in DFT), we first need to establish one-to-

one correspondence between the time–dependent external potential and the time–

dependent density. This was done by Erich Runge and E. K. U. Gross [177]. theorem

they proposed and proved for time–dependent scalar potentials is discussed below.

3.2.1 Runge-Gross Theorem

The Hamiltonian of N interacting particles in an explicitly time–dependent external

scalar potential v(r, t) is given by

Ĥ(t) = T̂ + V̂(t) + Ŵ (3.2.1)

where the kinetic energy operator (T̂ ) and the interaction operator (Ŵ) remain the

same as in the static case (3.1.3,3.1.5), and the time–dependent external potential

operator is given by

V̂(t) =

N∑
j=1

v(rj, t). (3.2.2)

To get the dynamics of the system, one needs to solve the time–dependent Schrödinger

equation:

i
∂

∂t
Ψ(t) = ĤΨ(t) (3.2.3)
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where, Ψ(t) = Ψ(r1, ..., rN, t). From Ψ(t) one can then get the density at a given

time t.

Therefore, if we have a fixed initial state (Ψ(t0)), solving 3.2.3 we’ll have a relation

F , mapping the external potential v(r, t) onto the time–dependent wave functions:

F : v(r, t) −→ Ψ(t) (3.2.4)

Now, densities are calculated as n(r, t) = 〈Ψ(t)|n̂(r)|Ψ(t)〉, where n̂(r) is the density

operator, suggesting a relation D as D : Ψ(t) −→ n(r, t). Thus we can define

another relationG, mapping the time–dependent potential onto the time–dependent

density:

G : v(r, t) −→ n(r, t) (3.2.5)

If this relation G is bijective, i.e. if there is a one-to-one correspondence between

v(r, t) and n(r, t), then we can have a time–dependent version of the Hohenberg–

Kohn theorem. But is it possible? The Runge–Gross theorem [177] is concerned

with this question, which is answered affirmatively for scalar potentials meeting the

following conditions.

• At t = t0, from when the external potential began to be time-dependent, the

initial state Ψ(t0) = Ψ0 should be the same for all the time–dependent external

potentials, i.e., the time–dependent external potential starts to act upon the

same initial state.

• If we consider two time–dependent potentials v(r, t) and v′(r, t) differing by

a time–dependent additive term such that v′(r, t) = v(r, t) + C(t), the cor-

responding wave functions will differ only by a phase factor e−iα(t) (where,

C(t) = α̇(t)), thus giving the same density: n(r, t) = n′(r, t). Therefore,

v(r, t0)− v′(r, t0) 6= C(t),

i.e. the densities should differ by more than a time–dependent additive term.

• The potential should be Taylor expansible with respect to t around t0 and

the difference between v(r, t) and v′(r, t) should appear at some non-zero kth
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order (i.e. k ≥ 0) of the expansion such that:

∂k

∂tk

[
v(r, t)− v′(r, t)

]
t=t0

6= constant (3.2.6)

With these constraints on the potential, the Runge–Gross theorem [177] states:

G : v(r, t) −→ n(r, t) is invertible up to an additive merely time–dependent function
in the potential. The proof is shown in Appendix-A. The consequences of the Runge–

Gross theorem follows as:

– For a given initial state (Ψ0), the time–dependent density is a unique functional

of the time–dependent potential: v(r, t) ←→ n(r, t), provided the density sat-

isfies the conditions discussed above.

– As the relation is bijective, we also have : v(r, t) = v[n,Ψ0](r, t), which means,

=⇒ Ĥ(t) = Ĥ[n,Ψ0](r, t) =⇒ Ψ(t) = Ψ[n,Ψ0](r, t) (3.2.7)

This allows us to access the expectation values of any physical observable, as

they will also be functional of the time–dependent density (for a fixed initial

state):

O(t) = 〈Ψ[n,Ψ0](r, t) | Ô(t) | Ψ[n,Ψ0](r, t)〉 = O[n,Ψ0](t). (3.2.8)

3.2.1.a Intricacies and limitations of the Runge–Gross theorem

• The condition that v(r, t) be Taylor expansible around t0 is crucial for the va-

lidity of theorem. Therefore, many potentials which are not Taylor expansible

are not tractable.

• Within the Runge–Gross theorem, the time–dependent wave functions are al-

ways determined as a functional of the time–dependent density up to a phase

factor e−iα(t), as we always get the same density for potentials differing merely

by an additive time–dependent term. For this reason, the evaluation of the ex-

pectation values of the observables which contain derivatives and/or integral

operators on t, is not as straight forward as shown in eq.3.2.8.

• Runge–Gross theorem can deal only with scalar potentials. However, time–

dependent current-DFT (TDCDFT) is developed [178, 179] to treat vector po-

tentials.
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• The proof of Runge–Gross theorem requires the density at a surface around

the system under consideration to vanish, so that the surface integral vanishes

too. This requirement makes theorem valid for only finite systems.

3.2.2 Time–Dependent Kohn–Sham Scheme

After establishing the one-to-one correspondence between the time–dependent po-

tential and the time–dependent density, the next step towards the formulation of

TDDFT is to replace the interacting many–body system by an auxiliary non-interacting

system (like in DFT), in order to have a time–dependent version of the Kohn–Sham

equation. There is a problem in doing so.

3.2.2.a Time–dependent v-representability problem

Following Hohenberg–Kohn theorems, the functional E[n] is defined only for those

functions n(r) that are actual ground-state densities belonging to some external po-

tential v. Such functions n(r) are called v-representable. In DFT the ground state

density n(r) of the many-electron interacting system can be obtained as a ground

state density of a noninteracting system, where, for both the interacting and non-

interacting (Kohn-Sham) systems the external potential is same. This is a conse-

quence of n(r) being v-representable in DFT. Now, in TDDFT the one-to-one corre-

spondence between the time–dependent potential and the time–dependent density,

involves an initial state (not necessarily the ground state). The initial state of the

interacting system need not be the same as that of the noninteracting one. This fact

questions the v-representability of the time–dependent density. The question is rep-

resented in Fig. 3.3

Ψ0, w(|r− r′|), v(r, t)

Ψ′0, w′(|r− r′|), v′(r, t)

n(r, t)
?

FIGURE 3.3: Schematic representation of the question answered by the van-Leeuwen theo-
rem.
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If we start from a different Hamiltonian, having a different external time–dependent

potential (v′(r, t)), a different initial state (Ψ′0), and a different interaction potential

(w′(|r − r′|)) (which for the case of a non-interacting Kohn–Sham-like system is

zero), is it always possible to have the same density n(r, t) as that of the actual

interacting many–body system, with the condition that the density n(r, t) is uniquely
determined by the potential v′(r, t) ?

3.2.2.b van Leeuwen theorem

The question was affirmatively answered by van Leeuwen [180] provided some ini-

tial conditions are fulfilled. The conditions required are:

– The initial states Ψ0 and Ψ′0 should yield the same density at the initial time

t = t0,

n(r, t0) = n(r, t0); (3.2.9)

– Also, the time derivatives of the densities at t = t0 should be the same:

∂

∂t
n(r, t)

∣∣∣∣
t=t0

=
∂

∂t
n′(r, t)

∣∣∣∣
t=t0

. (3.2.10)

Recognizing, the momentum as P(t) =
∫
d3r j(r, t) =

∫
d3r r

∂

∂t
n(r, t), this

conditions implies that the initial momenta of the two systems should be same.

Having these two initial conditions satisfied, the van Leeuwen theorem [180] en-

sures that, for a time-dependent density n(r, t) associated with a many-body system
with a given particle–particle interaction w(|r − r′|), external potential v(r, t), and
initial state Ψ0 , there exists a different many-body system featuring an interaction
w′(|r − r′|) and a unique external potential v′(r, t) [up to a purely time-dependent
C(t)] which reproduces the same time–dependent density [181]. The proof of theorem

can in found in reference [180,181].

3.2.2.c Time–Dependent Kohn–Sham (TDKS) equations

Having established the one-to-one correspondence between time–dependent density

and time–dependent potential; and the question of time–dependent v-representability

of the time–dependent density answered; one can chose a noninteracting (w′ = 0)

Kohn–Sham system, with time–dependent potential vs[n](r, t), initial wavefunction
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Φ0, and in order to get the same n(r, t) as the one corresponding to the inter-

acting system. In general, this potential is a functional of density (n), of the ini-

tial states of the interacting system, and of the noninteracting Kohn–Sham system:

vs[n,Ψ0,Φ0](r, t).

In this noninteracting system, if Φ0 is the ground state of the system, then fol-

lowing the Hohenber–Kohn theorem, along with the actual ground state (Ψ0), it is

also a functional of ground state density n0(r). The Φ0 can be expressed as a sin-

gle Slater determinant made up of single–particle Kohn–Sham orbitals ϕ0
j (r), like in

eq.3.1.29, which follow the static Kohn–Sham equation 3.1.30, and also gives the

ground state density as in eq.3.1.31, which is also the initial density. However, the

time–dependent density n(r, t) in this noninteracting system is given by,

n(r, t) =

N∑
j=1

|ϕj(r, t)|2, (3.2.11)

where each of the single–particle orbitals ϕj(r, t) follows the time–dependent Schrödinger–

like equations called time–dependent Kohn–Sham (TDKS) equations,[
− ∇

2
+ vs[n](r, t)

]
ϕj(r, t) = i

∂

∂t
ϕj(r, t), (3.2.12)

with the initial condition,

ϕj(r, t0) = ϕ0
j (r). (3.2.13)

In eq.3.2.12, the effective Kohn–Sham potential is defined as,

vs[n](r, t) = v(r, t) + vH(r, t) + vxc[n](r, t), (3.2.14)

where the time–dependent Hartree potential is

vH [n] =

∫
d3r′

n(r′, t)

|r− r′|
. (3.2.15)

The equation 3.2.14 also defines the time–dependent xc potential vxc[n](r, t).

There is an alternative manner to come to the TDKS, by variational principle

involving the action functional, similarly as done in DFT by minimizing the total

energy. Following, eq.3.2.8, one can determine the action as a functional of the
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time–dependent density up to some additive constant as,

A[n] = B[n]−
∫ t1

t0

dt

∫
d3r v(r, t) n(r, t) (3.2.16)

where B[n] is independent of the potential v(r, t), and it’s expression for the time–

dependent Kohn–Sham system defines the exchange–correlation action functional:

B[n] =

∫ t1

t0

dt 〈ϕj [n](t)| i ∂
∂t
− ∇

2

2
|ϕj [n](t)〉

− 1

2

∫ t1

t0

dt

∫
d3r

∫
d3r′

n(r, t)n(r′, t)

|r− r′|
−Axc[n]. (3.2.17)

The role of Axc[n] in TDDFT is analogous to that of Exc[n] in DFT. Minimizing the

action functional with respect to the time–dependent density, under the constraint

n(r, t) =
∑
j |ϕj(r, t)|2, one gets the TDKS equations (3.2.12) and an expression for

the time–dependent exchange–correlation potential as

vxc(r, t) =
δAxc[n]

δn(r, t)
. (3.2.18)

3.3 Using the TDKS Equation in Practice

The TDKS equation is the working formula we use for solving many types of prob-

lems can be addressed within the framework of TDDFT. In this thesis, the problem

of calculating optical absorption spectrum of clusters is discussed. Absorption is

calculated by calculating the response of a system due to an external potential. For-

mulation of this problem within the framework of TDDFT is described as follows.

Potential and Initial State. We deal with a time–dependent problem where at

t = t0, a system in its ground state begins to evolve under the influence of an explic-

itly time–dependent potential. Therefore, we can write the potential as,

v(r, t) = v0(r) + v1(r, t) θ(t− t0) (3.3.1)

where θ(t− t0) is the step function which is 1 for t ≥ t0 and 0 otherwise. Thus, the

initial state is the ground state Ψ0. Following Kohn–Sham DFT, the initial density
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n0(r) (which is the ground state density) can be obtained from the Kohn–Sham or-

bitals (3.1.31). We notice that this way we satisfy the van Leeuwen condition 3.2.9,

and thus, the Kohn–Sham orbitals ϕ0
j of the ground state give the initial state of

the noninteracting time–dependent Kohn–Sham system which would give the same

time–dependent density n(r, t) as the actual interacting system.

Here, we recall static DFT, that in order to get n0(r) one needs to solve Kohn–Sham

equations 3.1.30 and some approximation has to be made for the xc potential (

vxc[n0](r) ), as discussed in the previous section.

3.3.1 Adiabatic Approximation

The time–dependent Kohn–Sham potential ( vs[n](r, t) ) in eq.3.2.14 is a functional

of the time–dependent density n(r, t). In principle, and more precisely, vs[n](r, t) is

a causal and memory dependent functional of n(r, t), i.e., it depends on the entire

history of the n(r, t). The detailed discussion on this topic is beyond the scope of this

thesis and can be found in Ref. [181]. From the expression of the vs[n](r, t) (3.2.14),

we note that this memory dependence is entirely borne by the time–dependent xc

potential vxc[n](r, t), which makes it much more complex than the xc potential,

vxc[n0](r), in static DFT. In practice, therefore, on top of the approximations for

vxc[n0](r), one needs to make further approximation for vxc[n](r, t) in order to make

it tractable. To this end, the adiabatic approximation can be used, where we just

neglect the memory dependence of the vxc[n](r, t).

Under adiabatic approximation, the time–dependent xc potential is evaluated in

the same manner as for the case of static DFT, but using the instantaneous time–

dependent density instead of the ground state density:

vAdiaxc (r, t) = v0
xc[n0](r)

∣∣∣∣
n0(r)→n(r,t)

(3.3.2)

where v0
xc[n0](r) is also approximated (by LDA, GGA, etc.) as its exact form is not

known.

Here the physical meaning of “adiabatic” is that the system (here, the time–dependent

Kohn–Sham system) remains in its instantaneous eigenstate (ground state) because

the acting perturbation/potential ( in this case the vs[n](r, t) ), whose functional de-

pendence is primarily characterized by vxc[n](r, t) is slow enough. Under adiabatic
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approximation, the action functional is evaluated as

AAdiaxc [n] =

∫ t1

t0

dt EXC [n0]

∣∣∣∣
n0(r)→n(r,t)

(3.3.3)

where EXC [n(r, t)] is the XC functional in static DFT evaluated using n(r, t) instead

of n0, at a time t. And thus, following the expression of vxc[n](r, t) in eq.3.2.18,

one gets back to the adiabatically approximated expression of the time–dependent

xc potential in eq.3.3.2.

The most common and widely used time–dependent xc potential are the adiabatic

local–density approximation (ALDA) and the adiabatic generalized gradient approx-

imation (AGGA), where local–density approximation and generalized gradient ap-

proximation are used respectively for the v0
xc[n0](r) in eq.3.3.2. For all the calcu-

lations that will be presented in this thesis, these two types of time–dependent xc

potentials are used.

The adiabatic approximation is justified only in the limit of infinitely slow electron

dynamics, close to the instantaneous ground state. It is applicable to describe only

that part of the excitation spectrum which correspond to single-particle excitations,

and not the double- or multi-particle ones.

3.3.2 Solving the TDKS Equations Self-consistently

After discussing the details of the TDKS equation, here a brief description of solving

it self-consistently is given. As mentioned earlier, in this thesis we deal with problems

where the initial state is the ground state. In the TDKS scheme one needs to find the

correct time evolution of the Kohn–Sham orbitals which represent (in our case) the

ground state. This is done in a self-consistent manner involving the time propagation

scheme:

1. The ground-state density n0(r) of a system and the Kohn–Sham orbitals are

obtained by solving Kohn–Sham equations through an iterative self-consistent

scheme as shown in Fig.3.1.

2. In the next step we need to do is to guess a time–dependent density n(r, t) for

all time t in [t0, t], except for t0, because n(r, t0) = n0(r) (already calculated in

first step).
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3. Using the density of the previous step (ni(r, t)), the time–dependent Kohn–

Sham potential is evaluated: vs[n(i)](r, t); and propagating TDKS equation a

new set of orbitals ϕ(i+1)
j (r, t) is obtained for all times t in [t0, t].

4. Using the new set of time–dependent orbitals, the new density n(i+1)(r, t) is

evaluated for all times t in [t0, t]. If the difference between n(i+1)(r, t) and

ni(r, t) is greater than some given threshold value, steps 2 and 3 are repeated

iteratively; otherwise the converged time–dependent density is obtained as

n(i+1)(r, t).

Though the recipe of getting the time–dependent density seems to be similar to the

one for the static case (Fig.3.1), it is cumbersome for the fact that one needs to

do a starting guess of the density for all times between t0 and t1. To get rid of it,

numerically the self-consistent scheme is done in small steps of time rather than over

the entire time interval. The entire time interval of evolution is discretized in small

steps 4t, and one calculates the propagation of the system from t to t + 4t. One

example of widely used algorithm for the numerical self-consistent propagation of

the TDKS equation is the Crank–Nicholson algorithm.

3.4 Linear Response Theory and TDDFT

In this section, the ab initio calculation of optical spectra in the framework of linear-

response will be discussed. In literature, the acronym of the topic is LR-TDDFT (‘LR’

for linear response). Linear response theory is used for studying the response of a

system under weak perturbations, or, more precisely, when the relation between the

response of the system and the perturbation is linear.

3.4.1 General Framework of Liner Response

As shown in eq.3.3.1, the external potential has a static part and a time–dependent

perturbation. The corresponding Hamiltonian, therefore, can be written as,

Ĥ(t) = Ĥ0 + Ĥ1(t), (3.4.1)

where Ĥ1(t) contains the perturbing potential ( which, in the case of eq.3.3.1 is

v1(r, t) θ(t − t0) ). Here we assume that out perturbing Hamiltonian has a general
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form,

Ĥ1(t) = F (t) β̂ (3.4.2)

where, F (t) is an external field that couples with an observable represented by the

operator β̂.

Quantum mechanically, the response associated to an observable due to a perturba-

tion is the difference in the expectation value of that observable with respect to its

unperturbed expectation value:

α(t)− α0 = 〈Ψ(t)|α̂|Ψ(t)〉 − 〈Ψ0|α̂|Ψ0〉 (3.4.3)

In general, the response can be expanded in powers of the perturbation:

α(t)− α0 = α1(t) + α2(t) + α3(t) + · · · (3.4.4)

where, α1(t) is the linear response, α2(t) is the quadratic response, and so on.

The time–dependent perturbation in eq. 3.4.2 is nothing more than a time–dependent

field, F (t), coupled to an observable. Noting that the unperturbed Hamiltonian Ĥ0

is independent of time, the linear response for this kind of perturbation is given by,

α1(t) =

∫ ∞
−∞

χαβ(t− t′) F (t′) (3.4.5)

where ( in the interaction picture representation )

χαβ(t− t′) = −iθ(t− t′) 〈Ψ0|[α̂(t− t′), β̂]|Ψ0〉 (3.4.6)

is the linear response function for the observable α due to the perturbation through

the observable β. θ(t − t′) is the step function as used in eq.3.3.1. In the frequency

domain, the equation reads

α1(ω) = χαβ(ω) F (ω), (3.4.7)

where

χαβ(ω) = −i
∫ ∞
−∞

θ(τ) 〈Ψ0|[α̂(τ), β̂]|Ψ0〉 eiωτ . (3.4.8)

The linear response function, χαβ(ω), contains all the information of the response
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due to a perturbation in the linear regime, and therefore is the central feature of

theory.

In passing, it is worth to mention that one can derive from eq.3.4.7 the so-called

Lehmann representation,

χαβ(ω) = lim
η→0+

∞∑
n=1

{
〈Ψ0|α̂|Ψn〉 〈Ψn|β̂|Ψ0〉

ω − Ωn + iη
− 〈Ψ0|β̂|Ψn〉 〈Ψn|α̂|Ψ0〉

ω − Ωn − iη

}
(3.4.9)

where Ψn (n = 0, 1, 2, · · · ,∞) are the eigenfunctions of the unperturbed Hamilto-

nian Ĥ0, with eigen-energies E0 = EGS , E1, E2, · · · , E∞; η comes from the integral

representation of θ(τ); and Ωn = En − E0. The poles of a linear-response operator

in the Lehmann representation occur at the exact excitation energies of the system.

3.4.2 Linear Response of Kohn–Sham System

Within the framework of linear response theory, TDDFT allows us to evaluate the re-

sponse function of a many-body interacting system in terms of the response function

of the corresponding Kohn–Sham system. For the many-body interacting system,

from eq. 3.2.1 and eq. 3.4.2 we can write,

Ĥ1(t) = F (t) β̂ = V̂(1) =

∫
d3r′ v1(r, t) n̂(r′) (3.4.10)

where v1(r, t) is defined in eq. 3.3.1. Therefore, following eq.3.4.5, and having

understood β̂ = n̂(r′) and α̂ = n̂(r), the density-density response due to the pertur-

bation v1(r, t) in first order is given by

n1(r, t) =

∫
dt′
∫
d3r χ(r, r′, t, t′) v1(r′, t′) (3.4.11)

where, χ(r, r′, t, t′) is the response function, given as

χ(r, r′, t, t′) =
δn[v](r, t)

δv(r′, t′)

∣∣∣∣
v[n0](r)≡v0(r)

. (3.4.12)

In the corresponding time–dependent Kohn–Sham system, we deal with the effective

potential ( 3.2.14 ), which is the functional of the total time–dependent density. As

the total time–dependent density can be expressed up to the first-order response as
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n(r, t) = n0 + n1(r, t), the Kohn–Sham potential is rewritten up to the first order

expansion as

vs[n](r, t) = vs[n0](r, t) + vs1[n1](r, t), (3.4.13)

where vs1[n1](r, t) is the linearized effective potential, given as

vs1[n1](r, t) = v1(r, t) +

∫
d3r′

n1(r′, t)

|r− r′|
+ vxc1(r, t). (3.4.14)

As the time–dependent density corresponding to the external potential can be repro-

duced in the noninteracting Kohn–Sham system, so can be the linear response to the

density from the linearized effective potential. Therefore, following eq.3.4.11,

n1(r, t) =

∫
dt′
∫
d3r′ χs(r, r

′, t, t′) vs1(r′, t′)

=

∫
dt′
∫
d3r′ χs(r, r

′, t, t′)

[
v1(r′, t′) +

∫
d3x

n1(x, t)

|r′ − x|
+ vxc1(r′, t′)

]
(3.4.15)

In this expression, the integrand of the last term on the R.H.S., vxc1(r′, t′), is of

utmost interest. It is called the linearized xc potential, and its explicit expression

comes from the functional Taylor expansion as

vxc1(r, t) =

∫
dτ

∫
d3x fxc(r,x, t, τ) n1(x, τ), (3.4.16)

where

fxc(r,x, t, τ) =
δvxc[n](r, t)

δn(x, τ)

∣∣∣∣
n0(r)

(3.4.17)

is called the time–dependent xc kernel.

With the expression of vxc1(r, t) in eq.3.4.16, the expression of n1(r, t) ( 3.4.15 )

becomes,

n1(r, t) =

∫
dt′
∫
d3r′ χs(r, r

′, t, t′)

[
v1(r′, t′) +

∫
d3x

n1(x, t)

|r′ − x|

+

∫
dτ

∫
d3x fxc(r

′,x, t′, τ) n1(x, τ)

]
(3.4.18)
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Now, as both the interacting and noninteracting (Kohn–Sham) systems give the same

linear response to the density n1(r, t), comparing n1(r, t) in eq.3.4.11 with n1(r, t)

in eq.3.4.18 we get,

χ(r, r′, t, t′) = χs(r, r
′, t, t′)

+

∫
dτ

∫
d3x

∫
dτ ′
∫
d3x′ χs(r,x, t, τ)

{
δ(τ − τ ′)
|x− x′|

+ fxc(x,x
′, τ, τ ′)

}
χ(x′, r′, τ ′, t′),

(3.4.19)

a Dyson-like equation that relates the interacting and noninteracting density–density

response functions. Though it is not shown explicitly, in the expression ( 3.4.19 )

of χ(r, r′, t, t′), all the quantities are functionals of the ground state density except

the Hartree term (as it always has a simple explicit functional form). As mentioned

earlier, the density–density response function is the key quantity in linear response;

and eq.3.4.19 is the central equation of LR-TDDFT. In frequency domain it reads as,

χ(r, r′, ω) = χs(r, r
′, ω) +

∫
d3x

∫
d3x′ χs(r,x, ω) fHxc(x,x

′, ω) χ(x′, r′, ω),

(3.4.20)
where,

fHxc(x,x
′, ω) =

1

|x− x′|
+ fxc(x,x

′, ω) (3.4.21)

is called the frequency dependent Hartree-exchange-correlation kernel.

3.4.2.a xc kernel

In TDDFT linear response, χ(r, r′, ω) contains all the information of the electronic ex-

citations. It has poles at excitation frequencies, i.e., it diverges for all values of ω that

equal to the electronic transition frequencies. χs(r, r′, ω) also has such poles which

correspond to single-particle excitations of the Kohn–Sham system. In Lehmann

representation it is expressed as,

χs(r, r
′, ω) = 2 lim

η→0+

∞∑
j=1

∞∑
k=1

{
ϕ0
j (r)ϕ0∗

k (r)ϕ0∗
j (r′)ϕ0

k(r′)

ω − Ωjk + η
−
ϕ0
j (r)ϕ0∗

k (r)ϕ0∗
j (r′)ϕ0

k(r′)

ω − Ωjk − η

}
,

(3.4.22)
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where, Ωjk = E
(unocc)
k − E(occ)

j ; En being the eigenenergy of KS orbital ϕ0
n. So, χs

is available in the ground state Kohn–Sham scheme.

In absence of fHxc, χ = χs. Therefore, within the framework of linear response,

the role of the kernel fHxc is to take into account all the effects of many-body inter-

actions. It shifts (or, rearranges) the transitions of the Kohn–Sham system such that

they move towards the actual transitions. Also, it renormalizes the strength of the

poles of χ and gives correct oscillator strengths in the optical absorption spectrum.

As an example, for an elongated system of 37 gold atoms, the effect of fHxc on the

absorption spectrum is shown in Fig.3.4. Thus, in order to properly describe the

excitations of an interacting many-body system the most concerned quantity is fHxc,

and requires to be addressed properly.

In practice, of course approximations are needed for the kernel fxc, because it is

FIGURE 3.4: Optical absorption spectra for Au37 gold rod. The red spectrum correspond
to the excitation in the independent particle system, where in the Kohn–Sham potential the
Hartee and xc contribution is zero. The blue spectrum correspond to the excitation of actual

interacting many-electron system represented by the total Kohn–Sham pootential.

derived from EXC and/or vxc whose exact forms are not known. The kernel is non-

local both in time and space. The approximation for the spatial non-locality is done

by considering adiabatically approximated expression(s) of the time–dependent xc
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potential, vxc[n](r, t). The simplest approximation for the temporal non-locality is

done by simply ignoring it as,

fadiaxc [n](r, r′, t− t′) =
δvxc[n](r, t)

δn(r′, t′)

∣∣∣∣
n0(r)

δ(t− t); (3.4.23)

i.e., we make it completely local in time.

3.4.2.b Casida formalism

In order to get the absorption cross-section due to the linear response of the many-

body system, one needs to find out the poles of the density-density response function

χ(r, r′, ω). The frequency dependence of the kernel makes this job cumbersome.

Mark E. Casida showed that for a frequency dependent kernel fHxc(ω), one can find

the poles of χ(r, r′, ω) by solving an equivalent eigenvalue problem [182] given as,∑
q′

Rqq′F
′
q = Ω2

qFq, (3.4.24)

known as Casida equation, where the indices q and q’ denote transitions from an

occupied state to an unoccupied one, and the matrix element of Rqq′ , is given by,

Rqq′ = ω4
qδqq′ + 4

√
ωqω′q Kqq′ , (3.4.25)

where δqq′ is the Kronecker-Delta, and the matrix elements of Kqq′ are given as,

Kqq′ =

∫
d3r

∫
d3r′ ξ∗(r) fHxc(r, r

′, ω) ξ(r′), (3.4.26)

where, ξ(r) = ϕ0∗
i(occ)(r)ϕ0

a(unocc)(r
′) and,

fHxc(r, r
′, ω) =

1

|r− r′|
+ fxc(r, r

′, ω) (3.4.27)

By solving the Casida equation ( 3.4.24 ) one gets the excitation energies Ωq, and the

oscillator strengths for the excitations are extracted from the eigenvectors Fq [182].

Moreover, as the density response is given by the response function ( 3.4.11 ), in

principle the spatial profiles of the eigenmodes of the density response ( n1(r,Ωq)

) for a corresponding eigenenergies Ωq can also be obtained. These, eigenmodes

can be visualized through the transition densities which are of particular interest,
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because they represent unique spatial distribution of the charge-density fluctuations

associated with the corresponding excitation.

3.5 Real-Time TDDFT

In the linear response TDDFT (LR-TDDFT), the linearized density response, n1(r, t),

relates the density–density response functions of the interacting and noninteract-

ing (Kohn–Sham) systems. The response functions are functionals of the ground

state density. The interacting response function χ(r, r′, ω) contains all the required

information regarding the linear response spectrum. In order to get the spectrum,

therefore, what one needs is to solve eq.3.4.20 in frequency domain, with proper de-

scription of the frequency dependent Hartree-xc kernel fHxc. This can be done using

the prescription given by Casida [182]. Thus in LR-TDDFT one does not explicitly

need n1(r, t) to get the spectrum. In fact a density response due to a particular

transition frequency Ωn can be reconstructed from the transition density for that

frequency as

n
(Ωn)
1 (r, t) = n1(r,Ωn)e−iΩnt. (3.5.1)

However, within the framework of TDDFT, there exists another alternative way

to calculate the optical absorption spectrum directly from n1(r, t). The method is

known as Real-Time TDDFT (RT-TDDFT) or also time-evolution formalism.

3.5.1 Optical Absorption Spectrum

In RT-TDDFT, one uses the time–dependent density, n(r, t), which is obtained from

the time evolved Kohn–Sham states which in turn are obtained by solving the TDKS.

The difference between the time–dependent and the initial (i.e. ground state) den-

sities can then be written as,

δn(r, t) = n(r, t)− n0(r) = n1(r, t) + n2(r, t) + · · ·+∞. (3.5.2)

In the linear regime, i.e., if the relation between the perturbing potential v1(r, t) and

the δn(r, t) is linear, all the higher order terms other than the first one, n1(r, t), can

be neglected in the eq.3.5.2:

δn(r, t) = n1(r, t). (3.5.3)
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In linear response RT-TDDFT, the linearized density response, n1(r, t), is the central

ingredient required to get the optical linear response spectra. However, in gen-

eral, RT-TDDFT applies for higher order density responses too. In principle, one can

obtain higher-order response spectrum by considering higher order terms in the ex-

pression of δn(r, t). In this thesis we restrict the calculation to the linear regime by

using sufficiently weak perturbation.

In order to calculate the linear response photoabsorption spectrum, we begin

with the induced electric dipole polarization:

p(t) =

∫
dt′ ᾱ(t− t′) E(t′) (3.5.4)

where ᾱ is the dynamic polarizability tensor,

ᾱ =

 αxx αxy αxz

αyx αyy αyz

αzx αzy αzz

 , (3.5.5)

where the µν element αµν describes the µ-component of the dynamic polarizabilities

due to the ν-component of the response n1(r, t); µ, ν ∈ {x, y, z}. E(t) is the exter-

nally applied time–dependent electric field, and is related to the perturbing potential

as

E(t) = −∇v1(r, t). (3.5.6)

In general, E(t) is a function of both space and time, but within dipole approxi-

mation, it is homogeneous in space. The dipole approximation is applicable to any

system whose dimension along the direction of the perturbing field are much smaller

the wavelength of the field. In this thesis, for all the systems studied, this dimension

is < 3nm, whereas, the range of the optical wavelength ( visible: 390nm− 700nm )

is two orders of magnitude longer. Therefore the dipole approximation is perfectly

applicable

We consider a monochromatic homogeneous electric field polarized along the z-

direction,

E(t) = ẑ E sin(ωt), (3.5.7)
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where, E is the amplitude of the electric field. Thus the perturbing potential is,

v1(r, t) = E z sin(ωt). (3.5.8)

The z-component of the dipole polarizability is then obtained from the linearized

density response as

pz(t) = −
∫
d3r z n1(r, t). (3.5.9)

Performing Fourier transform, we get the expression in the frequency domain as

pz(ω) = −
∫
d3r z n1(r, ω). (3.5.10)

The zz-element of the dynamic polarizability is then given by

αzz(ω) = − 2

E

∫
d3r z n1(r, ω). (3.5.11)

The corresponding photoabsorption cross-section is directly obtained from the imag-

inary part of αzz as

σzz(ω) =
4πω

c
=αzz(ω). (3.5.12)

The optical absorption cross-section satisfies the sum rule given by∫ ∞
0

dω
σzz
ω2

=
2π2

c
αzz(0), (3.5.13)

where αzz(0) is the static dipole polarizability.

3.5.2 Delta Kick Perturbation

The RT-TDDFT method to obtain the absorption cross-section discussed before gives

the cross-section for an excitation given by a monochromatic electric field. There-

fore, in the cross-section spectrum, one would get only the response of the excitation

that represents the pole of χ(r, r′, ω) for ω = ωmono ; i.e. a Dirac-delta function at

ωmono signifying the excitation of the corresponding eigenmode. And that only if the

pole exists for the frequency ωmono. All the other poles will not appear in the spec-

trum. In RT-TDDFT, therefore, in order to get the whole spectrum of the absorption

cross-section, there are two choices.
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• The first choice is to evaluate n(ωi)
1 for each of the perturbing monochromatic

electric field that has frequency ωi, within a particular frequency range of in-

terest. Then one can calculate the absorption cross-section, σ(ωi), from each

n
(ωi)
1 and finally put all of them together to get the spectrum of the chosen

frequency range.

• The second choice is to find out a linearized density response n(all)
1 , that con-

tains the linear response due to a perturbation that represents all possible ex-

citations in the system; and then calculate the absorption cross-section from

n
(all)
1 .

The first choice is of course discarded due to the fact that it would require to per-

form the same time evolution calculation for a large number of perturbations by

monochromatic field of different frequencies, which is cumbersome. Therefore, we

are left with the second choice only, for which we need to find a perturbation abrupt

in time, like a hammer hitting a bell. The hammer perturbation in TDDFT is em-

ployed either by using a uniform static electric field which is switched off at the

initial time of perturbation: Estep(t) = n̂ E0 θ(t0 − t); or by using a delta impulse in

time. In this thesis the later has been used.

3.5.2.a Electric field with delta impulse in time

The electric field has the temporal shape of a delta function at t = 0, the beginning

of the time evolution:

Edelta(t) = n̂ Edelta
n (t) = n̂ I δ(t) (3.5.14)

where n̂ denotes the polarization of the electric field. The dynamic dipole polariz-

ability in frequency domain is expressed as,

αµν(ω) =
pµ(ω)

Eν(ω)
(3.5.15)

Having Eν(ω) = Edelta
n , n̂ = ẑ, and µ = ν = z, we can get the component of

the dynamic dipole polarizability along the direction (z-direction) of the perturbing
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impulsive electric field as

αdelta
zz (ω) =

1

I
pdelta
z (ω) (3.5.16)

=
1

I

∫
dt eiωt pdelta

z (t) (by Fourier transform) (3.5.17)

=
1

I

∫
dt eiωt

(
−
∫
d3r z ndelta

1 (r, t)

)
(from eq.3.5.9)

= − 1

I

∫
d3r z ndelta

1 (r, ω). (3.5.18)

Getting the cross-section σzz(ω) is then straightforward using eq.3.5.12. In Fig.3.5,

the steps of the real time TDDFT scheme is shown for a 37-atom silver rod. The

FIGURE 3.5: Schematic presentation of the RT-TDDFT in obtaining the spectrum for Ag37

rod using pseudopotential for describing the species. The red curve shows the oscillation
of the z-component of dipole momen. The hammering delta-kick is the only perturbation
made at t = 0 along z-direction. The dipole moment is obtained in frequency domain by
Fourier transform and then the absorption cross-section is computed. The imaginary part of

the cross-section is shown in blue.

numerical implementation of the perturbation due impulsive electric field is tricky

due to the fact that, in practice, the TDKS equations are solved in finite time steps.
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This difficulty was overcome by a much more convenient form of the δ-kick exci-

tation proposed by Yabana et al. [183, 184]. We start with a ground state at time

t0 = 0−, i.e., infinitesimally before the beginning (t = 0) of the time evolution. The

Kohn-Sham orbitals at t0 = 0− are ϕj(r, 0−). The Kohn-Sham orbitals infinitesimally

after the beginning of time evolution, at t0 = 0+ are given by

ϕj(r, 0
+) = exp

{
− i
∫ 0+

0−
dt′
[
Ĥ0 + z Iδ(t′)

]}
ϕj(r, 0

−) (3.5.19)

where, Ĥ0 is the Kohn–Sham Hamiltonian for the ground state, and z Iδ(t′) is the

potential of the impulsive electric field (polarized along z-direction). The expression

can be simplified as

ϕj(r, 0
+) = exp

{
− iĤ0

∫ 0+

0−
dt′ − izI

∫ 0+

0−
δ(t′)dt′

}
ϕj(r, 0

−)

= e−iĤ0(0+−0−) e−iIz ϕj(r, 0
−)

= e−iIz
(
e−iĤ0(0+−0−) ϕj(r, 0

−)

)
(3.5.20)

As, the interval [0−, 0+] is infinitesimally small, the expression within the bracket can

be safely approximated to yield ϕj(r, 0), i.e., the Kohn–Sham orbitals of the ground

state. Consequently, we can rewrite eq. 3.5.20 as

ϕj(r, 0
+) = e−iIz ϕj(r, 0) = e−iIz ϕ0

j (r). (3.5.21)

From this expression we can readily see that the expectation value of the momentum

operator ( −i∂/∂z ) for any orbital ϕj(r, 0+) is I. Thus, the effect of the impulsive

electric field perturbation is to give all the ground state Kohn–Sham orbitals a certain

(the same) momentum, the magnitude of which is given by the amplitude of the im-

pulse. As this perturbation does nothing more than multiply the initial ground state

Kohn–Sham orbitals by the same phase factor, it has no effect on the initial density

v0(r).

In this process of ‘hammering’ by an impulsive electric field, in principle all the

dipole-active eigenmodes of the system under consideration are excited. There-

fore the absorption cross-section shows all the poles of the density-density linear

response function, χ(r, r′, ω), provided that the strength of the ‘hammering’ is as low



3.6. RT-TDDFT versus LR-TDDFT Casida method 77

as to remain in the linear regime, but strong enough that the response does not get

drowned in numerical noise.

3.6 RT-TDDFT versus LR-TDDFT Casida method

As far as calculation of the excitation properties of metal clusters are concerned, both

the Delta-kick RT-TDDFT and Casida LR-TDDFT approaches are found to be widely

used in the literature. The section is closed here with a brief discussion of the pros

and cons of their usage.

• The RT-TDDFT method is suitable for obtaining a spectrum over a large range

of energy, while the LR-TDDFT Casida approach is preferred for calculation of

well separated excitation energies. Thus, the Casida approach is more suitable

for molecules or very small clusters.

• RT-TDDFT is advantageous when implemented on a real-space grid, whereas

for LR-TDDFT the calculations are generally done by employing basis sets, like

Gaussian basis sets for example.

• The convergence of a calculation using LR-TDDFT Casida approach depends

on the size of the chosen basis. For excitations at higher energies one needs

to consider larger basis, which makes the convergence of the calculation, if

possible, inconveniently long to deal with. On the other hand in real-space

RT-TDDFT, we do not need to calculate the empty states. The spacing and

the time-step used for time evolution control the convergence. This gives real-

space RT-TDDFT some degrees of advantage on handling bigger systems ( 5000

electrons).

• The scaling with respect to number of electron in real-space RT-TDDFT is lower

than in LR-TDDFT Casida approach. However, in RT-TDDFT the time-step used

for time evolution requires to be very small. For smaller spacing we need

shorter time-step.

• In RT-TDDFT the information regarding the excited states is not readily acces-

sible as the excited states are taken care of only through the time-evolution of

the occupied states. They are not needed explicitly in RT-TDDFT and so we

do not have them. However, projection of time-evolved wave functions on the

ground state ones would be possible [185]. On the other hand, in LR-TDDFT
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a properly converged calculation gives all the necessary information regarding

the excited states and transitions.

3.7 Ab Initio Simulations

All the ab initio simulations for obtaining the optical absorption spectra, presented

in this thesis are real-space RT-TDDFT simulations performed in the real-space code

octopus [186]. To describe the constituent species of the systems, Norm-conserving

Troullier–Martins pseudopotentials [176] have been used that include the respective

5d electrons in the valence (11 valence electrons for each noble-metal atom). Rel-

ativistic effects are included as scalar relativistic correction in the radial part of the

pseudopotentials. The spacing of the real-space grid was 0.20 Å for Au, 0.18 Å for

Ag, and 0.16 Å for Cu. The calculation domain was made up of spheres centered

around each atom with a minimum radius of 5 Å. In this way, spectra are well con-

verged up to energies of 5.5–6.0 eV. The response for a perturbation is calculated

in a particular direction. After a ground-state calculation, optical absorption spectra

are calculated using the time-evolution formalism in the standard way as introduced

by Yabana et al. [183, 184] where at t=0 a perturbation of the form of a δ-kick in

time is applied. As explained in this chapter, technically this δ-kick corresponds to

the fact that the wave functions are multiplied by a phase factor eikz that imposes a

coherent velocity field and causes a dipole moment to develop as the system evolves

freely. The absorption spectrum is obtained as the Fourier transform of the time-

dependent dipole moment as discussed in this chapter. The total energy is used to

monitor the stability of the propagation. The time step for the propagation was set

to be equal to or less than 0.00197 fs. For most of the spectra presented in this thesis

the total propagation time is chosen to be 25 fs which correspond to a broadening of

0.18 eV in the absorption spectra. The propagation was carried out by means of the

Approximated Enforced Time-Reversal Symmetry propagator [187] as implemented

in the octopus code.
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Chapter 4

Results: Absorption

4.1 Introduction

In this chapter, we present and discuss results obtained for the absorption spectra

of different ‘intermediate-size’ noble-metal clusters. We have mainly looked into

the optical response of model noble-metal nanoparticles (Au and Ag) having the

largest dimensions in the range of 0.6nm to 7nm with different aspect ratios (ARs).

Absorption in these systems is studied using two distinct approaches: classical elec-

tromagnetics and ab initio Time-Dependent Density Functional Theory (TDDFT). In

particular, the study consists in exploring the performances of these two approaches

in exploring different physical effects on the localized surface-plasmon resonance

(LSPR) in the aforementioned atomistic systems. These effects are the dependence

of LSPR on the AR and the absolute size of the systems, and also on the materials

(chemical species) that the systems are made up of.

4.1.1 Numerical Details

4.1.1.a Ab Initio Simulations

For the ab initio approach, we treated clusters with a particular aspect ratio (AR)

comprising countable (3 to 167) noble-metal atoms and employed TDDFT to get

their response to different optical excitation. There are three different kinds of ge-

ometries taken: (i) single- & double-layer rods having 5-fold symmetry along their

axes, (ii) icosahedral clusters, and (iii) atomic chains. The atomic species in these

clusters are described using norm-conserving Troullier-Martins [176] pseudopoten-

tials. The DFT and TDDFT calculations are done using GGA and AGGA functionals,
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with the GGA of Perdew-Bruke-Ernzerhof (PBE) [159, 160]. The spectra are calcu-

lated using the δ-kick perturbation according to Yabana & Bertsch [183, 184] and

Fourier transform of the time–dependent dipole moment. The simulations are per-

formed using real-space code octopus [186]

4.1.1.b Classical Simulations

On the other hand, for the classical simulations, both in the framework of local

and nonlocal (hydrodynamic) optics, we have used bulk fitted dielectric functions to

describe the clusters’ optical properties. In order to ensure direct comparability with

the TDDFT calculations using the atomistic description of the clusters, we define

equivalent geometries such that:

- they have the same aspect ratio as their atomistic counterparts, and

- also have the same number of valence-band electrons (s-electrons) as present

in their atomistic counterparts.

The detailed description of the equivalent geometries corresponding to atomistic

structures is given in the next section.

The classical optics calculations, both the local ones and nonlocal ones (using LAM),

are performed numerically in frequency domain, using the finite element method
(FEM) in the commercially available code COMSOL (version 3.5a). The calcula-

tions are done using cylindrical symmetry along the direction of the incident elec-

tric field, in order to solve the three-dimensional problem in two dimensions, thus

making it numerically economic by reducing the degrees of freedom. The dielectric-

surrounded metal cluster is described by a two-dimensional geometry put in a two-

dimensional box describing the dielectric. Maxwell’s equations for transverse ( ~E ⊥
~k) modes are solved in this box with proper boundary conditions to obtain the elec-

tric fields. Knowing the fields, the absorption cross-section is obtained from equa-

tions 2.1.5, 2.1.6 & 2.1.9.

4.2 Equivalent Geometries

In this section, we describe the construction of equivalent geometries corresponding

to different atomistic systems: Spheres, Spheroids, “Cigars”.
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Rods. In the TDDFT calculations, we consider model pentagonal subnanometric

rods of Au and Ag. These rods are formed as structured atomic layers around atomic

chains. The single-layer rods are derived from the 13-atom decahedral cluster by

stacking rings of 5 atoms each plus a central atom along the rotational axis. Thus,

a single-layer rod can be seen as an atomic chain with one atomic layer having a

pentagonal symmetry. For the case of double-layer rods, one more pentagonal layer

of atoms are added as shown later in Fig. 4.10. The termination at the ends of

these model systems is “soft”. The modelling of the equivalent geometries for the

single-layer pentagonal rods is discussed here which can be generalized as well for

the double-layer ones. To properly model this geometry we proceed in three steps.

First, we define L as the distance between the ionic positions of the ending atoms of

the nanorod (see Fig. 4.1). That is,

L =
N − 1

6
d0 , (4.2.1)

where N is the number of atoms (equal to the number of conduction s electrons)

and d0 = 2.885 Å ' 5.454 a
B

.

In the second step, we define the volume of the equivalent jellium-like structure. To

do so, we consider that the averaged s-electron density equals the bulk one, given

by

n̄ =
3

4πr3
s

,

where the Wigner radius of Ag is rs ' 3.02 b (very close to the Au Wigner radius)

and that the number of conduction electrons is fixed and equal to N .

If we approximate the structure as a cylinder of radius r0, we simply have

N =
(
πr2

0L
)
n̄⇒ r0 = 2

√
2r3

s

d0

N

N − 1
= r∞

√
N

N − 1
, (4.2.2)

where r∞ ' 6.356 b. This way we set the lateral dimension, r0, of the rod. The red

box in Fig. 4.1 is the sideview of such a cylinder.

Finally, in order to incorporate the soft termination of the nanorod we deform the
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FIGURE 4.1: Constructing equivalent optimal geometries corresponding to model pentago-
nal sub-nanometric rod.

above-constructed cylinder and consider a more realistic geometry, namely, a sub-

nanometric “cigar”. In Fig. 4.1 the longitudinal cross-section of such a cigar-shaped

geometry is shown by the green enclosing curve. It is defined as a cylinder of radius

r0 and length a, terminated by two hemispheres of radius r0, which has the same

volume as the previously created cylinder in eq.B.0.5. Therefore for the cigar,

N =

(
4

3
πr3

0 + πr2
0a

)
n̄⇒ a = L− 4

3
r0 =

N − 1

6
d0 −

4r∞
3

√
N

N − 1
, (4.2.3)

and we define the effective aspect ratio of this cigar shaped geometry as

AR =
a+ 2r0

2r0
=

1

3
+

L

2r0
=

1

3
+

d0

12r∞

√
(N − 1)3

N
. (4.2.4)

The corresponding values of the parameters L, r0, a, and R are given in Table 4.1

and Table 4.2 for selected rods.

N L (a
B

) r0 (a
B

) a (a
B

) AR

19 16.362 6.530 7.655 1.586

37 32.724 6.444 24.132 2.873

67 59.994 6.404 51.455 5.018

103 92.718 6.387 84.202 7.592

145 130.896 6.378 122.392 10.595
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TABLE 4.1: Geometrical parameters of equivalent compact structures (cylinder and cigar-
shape) for Ag/Au single layer pentagonal rods (in both cases, the bulk Wigner radius is

rs= 3.02 b)

N L (a
B

) r0 (a
B

) a (a
B

) AR

87 32.724 9.8811 19.549 1.989

167 59.994 10.113 48.4863 3.298

TABLE 4.2: Geometrical parameters of equivalent compact structures (cylinder and cigar-
shape) for Ag double-layer pentagonal rods

Atomic chains. The situation is different in atomic chains. In this case, the system

is practically one-dimensional. We consider a chain of N atoms, separated by the

atom-atom distance d0 ' 5.454 a
B

.

For the case of an atomic chain, while creating the equivalent cylindrical geometry

following the prescription for rods, we consider L = Nd0. Therefore, the optimal

cylindrical geometry will be defined by

πr2
0L = N

4π

3
r3
s ⇒ r0 =

√
4

3

r3
s

d0
' 2.595 a

B
. (4.2.5)

Having the lateral dimension r0, we construct the cigar-shaped geometry for the

chain in such a way that the volume of the cigar and the cylinder is same, i.e.,

πr2
0a+

4π

3
r3
0 = N

4π

3
r3
s ⇒ a = Nd0 −

4r0

3
. (4.2.6)

Having a and r0, the corresponding aspect ratio will be

AR =
a+ 2r0

2r0
. (4.2.7)

The corresponding values of the parameters L, r0, a, and AR are given in Table 4.3

for selected chains.
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N L (aB) r0 (aB) a (aB) a+ 2r0 (aB) AR

3 16.374 2.595 12.914 18.814 3.448

4 21.832 2.595 18.347 23.541 4.5.5

6 32.724 2.595 29.264 34.454 6.6385

8 43.632 2.595 40.172 45.362 8.74

10 54.54 2.595 51.08 56.27 10.842

12 65.448 2.595 61.988 67.178 12.944

18 98.172 2.595 94.712 99.902 19.249

24 130.90 2.595 127.44 132.63 25.554

TABLE 4.3: Geometrical parameters of equivalent compact structures (cylinder and cigar-
shape) for Ag/Au chains (in both cases, the bulk Wigner radius is rs= 3.02 b)

Icosahedral clusters. For the sake of simplicity, the equivalent geometry corre-

sponding to an icosahedral cluster is taken to be a sphere. Thus, for icosahedral

clusters, the aspect ratio is one. The equivalent sphere is constructed by defining its

volume (V ) through the Wigner radius, and the number of s-electrons in the cluster.

Defining the volume this way, the number of s-electrons can be found as,

N = n̄V =
3

4πr3
s

× 4πa3

3
, (4.2.8)

where a is the radius of the equivalent sphere, which can be evaluated as,

a = (Nr3
s )1/3. (4.2.9)

The corresponding values of a for icosahedral clusters are given in Table 4.4.

N a (b) R
55 11.485 1.00

147 15.938 1.00

TABLE 4.4: Radii of equivalent spheres for icosaderoal clusters of Au/Ag (in both cases, the
bulk Wigner radius is rs= 3.02 b).
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4.3 147-atom Quasi-Spherical Clusters of Ag & Au

FIGURE 4.2: Optical absorption cross section, in Å2 for Ag147Ih (upper panel) and Au147Ih
clusters (lower panel). In red the spectra calculated in ab initio TDDFT and in blue and black

the spectra calculated in local and nonlocal classical optics are shown.

In noble-metal clusters of ‘intermediate size’ ( as described in chapter 1 ), the ab-

sorption is different for the different noble metals. The 147-atom icosahedral (Ih)

cluster is an example in this size range. The absorption spectra for spherical and

quasi-spherical clusters of this calculated in classical and ab initio theories are shown

in Fig. 4.2. While the ab initio spectra are obtained with precise atomic structures

using RT-TDDFT delta-kick simulations, (discussed in details in chapter 3), exciting

along a particular direction (i.e., using a particular direction for the delta-kick), the

classical calculations are done in both local and nonlocal optics by solving Maxwell’s
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equations in a spherical geometry representing the clusters. The icosahedral sym-

metry make the optical response isotropic, Thus, the directionality of the δ-kick does

not alter the absorption, as far as the spectral position and strength of the LSPR are

concerned.

Difference between Ag & Au: Interband transitions. The red spectrum of the up-

per panel in Fig. 4.2 shows that Ag147Ih has a well defined LSPR-like feature at 3.22

eV. In Au147Ih there is no strong plasmonic peak in the absorption spectrum, the

spectrum rather is fragmented in different peaks, the strengths of which are more

than 5-times smaller than in the case of Ag147Ih. The different optical behaviors

of Au and Ag, can be traced back to the influence on the optical properties due to

the different positions of the electronic states involving the d-electrons. In Ag, the

d-states are situated at roughly 4 eV below the Fermi surface, whereas in Au, at

roughly 2 eV [10,188]. This means that in Ag147Ih, the LSPR is only weakly coupled

to the interband transitions from the d band, whereas in Au147Ih the coupling is

strong.

4.3.1 Electromagnetics Simulations

In classical optics, the LSPRs appear naturally as self-sustained solutions of Maxwell’s

equations, as discussed in chapter 2. In Fig. 4.2, the blue and black curves cor-

respond to the spectra obtained in local and nonlocal optics, respectively. While

classical local optics is known to provide the required accuracy in describing the

absorption spectra of many large noble-metal clusters, the spectra obtained in both

the local and the nonlocal optics calculations using spherical geometries equivalent

and corresponding to 147-atom-Ih clusters of Au and Ag do not agree with the ab
initio spectra. Within the framework of local optics, the existence of abrupt metal-

dielectric boundaries is assumed, and the electromagnetic response of metallic re-

gions (within the spherical geometry) is described in terms of their macroscopic,

spatially non-dispersive, dielectric functions, ε(ω).

As discussed in chapter 2, in the limit of small sizes and/or sub-nanometric radii of

curvature, the spatially non-local nature of the electromagnetic response becomes

crucial [8, 189]. It is taken care of by the use of spatially dispersive dielectric func-

tions (2.3.19) having transverse ( ε
T

(ω) ) and longitudinal ( ε
L

(k, ω) ) components,
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within the hydrodynamical model for electron motion as discussed in chapter 2. As

a consequence, the induced charges across metal-dielectric boundaries are smeared

out over a finite width. They spread inward from the abrupt bulk surface (which is

defined as the geometrical boundary of the sphere) [190]. Compared to local classi-

cal predictions, this nonlocal correction leads to the blue-shifts of LSPR frequencies

and to the decrease in the spectral strength. But, as evident from Fig. 4.2, the

simplistic nonlocal corrections can not give spectra which are close to the ab initio
ones for the case of 147-atom-Ih clusters. Clearly, the quantum-mechanical size-

confinement effect starts to manifest and we are beyond the range of applicability of

classical optics methods.

4.3.2 TDDFT Simulations Using Laser

In order to better understand the nature of the individual peaks in the spectrum of

Au147Ih, we performed TDDFT simulations using quasi-monochromatic laser excita-

tions (QMLE) with different energies of the laser corresponding to different peaks in

the spectrum.

The time dependence of the spatially homogeneous electric field describing the

quasi-monochromatic laser used can be expressed as,

E(t) =

E0 n̂ sin(ωt) cos

(
t

T
− π

2

)
, for (0 ≤ t ≤ T )

0, otherwise,

(4.3.1)

where E0 = 10−2 eV/Å is the amplitude and ω is the frequency of the laser pulse;

and T is half the time period of the envelope of the laser pulse. For all the simu-

lations, T is taken to be (10 ∗ 2π/ω), so that the pulse contains 10 oscillations with

the laser frequency. This means that in frequency domain, the laser pulse will have

a full-width at half-maximum (FWHM) of 4ω = ω/20. The laser is switched off at

t = T , and thereafter the system evolves freely without any external perturbation,

for a time T or more.

The time dependences of the dipole moments obtained from QMLE simulations for

Au147Ih at different energies are compared in Fig. 4.3 with the same obtained for

Ag147Ih at the LSPR energy. In all the three cases of Au147Ih, the dipole moment fol-

lows the profile of the lasers before they are switched off (0 ≤ t ≤ T ). In Au147Ih for

different energies the amplitude of the dipole moments do not change significantly
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from one case to another. For the case of Ag147Ih at LSPR energy, the dipole moment

does not exactly follow the profile of the laser. Not only does the amplitude of the

dipole moment become stronger for the case of Ag147Ih than for the case of Au147Ih,

but also, unlike in Au147Ih, it does not tend to die out with the end of the laser pulse.

Rather, at the end of the laser pulse (near t ∼ T ), a phase shift of a quarter of the

period is noticed.

FIGURE 4.3: Time dependence of the electric fields of laser excitations at different energies
(in black) and the corresponding time evolution of the dipole moments (in different colours)
for Ag/Au147Ih clusters. The upper three panels correspond to laser excitations in Au147Ih,

and the lower panel corresponds to the same in Ag147Ih.

The differences in behaviours of the laser-driven dipole moment in the 147-atom

icosahedral clusters Ag and Au can be understood in close correspondence with the

physics of a driven oscillator. The time–dependent dipole moment is calculated from

the time–dependent changes in the driven electron density with respect to its value
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in equilibrium (i.e., in ground state). The fact that the time–dependent dipole mo-

ment in Au147Ih at different energies oscillates following the phase and the time-

dependence of the amplitude of the laser suggests that in all these energies the os-

cillation of the electron density is not in resonance with the driving force, the laser

field. By contrast, in Ag147Ih at LSPR, the amplitude of the driven dipole moment

keeps on increasing with the increase in the amplitude of the driving laser field and

unlike in Au147Ih, when the amplitude of the laser starts to fall off, the driven dipole

moment tends to maintain its acquired amplitude. This tendency is reflected at the

end of the laser pulse, where the driven dipole moment is noticed to oscillate out

of phase with the driving laser field. This particular phase shift between the driving

force and the driven oscillator and the tendency of the oscillator to keep the max-

imum energy (i.e., amplitude) acquired in course of being driven are the signature

of resonance.

The comparison of the self-sustained evolution of the dipole moments after the

switching-off of the laser, in both the systems, is of particular interest. For the

cases of QMLE simulations of Au147Ih at different energies, these evolutions show

very weak oscillations of the dipole moments. For the case of QMLE simulations of

Ag147Ih at LSPR energy, the dipole moment appears to oscillate with the amplitude

gained at the end of the laser pulse. This oscillation also confirms the fact that the

system is in resonance with the driving force.

In all the four cases shown in Fig. 4.3, the self-sustained evolution of the dipole mo-

ments show the formation ‘beat’ patterns. ‘Beats’ are formed when more that one

oscillating modes having very close frequencies of oscillation superpose. Thus, in

Fig. 4.3 the presence of the ‘beats’ announces that energetically closely spaced modes

of the electron-density oscillations are excited by the corresponding laser fields. This

is due to the fact that, as the laser pulses have certain energetic width, it is possi-

ble to excite some other modes situated very close to the desired frequency (ω) in

the spectrum. Thus, the resulting dipole moment is nothing but a superposition of

different modes.
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4.4 Elongated Clusters of Ag & Au : Rods & Chains

In the preceding section we have discussed the typical behaviour of the optical re-

sponse that starts to appear in ‘intermediate-size’ noble-metal clusters of different

chemical species. In this section, we’ll discuss the dependence of the optical response

on the AR of ‘intermediate-size’ noble-metal clusters and also the performance of

classical and ab initio methods to describe this dependence properly. The AR de-

pendence of the LSPR using classical optics is well known for larger noble-metal

nanoparticles [87] which we have already discussed in chaper 2. In this section,

we’ll explore the validity of those known results and thus, of the classical methods

in the ‘intermediate’ size range. In particular, the dependence of the LSPR energy

and the coupling between LSPR and d-electron excitations (“interband transitions”)

on the AR will be discussed in model pentagonal rods and atomic chains of Ag and

Au. The longest rod (with highest AR) is made up of N=145 atoms while the short-

est one (with lowest AR) has N = 19. The construction of these rods are discusses in

the previous section. Optical absorption in most of these pentagonal rods has been

studied before [191,192]. In the present work, they are employed as well-controlled

model structures that enable the systematic comparison of different methodologies

(classical and ab initio ) on nanoclusters of varying LSPR energy and material and,

consequently, a varying degree of coupling between the LSPR and interband tran-

sitions. The structures are the same for both Au and Ag and, to allow for a proper

discussion of the dependence of the optical absorption on AR, they are not relaxed.

The atom-atom distance along the rod axis is set to d0=2.88 Å. The other class of

systems here considered are single atom-chains of Au and Ag having a number of

atoms between 3 and 24, with the same inter-atomic distance d0 as in the rods. The

absorption spectra are calculated for the excitations by electric fields polarized along

the longitudinal axis (x-direction).

4.4.1 Rods vs Icosahedra

Fig. 4.4 shows a direct comparison between ab initio and local and nonlocal optics

absorption spectra for Ag and Au rods. A comparison of the spectra in the upper-

most panels in Fig. 4.4 with the spectra for the Ih clusters in Fig. 4.2, is of particular

interest. The rods and the Ih clusters have almost same number of atoms (and thus

s-electrons).
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The comparison reveals that for the rods, where the AR is high (>10), the behaviour

of the absorption in Au and Ag is similar. In fact, from Fig. 4.4, this observation

remains valid at AR∼8 too. However, having approximately the same number of

electrons, in Ih clusters the absorption is entirely different in the two materials. The

reason for this different behaviour with respect to AR is traced back to the following

facts.

• As the red-shifted LSPR in the rods appear well below the onset of the inter-

band transitions involving d-electrons, it corresponds primarily to the response

of the s-electrons, which behave similarly in both Au and Ag. Thus, the absorp-

tions in both Au and Ag 145-atom rods are dominated by the LSPR, and are

similar.

• In rods, as the excitation is along their length, the s-electrons are guided by

the length while responding to the excitation. This phenomenon favors the

collective oscillation of the s-electrons in rods more than in the Ih clusters

which are way more compact (AR'1) than the rods.

• The more the collective oscillation of the s-electrons is favored, the lower is

the required energy to achieve resonance. Thus the LSPRs in the 145-atom

rods appear in the IR, strongly red-shifted compared to their energies in the

147-atom Ih clusters. Understanding the LSPR as localized dipolar mode of

surface plasmon polaritons (SPPs), this red-shift can be understood from the

dispersion relation of SPPs (2.2.2), as shown by the orange curve in Fig. 2.5.

The wavelength of the dipolar SPP (λ
SPP

) is twice the dimension of the cluster

along which it is excited. Thus, λ
SPP

is larger in the 145-atom rods than in the

147-atom Ih clusters and, consequently, the corresponding wave vector (k
SPP

)

is smaller. Following the dispersion curve, therefore, the dipolar SPP occurs at

a lower energy in the rod than in the Ih cluster.

4.4.2 Classical vs TDDFT in Rods

Fig. 4.4 shows that there is an excellent agreement between TDDFT and local op-

tics calculations for structures with AR > 5 (whose response is dominated by the

LSPR). As a matter of fact, it is worth mentioning here that this agreement does not

arise from any fitting between the ab initio and the electromagnetics calculations.

Only the a priori definition of classical geometries introduced at the beginning of

this chapter is followed. The comparison against ab initio predictions improves even
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FIGURE 4.4: Optical absorption cross section, in Å2 for silver (left column) and gold (right
column) three-dimensional rods of different aspect ratio (AR) and number of atoms. The

structre that coorespons to the spectra is shown in the inset.
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further when the absorption cross-section is computed using the nonlocal hydrody-

namic metal permittivity. This gives rise to the aforementioned nonlocal resonance

blue-shift, a signature of the different LSPR dependence on absolute size in local and

nonlocal optics.

However, classical optics fails to accurately describe the ab initio spectra for com-

pact low-AR structures in Figure 4.4 (N ≤ 37 atoms, AR. 3). This is expected,

since genuine quantum effects, such as electron-density spill-out and energy level

discretization due to size confinement, become more significant as the rod’s length

(and thus the AR) decreases. The plasmon-causing s-electrons are forced to oscillate

with smaller λ
SPP

. Thus the LSPRs get blue-shifted as the AR decreases and their

coupling to the interband transitions increases.

In the case of Ag, despite relatively small spectral deviations, TDDFT and classical

calculations are still in qualitative agreement even for low-AR. By contrast, for Au

rods having AR. 5 (i.e., N ≤ 67 atoms), classical predictions are already qualita-

tively different from the TDDFT spectra. In these Au systems, the classical LSPR

frequencies lie at or above the onset of interband transitions (∼ 2 eV) due to d-

electrons. This fact prevents the formation of purely collective surface plasmon

resonances in the TDDFT spectrum, which in turn is dominated by a set of mul-

tiple maxima (of similar height) originated by d-electron excitations. Identifying

the lowest-frequency absorption features in the TDDFT spectra for short Au rods

as LSPRs (having noticed that these are located at roughly the same position as

the classical optics peaks), we can conclude that the spectral overlap with the d-

excitations range gives rise to the partial damping, splitting and fragmentation of

LSPRs in these systems. It is worth mentioning here that the inclusion of nonlocality

in the electromagnetics calculations does not reproduce any of these purely quan-

tum physical features. It only improves the comparison against ab initio results at

higher AR by correcting classical optics LSPR frequencies, otherwise too red-shifted

due to the abrupt character of induced local charges.

4.4.2.a Effect of AR and absolute size on spectral shifts

While presenting the spectra calculated using classical electromagnetics, we have

discussed two different kinds of spectral shifts. On the one hand, we have discussed

the well-known spectral shift due to the change in the AR keeping the volume (i.e.,
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FIGURE 4.5: Dependence of nonlocal blue-shift on aspect ratio and absolute size in classical
optics. The black curves correspond to the local optics spectra, while the red ones correspond

to nonlocal optics.

the number of atoms) of the cluster almost the same, on the other hand, there is

the spectral blue-shift caused by the smeared-out induced charges when the optical

response of a cluster is calculated using a spatially dispersive dielectric function.

The latter is termed as the nonlocal blue-shift which becomes apparent as the size of

the cluster is decreased and thus, explains the size-dependent blue-shift observed in

noble-metals in the experiments [188]. A comprehensive analysis of the dependence

of this nonlocal blue-shift on absolute size and AR of the cluster is shown in Fig. 4.5.

This figure shows the absolute size dependence of the nonlocal blue-shift for Ag

clusters of different AR in cigar shaped geometries. For each AR, the non-local blue-

shift increases as we go down in absolute size. For a particular absolute size, the

amount of non-local blue-shift remains almost constant for different AR. This figure

also demonstrates that the AR plays the primary role for the blue-shift of the LSPR

and is stronger than the effect of absolute size, i.e. the non-local blue-shift.
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FIGURE 4.6: Optical absorption cross section, in Å2 for quasi-one-dimensional silver (left
column) and gold (right column) atomic chains of different aspect ratio (AR) and number of

atoms.
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4.4.3 Classical vs TDDFT in Chains

Following the performance of electromagnetics and TDDFT in describing the opti-

cal response in atomistic rods, we have performed the same study in linear atomic

chains of Ag and Au. The AR-dependence of the LSPR in these atomic chains are

found to be similar to that in the rods, except for the fact that the quasi-one di-

mensional nature of the chains makes the classical nonlocal optics predictions less

accurate than the local optics ones. Figure 4.6 plots the absorption spectra for Ag

and Au atomic chains of different lengths and, thus, AR. We find a strikingly good

agreement between TDDFT and local optics results for Ag chains, an observation

similar to previous studies on linear hydrogen atomic chains [193, 194]. As in case

of the rods in Figure 4.4, for Ag atomic chains the weak spectral deviations above

∼ 3 eV can be attributed to single electron-hole excitations (“interband transitions”).

These spectral features are more apparent in Au chains, where the spectral weight

of transitions involving d-electrons is comparable to those attributed to LSPRs. As

discussed below, the predictive value of local electromagnetics calculations for high

AR chains (for both Ag and Au) originates from their quasi-one-dimensional nature:

electron motion in these systems is confined along the longitudinal axis. Therefore,

the collective LSPR that dominates their absorption spectra cannot be regarded as a

surface mode [195–198]. We note that our hydrodynamic model was constructed to

account for the impact of spatial nonlocality due to the optical excitation of three-

dimensional (bulk) longitudinal plasmons, described by equation 2.3.22, instead of

one-dimensional ones. This explains the offset of nonlocal predictions in Figure 4.6,

significantly blue-shifted with respect to local optics and ab initio spectra.

4.4.3.a LSPR in Quasi-one-dimension

The striking agreement between the absorption spectra for quasi-one-dimensional

quantum systems and their three-dimensional local optics counterparts can be easily

understood in terms of simple geometrical considerations. To a first approxima-

tion, we can take the analytical expression [138] for the lowest LSPR in ellipsoidal

nanoparticles for the cigar geometries (the one used for calculating the electromag-

netics spectra). In the limit of large AR, we obtain

ω2
LSPR =

4

π

ρavge
2

meε0(a+ 2r0)2
ln (2 AR) =

navge
2

meε0(AR)2
ln (2 AR) (4.4.1)



4.4. Elongated Clusters of Ag & Au : Rods & Chains 97

where ρavg = πr2
0navg is the number of Drude electrons per unit length, ε0 is the

vacuum permittivity, and me and e the electron mass and charge, respectively. It

is worth noticing that the absence of the Lorentzian component of ε(ω) in equa-

tion (4.4.1) indicates that the dynamical screening by d-electrons is ineffective for

rods with large AR.

On the other hand, the plasmon dispersion relation in a homogeneous one-dimensional

electron system in the long wavelength limit reads [199]

ω2
1D(q) = − ρavge

2

2πε0me
q2 ln

(
qξ0
π

)
, (4.4.2)

where, ξ0 is the length parameter measuring the electron confinement in the trans-

verse direction. Evaluating this expression at q = 2π/λ
SPP

=
π

(a+ 2r0)
and making

ξ0 = r0, we obtain the resonant frequency for the dipole collective mode sustained

by the system, the ab initio equivalent for the classical LSPR,

ω2
1D−dipole =

π

2

ρavge
2

meε0(a+ 2r0)2
ln (2 AR) =

π2

8

navge
2

meε0(AR)2
ln (2 AR) . (4.4.3)

Equations (4.4.1) and (4.4.3) describe collective excitations of different nature, but

their remarkable similarity allows us to identify both of them. This also clarifies the

agreement between TDDFT and local optics spectra in Figure 4.6. It is important to

note that the equations (4.4.1) and (4.4.3) yield ωLSPR < ω1D−dipole, which is also in

agreement with the numerical spectra. Classical optics slightly underestimates the

LSPR frequencies in the limit of very long chains (where the analytical expressions

are valid), a deviation which, in principle, could be corrected through the appropri-

ate one-dimensional nonlocal corrections.

4.4.3.b Plasmon–electron-hole Coupling in Au Chains

As mentioned above, the TDDFT spectra for Au chains in Figure 4.6 indicate that

quasi-one-dimensional collective excitations are not well resolved for N ≤ 12. In

analogy with the three-dimensional case, this effect can be directly attributed to the

coupling of the collective mode with single electron-hole excitations. This coupling

can be observed in detail in Fig. 4.7, where we show the variation of the absorption

cross section normalized to N for different Au chains. For N = 18, the quasi-one-

dimensional LSPR is well separated from the spectral region where single-electron
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FIGURE 4.7: TDDFT absorption cross section per atom (in Å2) versus frequency and the
number of atoms in Au chains. The solid line plots the LSPR frequency under local optics
descriptions. The various ab initio spectral maxima are given by solid circles (connected to
guide the eye): collective plasmon modes in blue and single d-electron excitations in black

and red.

transitions occur. As a consequence, it appears as a well defined absorption peak

whose position is in good agreement with the one predicted classically. When de-

creasing the number of atoms, the lowest-frequency maxima lose spectral weight.

For N = 10, this resonance is fragmented and none of the local maxima can be

attributed to a collective LSPR excitation. However, Fig. 4.7 demonstrates that the

classical optics description provides a rough spectral average of such fragmented

peaks. Finally, for the 6-atom chain, the lowest-frequency ab initio maximum is very

weak and the transfer of spectral weight to the electron-hole excitations region is

almost complete. Interestingly, a new spectral feature emerges very close to the fre-

quency corresponding to the classical plasmon by taking spectral weight from the

original one-dimensional LSPR and the lowest-energy electron-hole excitation. Al-

though plasmon formation in gold chains is clearly beyond the scope of any classical

optics treatment, it is worth emphasizing that it seems to account rather accurately

for the spectral average of the split quantum excitations in the ab initio calculations.
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4.4.4 Aspect Ratio & Absolute Size Dependence

As shown in the previous section, the study combining ab initio method and electro-

magnetics modelling of Ag and Au rods indicates that, through a careful mapping

between atomistic structures and classical geometries containing a bulk permittivity,

LSPRs can be quantitatively described by classical optics methods as long as they are

largely free of interband contamination. In order to further check this conclusion

and provide a more general perspective, in Fig. 4.8 (for Au) and Fig. 4.9 (for Ag)

the spectral positions of all the significant absorption maxima in Figures 4.4, 4.6

and 4.7 are plotted against the AR of the various Au and Ag systems, respectively

(note the log-log scale). TDDFT results for collective LSPR-like modes are shown by

stars (for Ih clusters in Fig. 4.9), solid circles (in red and gray for rods) and rhom-

buses (chains). In all cases, the number of atoms is indicated. Significant absorption

features in Au structures originating from single electron-hole excitations are repre-

sented by empty circles (rods) and rhombuses (chains) in Fig. 4.8, and by colored

empty rhombuses (chains) in Fig. 4.9. Local and nonlocal optics predictions for

the corresponding cigar geometries are shown in green and blue lines, respectively.

We observe that while the LSPR frequencies within the local approximation depend

only on AR, they do depend on absolute size once nonlocal corrections are included.

Thus, solid and dashed blue lines correspond to nonlocal resonances for rods and

chains, respectively.

Figures 4.8 & 4.9 show that while the AR-dependence of LSPR frequencies obtained

from local optics calculations is already in good agreement with TDDFT results, the

non-local blue-shift slightly improves it for long Au and Ag rods. This suggests that,

the rods despite having lateral sub-nanometric dimensions, preserve a quasi-bulk

optical response. By contrast, in the Ag chains (Fig.4.9), the TDDFT resonant fre-

quencies are better described within the local optics frame. For Au chains having

N>12, the dominant resonant peaks obtained in TDDFT are also better described by

local optics. For Au chains having N<12, however, the coupling with electron–hole

excitations fragments the plasmon, as discussed in the previous section. In order to

verify the validity of the local optics description, we evaluate the ellipsoidal LSPR

dispersion of Ref. [138] for the full Drude-Lorentz permittivity as well as for a sim-

plified Drude-only fitting. These results, plotted in magenta (full εbulk(ω), i.e., Drude

and Lorentz parts) and black (simplified εbulk(ω), i.e., Drude part only), in Figure 4.9

upper panel (i.e., for the case of silver,) reveal that agreement with TDDFT predic-

tions occurs if the dielectric function is mainly governed by the Drude contribution,
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FIGURE 4.8: LSPR frequencies in Au sub-nanometric rods and atomic chains versus aspect
ratio. Black (magenta) line renders analytical local optics calculations in ellipsoidal geome-
tries with fitted Drude (Drude-Lorentz) permittivity, where analytics refers to equations
5.13b, 5.15 of Ref. [136]. Green and blue (solid corresponds to Rods and dashed corresponds
to Chains) lines plot local and nonlocal classical simulations for Drude-Lorentz cigars, re-
spectively. TDDFT LSPR frequencies forN -atom systems are shown in solid red circles (rods)
and rhombuses (chains). Empty circles (rods) and rhombuses (chains) correspond to single

electron-hole excitations apparent in the absorption spectra.

which is more the case in Ag than in Au.

As discussed above, in the quasi-one-dimensional chains, the nonlocal optics pre-

dictions do not agree with the TDDFT ones. Not only this failure of the nonlocal

hydrodynamic model, but also the good agreement between local optics and ab ini-
tio predictions in Ag chains can be linked to the inherent one-dimensional nature of

these systems. In the case of short Au rods and chains, the occurrence of d-electron

transitions above ∼ 2 eV causes qualitative differences in the spectral behavior in

TDDFT and in electromagnetics approaches. The discrepancy in the AR dependence

between both methods is most apparent in Au chains with N = 6 − 12, where mul-

tiple ab initio single-electron peaks occur far from the LSPR band.

4.4.4.a Blue-shift with Increasing Absolute Size at High Aspect Ratio

In order to get deeper insights into the absolute size dependence of the LSPR in Ag

at different AR ranges, the LSPR frequencies for 3- and 4-atom Ag chains, 55- and

147-atom Ih Ag clusters, and 87- and 167-atom double-layer Ag rods are also put
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FIGURE 4.9: LSPR frequencies in different systems of Ag versus aspect ratio (upper panel),
and the enlargement (lower panel) of the shaded zone of the plot. The colours of the curves

and the symbols represent the same as in Fig 4.8, except otherwise stated in the legends.

FIGURE 4.10: The absorption cross-section normalized by the number of atoms for different
other systems of Ag, which were not presented earlier but shown in Fig. 4.9. Inset: two dif-
ferent views of the atomic structure for the double layer rods (,in this case for Ag87), showing

the second layer in gray to differentiate it from the core of the structure.
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into Fig. 4.9. The absorption cross-section normalized by the number of atoms for

these six systems is shown in Fig. 4.10. For the LSPRs in silver clusters presented in

the top panel of Fig. 4.9, the circles representing the resonance energies for rods lie

above rhombuses representing the resonance energies for chains. This observation

is particularly apparent in the range of AR between 3 and 13, which is enlarged

and shown in the lower panel of Fig. 4.9. This indicates that the rod LSPRs are

blue-shifted with respect to the atomic chain ones. This indicates a blue-shift of

LSPR while the size of the clusters are increased. As mentioned earlier, the nonlocal

blue-shift of the LSPR is considered to give the physical explanation of the blue-shift

observed in experiments when the size of the noble-metal clusters is decreased. The

trend of absolute size dependence we show in the lower panel of Fig. 4.9 for the

same AR is exactly the opposite to that predicted by nonlocal optics (see solid and

dashed blue lines). For the moment, this opposite behaviour of the absolute size

dependence in the TDDFT calculations is only a theoretical observation and requires

physical understanding.

4.4.5 GGA In Describing The Ab Initio Spectra For Low-AR Sys-
tems (rods)

TDDFT (the theory) is in principle exact; the practical calculation are not, because

we always need an approximation for the exchange-correlation functional in the

calculations. As discussed in the chapter 3, in TDDFT, the time evolution of the den-

sity of the many-electron system is obtained from a fictitious non-interacting one, the

time-dependent Kohn-Sham system, under the action of an effective time-dependent

potential. This potential is a functional of the electron density n(r, t) and accounts

for the non-local spatial and temporal response of the correlated many-body sys-

tem [200, 201]. Therefore, TDDFT would provide all the quantum many-body cor-

rections if it were not for the fact that we need to rely on approximate functionals/k-

ernels for practical calculations. As long as collective excitations dominate the op-

tical spectra, simple approximations like adiabatic generalized-gradient approxima-

tions (AGGA) suffice [202]. In all the TDDFT calculations, presented as results in this

chapter, the Perdew-Burke-Ernzerhof [159, 160] (PBE) AGGA exchange-correlation

functional is used. However, the AGGA exhibits problems in the descriptions of the

d states, leading, in particular, to d-band energies too close to the Fermi energy, in

part due to the incomplete cancellation of the electron self-interaction.
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FIGURE 4.11: Comparison of spectra calculated in PBE and LC-M06L. The LC-M06L spectra
are calculated by F. Rabilloud

The precise description of the delicate interplay between d-electron and collective

excitations in coinage-metals requires more sophisticated functionals like the long-

range-corrected ones. Therefore, as anticipated, the performance of the PBE func-

tional requires to be assessed carefully. Fig. 4.11 shows a comparison of PBE results

for selected rods with those obtained using the more sophisticated LC-M06L hybrid

functional. This functional has demonstrated high accuracy for small silver clus-

ters [203] and can therefore be considered as a benchmark. The LC-M06L functional

is obtained by applying long-range corrections [168] to the meta-GGA M06L [169]

functional. Here, “meta" denotes the inclusion of kinetic energy density, which de-

pends on local derivatives of the spin orbitals. LC-M06L contains 0% Hartee-Fock

exchange at short range and 100% at long range. The range separation parameter

was 0.33. The LC-M06L calculations were carried out using GAUSSIAN by F. Rabil-

loud. The agreement is excellent for the 67- and 37-atom silver rods. There is only

a small shift of about 0.2 eV which is of the order of differences which we found be-

tween two GGA calculations done using octopus and GAUSSIAN, respectively. In

these two (Ag67, and Ag37) longer rods, the LSPR is the dominant excitation and well

removed from the interband transitions from the d electrons. Thus, the comparison
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indicates that the PBE spectra are valid as long as the dominant LSPR is well decou-

pled from interband transitions. By contrast, the shortest rod, Ag19, is very badly

described by the PBE functional. For Ag19, the benchmark spectrum is given by the

LC-M06L calculation and not by the PBE calculation. We note that not even the char-

acter of the LC-M06L spectrum is reproduced qualitatively by the PBE calculation.

This means none of the results presented in the lowest left panel of Fig 4.4 is correct.

From this particular verification of the validity of the PBE functional, an important

conclusion is achieved by having a look back to the left panels in Fig. 4.4. We ob-

serve, that in all the cases, except for Ag19, the LSPRs in the TDDFT spectra are

recovered with moderate accuracy, by the nonlocal optics calculations, both in terms

of spectral position and strength. In other words, as long as the LSPR is well sep-

arated from the region of interband transitions, the performance of the nonlocal

optics is as good as that of the ab initio TDDFT.
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Chapter 5

Results: Induced Density

5.1 Introduction

In both approaches, classical and ab initio, the near-field characteristics of the opti-

cal response of a cluster at a certain energy, are analyzed through the behavior of

the induced density at that particular energy which is closely linked to the “fields”.

While the absorption spectrum of a cluster gives the dependence of the optical re-

sponse on different energies, the analysis of the induced density helps to understand

the spatial nature of the optical response. In this thesis we are concerned with

two different theoretical approaches, namely, classical electromagnetics and ab ini-
tio TDDFT. However, in both of these approaches, we have performed different types

of simulations. In this chapter, we’ll discuss induced charge density obtained in all

these different simulations. Therefore, in order to avoid any possible confusion, here

we list all these different simulations where the induced densities are obtained and

discussed in this chapter:

• Ab initio simulations:

– RT-TDDFT δ-kick: As discussed in chapter 3, in this simulation, we ex-

cite all the optical modes of a system as long as we are within the lin-

ear response regime. Thus , the time–dependent induced density cor-

responding to this simulation consists all the excited modes and their

time-dependence.

– RT-TDDFT QMLE: In this simulation, we use a laser pulse which is spa-

tially homogeneous. According to the temporal width of the pulse the

lase has a finite spectral width in the frequency-domain. Thus, the time–

dependent induced density corresponding to this simulation has weighted
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contribution from all the optical (laser-active) modes that fall within the

aforementioned spectral width.

– LR-TDDFT: In this simulation the spectrum is obtained by calculating the

transitions between the occupied and unoccupied states. Thus, induced

density corresponding to a particular transition can be calculated as tran-

sition densities.

– Electrostatic calculation: In this simulation, a system in its ground state

(calculated in DFT) is perturbed by an electrostatic field and the induced

density is calculated as the difference in the electron density between the

perturbed and unperturbed system.

• Classical Electromagnetics Simulations: In this simulations, the Maxwell’s equa-

tions are solved to obtain the electric fields in the frequency domain.

– Local optics calculations: As discussed in details in chapter 2, in this

case, the dielectric function for the metal region does not have any spatial

dependence.

– Nonlocal optics calculations: Spatially dispersive dielectric function (as

described within the hydrodynamic model) is chosen for the metal region

in this simulation.

In this chapter, the spatial characteristics of the plasmonic and the non-plasmonic ex-

citations are discussed through the analysis of induced densities. A quantitative com-

parison of the induced density obtained at LSPR for elongated systems, from both

the classical and ab initio approaches, is carried out to understand the dipolar LSPR

and the quantum mechanical effects. Moreover, for different ‘intermediate-size’ clus-

ters, the spatial profiles of the induced density corresponding to different energies

are obtained through spatially resolved Fourier transform of the time–dependent

induced density obtained from the delta-kick RT-TDDFT calculation. These spatial

modes at different energies are then also compared with the induced densities ob-

tained from simulations using the quasi-monochromatic laser excitation (QMLE) at

the corresponding energies.
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5.2 Induced Densities at LSPR in Elongated & Com-

pact Ag Systems

In order to compare the near-field characteristics of LSPRs in elongated systems (the

spectra of which are presented in chapter 4), we evaluate the cross-section integration
of the induced charge densities over the cross-section of some selected Ag systems

and as a function of their length, within both the ab initio and classical optics frame-

works.

5.2.1 Cross-section-integrated Induced Density from TDDFT

The ab initio induced density is obtained from TDDFT simulations by exciting the

rods with a weak quasi -monochromatic laser field polarized along the rod axis (x-

direction). The laser pulse has a sinusoidal envelope of finite duration, T , and its

bandwidth is centered at resonance with the LSPR frequency:

E(t) = E0e
iω

LSPR
t sin (ω

LSPR
t/T )ex. (5.2.1)

The envelope duration was set to 10 plasmon oscillations (T =
20π

ω
LSPR

) in our cal-

culations. The system is left to evolve freely for a sufficient amount of time after

the external driving laser is switched off. The induced density corresponding to the

LSPR is chosen to be the one that corresponds to a maximum of the time–dependent

oscillation of the dipole moment after the switching-off of the laser. Using this in-

duced density, the magnitude of the cross-section-integrated induced charge density

is evaluated as,

S(x) =

∫ ∫
[ρ(x, y, z; τ)− ρ

GS
(x, y, z)]dydz (5.2.2)

where, ρ
GS

(x, y, z) is the ground-state density and ρ(x, y, z; τ) is the time-dependent

density at a time τ , longer than T , when the oscillation of the electron density is

self-sustained, and correspond to a maximum of the time–dependent oscillation of

the dipole moment, as discussed before in chapter 4.
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5.2.2 Cross-section-integrated Induced Density from Electromag-
netics

Within the ab initio description, the induced charges spread across the rod’s volume.

By contrast, in the electromagnetics picture, they are confined at the metal surface.

Surface charges are located exactly at the geometric boundaries in the local optics

treatment, whereas nonlocal corrections provide the charge distribution with a non-

vanishing thickness. Taking this into account, we estimate the induced charges using

classical electromagnetics through the discontinuity in the normal component of the

electric field. Explicitly, we can write

S(x) = 2πε0r(x)[Eout(x)−Ein(x)] · e(x) (5.2.3)

where, r(x) =
√
y(x)2 + z(x)2 is the radial coordinate along the metal boundary,

e(x) is the unit vector along the surface normal, and Eout(x) and Ein(x) are the

electric fields outside and inside the geometrical boundary. While in local optics,

Ein(x) is evaluated at the metal-dielectric interface, in the nonlocal optics calcula-

tions, taking into account the extended character of induced surface charges, Ein(x)

is evaluated exactly at a distance 1/qL from the metal-dielectric interface.

5.2.3 Comparison of Cross-section-integrated Induced Density
from Electromagneticsn and TDDFT

Figure 5.1 plots S(x) against the length-normalized axis co-ordinate for three dis-

tinct Ag systems whose spectra (both in TDDFT-PBE and in classical optics) present

a well defined LSPR: 145-atom rod (top left panel), 19-atom rod (bottom left panel)

and N = 18 atomic chain (top right panel). In all cases, the induced density profiles

obtained from TDDFT (brown), and local (violet) and non-local (green) classical

optics are shown. The cross-section-integrated ground-state density obtained from

ab initio calculation is shown as orange line (note the different scales of the left

and right axes in all panels). To allow for a quantitative comparison between ab
initio and electromagnetics treatments of S(x), the amplitude of the driving laser

in all simulations was set to 108 V/m (within the linear response). The insets show

the laser field (blue) and the TDDFT time evolution of the induced dipole moment

(red). The black arrows indicate the time τ at which the induced charges were com-

puted. The bottom right panel shows the ab initio induced (brown) and ground
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FIGURE 5.1: Induced charge density for Ag145 (top left), Ag19 (bottom left), Ag18 (top right),
and a N = 18 purely one-dimensional system (bottom right). In all panels, the brown curve
plots a snapshot of the TDDFT induced charge density along the normalized rod/chain
length in units of electrons/Å. The orange curve renders the ground-state density profile,
shown for reference. The violet and green curves in the first three panels show the induced
surface charge distribution (in electrons/Å) obtained from local and non-local optics calcu-
lations, respectively. The insets show the time dependence of the driving laser (blue) and of

the TDDFT induced dipole moment (red).

state (orange) density profiles for a 18-electron purely one-dimensional jellium sys-

tem modelling Ag18.

Figure 5.1 shows that the excellent quantitative agreement between ab initio and

classical predictions for the absorption spectra of Ag145 (see Figure 4.4) and Ag18

(Figure 4.6) also holds in the near-field regime. Remarkably, TDDFT and electromag-

netics induced charge peaks are not only located at the same position but present

very similar heights. This can be interpreted as a consequence of the high plasmonic

character of both structures, which support well-defined collective LSPRs free of the

contamination from single electron-hole excitations. There are two relevant aspects

in the ab initio density profiles which deserve attention.
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FIGURE 5.2: Induced charge density for Ag145 .The brown curve plots a snapshot of the
TDDFT induced charge density along the normalized rod length in units of electrons/Å,
obtained from a QMLE simulation with LSPR energy. The red curve shows the induced
density from a electrostatic calculation. The orange curve shows the ground-state density

profile, for reference.

• First, there is the inhomogeneity of S(x) across the length of the structure.

These regular modulations of the density are caused by the highly localized

nature of the d-electrons and their contribution to the overall response of the

system.

• Second, there are weak, somewhat irregular fluctuations overlaid onto those

modulations. These arise from the fact that the quasi-monochromatic laser ex-

citation has a finite energetic width and hence can excite several energetically

close modes. The superposition of the different modes leads to the irregular

fluctuations which modify the overall behavior of the induced density and lead

to a certain asymmetry in the density profile. By comparison, a static exter-

nal field would lead to a profile reflecting the perfectly symmetric geometry

along the rod axis, as shown in Fig. 5.2 in red. The comparison of the induced

density due to a static external field with the induced density obtained in the

time–dependent calculation is discussed later in the next section in 5.4.4.b.

Both, the modulations due to the atomistic density inhomogeneity and the fluctua-

tions due to the superposition of different modes are naturally absent in the classical
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induced-density profiles.

The right bottom panel of Figure 5.1 correspond to the induced density obtained

using TDLDA in one-dimensional model jellium system comprising of 18 electron.

It shows a perfectly symmetric and smoothly oscillating S(x) (free of sharp fluctua-

tions). Thus, it confirms our interpretation of the induced density features present

in the S(x)-representation of Ag18, but missing in the classical optics results.

5.2.3.a Ag19: Consequences of XC-functional

In Ag19, despite the correspondence in the LSPR spectral position (as can be seen in

the lowest left panel in Figure 4.4), the comparison between classical and ab initio
induced densities (shown in the left bottom panel of Figure 5.1) is rather poor. Un-

like Ag145 and Ag18, electromagnetic calculations for Ag19 yield a S(x) profile which

is not peaked at the rod ends. On the contrary, induced charges spread significantly

along the nanorod length towards its middle plane. The TDDFT distribution devel-

ops several maxima along the length of the system. These are reminiscent of the

sharp fluctuations in the ab initio S(x) for Ag145 and Ag18. This indicates that, as

expected from the high LSPR frequency, apparent in its absorption spectrum (∼ 3

eV), d-electron transitions play a key role in the optical response of Ag19. Thus, this

rod configuration presents a rather low plasmonic character, despite the fact that its

TDDFT-PBE absorption spectrum is dominated by a single peak reproduced by clas-

sical optics. In fact, as mentioned before, our TDDFT calculations use the PBE AGGA

functional, whose validity for the description of Ag19 is questionable. This appears

in a refined ab initio study on Ag19, comparing PBE with the range-separated hybrid

functional LC-M06L [168, 169], which has been shown in Fig. 4.11. The LC-M06L

functional is more suitable for the treatment of the d-electron excitations and yields

accurate spectra for small Ag clusters [203]. From our analysis, we conclude that

TDDFT-PBE calculations for Ag19 are not reliable, and hence, the spectral agreement

between classical and fully quantum results on Ag19 is partially fortuitous.

5.2.3.b Ag19: Effect of d-electron description

The comparison of ab initio and classical LSPR induced densities for Ag19 (see

Fig. 5.1) aids to understand a common limitation of both the approaches. The

breakdown of TDDFI-PBE approach occurs at the same regime where classical optics

predictions are no more valid. In both the approaches the failure is due to the fact
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that the correct description of the d-electron excitations are missing. Thus, both of

them fail to describe the structures in which LSPRs and d-electrons couple strongly.

In order to properly study the optical response in these compact structures, classical

electromagnetics methods are not suitable and ab initio TDDFT should be employed.

Even in the TDDFT treatment of those systems, a description of exchange and corre-

lation better than the AGGA functionals is required.

In contrast, if the LSPR is largely free of d-electron excitations (as it is for Ag145 and

other long rods and atomic chains), the ab initio spectra obtained using PBE AGGA

functionals are accurate (as can be seen in Fig. 4.11). In this situation, classical

optics predicts remarkably well the TDDFT spectral position, strength and character

of the induced density of the LSPR.

5.3 Induced Density at LSPR: δ-kick vs QMLE

FIGURE 5.3: Induced density of Ag37 at LSPR: in left, from the quasi-monochromatic laser
excitation (QMLE) simulation, and in right, from the delta-kick simulation. In both the cases,
the induced densities correspond to maxima of the self-sustained (i.e., free of perturbing

force) oscillating dipole moments in the respective simulations

When the absorption spectrum is primarily dominated by a single well-defined peak,

be it an LSPR or something else, the spatial distribution of the induced density ob-

tained from the corresponding delta-kick RT-TDDFT calculation is also dominated by

the excitation mode that corresponds to the strong absorption peak. An example is

the case of Ag37 rod when excited along its axis. This is shown in Fig. 5.3, by com-

paring the iso-surface of the induced density in Ag37 from a QMLE simulation (with

laser energy equal to ωLSPR=2.55eV) with the same from the delta-kick simulation.
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The Fig. 5.3 also explains that, for systems having strong plasmonic character, the

dominant contribution comes from the surface of the system.

5.3.1 Dynamic Screening by the d-electrons in Noble-Metal Clus-
ters

The QMLE is analogous to driving an oscillator with a particular energy. In clusters

the oscillator is the electrons. When the QMLE simulation is performed using the

laser energy equal to the LSPR energy, resonance of the electron-density oscillation

is observed in the time-dependence of the induced charge density. A snapshot at an

extremum of this oscillation is shown in the left panel of Fig. 5.3 and for different

iso-surface values in Fig. 5.4. A careful observation of the snapshot of induced den-

sities in these figures also reveals an specific phenomenon observed in noble-metal

clusters: dynamic screening by the d-electrons. The induced density at the core of

the system, and around the ions, oscillates out of phase with the same at the surface

region. This is because of the fact that the localized d-electrons centered around the

ionic lattices respond to the field created by the de-localized s-electrons which, at

LSPR, are in resonance with the laser perturbation. In a plasmonic cluster of simple-

metal these opposite oscillations of the induced density around the ions would not

occur, as shown in Fig. 5.5.

FIGURE 5.4: Different iso-surfaces of induced density of Ag37 at LSPR (ωLSPR=2.55eV) from
QMLE simulation, shows that oscillation at the core is different in many sense from the dom-

inant oscillation at the surface of the system.
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FIGURE 5.5: For comparison with the behaviour of noble-metal clusters in Fig. 5.3 & 5.4,
here we show the density oscillation of a rectangular 216-atom rod of sodium, i.e., of a sim-
ple metal. The spectrum is clearly dominated by one peak (as shown in the upper-left panel),
corresponding to the LSPR, and the time dependence of the dipole moment is almost per-
fectly sinusoidal (shown in the upper-right panel). In the lower panels, the time dependent
density snapshots at a maximum of the oscillating dipole moment show that the density
dynamics corresponds perfectly to the collective density oscillation. In particular, even the
isosurfaces at high values of density difference do not show contributions around the atomic
positions, unlike in the noble metal as shown in Fig. 5.4 for Ag37 at LSPR. These results are

taken from Ref . [121].

5.4 Spatially Resolved Fourier Transform Of The In-

duced Density

As discussed in the chapter 3, using the delta-kick RT-TDDFT simulation, one excites

all the possible electronic excitations depending on the direction of the delta-kick

perturbation. Thus the absorption spectrum and the corresponding time–dependent

induced density contain all the information of those excitations. The drawback of

RT-TDDFT formalism is that, unlike the transition-based LR-TDDFT (e.g. Casida)

calculations, it can’t give information of the excited states. Therefore, in a delta-kick

calculation, there is no direct access to the spatial distribution of the charge density,

that corresponds to a particular transition. However, within the framework of RT-

TDDFT simulations, it is possible to obtain the induced density corresponding to a

particular transition by means of a QMLE simulation with a laser of energy equal to

the energy of that transition, as shown in the previous section.



5.4. Spatially Resolved Fourier Transform Of The Induced Density 115

However, as the time–dependent induced density corresponding to the delta-kick

RT-TDDFT simulation is the superposition of the induced densities corresponding to

all the excitations that appear in the spectrum, in principle, the spatial distribution

of any mode corresponding to any particular excitation can be accessed through the

Fourier decomposition of the time–dependent induced density in frequency domain.

5.4.1 Reconstruction Of Modes

The delta-kick RT-TDDFT simulation uses the ground state density ρ
GS

(x, y, z), which

is calculated in static DFT, as input, and gives the time- dependent density ρ
TD

(x, y, z, t).

The time–dependent induced density is then simple obtained as:

ρ
TD−GS

(x, y, z, t) = ρ
TD

(x, y, z, t)− ρ
GS

(x, y, z) (5.4.1)

This time–dependent induced density can be expressed in a Fourier series, in terms

of different Fourier components at different frequencies, as

R(x, y, z, ω, t) = F
[
ρ
TD−GS

(x, y, z, t)
]

(5.4.2)

=

∞∑
i=0

(
a(x, y, z, ωi) cos(ωit) + b(x, y, z, ωi) sin(ωit)

)
. (5.4.3)

So, for a particular frequency ωi, the time–dependent spatial distribution of the

corresponding mode is given as

R(x, y, z, ωi, t) = a(x, y, z, ωi) cos(ωit) + b(x, y, z, ωi) sin(ωit) (5.4.4)

where, a(x, y, z, ωi) and b(x, y, z, ωi) are the Fourier cosine and sine coefficients, re-

spectively, which can be obtained through the Fourier transforms of ρ
TD−GS

(x, y, z, t)

as

a(x, y, z, ωi) =
1

2π

∫ t∞

0

cos(ωit) ρ
TD−GS

(x, y, z, t) dt, (5.4.5)

and

b(x, y, z, ωi) =
1

2π

∫ t∞

0

sin(ωit) ρ
TD−GS

(x, y, z, t) dt. (5.4.6)
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The square root of the sum of the squared modulus of the Fourier coefficients, for a

particular frequency,

S (x, y, z, ωi) =
√
|a|2(x, y, z, ωi) + |b|2(x, y, z, ωi), (5.4.7)

shows the region in space that contribute to the induced density that corresponds to

the excitation at that frequency.

Using the ground-state and time–dependent densities obtained as output from a

RT-TDDFT simulation in the code octopus [186,204], we have performed the spa-

tially resolved Fourier transform of the time-dependent induced density. Using this

analysis, we have recovered the spatial profile of the induced density at any given

energy (ωi) of interest, in terms of S (x, y, z, ωi) and R(x, y, z, ωi, t), as discussed

above. In the next subsections, we have discussed the applicability, efficiency and

limitations of this analysis in view of understanding the differences between collec-

tive plasmonic excitations and the excitations involving d-electrons, as well as the

interplay between plasmon and d-electrons in the spatial behaviour of the modes

corresponding to the respective excitations.

5.4.2 Modes in an Atomic Chain: Na20

The left panel of the Fig. 5.6 shows the optical absorption spectrum for a linear

atomic chain of 20 Na atoms, calculated in delta-kick RT-TDDFT method, using the

PBE xc-functional [159, 160]. The time–dependent induced density of the delta-

kick RT-TDDFT simulation is used to reconstruct the quantities S (x, y, z, ωi) and

R(x, y, z, ωi, t), which are explained in the previous subsection. There are four

distinct absorption peak in the PBE-spectra as can be seen in the figure at energies

0.53 eV, 1.31 eV, 1.87 eV, and 2.33 eV. S (x, y, z, ωi) has been calculated for each of

these energies and is shown in different colors for the same isosurface value. The

time–dependent oscillation of the modes, R(x, y, z, ωi, t), at the respective energies

is also calculated using eq. 5.4.4. In the right panel of Fig. 5.6, snapshots of the

modes at the maxima of their oscillations corresponding to respective energies are

shown for the same isosurface value.

The transition densities for the first two peaks were previously calculated by Bernadotte

et al. [197] using the LR-TDDFT approach. The transition density corresponds to

the induced density that gives rise to the optical excitation at a certain energy. In
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FIGURE 5.6: Absorption spectrum of Na20 and induced densities at some energies of in-
terest corresponding to features in the spectrum. Left: the regions in space that contribute
to the induced densities at different energies are reconstructed from the induced density of
a delta-kick RT-TDDFT calculation and shown in different color representing different ener-
gies. Right: The reconstruced modes of the induced electron density oscillation at certain fre-
quencies (ωi), and at a maximum of the time–dependent oscillation (R(x, y, z, t = T/4, ωi),
where T = time period of oscillation). The negative absorption apparent in the spectrum is

due to numerical noise only.

Fig. 5.7, a comparison of the reconstructed modes for the first two peaks at 0.53 eV

(R(x, y, z, t = T/4;ω = 0.53 eV)) and 1.31 eV (R(x, y, z, t = T/4;ω = 1.31 eV)),

with the corresponding transition densities calculated in Ref. [197] is shown. This

corroborates the fact that, in this simple model system, the optically excited even

modes resembles to different harmonics in a stretched string.

5.4.3 Modes in Compact Icosahedral Na+
55

Unlike in the quasi-one-dimensional atomic chain of 20 Na atoms, in a more compact

icosahedral Na55 cluster, significant absorption features start to appear in the visible

spectrum at about 2.5 eV. Fig. 5.8 shows absorption spectra for a Na+
55 cluster, cal-

culated in different ab initio approaches. The brown curve belongs to the delta-kick

RT-TDDFT simulation, while the red sticks show the oscillator strengths calculated

in LR-TDDFT Casida approach by F. Rabilloud. The red curve is a convolution of

the Casida spectrum with a Lorentzian. The ‘+’ signifies the charge state, i.e., the

fact that one electron is taken away from the cluster. The spectra are obtained using

the PBE [159, 160] xc-functional. The RT-TDDFT spectrum is obtained in the code

octopus, exciting the cluster with a delta-kick along the 5-fold symmetry axis of

the cluster. The Casida spectrum is calculated using the code GAUSSIAN. The most
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FIGURE 5.7: The reconstructed modes of the induced electron density oscillation at cer-
tain frequencies (ωi), and at a maximum of the time–dependent oscillation (R(x, y, z, t =
T/4, ωi), where T =time period of oscillation), is compared with the transition densities
(in colored boxes) at the respective energies calculated in LR-TDDFT (Casida) method by

Bernadotte et al. [197].

prominent peak in RT-TDDFT spectrum appears at 2.94 eV and in LR-TDDFT spec-

trum at 2.92 eV. The discrepancy in the spectral position of the most prominent peak

is of the order of differences which we found between two GGA calculations done us-

ing octopus and GAUSSIAN, respectively. S (x, y, z, ωi), showing the spatial regions

where the induced densities are large, are calculated at three different energies from

the time–dependent induced density obtained from the delta-kick RT-TDDFT simu-

lation. These are shown for the same isosurface value in three different colors in

Fig. 5.8. Though all these three different spatial distributions of the induced densi-

ties at three different energies do not look exactly similar, they clearly show that the

density response of the cluster is primarily from its surface. In all the three cases,

the spatial distribution of the induced density corresponds to a largely rigid displace-

ment of the density from its equilibrium position, leading to the appearance of the

induced density mainly at the surface.

For the most prominent peak at about 2.9 eV, the mode is shown in Fig. 5.9. The

upper panel of the figure shows different isosurface values for the transition density

that correspond to the single excitation at exactly 2.92 eV as calculated in LR-TDDFT.
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FIGURE 5.8: Absorption spectra of icosahedral Na+
55 calculated in RT-TDDFT (brown) and

LR-TDDFT (red). The oscilator strengths are arbitrary. For the LR-TDDFT calculation, the
oscillator strengths are shown both as sticks (red) and also as Lorentzian-convoluted curve
(red). The spacial regions that contribute to the induced densities at some energies of interest

are shown in different colors.

In the lower panel of the figure, the snapshots of the maximum of the density os-

cillation at 2.94 eV (R(x, y, z, t = T/4;ω = 2.94 eV)), for two different isosurface

values are shown. This is obtained by reconstructing the mode at 2.94 eV from the

Fourier transform of the time–dependent induced density obtained from a delta-kick

RT-TDDFT simulation. The atomic structure of the system and the polarization of

the delta-kick are shown at the middle of the lower panel. In both the ab initio
approaches, the similarity in the appearances of the mode reconfirms the fact that

the spatial profile of a mode at a certain energy is recovered simply by retrieving its

contribution to the total density induced in the system due to the delta-kick.

5.4.3.a Resolution of The Mode

A careful comparison of the mode (R(x, y, z, t = T/4;ω = 2.94eV )) reconstructed

from the induced density of the delta-kick simulation with the mode (transition den-

sity) obtained in LR-TDDFT shows that, although in general they look similar at

the surface, they look different at the interior region. The explanation of this mis-

match can be traced back to the resolution of the individual modes from RT-TDDFT.

It depends on different parameters in the two different approaches. In LR-TDDFT

approach, a mode is always resolved as long as the calculation is correctly performed
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FIGURE 5.9: Modes of electron-density oscillation at 2.94 eV in icosahedral Na+
55, recon-

structed from the induced densities calculated in RT-TDDFT (lower panel), is compared to
the transition density obtained from LR-TDDFT (upper panel), at 2.92 eV energy. The atomic
structure and the polarization of the delta-kick excitation is shown in the middle of the lower
panel. Diferrent isosurface values are shown in both the cases (RT-TDDFT & LR-TDDFT) to

exhibit the distribution of the induced densities in different regions of the cluster.

by considering all the excited states that contribute to the mode. In RT-TDDFT, how-

ever, the resolution of a mode depends on the spectral resolution, which in turn de-

pends on the total evolution time of the simulation. It can be seen in the LR-TDDFT

spectrum in Fig. 5.8 that, there are many closely spaced spectral features around the

most prominent one at 2.92 eV. As the resolution of a mode in the RT-TDDFT spec-

trum is always limited to the total evolution time, the mode at around at 2.94 eV has

significant contribution from the modes excited at the neighbourhood. Therefore, all

these neighbouring modes contributes to the electron-density response reflected in

the mode reconstructed at 2.94 eV from the time–dependent induced density of the

RT-TDDFT simulation. Due to all these significant contributions, though the mode

at 2.94 eV resembles pretty much the transition density at 2.92 eV corresponding to

the LR-TDDFT calculation (which corresponds to one individual transition), reflect-

ing the main contribution from 2.94 eV, it gets superimposed with the neighbouring

contributions and deviates from the exact nature of the mode. If the RT-TDDFT spec-

tra would have been calculated from a “long-run” calculation where the evolution
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time is as large as infinite, one could recover the exact nature of the mode at 2.94 eV,

which would look similar to the one obtained in LR-TDDFT calculation at 2.92 eV. Of

course, “long-run” RT-TDDFT calculations are computationally expensive. An exam-

ple of such a long-run calculation is shown in Fig. 6.5 in the next chapter. Although

performing spatially resolved Fourier transform of the induced density correspond-

ing to a “long-run” RT-TDDFT calculation numerically is not impossible, it requires

more technical attention in treating large number of data efficiently.

5.4.4 Modes in Ag37 Rod

FIGURE 5.10: Absorption spectrum of Ag37 is shown in blue. The regions of space
(S (x, y, z, ωi), where the induced densities corresponding to the modes at differrent energies

of interest are large, are shown in different colors.

Following the reconstruction of modes of the induced density in a simple metal, we

have performed the same analysis of the induced density obtained from a delta-

kick RT-TDDFT simulation to explore the modes excited in noble metal clusters. In

Fig. 5.10, the spectrum of Ag37 and the spatial regions (S (x, y, z, ωi)) where the

induced densities corresponding to the modes at differrent energies of interest are

large, are shown. The spectrum is the same one that has been shown in the low-

est left panel in Fig. 4.4 in red. The strongest peak at 2.55 eV corresponds to the

LSPR, while the other spectral features at higher energies come from interband tran-

sitions. All the S (x, y, z, ωi) for different energies are shown for the same isosurface

value. The distribution S (x, y, z, ω = 2.55eV ) reveals that the primary contribution

in the formation of the mode comes from the surface of the rod, and in particular
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from its ends. Thus, this spatial distribution of the LSPR mode confirms the dipo-

FIGURE 5.11: Mode of the induced density reconstructed at ωi = 3.71eV (left) and ωi =
4.36eV (right) from the induced density of the delta-kick simulation, shows contributions

from localized d-electrons excited at higher energies.

lar character of the mode. By contrast, the spatial distributions for the modes at

higher energies, S (ω = 3.18eV ) , S (ω = 3.71eV ), S (ω = 4.36eV ), reveal that the

modes at those energies are primarily located around the silver atoms, suggesting

strong contribution from the localized d-electrons. This observation becomes more

apparent in Fig. 5.11, where the maximum of the electron density oscillation of the

reconstructed modes are shown as isosurfaces of the same value for two (3.71eV, &

4.36eV) at higher energy excitations. These higher energy modes which lie in the

region of interband transitions in the spectrum, primarily consist of many closely

spaced excitations. As the spectrum is not sufficiently resolved, the spacial distribu-

tion of the modes shown in Fig. 5.11, rather represent superposition of more than

one single excitation which are energetically very close.

5.4.4.a Modes at LSPR

In Fig. 5.12, we show the mode of the induced density that corresponds to the

LSPR in Ag37 at 2.55 eV. As discussed earlier in chapter 4, the spatial profile of the

induced density at a certain energy can be obtained from the amplitude of the self-

sustained oscillation of the electron density, after exciting the system with a quasi-

monochromatic laser of the particular energy (i.e., having a certain energetic width

in the frequency domain). Thus, the middle panel of Fig. 5.12 shows the induced

density obtained after a laser excitation with 2.55 eV energy. The right panel shows

the mode of the induced density reconstructed at ωi = 2.55eV from the induced

density of the delta-kick simulation. These two snapshots of the oscillating induced

density are compared with the induced density obtained by the application of an

electrostatic field, shown in the left panel of Fig. 5.12.
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FIGURE 5.12: Left: Spatial distribution of the mode of the induced density of Ag37 due
to the application of an electrostatic field polarized along the axis of the cluster. Middle:
Induced density from the quasi-monochromatic laser excitation (QMLE) simulation, with
laser of energy ω = 2.55eV and polarized along the axis of the cluster. The induced density
corresponds to a maximum of the self-sustained (i.e., free of perturbing force) oscillating
dipole moment. Right: Spatial distribution of the mode of the induced density of Ag37

reconstructed at ωi = 2.55eV from the induced density of the delta-kick simulation.

The electrostatic field is polarized similarly as the delta-kick and the laser field, along

the axis of the cluster. This comparison strongly corroborates the perception of the

LSPR as a dipolar surface mode. Moreover, unlike in the electrostatic case, the dy-

namic screening by the d-electrons is evidenced in the dynamic response (either due

to laser excitation or due to delta-kick perturbation) where significant contributions

of the induced density from the regions around the atoms of the cluster are observed.

These localized contributions, as mentioned earlier, belong to the oscillations of the

localized d-electrons which oscillate in response to the induced field created by the

dominating collective response of the s-electrons at resonance having a quarter of a

period phase shift.

5.4.4.b Static response of the induced density

In the first section of this chapter, we have compared the cross-section-integrated
induced density due to an electrostatic field and at LSPR energy for Ag145 rod in

Fig. 5.2. For Ag37, the spatial distribution of the induced density due to an external

electrostatic field is shown in Fig. 5.12. In both this figures, we observe the absence

of contribution to the overall induced density from the interior of the clusters. This

confirms that there is no electric field inside these system and the whole electrostatic

response is mainly at the surface regions, suggesting that the clusters preserve their

metallic characters.
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5.5 Absorption in Ligand-Protected Ag29P4S24C144H108

FIGURE 5.13: The arrangement of the different species in constructing the atomic structure
of the Ag29P4S24C144H108 cluster.

Finally, we have explored different modes of absorption in a ligand protected cluster

of 29 Ag atoms. The atomic structure of the cluster and the arrangements of the

different species are shown in Fig. 5.13. The core of the cluster consists of 16 Ag

atoms around an interior core of 13-Ag-atom icosahedral structure. 24 sulfur atoms

and four phosphorus atoms link the core of the cluster with the ligands consisting

of benzene rings. The cluster falls in the group of atomically precise silver clusters

with a self-assembled monolayer of ligands. This particular cluster has recently been

synthesized and crystallized [205]. The structure features four unique tetrahedrally

symmetrical binding surface sites and shows a chiral network of ligands around it.

The absorption spectrum for this cluster is obtained in RT-TDDFT using a delta-kick

along the x-direction. The PBE xc-functional [159, 160] is used. The spectrum is

shown in orange in Fig. 5.14. The values of the absorption cross-section are shown

in Å2, in the left y-axis of the figure.

As expected, in ligand-protected silver clusters in this size range, there is no strong

plasmon-like absorption in the visible [206]. However, there is a number of dis-

tinct spectral features. The first of these features appears at around 2.7 eV. The

strongest peak in the absorption spectrum of the Ag29P4S24C144H108 cluster appears

in the far UV at 6.46 eV. In order to investigate the origin of this strong absorption,

the absorption spectra of the isolated benzene molecule is also shown: The green

curve corresponds to the absorption due to excitation parallel to the plane of the

molecule, while the red one belongs to the excitation perpendicular to the plane of

the molecule. The values of the absorption cross-section for this spectrum is shown
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FIGURE 5.14: Absorption spectra for Ag29P4S24C144H108 cluster and Benzene molecule. The
scale for the oscillator strength of the benzene molecule is shown at the right side of the
frame. Both the in plane (green) and perpendicular to the plane (red) modes for the benzene

molecule is shown.

in Å2, on the right y-axis of the figure.

The similarity of the strong peak at 6.46 eV in the spectra of the

Ag29P4S24C144H108 clusters and the spectrum of the isolated benzene molecule sug-

gests a common physical origin. Indeed, the benzene rings in the ligands that sta-

bilize the Ag29P4S24C144H108 cluster could give rise to this absorption feature. The

relatively small difference in energy (less then half an eV) is not surprising and re-

flects the fact that the rings are connected directly to the Ag29 core, which naturally

modifies the response. In the next section, we investigate this hypothesis using the

Fourier transform analysis developed in the present chapter.

5.5.1 Spatial Localization of Modes at Different Energies

In order to investigate the nature of the absorption at different energies, the spatial

profiles of the modes of the induced density at certain energies of interest are re-

constructed by spatially resolved Fourier transform of the time–dependent induced

density belonging to delta-kick RT-TDDFT simulation. The results are shown below.

5.5.1.a Low-energy Mode Confined To The Core

Figure 5.15 shows the isosurface of the induced density that corresponds to the

absorption at 2.69 eV energy in the Ag29P4S24C144H108 cluster. An arrow (in yellow)

indicates the direction of the delta-kick excitation. The left part in the figure shows
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the induced density of the mode, with the atomic structure of the whole cluster. In

the middle of the figure the mode is shown with only the Ag atoms (in black). On

the right, the structure is rotated 90◦ about the axis perpendicular to the direction of

the excitation. The figure reveals that the mode excited at 2.69 eV is mainly located

at the core of the whole cluster. The contribution from the ligands (containing the

benzene rings) appears to be negligible as compared to the contribution of the Ag

atoms in the core. This is in accordance with the optical behaviour of the benzene

molecule which does not absorb in the visible. Moreover, in silver clusters having

∼30 atoms, spectral features start to appear around 2.5 eV.

5.5.1.b Mode Spread Around The Ligands

Following the analysis of the induced density of the reconstructed mode at 2.69 eV,

the induced density corresponding to the mode at 6.46 eV is also shown in Fig. 5.16.

In order to make a fair comparison, the same isosurface value as used for 2.69 eV

mode is used to show the spatial profile of the mode at 6.46 eV. The 3D spread of

the induced density profile is shown in the left part of the figure. A cut through

the middle of the whole structure, and along a plane (z=0) perpendicular to the

direction of the excitation, is shown with (in the middle of the figure) and without

(at the right part of the figure) the atomic structure of the cluster. A comparison

of this induced density with the one at 2.69 eV clearly reflects the higher oscillator

strength at 6.46 eV than at 2.69 eV. More interestingly, it shows that this high-energy

mode is mainly located around the benzene rings of the ligands, which all together

forms a chiral ligand network around the surface of the cluster.
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Chapter 6

Absorption in Nano-Alloys of
≈1.8 nm Bimetallic Au-Cu
Clusters

6.1 Nano-Alloys

Among the three coinage metals, silver is optically different from Au and Cu because

the onset of interband transitions from the d band occurs at about 4 eV in silver,

whereas in Au and Cu, it occurs at ≈ 2 eV. Therefore, silver behaves more like a free-

electron metal and shows a clear LSPR down to very small sizes [207], although

this depends also on the cluster surface; ligand-protected clusters of fewer than

≈ 150 silver atoms seem to loose the plasmonic character [206]. By contrast, as

discussed for Au in the previous chapters, in Cu also interband transitions involving d

electrons couple strongly with the LSPR, as much so as to make it disappear for small

clusters, thereby creating the phenomenon of plasmon emergence/disappearance

in dependence on cluster size [188, 208, 209]. In view of these differences, it is

natural to look at nanoalloys of these materials. Mixing of gold with silver has been

studied, both experimentally and theoretically, for both bare [103,188] and ligand-

covered [110, 111] clusters, showing in general a smooth change of the spectra

with changing composition, whereby the outermost layer of bare clusters strongly

influences the properties [103]. Insertion of a Cu core into a small silver cluster has

been shown to strongly suppress the LSPR [210].
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6.2 Thiolate Protected 144-atom Au Cluster Compound

The thiolate ligand-protected Au144(SR)60 cluster compound is an exceptionally well

suited benchmark system for the investigation of optical properties in the ‘interme-

diate size-range’, and this for a number of reasons. First, its diameter (D ≈ 1.8 nm)

lies in the size range where the LSPR starts to develop in Au clusters, but also where

the transition from molecular-cluster to metallic-nanoparticle behaviors occurs. It

shows itself no strong resonance in the visible spectra [208, 209, 211]. Second, the

cluster happens to be highly stable and has been studied by a number of different

research groups [211–215]. Third, the cluster compound exhibits icosahedral sym-

metry [216, 217] which implies a high degree of degeneracy of its electronic levels

and, consequently, strong individual structures in its optical spectra [211] although

recent studies indicate polymorphism in certain samples [218, 219]. Finally, it has

been shown experimentally that the precise nature of the ligand rest group (denoted

R) bears little influence on the optical spectra. For a collection of results we refer

the reader to Ref. [220].

6.2.1 Alloying Au144(SR)60 With Copper

Recent experiments have attempted to alloy gold and copper in the Au144(SR)60

class of cluster compounds, leading to the most extraordinary results: while both

Au and Cu at this size do not show a plasmonic resonance, insertion of copper into

the gold cluster samples leads to the development of a peak at 550 nm (2.25 eV),

reminiscent of the LSPR [11, 12]. This outstanding result — the combination of

two non-plasmonic metals (at this size) apparently leading to the development of

a plasmon resonance – calls for explanation. The result is even more surprising in

that it indicates that in some cases, a single copper atom might be sufficient to in-

duce this effect [12], although this was not the case in the experiments performed in

Ref. [11]. In order to understand this highly unexpected behavior, Malola et al. have

carried out time-dependent density-functional theory (TDDFT) calculations and con-

cluded that “Copper Induces a Core Plasmon in Intermetallic Au(144,145)−xCux(SR)60

Nanoclusters.” [221] Substituting copper for gold atoms in a number of different

configurations and compositions, these authors obtain the development of a peak

at about 550 nm compared to the spectrum of the pure Au144(SR)60, which is in-

terpreted as a plasmonic resonance. Even the insertion of one copper atom in the
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center vacancy of the pure Au144(SR)60 has been interpreted to have this effect.

In this chapter, we show that this behavior is by no means general. The introduction

of copper into the gold clusters leads essentially to the suppression of intensity at

some wavelengths as well as to small red shifts in energy of some spectral features.

The combination of these rather weak effects leads then in some cases to spectra that

exhibit a weak hump at the wavelength in question, at around 550 nm (≈ 2.2 eV).

However, no indication is found of any increase of intensity in the spectra compared

to those of the pure Au clusters, as it would correspond to a plasmonic resonance

developing. We note that the energy range in question corresponds exactly to the

onset of interband transitions from the d-electrons (2.0 ... 2.5 eV) and to the re-

gion where the LSPR in pure gold clusters should emerge [188]. In other words,

in this energy range there is a strong coupling between d-electron excitations and

the nascent surface plasmon. Therefore, any statement about the precise nature of

spectral features has to be made with extreme care.

6.3 Absorption spectra

6.3.1 Different Technical Aspects

As sketched in Fig. 6.1, alloying is done by the inclusion of Cu into Au clusters

by replacing individual gold atoms by copper atoms (and, in some cases, filling

the central vacancy, which leads to numbers of atoms of 144 or 145 for the Au144-

derived liganded clusters, and an unchanged 147 for the bare clusters). The ionic

ground-state relaxations have been done using the VASP code [222–224] with the

projector-augmented wave method (PAW) [224]. The force tolerance has been set

to 0.01 eV/Å. The absorption spectra are calculated in TDDFT using the real-space

code octopus [186, 204]. Following a ground-state calculation, spectra are ob-

tained with the time-evolution formalism [183, 184] and the PBE-GGA exchange-

correlation functional [159, 160] for all spectra shown, including those where the

structural relaxation was done using LDA. Norm-conserving Troullier-Martins pseu-

dopotentials [176] have been used which include the d electrons in the valence (11

valence electrons for each Au or Cu atom, i.e., ∼ 2, 500 active electrons). The spac-

ing of the real-space grid was set to 0.20 Å for the pure-Au clusters, and to 0.16 Å for

the clusters containing copper. The radius of the spheres centered around each atom

which make up the calculation domain was 5 Å. The clusters have been charged as
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FIGURE 6.1: Structure of the bare 147-atom clusters (left-hand side, panels a-c) and the
ligand-protected Au144(SR)60 clusters (right-hand side, d-f). Uppermost panels: complete
pure-Au clusters; middle panels: alloying with 25 copper atoms, which leads to Au122Cu25

for the bare and to Au120Cu25(SR)60 for the ligand-protected cluster. In the ligand-protected
structure, the central vacancy of the pure-gold structure is filled with a copper atom. The
copper atoms are represented with a larger radius for the sake of visibility. Lower panels
(c,f): copper atoms only (25 in both cases). The distribution of the copper atoms is identical

in the bare and the ligand-protected clusters and corresponds to “model 9” of Ref. [221].

indicated such that the degenerate HOMO states were fully occupied.

This approach simulating the absorption and the parameters mentioned in the pre-

vious paragraph have been employed to both the bare and the ligand-protected clus-

ters following previous reports [210,211,220]. Apart from the customary 147-atom

icosahedron that has been studied in many works, we have considered the following

structural models of Au144(SR)60 and its alloys with copper. (For a detailed analysis

of the differences between these structures, refer to Ref. [220].)

• The fully symmetric, GGA-relaxed Au144(SR)60 with R=CH3 from the work

of Bahena et al., Ref. [217], is used as starting structure. For the respective

comparison, this structure has also been re-relaxed using LDA .

• The Au144(SR)60 with R=H is obtained from the same structure by replacing

the methyl group with H atoms and re-relaxing.
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• For comparison, we have also used the “Malola et al. structure” as employed in

the calculations of Ref. [208]. The structure is derived from the original, less

symmetrical López-Acevedo et al. structure [225] by reducing the rest group to

R=H, probably resulting in a partial symmetrization as discussed in Ref. [220].

• Copper (or, in one case, gold) is introduced into the center vacancy (resulting

in Au144Cu1(SR)60). For the higher copper content, Au120Cu25(SR)60, we use

the model structure that is called model #9 in Malola et al. [13] which consists

of a 13-atom Cu core (filled central vacancy) and 12 Cu atoms distributed sym-

metrically in the 42-atom shell around the 13-atom core so as to conserve the

icosahedral symmetry [221]. This structure is shown in Fig. 6.4 in Appendix D,

along with the other ones.

6.3.2 Bare icosahedral 147-atom clusters

Before analyzing absorption in the Au144(SR)60 compound, we have studied the far

simpler case of bare 147-atom icosahedral clusters. These clusters of ≈ 1.6 nm di-

ameter have roughly the same number of gold atoms as the Au144(SR)60 and exhibit

likewise icosahedral symmetry. Unlike in the Au144(SR)60 cluster, the central va-

cancy is filled. They show very clearly the difference between silver with a very

strong LSPR visible in the spectra and gold without [210]. In fact, the 147-atom

Au clusters appear to be just below the size where the LSPR emerges, which hap-

pens between ≈ 150 and 330 atoms. [208, 209] The calculated spectrum of Au147

is shown in Fig. 6.2 where the spectrum of the corresponding silver cluster with its

strong resonance is shown in the inset for comparison.

Also in Fig. 6.2, we show the comparison of spectra following the incorporation of

one, 25, and 55 Cu atoms in the cluster. The atomic structures of different config-

urations of the Au147−xCux are shown in Fig. 6.4. The inclusion of one Cu atom

replacing the central Au atom leads to minimal changes in the spectra. Adding more

Cu, whereby we keep the cluster symmetric except in the case of random distri-

butions where the symmetry is obviously broken, we obtain a clear and coherent

picture: the changes upon adding copper are such that the structures between 2.0

and 3.5 eV (620 to 350 nm) are smoothened and that the spectral intensity is reduced
at some energies. The shoulder at 2.2 eV is red-shifted to about 1.9 eV (650 nm). No

indication of plasmon emergence is found. This is likewise true for clusters relaxed
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FIGURE 6.2: Bare clusters: Absorption spectrum of the bare 147-atom Au icosahedral cluster
(thick black line) compared to different Au-Cu alloy clusters, all relaxed using the PBE GGA
functional (spectra for LDA-relaxed clusters are shown in Fig. 6.3). We show the spectra
corresponding to: insertion of one Cu atom in the center vacancy (Cu1Au146, red), the re-
placement of the positions of the 13-atom core by Cu atoms (Cu13Au134, green), the same for
the 55-atom core (Cu55Au92, blue), and Cu25Au122 clusters with random configurations: 25
Cu atoms randomly distributed throughout the cluster (violet) and throughout the 55-atom
core (brown). Finally, the dark green line corresponds to model # 9 of Reference [221]. In the
inset, a comparison of the absorption spectra of icosahedral Au147 and the plasmonic Ag147
is shown. Clearly, no resonance emerges in any of the considered Au-Cu clusters, there is
rather a suppression of intensity throughout the spectral range of interest (ω ∼ 2.0− 3.5 eV,
i.e., 620 to 350 nm), along with a small red-shift of the shoulder at 2.1 eV in pure gold to about
1.9 eV for the gold-copper alloy clusters. For the sake of visibility, we present here spectra
from a time evolution of 15 fs, corresponding roughly to a broadening of 0.3 eV in the spectra.
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FIGURE 6.3: Absorption spectra of bare Au147 clusters, pure and alloyed with copper, re-
laxed using LDA to complement Fig. 6.2, where the results for clusters relaxed using a GGA
functional are shown. The evolution time was 15 fs, corresponding to a broadening of the
spectra of about 0.3 eV. The dashed line shows the GGA-relaxed Au147 cluster’s spectrum
for comparison. The conclusions differ in no way from those drawn for the GGA-relaxed
clusters: there is no emergence of any resonance, the main effects are a suppression of in-
tensity between 2 and 3.5 eV and a red-shift of the shoulder which in the pure Au cluster is

located at 2.2 eV.

using the local density approximation (LDA) to the exchange-correlation functional

instead of the generalized-gradient approximation (GGA). These spectra are shown

in Fig. 6.3.
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Furthermore, the spectra with an extremely small broadening (250 fs evolution time

corresponding roughly to 0.018 eV broadening) in the Fig. 6.5, show that in the

interesting range between 1.5 and 2.5 eV, there is some rearrangement of spectral

intensity. However, no intensity increase is observed that would be characteristic

of the emergence of a plasmonic resonance. This is particularly clear in view of

the direct comparison, also in Fig. 6.5, with the strong resonance exhibited by the

equivalent silver cluster Ag147 with it’s clear plasmonic resonance.

FIGURE 6.5: Spectra of the bare 147-atom icosahedral clusters, pure Au vs. Au with copper,
for evolution time of 250 fs, resulting in a much lower broadening of 0.018 eV and, therefore,
in finer spectral resolution. Clearly, this result demonstrates that while there are clearly re-
arrangements of oscillator strengths, there is no development of any strong resonance in the
region of interest (around 2.2 eV, 550 nm) upon insertion of Cu. The spectra are compared
with those of the bare Ag147 cluster with its strong plasmonic resonance. The inset shows a

blow-up of the region of interest; the data are the same as in the main panel.
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FIGURE 6.6: Monolayer-protected Au144(SR)60 clusters: Change of the absorption spectra
of Au144(SR)60 upon alloying with copper. We compare the spectra of the pure-gold cluster
(black) to those of the alloy clusters. “Model #9” corresponds to the configuration of the
same denomination used in reference [221] and is shown in the present Figure 6.1. We use
the rest group R=CH3 and relaxation using the PBE (upper panel) and the LDA (lower panel)
functionals. Spectra for R=H are shown in Fig. 6.7. The insertion of one copper atom into the
central vacancy has a small but noticeable effect. Upon adding 25 copper atoms, a suppression
of intensity in the range between 2 and 3 eV leads to a bump at around the desired energy,
but there is clearly no increase of intensity that would be indicative of the emergence of
a plasmonic resonance. These changes may modify the color of the samples, but they do
not describe the emergence of a plasmonic resonance, i.e., the strong effects reported in the

experimental studies [11, 12].
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6.3.3 Ligand-covered 144-atom clusters

For the ligand-protected clusters, a number of additional parameters complicate the

description of the system:

The rest group. Besides the structural relaxations in the available literature using

either LDA or GGA [111,208,211], which leads to small but relevant changes [220],

the description of the ligand rest groups plays an important role, although the opti-

cal measurements are rather insensitive to the precise nature of the rest group R of

the thiolate ligands (see reference [220] for a direct comparison of measurements).

The TDDFT calculations need to reduce the number of atoms as far as possible due

to numerical limitations. It has been shown previously that the reduction of the lig-

and rest group to only R=H is too drastic [220] and, therefore, the methyl group is

used in calculations, R=CH3 [211,220].

Symmetry. Another subtle but relevant factor is the symmetry of the system. The

original model as published by López-Acevedo et al. [225] has the “staple motives”

mutually oriented in a way that does not respect the overall icosahedral symmetry

of the compound. Following the experimental work of Wong et al. [216] which in-

dicated that all ligands are positioned in symmetry-equivalent positions, the model

was refined so as to have the full icosahedral symmetry [217]. The resulting small

differences in the spectra of the respective structures are discussed in detail in a pre-

vious work [220].

The study of Malola et al. [221] uses the original, slightly less symmetric geome-

try, the minimal ligand rest group R=H, and ground-state relaxation with the LDA

functional. The latter is motivated by the fact that for gold, the interatomic dis-

tances are better reproduced by LDA than when a GGA is used. However, natu-

rally the presence of the ligands as well as of the Cu reduces the plausibility of this

choice somewhat. Other previous studies have used the GGA function PBE for relax-

ation [111, 211, 220]. It seems that the spectra using the fully symmetric structure,

R=CH3, and relaxation with PBE are the ones that are closest to experiment, com-

pared to the spectra using different choices [111,208,211,220].

In order to obtain generally valid results and to exclude the possibility that any of

these parameters invalidate our conclusions, we studied all four different cases: lig-

and rest groups R=H and R=CH3 for, in both cases, structural relaxations using
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FIGURE 6.7: Comparison of all cases (R=H and R=CH3) and relaxation in GGA and LDA.
The upper panels repeat the figures from 6.6 for better comparison. The structure with R=H
is obtained from the fully symmetric Bahena et al. structure [217] by replacement of each CH3

group by an H atom and subsequent relaxation. In addition to the fully symmetric structure,
we compare for the pure-Au clusters with the less symmetric R=H structure as used in Ref-
erence [221] (blue curve). Interestingly, the difference between the spectrum resulting from
this calculation and that using the fully symmetrized starting point is rather large when LDA
is used, resulting in a broad, rather featureless spectrum between 1.8 and 3.6 eV (lower right-
hand panel). By contrast, upon re-relaxation of this structure using PBE, the difference with
the symmetrized structure becomes marginal. Probably, some symmetrization effect is in-
volved (for a deeper discussion, please refer to Ref. [220].) The Spectra are calculated with

25 fs evolution time, corresponding to a broadening of 0.18 eV.
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either LDA or GGA. Our results are shown in Fig. 6.6 for R=CH3. Clearly, the addi-

tion of copper does not induce any strong increase of spectral intensity in the region

of interest around 2.2 eV. Apart from a very small red-shift of the shoulder at about

2 eV, the changes due to the insertion of copper occur by suppression of spectral in-

tensity. The use of GGA and LDA in the relaxation leads to slightly different spectra,

as shown before for the pure Au144(SR)60 [220], but the conclusions concerning the

effect of alloying with copper do not differ between the two cases shown in Fig. 6.6.

Clearly, the choice of the methyl group CH3 is physically better motivated than the

reduction of the ligand rest group to just one hydrogen atom. However, in order to

double-check for the possibility that the choice of the rest group influences the con-

clusions, we show the spectra for R=H, which we obtain by replacing each methyl

group by an H atom and relaxing, in the lower panels of Fig. 6.7, and compared

with the spectra of structures having R=CH3, in the upper panels. The situation for

the PBE-relaxed clusters is as clear as for the calculations using CH3, there is again

a small red-shift upon insertion of copper but no emergence of any resonance.

The case of the LDA-relaxed R=H calculation is slightly more intricate. It is in-

teresting to note that in this case, for the pure Au144(SR)60, the LDA-relaxed less

symmetric structure with R=H leads to a somehow more “flat”, rounded structure

between 1.9 and 2.7 eV compared to the fully symmetric structure. Only in this case,

insertion of copper produces indeed an – albeit very weak – increase of intensity

in a very narrow range around the desired energy of 2.2 eV. Surprisingly, this is al-

ready the case when one single Cu atom is placed in the central vacancy. However,

the change is small and the intensity of this peak does hereafter not change when

the copper content is increased to 25 atoms. There is, instead, rather a suppression
of intensity between 2.5 and 3.0 eV, which contributes to the impression of a peak

developing at 2.2 eV. Nonetheless, comparing the respective spectra directly and to

scale (comparing, in particular, the calculation using the physically preferable CH3

rest group) it is clear that the interplay of the subtle structural changes leading to a

fortuitous rearrangement of oscillator strength is at the origin of the development of

the little peak; no emergence of any resonance is seen.

The erroneous conclusions by Malola et al. concerning the emergence of a plas-

monic resonance can be traced back to the choice of the initial model of the pure

Au144(SR)60. As it has been shown in earlier work [220], only the combination
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“lower-symmetry structure” & “R=H” & “structural relaxation using LDA” results in a

particularly broad, "unpeaked" spectrum between 1.8 and 2.3 eV, while the other cal-

culations show more structures there. Comparison with experiment in the Ref. [117]

shows that there is no indication whatsoever that this geometry is closer to reality

than the other structures used in the different simulations. In fact, it appears that

the fully symmetric structure with R=CH3 and GGA for relaxation is the closest to

the optical experiment, even though there is plenty of room for improvement.

At this point it is worth to point out that the problem lies solely in the use of this

structural model. As far as the optical calculations are concerned, the basic theory

we use is the same that Malola et al. use, although the technical realization is very

different. The results that we obtain are fully equivalent to those obtained by Malola

et al. provided we use the same geometries. This corroborates our calculations (and

those of Malola et al., of course) and highlights the fact that only the comparison

with a rather ‘unluckily’ chosen model structure of the pure Au144 has led to the

erroneous conclusions of Ref. [221].

6.3.3.a One copper atom

It is interesting to note that even the addition of one copper atom in the central

vacancy leads to noticeable changes in the spectrum, although in general, they re-

main small (where the case of the LDA-relaxed structures with R=H is somewhat an

exception.) We have demonstrated in the previous paragraph that subtle changes

in the geometry are responsible for the deceptive impression that a LSPR-like res-

onance might develop. In order to distinguish between the geometrical effect and

the chemical effect of inserting a copper atom, we compare, in Fig. 6.8, the effect of

adding a copper atom and that of adding a gold atom in the central vacancy. The

addition of the gold atom allows for the consideration of only the effect of a geo-

metric change, whereas the addition of Cu induces both a geometric and a chemical

change. The finding in Fig. 6.8 is that the changes caused by the introduction of

either a gold atom or a copper atom are similar to a very high degree. This allows

for the important conclusion that the effect is almost entirely structural, with little

influence of the chemical nature of the central atom. Again, this indicates that Cu

does not induce a plasmonic resonance.
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FIGURE 6.8: One copper atom: chemical vs. geometrical effect: Effect of the introduction of
either a copper or a gold atom into the central vacancy of the pure Au144(SR)60 cluster com-
pound in order to distinguish the purely geometric effect and the chemical effect. Ground
state relaxation done using PBE, rest group R=CH3. The two spectra deviate little but no-
ticeably from the pure gold spectra but are almost identical; the entire effect is, consequently,

geometric.

6.4 Dynamical polarizability and induced density

As discussed in chapter 3, the absorption cross-section ( σabs(ω) ) in a system due

to an external electromagnetic field can be calculated from the dynamical polariz-

ability ( α(ω) ) using eq. 3.5.12. The dynamical polarizability ( α(ω) ) is obtained

from the induced electron density ( n1(r, ω) ) as shown in eq. 3.5.11. According

to the standard complex representation of harmonic functions, the time-dependent

induced electron density is given by

n1(r, t) = cos(ωt) <n1(r, ω) + sin(ωt) =n1(r, ω) , (6.4.1)

and the real [imaginary] parts are then related to oscillations in phase [out of phase

with a phase difference of a quarter of period] with the external E-field. There-

fore, the absorption is proportional to the imaginary part of the polarizability α(ω),

which accounts for out-of-phase oscillations of the electron density with respect to

the external E-field. However, further insights concerning the interaction between a
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FIGURE 6.9: Dynamical polarizability: Real (bottom panel) and imaginary (top panel) parts
of the dynamical polarizability, α(ω), for selected bare and ligand-protected clusters. Thick
gray line: bare Ag147; thick black line: bare Au147; green line: bare Cu25Au122 according
to “model #9” of Reference [221] (cf., the present Figure 6.1); blue line: ligand-protected
Au144(SR)60 cluster; red line: ligand-protected Cu25Au120(SR)60 cluster (again “model #9”;
rest group R = CH3). While the real part of the polarizability for the plasmonic silver cluster
Ag147 cluster exhibits a sharp variation at the LSPR frequency (ωP ' 3.15 eV), there is no
noticeable structure for the Au-based nanoparticles, regardless of the inclusion of Cu atoms.

A broadening of 0.05 eV has been used.
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nanoparticle and an external EM field can be obtained by analyzing the real part of

α(ω), that is, the in-phase induced electric dipole.

In extended bulk systems, where electron-hole transitions form a continuum, the

plasmon is a well-defined and distinct elementary excitation [226]. By contrast, for

systems with a finite number of electrons, the concept of collective excitation and

its corresponding distinction from electron-hole excitations is more vague as dis-

cussed in chapter 5. In fact, a LSPR might be seen as an electron-hole excitation that

is highly renormalized by the electron-electron interaction [197]. This excitation

can be coupled to surrounding electron-hole intraband transitions, in such a way

that the LSPR acquires an effective width through a “Landau fragmentation” mech-

anism [227]. However, as we have mentioned before, the coupling of the LSPR with

interband transitions leads to the practical disappearance of the plasmon resonance

in the ‘intermediate-size’ noble-metal clusters. Such couplings prevent us from iden-

tifying a single spectral peak as “the” LSPR in many cases. Then, the signature of

the existence of a LSPR is the concentration of spectral weight around a given fre-

quency ωP that, for sufficiently large systems, would be close to the classical-optics

prediction. This is precisely the situation in bare and ligand-protected Au clusters

and related nanoalloys: the region where the LSPR is expected to appear is already

occupied by a multitude of electron-hole transitions.

The concentration of spectral weight around ωP can not only be observed in the

imaginary part of the dynamical polarizability; the real part of α(ω) around the fre-

quency of an isolated, well defined resonance must exhibit a change of sign (from

positive to negative). The presence of less-intense nearby transitions can hamper

this change of sign but, in any case, a sharp variation of <α(ω) with negative slope

is a clear indication of spectral-weight concentration and, therefore, of the existence

of a LSPR. As we may see in Fig. 6.9, this is indeed the case for the icosahedral Ag147

cluster. However, there is not any distinctive behavior in both the real and imagi-

nary parts of the polarizability of bare and ligand-protected Cu/Au alloys indicating

a Cu-induced concentration of spectral weight in the region 2.0− 2.5 eV. Hence, the

analysis of the real part of the dynamic polarizability confirms the findings based on

the direct comparison of the different absorption spectra.
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FIGURE 6.10: Density dynamics: Induced density following a monochromatic laser excita-
tion at 2.17ėV of the pure-Au 147-atom icosahedral cluster, well after the laser is switched
off (see points at inset). In the upper panels, we chose a very low iso value, showing thus
the movement of the strongly delocalized cloud of (mostly) s electrons. In the lower pan-
els, we show the same for much higher iso-values, which demonstrates the screening of the
overall excitation by the d electrons [228]. Even in this case, where the spectrum does not
exhibit any strong plasmonic resonance, we see the sort of pattern that is reminiscent of a
plasmonic excitation, including the out-of-phase movement of the d electrons that shows
the screening of the LSPR. As this can be seen already for the pure Au without resonance,
this behavior cannot be taken as an indication of the emergence of a plasmonic resonance in
the copper-alloyed clusters, even though the dynamics is reminiscent of that in a plasmonic

silver cluster. [228]
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6.4.1 Density Dynamics:

A localized surface-plasmon resonance in ‘intermediate’ size noble-metal clusters

can be considered as a dipolar collective oscillation of the quasi-free electrons, with

modifications due to the atomistic inhomogeneity and the presence of the d elec-

trons in the noble metals [228]. However, it is not enough to infer on the plasmonic

character of a cluster by observing such a dipole mode in the dynamics of the den-

sity, as this can be present even in cases where no prominent resonance is present

in the spectra. We show the induced density in the pure bare Au147 cluster after

quasi-monochromatic laser excitation in Fig. 6.10. This induced density is obtained

following excitation with a monochromatic laser excitation at 2.17 eV, of the pure-

Au 147-atom icosahedral cluster, well after the laser is switched off. Even in this

case, where the spectrum clearly does not exhibit any strong plasmonic resonance,

we find the sort of dipole pattern that is reminiscent of a plasmonic excitation, in-

cluding the out-of-phase movement of the d electrons that shows the screening of

the oscillation. In Fig. 4.3 of chapter 4, the time-evolution of the dipole moments

in Au147 at different energies compared to the same in Ag147 at LSPR energy, after

being driven by the laser, confirms that the time–dependent oscillations of the dipole

moments differ only in amplitudes. Therefore, the corresponding density dynamics

would show the same behaviour: the oscillation of the induced density with differ-

ent corresponding frequencies and amplitudes. Whether these oscillations represent

resonant character or not is understood by comparing the phase of the oscillation

of the corresponding dipole moment with the phase of the corresponding driving

laser field. In other words, the presence of a dipole mode in the electron density

dynamics, even if reminiscent of an LSPR dipole mode, is not sufficient to allow for

clear conclusions about the plasmonic nature of spectral features.

6.5 Conclusions

Motivated by experimental findings and recently published calculations which con-

cluded that “Copper Induces a Core Plasmon in Intermetallic Au(144,145)−xCux(SR)60

Nanoclusters.” [221], we have calculated the changes of the optical response of both

the bare 147-atom icosahedron and of the Au144(SR)60 cluster compound upon al-

loying with copper. Copper atoms are replacing gold atoms of the pure cluster (and,

in addition, are inserted into the central vacancy of Au144(SR)60). Considering a

number of different situations as far as the ground-state relaxation of the structures
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is concerned (LDA vs. PBE), the choice of the rest group of the thiolate ligands

(R=H vs. R=CH3), and the subtle differences in symmetry/geometry discussed pre-

viously [220], we have shown that the addition of copper does not induce the de-

velopment of any prominent resonance, plasmonic or other. The main changes are

small and consist mostly in a) suppression of spectral intensity in the range between

2.0 and 3.5 eV (620 to 350 nm), and b) a red-shift of the lowest spectral features.

Moreover, we demonstrate that the small but noticeable changes upon insertion of

a single copper atom in the central vacancy of the pure Au144(SR)60 are almost en-

tirely due to the geometric effect of the copper insertion.

The results allows for the strong general conclusion that alloying with copper does

not create plasmonic resonances in gold clusters in this size range, i.e., around

1.8 nm, where the spectra do not yet show any clear LSPR. Regrettably, these find-

ings mean that the experiments in which the development of an LSPR-like peak has

been observed cannot be explained by the simple hypothesis that the insertion of

copper changes the optical response be inducing a plasmonic resonance. Other hy-

potheses will need to be explored in order to obtain a fundamental understanding

of the effects at play in these experiments.
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Chapter 7

General Conclusions and
Perspective

7.1 English Version

The fundamental research interest in nanometric pieces of noble metals is mainly

due to the localized surface-plasmon resonance (LSPR) in the optical absorption. As

discussed in detail in the preceding chapters, LSPRs appear in the absorption spectra

of noble-metal nanoparticles as dominating broad and smooth spectral features in

the visible and ultraviolet spectral regions. A number of emerging technologies in

optics, electronics, diagnostic and therapeutic medicine [1–6], and in many other

fields of basic research in chemistry and biology are based on LSPR.

As presented in the introductory chapter, theoretical research on LSPRs in nanopar-

ticles is performed using different levels of theory depending on the size of the

nanoparticles. In particular, the transition from larger metallic nanoparticles with

smooth electronic bands and optical spectra to small molecule-like clusters with

their discrete electronic states and spectra, reflects the quantum nature of the clus-

ters [7–9]. In addition, in some noble metals, e.g. Au, we have the emergence

phenomenon of LSPR in this size range which is referred as the intermediate-size

range. The noble-metal clusters that fall in this size range are the systems that have

been mainly studied in this thesis.

Different communities have been working on similar questions around the optical
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response of intermediate-size noble-metal particles, having different main inter-

ests and backgrounds. In particular, the enormously active plasmonics community

has been using approaches based on classical electromagnetics. However, with the

progressive miniaturization of objects that can be produced, handled, and applied,

quantum-mechanical corrections to the purely classical description become increas-

ingly important. However, precise studies of the limitations and problems of these

methods are often not available.

On the other hand, the quantum description of the noble-metal clusters in the inter-

mediate size rage interesting to us here has been developed mostly using density-

functional theory, both static and time-dependent. However, practical TDDFT calcu-

lations contain necessarily approximations, notably the different exchange-correlation

functionals or kernels. In addition, many effects are either fully neglected (like in

many cases the finite temperature) or only approximately taken into account (e.g.,

surface/interface structure, etc.)

This thesis focuses on the LSPR and comprises several aspects of the present-day

research into the interaction of electromagnetic waves with noble metal clusters at

atomistic length scales. In order to gain a broader perspective of the usage of differ-

ent methodologies to study the optical properties of ‘intermediate-size’ noble-metal

clusters, both the ab initio and the classical electromagnetics approaches are em-

ployed. In particular, the ab initio calculations are performed using real-time TDDFT

(RT-TDDFT) within the linear-response regime, whereas classical electromagnetics

calculations are done for different descriptions of the metal permittivity.

7.1.1 Performance of Classical Electromagnetics for Quantum Sys-
tems

One of the objectives of this thesis is to explore the merits and limitations of the

classical optics methods in explaining optical properties of intermediate-size noble-

metal clusters. This is achieved by performing systematic comparisons with ab initio
TDDFT approaches. To do so, the atomic structures need to be replaced by equiv-

alent geometries in the classical optics calculations. In order to have equivalence

between atomistic structures of sub-nanometric lateral dimensions on the one hand

and corresponding geometries for the electromagnetics calculations on the other

hand, we have developed in chapter 4 a simple and intuitive modelling (both shapes
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and dimensions). To mimic the soft single-atom termination of the atomistic rods,

a “cigar”-shaped geometry is chosen for the metal regions in the electromagnetics

calculations. The electron density in the cigars is taken to be the same as the aver-

age s-electron density in the bulk, and the volume of the cigar is set such that the

number of electrons in it be the same as the number of s-electrons in the atomistic

structures. Finally, the aspect ratio (AR) of the cigar is also made to be the same as

that of the atomistic system.

7.1.1.a Aspect-ratio dependence of LSPR in sub-nanometric rods

Following this modelling of the geometries, the absorption spectra are calculated for

different intermediate-size clusters of Au and Ag within the frameworks of ab ini-
tio TDDFT and electromagnetics. The electromagnetics calculations are performed

using both the local and the nonlocal (hydrodynamic model) descriptions for the

metal permittivity. The comparison of the absorption spectra calculated with differ-

ent methods reveals the following interesting observations:

• As is well known, for systems with high AR, the behaviour of the absorption in

Au and Ag is similar: appearance of a strong well-defined LSPR in the infrared.

This is because in both Ag and Au, for high AR the LSPR appears well below

the onset of interband transition. The systematic comparison shows that for

rod structures of Ag with AR > 5 and of Au with AR ' 8 (whose response

is dominated by the LSPR), not only the spectral position of the LSPR, but

also the strengths of the absorption calculated in TDDFT and electromagnetics

approaches are in excellent agreement, even though the systems posses sub-

nanometric lateral dimension, manifesting atomistic inhomogeneity.

• The comparison against ab initio predictions improves even further when the

electromagnetics absorption cross-section is computed using the nonlocal hy-

drodynamic metal permittivity, except for the linear atomic chains, where the

local optics calculations appear to be superior.

• As the AR of the systems is decreased, the agreement between TDDFT and

electromagnetics calculations starts to degrade significantly. This degradation

appears to be due to the blue-shift of the LSPR with the decrease in AR, which

makes the LSPR couple with the interband transitions. This coupling is more

apparent in Au than in Ag due to the lower energy onset of interband transi-

tions in Au.
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• In the rod systems, as the AR is decreased, the TDDFT calculations show the

coupling between LSPR and the interband transitions as the LSPRs are frag-

mented. As the onset of the interband transitions does not depend on the size

of the clusters [10], the coupling of LSPR and interband transitions is primarily

governed by the AR-dependent spectral position of the LSPR. This coupling is

not captured within nonlocal electromagnetics calculations. Therefore, in the

Au and Ag rods, it is mainly the shape (i.e., AR) which determines the coupling

of LSPR and interband transitions, and thus the agreement between nonlocal

electromagnetics and TDDFT approaches.

In conclusion, we have compared local and nonlocal classical optics and quantum

mechanical ab initio methods to calculate spectral positions and strengths of the

LSPRs in elongated quantum-sized systems preserving the aspect ratio and number

of Drude (or s) electrons. The comparison shows a remarkable agreement between

the two approaches when the LSPR is largely decoupled from the interband transi-

tions. This is the case for Ag rods of AR > 5 and Au rods of AR ' 8. In addition,

we can conclude that it is the shape, and not the overall size (i.e. the # atoms) that

determines the quality of this agreement.

7.1.1.b Subtle effects of size on the aspect-ratio dependence of LSPR

Subsequently, in chapter 4 we perform a comparison of the dependence of LSPRs on

the aspect ratio as calculated by classical approaches with the corresponding ab ini-
tio calculations in different atomistic structures of Ag and Au (rods, atomic chains,

and icosahedral clusters). This comparison is of particular interest. When going

from thin (chains) to thick (rods) for equal AR, the relative energy of the LSPR ex-

cited along the axis of the elongated systems increases. This trend of increase in

the LSPR energy while the size is increased is only observed in the ab initio calcula-

tions for elongated systems, whereas the classical nonlocal optics calculations show

the known opposite behaviour: increase in LSPR energy with decrease of absolute

size. The conclusion inferred based on this observation is that, even though classi-

cal optics remarkably gives the same spectral positions and strengths of the LSPRs

in elongated quantum-sized systems, there are subtle quantum mechanical effects

which modify the classical size-dependent behaviour of the LSPRs.
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7.1.1.c Interplay between plasmon and d-electrons in Au-chains

In monatomic chains of Ag, LSPRs are found to be free of d-transition contami-

nations, even for as short as 6-atom chains. By contrast, TDDFT spectra for the

Au chains indicate that quasi-one-dimensional collective excitations are not well re-

solved for chains having numbers of atoms fewer than twelve. However, when the

number of atoms in Au chains decreases, a transfer of the spectral weight from the

lowest-frequency maximum to different plasmon-fragmented peaks manifests the

emergence of a coupling of the LSPR with d-electron excitations; the classical optics

predictions describe a rough spectral average of the fragmented peaks.

7.1.2 Near-field Characteristics of the Excitations

In chapter 5, we investigated induced charge densities at LSPR frequencies from

classical and TDDFT calculations. This allowed to extend the comparative study

of the two different theoretical approaches (electromagnetics and TDDFT) beyond

far-field characteristics and verify the validity of the findings also in the near-field

regime.

7.1.2.a Induced Charge Densities at LSPR

Comparing the cross-sectional integration of the induced charge densities of LSPRs

along the rod length, we have demonstrated that, the classical and the fully quantum

mechanical descriptions of the induced charges at LSPR energies are in remarkable

agreement for elongated Ag systems. This allowed us to conclude that, as a con-

sequence of the high plasmonic character of the elongated structures, they support

well-defined collective LSPRs (both as surface modes in rods, and also as quasi-

one-dimensional collective modes in chains,) free of the contamination from single

electron-hole excitations.

For a less elongated (i.e., more compact) structure of Ag19, where the high LSPR

frequency is apparent in its absorption spectrum (∼3 eV), the same comparison of

the induced charge densities at LSPR from electromagnetics and TDDFT aprroaches

reveals that d-electron transitions play a key role in the optical response. This con-

clusion can be traced back to the observation that in the compact noble-metal clus-

ters, induced charges calculated in TDDFT spread significantly along the rod length
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toward its middle plane, completely disagreeing with the electromagnetics predic-

tion, even though the spectra calculated in both the methods (TDDFT and nonlocal

optics) show surprising resemblance.

7.1.2.b Need for the better exchange-correlation functional

Following the disagreement between the TDDFT and electromagnetics predictions

of the induced charge densities at LSPR in compact Ag19 cluster, a verification of the

quality of the ab initio calculations using the PBE AGGA functional is performed for

rods of different lengths, by comparing with a long-range corrected hybrid exchange-

correlation functional, LC-M06L. This functional is more suitable for the treatment

of d-electron excitations and yields accurate spectra for small Ag clusters. Unfortu-

nately, its use also requires a much larger numerical effort, compared to the simple

GGA or LDA functionals. From this analysis, we concluded that the spectra obtained

from TDDFT-PBE calculations are hardly different from the ones obtained using LC-

M06L for elongated systems (like Ag67 rod). By contrast, for compact clusters like

Ag19, they are completely different. Thus, for compact clusters like Ag19, TDDFT-PBE

calculations are not reliable and the spectral agreement between classical and fully

quantum results is partially coincidental. They fail to describe structures in which

LSPRs and d-electrons couple strongly. Therefore, in the ab initio treatment of those

systems, a description of exchange and correlation better than the AGGA functionals

is required.

7.1.3 Modes of Induced Density at Different Energies

The spatial distribution of the induced electric field or the induced charge density

provides a deeper insight into a given optical excitation. In the electromagnetics

approaches, calculations are generally performed in the frequency domain, and the

induced electric field (and, therefore, the induced density) at a given energy can

be calculated. In RT-TDDFT, the optical response is calculated in the time-domain,

and the induced charge density corresponding to an optical excitation at a given

energy is not readily available. However, most RT-TDDFT simulations use a δ-kick

perturbation which produces a time–dependent induced charge density which is the

superposition of the induced densities that correspond to all the excitations that ap-

pear in the spectrum.
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In chapter 5, by performing the spatially resolved Fourier transform of the time-

dependent induced density obtained from a RT-TDDFT simulation, we have recov-

ered the spatial profile of the induced density at any given energy of interest. We

have discussed the differences between collective plasmonic excitations and the ex-

citations involving d-electrons, as well as the interplay between plasmon and d-

electrons in the spatial behaviour of the modes corresponding to the respective exci-

tations.

- A comparison of the laser-driven induced density at the LSPR energy with the

induced density due to an electrostatic field shows the dynamic screening by

the d-electrons. We arrived at the general conclusion that, while for the dipo-

lar LSPR the modes of the induced density have principal contributions from

the surface region of the cluster, d-electrons respond to the field generated by

this surface contribution with the same LSPR frequency and an out of phase

oscillation.

- Using the Fourier-transformed densities, we are able to study the spatial con-

tributions to individual features in the absorption spectrum. For example, in

a more complex ligand-protected cluster, Ag29P4S24C144H108, the spatially re-

solved Fourier transform of the time-dependent induced density reveals that

the low-energy excitations are more confined to the Ag core of the compound

than the strong high-energy excitation, which is found to have principal con-

tributions from the benzene rings of the surrounding ligands.

7.1.4 Effects Of Alloying

Recent experiments on the Au144(SR)60 class of cluster compounds have demon-

strated the emergence of an absorption peak at 550 nm (2.25 eV) upon adding

copper to the pure Au samples; in some cases, as little as one Cu atom seems to

have this effect [11, 12]. This finding is interesting because at this size, bare clus-

ters of both Au and Cu (e.g., Au147Ih) do not show strong absorption features in

the spectra. As an attempt to explain these experiments, ab initio calculations on the

Au(144,145)−xCux(SR)60 class of nano–alloy compounds were also performed by Mal-

ola et al. [13], which claimed that “Copper Induces a Core Plasmon in Intermetallic
Au(144,145)−xCux(SR)60 Nanoclusters”. In chapter 6 of this thesis, we have performed

similar ab initio calculations on these clusters. These careful and detailed ab initio
study presents subtle insights on the effects of alloying and the emergence of LSPRs
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in bare Au(147)−xCux and the ligand covered Au(144,145)−xCux(SR)60 clusters.

Considering a number of different situations as far as the ground-state relaxation

of the structures is concerned (LDA & PBE), the choice of the truncated rest group

of the thiolate ligands (R = H, & R = CH3 ), and the subtle differences in symme-

try/geometry of the Au144(SR)60, we have shown that the addition of copper does

not induce the development of any prominent resonance, plasmonic or other. The

main changes are small and consist mostly in (a) suppression of spectral intensity

in the range between 2.0 and 3.5 eV (620 to 350 nm), and (b) a red-shift of the

lowest spectral features. Moreover, it is demonstrated that the small but noticeable

changes upon the insertion of a single copper atom in the central vacancy of the pure

Au144(SR)60 are almost entirely due to the geometric effect of the copper insertion.

The results depend only very slightly on the details of the structural model, the kind

of ligand rest group used in the calculations, and on the approximations used in

the calculations. This allows for the strong general conclusion that alloying with

copper does not create plasmonic resonances in gold clusters in this size range, i.e.,

around 1.8 nm, where the spectra do not yet show any clear LSPR. These findings

mean that the experiments in which the development of an LSPR-like peak has been

observed cannot be explained by the hypothesis that the insertion of copper changes

the optical response by inducing a plasmonic resonance. Other hypotheses will need

to be explored in order to obtain a fundamental understanding of the effects at play

in the experiments.

7.1.5 Perspectives

The field of research involving optical properties of noble-metal nanoparticles and

clusters is active with many aspects in applications as well as in understanding

the origin of novel physical phenomena at sub-nanometric length scales. With the

present-day advancements in technology, the engineering of subatomic systems has

become possible. In the frontiers of plasmonics, this advancements have paved the

way for novel devices based on the optical tunability at nanometric level, e.g., dy-
namic plasmonic colour displays [229] and atomic scale plasmonic switches [230].

Both the quantum-mechanical and the classical electromagnetics methods are em-

ployed in this thesis to provide theoretical understanding of recent experiments
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which explore the light-matter interaction at sub-nanometric length scales. In view

of these different approaches, the work pursued in this thesis gives significant contri-

butions: The systematic and detailed comparison of the ab initio and electromagnet-

ics methods brings out the importance of being conscious of the limitations of the lat-

ter when applied to quantum-sized systems. For example, in the study of the field en-

hancement around an atomistic tip, which is exploited in surface-enhanced Raman

spectroscopy (SERS) experiments, quantum mechanical effects are likely to modify

purely classical results. On the other hand the limitations of the TDDFT calculation

need to be kept in mind. In the ab initio calculations for quantum-sized noble-metal

clusters, where the interband transitions can couple with the LSPR, the choice of ap-

proximations, in particular for the exchange-correlation functional, adopted to the

system plays the key role. Thus, in order to capture properly the optical response

in these systems within the density-functional theoretical framework, better approx-

imations, for the exchange-correlation functional, which should also be computa-

tionally economic is solicited. Fascinating improvements have been made in cluster

science through experimental studies using trailblazing techniques of synthesis and

characterization of quantum-sized clusters. Intermediate-size noble-metal clusters

protected by ligands are synthesized and crystallized [231–233]. Many of these

experiments can give precise knowledge of the structures and compositions of the

clusters. This knowledge of the structures provides the basis for an improvement of

the ab initio calculations because these can now be carried out using definite atomic

structures. Measurements (absorption spectra, etc.) on the structure-determined

samples thus provide benchmarks that can be compared with the respective cal-

culated quantities, which allows for definite conclusions about the quality of the

employed approximations (in particular, the exchange-correlation functionals). This

process is expected to greatly improve the quality of the ab initio description, finally

achieving the goal of being predictive. This improvement of the ab initio descrip-

tion will bring out new aspects on understanding the way nature behaves at atomic

length scales.

With the present-day knowledge and resources of quantum-mechanical calculations,

efforts have been made to answer many interesting questions encountered while un-

derstanding recent experimental studies on the light-matter interactions in systems

having sub-nanometric dimensions. In many cases, these efforts have succeeded to

give the physically correct explanation, although not always. The reason is the fol-

lowing. In these experiments, several complex physical phenomena come into play.
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In order to describe the light-matter interactions, the multiple effects need to be

taken into account, and appropriate structural models must be employed. The ab ini-
tio calculations often neglect effects that are deemed unimportant for the questions

at hand. For instance, most of the optical calculations neglect finite-temperature

effects. In addition, the structural modelling tries to reduce the system for practical

convenience. For instance, in the case of monolayer-protected clsuters, the ligand

rest groups are mostly reduced to, e.g., a methyl group in order to reduce the numer-

ical effort. These approximations reduce the quality of the calculations and, in many

cases, make predictive quality impossible. A clear example of this fact is already

demonstrated in this thesis: the ab initio study on the Au(144,145)−xCux(SR)60 class

of clusters shows that alloying Cu with Au at sub-nanometric size (≈1.8 nm) does

not give rise to any strong absorption, even though in experiments LSPR-like spec-

tral features are observed to emerge, and the cause of this emergence is traced back

to some form of alloying. A theoretical study had been published [13] that claimed

to have evidenced the emergence of a LSPR upon alloying. Our systematic study

showed that this is not the case, and that the conclusions of the other study [13]

were erroneous due to an insufficient treatment of structural details. Clearly, in this

case and also in many others, in order to discover the actual science at play care has

to be taken to include the structural complexity and the main effects. In particular,

better modelling is needed, e.g., the effect of the chemical environment surrounding

the cluster, agglomeration, etc., which may contribute significantly on the absorp-

tion at sub-nanometric length scales.

In the optical experiments involving clusters, where photons give rise to electronic

transitions, the eigen-modes of the excited systems correspond to dipole-active ex-

citations. However, in electron energy-loss spectroscopy (EELS), different modes of

electron-density oscillation can also be excited. Precise single-particle EELS mea-

surements are now being carried out, demanding robust theoretical approaches to

understand their outcomes. For example, a theoretical demonstration from an ab
initio approach of the optically uncapturable modes that appear in single-particle

EELS measurements has not yet been accomplished and is a challenging goal to

achieve. Therefore, it is very likely that in coming years a good amount of research

will be focused in this direction. In this context, the numerical tools developed and

the experience gained in both the ab initio and classical electromagnetics theories

during this thesis can be efficiently used. For example, if EELS excitation can be

properly simulated within the ab initio theoretical framework of real-time TDDFT
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(RT-TDDFT), the optically uncapturable modes can be identified using the spatially

resolved Fourier decomposition of the corresponding time-dependent induced den-

sity, as it has been done for the optically active modes in this thesis.

Research interest in noble-metal nanoparticles are not limited only to exploring their

optical properties. It also spans through their elegant applications in biology and

medicine, e.g., for the development of drug delivery vectors in living cells. These ap-

plication are in use since quite a long time. Many of these applications are based on

empirical studies and require better understanding of the basic science at work. In

this context, with the advent of the miniaturization of the noble-metal nanoparticles

in recent experiments, understanding their impact on these applications is attracting

research attention. To give an example, organic monolayer-protected Au clusters of

∼ 2 − 3 nm size are being studied enormously in order to understand their inter-

action with lipids. Thus, it is very likely that research efforts are to be made in the

near future in the overlapping frontiers of biology, physics and chemistry. A substan-

tial amount of work has already started to understand simultaneously the role of

the organic ligands in stabilizing Au clusters and their interactions with mesoscopic

biological systems. The study of these ligand-protected clusters in order to under-

stand their ability to control protein structures and dynamics, etc. are also a major

subdomain of research that is taking shape.

On a broader perspective, in view of the progress of experimental methods, it is

evident that there is plenty of room for improvement of the understanding of light-

cluster interactions, and a long way to go to fulfill the demand of powerful theoreti-

cal techniques able to give complete insightful explanations, and, preferably reliable

predictions.
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7.2 Versión en Español

Desde la perspectiva de la ciencia fundamental, el interés en las estructuras de metal

noble se ha debido, en gran medida, a la emergencia de las llamadas resonancias

de plasmon de superficie localizadas (LSPR, por sus siglas en inglés) en su espectro

de absorción óptico. Como se ha discutido en detalle en los capítulos anteriores, las

LSPRs dominan el espectro de nanopartículas metálicas dando lugar a anchos picos

de absorción tanto en el rango óptico como el ultravioleta. Un número creciente de

nuevas tecnologías en el campo de la óptica, la electrónica y la medicina diagnóstica

y terapéutica se basan en las LSPRs; y otras ciencias básicas como la química y la

biología también las comienzan a utilizar en diferentes contextos.

Como se presentó en el capítulo introductorio, la investigación teórica sobre las

LSPRs se ha realizado utilizando diferentes niveles de descripción dependiendo del

tamaño de las nanopartículas. La transición entre partćulas grandes, con bandas

electrónicas y espéctros ópticos suaves y bien definidos, a partículas microscópicas

de tamaño molecular, con niveles elecrónicos y transiciones ópticas discretas, refleja

la naturaleza cuántica de los clústeres metálicos. En algunos metales nobles, como

el oro, el fenómeno de las LSPRs tiene lugar en un rango de tamaños intermedio.

Los sistemas metálicos estudiados en esta tesis caen en este rango de tamaños inter-

medios.

En el pasado, diferentes comunidades científicas han trabajado en cuestiones simi-

lares relacionadas de la respuesta óptica de partículas metálicas de tamaño interme-

dio por distintos objetivos y motivaciones. En particular, el tremendamente activo

campo de la plasmónica ha utilizado herramientas y enfoques basados en el electro-

magnetismo clásico. Sin embargo, con la constante miniaturización de estructuras

que se ha producido en los últimos años, la introducción e implementación de correc-

ciones cuánticas al tratamiento púramente clásico de estos sistemas se ha convertido

en un tema cada vez de mayor importancia. Sin embargo, hasta el momento, pocos

estudios se han dedicado a explorar las limitaciones y problemas de los diferentes

métodos teóricos utilizados hasta la fecha.

Por otro lado, la descripción cuántica de los clústeres metálicos en el rango de

tamaños intermedios se ha desarrollado principalmente dentro del marco de la teoría

del funcional de la densidad, tanto estática como dependiente del tiempo (TD-DFT
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por sus siglas en inglés). Sin embargo, los cálculos TDDFT contienen necesariamente

aproximaciones, principalmente en los funcionales de intercambio y correlación.

Muchos fenómenos, tales como los efectos de temperatura, son completamente igno-

rados o tratados de una manera aproximada, como los efectos debidos a la estructura

de la superficie del sistema.

Esta tesis se centra en las LSPRs y cubre varios aspectos de la investigación actual

sobre la interacción entre ondas electromangnéticas y nanopartículas metálicas en

la escala de longitudes atomística. Con el objetivo de conseguir una perspectiva más

amplia sobre el uso de diferentes metodologías para el estudio de las propiedades

ópticas de estructuras de tamaño intermedio, consideramos tanto técnicas ab ini-
tio como de electromagnetismo clásico. Concretamente, los cálculos de primeros

principios se realizaron dentro del marco de TDDFT en el régimen de respuesta lin-

eal, mientras que los cálculos electromagnéticos se realizaron utilizando diferentes

modelos para la permitividad metálica.

7.2.1 Aplicación del Electromagnetismo Clásico en Sistemas Cuán-
ticos

Uno de los objetivos de esta tesis es la exploración de los méritos y limitaciones de

los métodos de la óptica clásica para la descripción de las propiedades ópticas de los

clústeres de metales nobles. Esta tarea se ha llevado a cabo mediate comparaciones

sistemáticas frente a técnicas de primeros principios. Para ello, las estructuras atom-

ísticas han sido reemplazadas por geometrías equivalentes que pueden ser tratadas

dentro del marco del electromagnetismo clásico. Para establecer esta equivalencia

hemos desarrollado en el capítulo 4 un simple e intuitivo modelo para tratar tanto

la forma como las dimensiones de la nanopartćula. Para imitar la suave terminación

en un solo átomo de una barra metálica, hemos usado una geometría con forma de

habano para las regiones metálicas en nuestros cálculos. La densidad electrónica

de estas geometrías se ha tomado igual a la correspondiente a los electrones s en el

volumen del metal, y el volumen del habano se ha fijado de forma que el número de

electrones de conducción sea el mismo que en el sistema atomístico. Finalmente, la

proporción de aspecto (AR, definida como el cociente entre longitud y grosor) de las

geometrías electromagnéticas se ha tomado igual al de las estructuras atomísticas.
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7.2.1.a Dependencia de las LSPRs en la AR de barras metálicas

Usando el modelado efectivo descrito arriba, los espectros de absorción de barras

metálicas de tamaños intermedios de oro y plata han sido estudiados utilizando

tanto TDDFT como la óptica clásica. Los cálculos electromagnéticos se han realizado

tanto dentro de la descripción local como no-local (modelo hidrodinámico) de la

permitividad metálica. La comparación entre los espectros obtenidos con diferentes

métodos revela interesantes conclusiones:

• Como es bien sabido, la absorción de plata y oro en partículas elongadas es

similar: en ambas se puede identificar fuertes LSPRs en el infrarrojo. Esto es

debido a que estas resonancias aparecen a frecuencias mucho menores que

las correspondientes a las transiciones interbanda en ambos metales. La com-

paración sistemática muestra que en barras de plata con AR > 5 y de oro

con AR ' 8 (cuya respuesta está dominada por LSPRs) no solo la posición

de las resonancias sino también su intensidad calculadas con TDDFT y electro-

magnetismo clásico muestran un excelente acuerdo. Incluso en sistemas con

dimensiones laterales subnanométricas y que manifiestan la inhomogeneidad

atomísitca.

• La comparación frente a las predicciones de primeros principios mejora in-

cluso cuando los espectros de absorción electromagnéticos se calculan usando

un modelo hidrodinámico para la permitividad metálica, excepto en cadenas

lineales de átomos, donde los cálculos locales parecen ser más precisos.

• Cuando la AR de las barras se reduce, el acuerdo entre TDDFT y los cálcu-

los electromagnéticos se degrada significativamente. Esta degradación puede

relacionarse con el corrimiento al azul que sufren las LSPRs, lo que las hace

acoplarse con las transiciones interbanda. Esta interacción es más aparente en

oro que en plata debido a la menor energía de las últimas.

• Al decrecer la AR de las barras, los cálculos TDDFT muestran el acoplo entre

LSPRs y las transiciones interbanda, lo que da lugar a una fragmentación de

los picos de absorción. Como la excitación de transiciones interbanda no de-

pende del tamaño del clúster, el acoplo con las LSPRs está gobernado por la

posición espectral, dependiente de la AR. Este acoplo no es capturado por el

modelo electromangético no local. Así, en las barras de oro y plata, es la forma

fundamentalmente (y por lo tanto la AR) la que determina la interacción entre
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LSPRs y transciones interbanda, y también el acuerdo entre cálculos clásicos y

cuánticos.

En conclusión, hemos comparado la óptica clásica local y no local frente a métodos

ab initio cuánticos en el cálculo de las posiciones espectrales y las intensidades del

las LSPRs en sistemas elongádos atomísticos preservando la AR y el número de elec-

trones s (o Drude). La comparación muestra un acuerdo sorprendente entre ambos

enfoques cuando las LSPRs están desacopladas de las transiciones interbanda. Éste

es el caso para barras de plata de AR > 5 y de oro de AR ' 8. Hemos concluido

también que es la forma y no las dimensiones (es decir el número de átomos) lo que

determina la calidad de este acuerdo.

7.2.1.b Efecto sutil del tamaño en la dependencia las LSPRs en la AR

En el capítulo 4, hemos realizado un análisis de cómo las LSPRs dependen de las

proporciones de la partícula mediante cálculos clásicos y cuánticos para diferentes

estructuras de plata y oro: barras, cadenas y clústeres icosaédricos. En la transi-

ción entre estructuras delgadas (cadenas) y gruesas (barras) de una misma AR, la

energía relativa de las LSPRs excitadas a lo largo del eje longitudinal de estos sis-

temas aumenta. Esta tendencia creciente en la energía de las LSPRs solo se observa

en los cálculos de primeros principios, mientras que los cálculos electromagnéti-

cos no locales muestran el comportamiento opuesto. La conclusión a la que hemos

llegado basada en esta observación es que aunque la óptica clásica da un acuerdo

sorprendente en los atributos generales de las LSPRs, hay sutiles efectos cuánticos

que alteran la dependencia en el tamaño de las LSPRs.

7.2.1.c Interrelación entre LSPRs y electrones d en cadenas de oro

En cadenas monoatómicas de plata, las LSPRs están libres de contaminación debida

a los electrones d, involucrados en las transiciones interbanda, incluso en tamaños

tan pequeños como 6 átomos. Por el contrario, los espectros TDDFT para cadenas

de oro indican que el carácter quasi-unidimensional de las excitaciones colectivas

no está bien descrito para cadenas menores que 12 átomos. Cuando el número de

átomos se reduce más, tiene lugar una transferencia de peso espectral desde los

picos de menor frecuencia a máximos plasmónicos fragmentados, que sólo puede

ser descrito ab initio. En estos casos, los cálculos clásicos parecen reproducir un

promedio espectral de todos estos picos fragmentados.
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7.2.2 Características de las Excitaciones en el Campo Cercano

En el capítulo 5, hemos investigado las distribuciones de carga inducidas por la ex-

citacion de LSPRs desde un punto de vista clásico y cuántico. Esto nos ha permitido

extender el estudio comparativo entre los dos enfoques teóricos más allá de las mag-

nitudes de campo lejano y verificar la validez de nuestros descubrimientos también

en el régimen de campo cercano.

7.2.2.a Densidades de Carga Inducida por LSPRs

A través de la integración de las cargas inducidas dentro de la sección transversal de

las partículas metálicas, hemos demostrado que las descripciones clásicas y cuánticas

de las densidades de carga resonantes muestran, de nuevo, un acuerdo sorprendente

para estructuras elongadas de plata. Esta observación nos ha permitido concluir que

estos sistemas, como consecuencia de su alto carácter plasmónico, soportan LSPRs

colectivas bien definidas, libres de la contaminación de excitaciones interbanda que

involucran un único electrón-hueco.

Para el clúster Ag19, que presenta una forma no tan elongada (más compacta) y

en el que la energía de la LSPR aparece en el espectro alrededor de 3 eV, la com-

paración entre predicciones para la distribución de carga revelan que las transi-

ciones de electrones d juegan un papel fundamental en sus propiedades ópticas.

Este hallazgo es particularmente relevante en el caso de nanoestructuras compactas

(quasi-esféricas), en las que la distribución de carga inducida en el plano de simetría

obtenido por métodos clásicos y de primeros principios están en un total desacuerdo,

a pesar de que los espectros de absorción obtenidos en ambos casos (TDDFT y óptica

no local) son muy similares.

7.2.2.b Necesidad de un funcional de cambio y correlación mejorado

Tras el análisis de las predicciones TDDFT y electromagnéticas para las densidades

de carga inducida correspondientes a LSPRs en Ag19, hemos verificado la calidad

de los cálculos ab initio usando el funcional PBE AGGA para barras de diferentes

longitudes, comparándolos frente a los resultados obtenidos mediante el funcional

híbrido y de largo alcance LC-M06L. Éste último es mas adecuado para el tratamiento

de excitaciones de electrones d, y sus prediciones son más exactas para clústeres de

plata pequeños. Desafortunadamente, su implementación requiere un esfuerzo de

cálculo mucho mayor que los funcionales GGA o LDA. De nuestro estudio concluimos
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que los espectros obtenidos usando TDDFT-PBE son solo ligeramente diferentes de

los resultados de LC-M06L para sistemas elongados (como Ag67). Por el contrario, en

clústeres compactos, como Ag19, las predicciones son muy diferentes. Así, los cálcu-

los TDDFT-PBE para sistemas compactos no son precisos y el acuerdo espectral entre

cálculos clásicos y cuánticos es en parte fortuito. Ambos enfoques son incapaces de

describir estructuras en las que LSPRs y electrones d estan acoplados fuertemente.

En estos casos, el tratamiento ab initio requiere la introducción de funcionales de

intercambio y correlación mejores que los sobresimplificados AGGA.

7.2.3 Densidades de Carga Inducida a Diferentes Energías

La distribución espacial del campo eléctrico inducido ofrece una visión profunda so-

bre la excitación óptica. En los métodos electromagnéticos clásicos, los cálculos son

realizados normalmente en el dominio de frecuencia, y los campos eléctricos (y por

tanto, también las distribuciones de carga) a una energía dada se obtiene de una

forma natural. En TDDFT, la respuesta óptica se calcula en el dominio de tiempo,

y las magnitudes anteriores han de calcularse a posteriori. Sin embargo, la mayoría

de las simulaciones TDDFT usan una perturbación /delta−kick que produce un una

densidad de carga inducida que es la superposición de las distribuciones correspon-

dientes a todas las excitaciones que se generan en el sistema (y que aparecen en el

espectro).

En el capítulo 5, realizamos una transformada Fourier de las densidades induci-

das dependientes del tiempo obtenidas mediante TDDFT. Así obtenemos las distribu-

ciones a cualquier energía o frecuencia de interés. Hemos discutido las diferencias

entre excitaciones plasmónicas y aquellas que involucran transiciones intrabanda, y

también la interacción entre LSPRs y los electrones d en el comportamiento espacial

de los modos ópticos para cada familia de excitaciones.

- La comparación para las densidades de carga inducida para una energía LSPR

bajo excitación láser y mediante un campo puramente electrostático muestra

el papel del apantallamiento debido a los electrones d. Hemos llegado a la

conclusión general de que las LSPRs dipolares tienen una mayor contribución

proveniente de la superficie del clúster. Por otro lado, los electrones d respon-

den al campo electrico generado por esta contribución superficial con la misma

frecuencia, pero con un desfase de 90 grados.
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- Mediante las densidades de carga obtenidas mediante la transformación de

Fourier, hemos sido capaces de estudiar las contribuciones espaciales debidas

a cada elemento o rasgo identificable en el espectro de absorción. Por ejem-

plo, en un clúster complejo y protegido por ligandos, como Ag29P4S24C144H108,

la dependencia espacial de la transformada de Fourier de la densidad depen-

diente del tiempo revela que las excitaciones de baja energía están más confi-

nadas en el núcleo de plata del compuesto que las intensas excitaciones de alta

energía, que tienen una importante contribución proveniente de los anillos de

benzeno en los ligandos.

7.2.4 Efectos debidos al aleado

Experimentos recientes realizados sobre la clase de agregados Au144(SR)60 han

mostrado la emergencia de un pico de abosrción a 550 nm (2.25 eV) tras la la adi-

ción de cobre a las muestras de oro puro. En algunos casos parece incluso que la

adición de un único átomo de Cu tiene este efecto [11,12]. Este hallazgo es intere-

sante porque, en el rango de tamaños considerados, los agregados simples de Au y

Cu (e.g., Au147Ih) no muestran ningún pico de absorción prominente en el espectro.

Con el objeto de explicar estos experimentos, Malola et al. [13] realizaron cálculos

ab initio sobre la clase de nanoaleaciones Au(144,145)−xCux(SR)60. Su conclusión

fue que “Copper Induces a Core Plasmon in Intermetallic Au(144,145)−xCux(SR)60 Nan-
oclusters”. En el capítulo 6 de esta tesis, presentamos cálculos ab initio para este

tipo de agregados. Tras un análisis detallado de los resultados ab initio hemos

obtenido una visión más clarificadora de cómo el aleado afecta a la emergencia

de LSPRs en el caso de agregados “limpios” Au(147)−xCux y recubiertos por ligandos

Au(144,145)−xCux(SR)60.

Tras considerar diferentes casos, en particular: la relajación de las estructuras en

función del método empleado (LDA & PBE), el tipo de grupo R de los ligandos (R

= H, & R = CH3), y las mínimas diferencias en la simetría y la geometría de los

diferentes compuestos Au144(SR)60, hemos mostrado que la adición de cobre no in-

duce ninguna resonancia en el espectro, sea plasmónica o de otro tipo. Los cambios

principales en el espectre son pequeños y consistent principalmente en: (a) la dis-

iminución de peso espectral en el rango entre 2.0 y 3.5 eV (620 to 350 nm) y (b)

el desplazamiento al rojo de los picos espectrales de frecuencia más baja. Mas aún,
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hemos mostrado que los pequeños pero apreciables cambios en el espectro de ab-

sorción tras la inserción de un átomo de cobre en la vacante central del agregado

Au144(SR)60 son prácticamente debidas a la reconstrucción geométrica inducida por

la propia inserción del átomo.

Como hemos indicado, los cambios en los resultados son pequeños y dependen úni-

camente de los detalles del modelo estructural y del tipo de grupo R del ligando.

Además, son del mismo orden que los asociados a la utilización de diferentes aprox-

imaciones funcionales. Esto nos lleva a la conclusión general de que el aleado con

cobre no induce la aparición de resonancias plasmónicas en agregados de oro en

este rango de tamaños (1.8 nm), en el que el espectro no muestra todavìa el desar-

rollo claro de una LSPR. En consecuencia, las diferencias en el espectro de absorción

detectadas experimentalmente deben deberse a otro tipo de efectos que deben aún

explorarse.

7.2.5 Perspectivas

El activo campo de investigación sobre propiedades ópticas de nanopartículas y agre-

gados de metales nobles tiene numerosas aplicaciones y abre al puerta a la com-

prensión del origen de novedosos fenómenos físicos a escalas nanométrica y sub-

nanométrica. Con los presentes avances en tecnología, la ingeniería de sistemas a

escala atómica es posible. En las fronteras de la plasmónica, estos avances han al-

lanado el camino para dispositivos novedosos basados en la capacidad de ajuste óp-

tica a nivel nanométrico, por ejemplo, pantallas de color plasmónicas dinámicas [229]

y interruptores plasmónicos a escala atómica [230].

En esta tesis se han empleado tanto métodos mecánico-cuánticos como electromag-

néticos clásicos para proporcionar una comprensión teórica de experimentos re-

cientes que exploran la interacción luz-materia a escalas de longitud sub-nanométricas.

A la vista de estos diferentes enfoques, el trabajo realizado en esta tesis aporta con-

tribuciones significativas: la comparación sistemática y detallada de los métodos

ab-initio y de electromagnetismo clásico resalta la importancia de las limitaciones

de este último cuando se aplica a sistemas de tamaño cuántico. Por ejemplo, en

el estudio de la amplificación de campo alrededor de una punta atomística, que se

explota en experimentos de espectroscopía Raman mejorada en superficie (SERS),

los efectos mecánicos cuánticos pueden modificar resultados puramente clásicos.
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Por otro lado, las limitaciones del cálculo TDDFT deben tenerse en cuenta. En los

cálculos ab-initio para agregados de metales nobles de tamaño cuántico, donde las

transiciones entre bandas pueden acoplarse con la LSPR, es clave la elección de las

aproximaciones, en particular para el funcional de intercambio/correlación. Por lo

tanto, para describir adecuadamente la respuesta óptica en estos sistemas dentro de

la teoría del funcional de la densidad, se necesitan aproximaciones robustas (pero

computacionalmente sencillas) para el funcional de intercambio/correlación. A su

vez, se han producido muy intersantes avances en la ciencia de agregados a través de

estudios experimentales que utilizan técnicas pioneras de síntesis y caracterización

a escala atómica, siendo un ejemplo la síntesis y cristalización de agregados de met-

ales nobles de tamaño intermedio protegidos por ligandos [231–233]. Muchos de

estos experimentos pueden proporcionar un conocimiento preciso de la estructura y

composición de los agregados, que proporcionan la base para una mejora de los cál-

culos ab-initio porque ahora pueden llevarse a cabo utilizando estructuras atómicas

definidas. Las mediciones (espectros de absorción, etc.) en las muestras proporcio-

nan puntos de referencia sobre los que se pueden comparar las cantidades calculadas

teóricamente. Esto permite conclusiones definitivas sobre la calidad de las aproxi-

maciones empleadas (en particular, los funcionales de correlación de intercambio).

Se espera que este proceso mejore en gran medida la calidad de la descripción ab-

initio, y finalmente logre el objetivo de ser predictivo. Esta mejora de la descripción

ab-initio mostrará nuevos mecanismos para comprender la forma en que la natu-

raleza se comporta a escalas de longitud atómica.

Con el conocimiento actual y los recursos de los cálculos mecanocuánticos, se han re-

alizado numerosos esfuerzos para entender estudios experimentales recientes en los

que los fenómenos de interacción luz-materia se producen a escala subnanométrica.

En muchos casos (no siempre), estos esfuerzos han logrado dar la explicación físi-

camente correcta. Los problemas surgen cuando varios fenómenos físicos complejos

entran en juego a la vez, y para describir adecuadamente la interacción luz-materia

se deben también considerar otros efectos como pequeños cambios estructurales

que, en demasiadas ocasiones, se omitían al realizar cálculos ab-initio. Por ejemplo,

la mayoría de los cálculos ópticos no tienen en cuenta los efectos de temperatura

finita. Además, el modelado estructural se sobresimplifica en la práctica. Por ejem-

plo, en el caso de agregados recubiertos por monocapas, los grupos de los ligandos

se reducen principalmente a, por ejemplo, un grupo metilo con el fin de reducir el

esfuerzo computacional. Estas aproximaciones reducen la calidad de los cálculos
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y, en muchos casos, hacen que la calidad predictiva sea imposible. Un claro ejem-

plo de este hecho ya se demostró en esta tesis: el estudio ab-initio de los agrega-

dos Au(144,145)−xCux(SR)60 muestra que la aleación de Cu con Au en agregados de

tamaño nanométricos (≈ 1.8 nm) no da lugar a ninguna efecto relevante de absor-

ción óptica, aunque en los experimentos se observaba la emergencia de característica

espectrales que sugieren la excitación de una resonancia plasmónica, excitación que

también se sugería en un trabajo teórico previo [13]. Nuestro estudio sistemático

mostró que este no es el caso, y que las conclusiones del otro estudio [13] fueron

erróneas debido a un tratamiento insuficiente de los detalles estructurales.

En los experimentos de absorción óptica por agregados, en los que la absorción de

fotones implica la aparición de transiciones electrónicas, los modos de excitación

son dipolarmente activos. Por el contrario, en medidas de pérdida de energía elec-

trónica (EELS, de sus siglas en inglés), otros modos no dipolares se pueden excitar.

En la actualidad se pueden realizar experimentos EELS muy precisos sobre mues-

tras individuales, lo que conlleva la necesidad de herramientas teóricas robustas

para explicar los resultados. Por ejemplo, los cálculos ab-initio de espectros EELS

para muestras aisladas de tamaño finito no están convenientemente desarrollados y

suponen, por tanto, un reto inmediato. En este contexto, la experiencia adquirida

en esta tesis tanto en cálculos ab-initio como de electromagnetismo clásico se po-

drán utilizar en esa dirección. Por ejemplo, si una excitación EELS se puede modelar

adecuadamente en el formalismo RT-TDDFT, los nuevos modos (no dipolares) se

pueden identificar de manera sencilla usando la decomposición de Fourier resuelta

en espacio de la densidad de carga inducida, tal y como hemos mostrado para los

modos ópticamente activos.

Obviamente, la investigación sobre agregados de metales nobles no se limita a la

exploración de sus propiedades ópticas. También comprende, por ejemplo, apli-

caciones en biología y medicina relacionadas con el desarrollo de vectores para la

administración de medicamentos en células vivas. Estas aplicaciones ya están en uso

desde hace tiempo, a pesar de estar basadas en estudios meramente empíricos, lo

que hace deseable una mejor comprensión de los mecanismos básicos. En este con-

texto, la mencionada miniaturización en las técnicas de síntesis de nanopartículas

de metales nobles abre la puerta a nuevos hallazgos. Como ilustración, agregados

de oro de un tamaño de 2-3 nm recubiertos por una monocapa de material orgánico

se estan estudiando con asiduidad para entender cómo interaccionan con lípidos. La
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investigación pluridisciplinar (biología, química, física) es así necesaria para abordar

fenómenos en los que los ligandos, por una parte, sirven para estabilizar los agre-

gados metálicos y, por otra, interaccionan con sistemas biológicos mesoscópicos. En

esta línea, están empezando a tomar forma el desarrollo de este tipo de agregados

mixtos como herramientas para controlar la estructura y la dinámica de proteinas.

Finalmente, y desde una perpectiva más amplia, a la vista de los progresos en técni-

cas experimentales resulta evidente que todavía hay un gran número de fenónemos

relacionados con la óptica de agregados que todavía deben ser entendidos. Así,

queda un largo camino para satisfacer la demanda de herramientas teóricas capaces

de predecir y explicar completamente los hallazgos en este campo.
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Appendix A

Proof of Runge–Gross Theorem

Theorem: For every single–particle potential v(r, t) which can be expanded into a Tay-
lor series with respect to the time coordinate around t = t0, a map G : v(r, t) ←→
n(r, t) is defined by merely solving the time–dependent Schrödinger equation with a
fixed initial state Ψ0 = Ψ(t0) and calculating the corresponding densities n(r, t). This
map can be inverted up to an additive merely time–dependent function in the potential.

The first step of the proof is to show that infinitesimally after the initial time t0,

from which two potential v(r, t) and v′(r, t) start to have different time dependence,

the corresponding current densities j(r, t) and j′(r, t) are different.

Considering,

j(r, t) = 〈Ψ(t)| ĵ(r) |Ψ(t)〉 ; Ψ(t) belongs to v(r, t)

j′(r, t) = 〈Ψ′(t)| ĵ(r) |Ψ′(t)〉 ; Ψ′(t) belongs to v′(r, t) (A.0.1)

we start with the equation of motion of the observable ĵ(r):

i
∂

∂t
j(r, t) = 〈Ψ(t)| [̂j(r), Ĥ(t)] |Ψ(t)〉 (A.0.2)

The commutator in A.0.2 is quite intricate and leads to an expression involving in-

ternal force densities of the many–body system due to kinetic and interaction effects

that are present in the Hamiltonian. For working out the relation one can look

into the references Ref. [181, 234]. Fortunately, for t = t0 the complicate expres-

sion becomes tractable which when we use to get the difference of the partial time
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derivatives of j(r, t) and j′(r, t) at t = t0, using A.0.1 & A.0.2, we get:

i
∂

∂t

[
j(r, t)− j′(r, t)

]
t=t0

= 〈Ψ(t0)

[
ĵ(r),

(
Ĥ(t0)− Ĥ′(t0)

)]
|Ψ(t0)〉 (A.0.3)

= 〈Ψ(t0)

[
ĵ(r),

(
V̂(t0)− V̂ ′(t0)

)]
|Ψ(t0)〉 (A.0.4)

because Ĥ(t0)− Ĥ′(t0) = V̂(t0)− V̂ ′(t0)

= i n(r, t0) ∇
[
v(r, t0)− v′(r, t0)

]
(A.0.5)

So, if at t = t0, v(r, t0) 6= v′(r, t0), then the R.H.S. is non-vanishing, implying that

j(r, t) and j′(r, t) will be different infinitesimally after t = t0. But if that is not the

case, then we first need to find the order k of the Taylor expansion at which v′(r, t)

differs from v(r, t), such that the following equation holds:

(
i
∂

∂t

)k+1[
j(r, t)− j′(r, t)

]
t=t0

= i n(r, t0) ∇
{(

i
∂

∂t

)k[
v(r, t)− v′(r, t)

]
t=t0

}
6= 0 (A.0.6)

assuring that, infinitesimally after t = t0, j(r, t) 6= j′(r, t), though at (k + 1)-th order.

In next step of the proof, relating the density n(r, t) with the current j(r, t)

through the continuity equation:

∂

∂t
n(r, t) = −∇ · j(r, t), (A.0.7)

one needs to show that, infinitesimally after t = t0, n(r, t) (corresponding to v(r, t))

and n′(r, t) (corresponding to v′(r, t)) will be different, and thus the theorem is

proved. Taking the difference of the continuity equations corresponding to n(r, t)

and n′(r, t), we get:

∂

∂t
[ n(r, t)− n′(r, t) ] = −∇ · [ j(r, t)− j′(r, t) ] (A.0.8)

To relate to eq.A.0.6, we need to differentiate eq.A.0.8 more (k + 1) times at t = t0,

n(r, t) :
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∂k+2

∂tk+2

[
n(r, t)− n′(r, t)

]
t=t0

= −∇ ·
{
∂k+1

∂tk+1

[
j(r, t)− j′(r, t)

]
t=t0

}

= −∇ ·
{
n(r, t0) ·

[
∇
{(

∂

∂t

)k[
v(r, t)− v′(r, t)

]}
t=t0

}
(A.0.9)

Here, we take,

u(r) =

(
∂

∂t

)k[
v(r, t)− v′(r, t)

]
6= constant, (A.0.10)

i.e., the gradient of u(r) exists.

So, now we need to show that R.H.S. of eq.A.0.9 is non-vanishing, i.e.

∇ ·
[
n(r, t0) ∇u(r)

]
6= 0,provided, u(r) 6= constant, (A.0.11)

in order to prove that n(r, t) 6= n′(r, t), as they are different immediately after t = t0,

for some value of k (k ≥ 0). This is shown by reductio ad absurdum.

Let’s consider eq.A.0.11 is false, i.e.

∇ ·
[
n(r, t0) ∇u(r)

]
= 0, while, u(r) 6= constant, (A.0.12)

=⇒
∫
d3r u(r) ∇ ·

[
n(r, t0) ∇u(r)

]
= 0

or,

∫
d3r

[
u(r)

{
∇n(r, t0) · ∇u(r)

}
+ u(r)

{
∇ · ∇u(r)

}]
= 0 (A.0.13)

To get a tractable expression for eq.A.0.13, we make use of the divergence theorem,

and deal with the following equation:
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∫
d3r ∇ ·

[
n(r, t0)

{
∇u2(r)

}]
=

∮
n(r, t0)

{
∇u2(r)

}
· dS (A.0.14)

or,

∫
d3r

[
n(r, t0) ∇ · ∇u2(r) + ∇n(r, t0) · ∇u2(r)

]
=

∮
n(r, t0)∇u2(r) · dS

or,

∫
d3r

[
n ∇ · (2u∇u) + ∇n · (2u∇u)

]
=

∮
n(r, t0)∇u2(r) · dS

or, 2

∫
d3r

[{
n(∇u)2 + n u ∇2u

}
+ u ∇n · ∇u

]
=

∮
n(r, t0)∇u2(r) · dS

or,

∫
d3r n(∇u)2 +

∫
d3r n u ∇2u+

∫
d3r u ∇n · ∇u =

1

2

∮
n(r, t0)∇u2(r) · dS

(A.0.15)

Now, recognizing the third and second term on the L.H.S. of eq.A.0.15, respectively

as the first and second term on the L.H.S. of eq.A.0.13, we can re-write eq.A.0.13 as,∫
d3r

[
u(r)

{
∇n(r, t0) · ∇u(r)

}
+ u(r)

{
∇ · ∇u(r)

}]
= −

∫
d3r n(r, t0)

[
∇u(r)

]2

+
1

2

∮
n(r, t0)

[
∇u2(r)

]
· dS = 0

(A.0.16)

At this point, to reach the proof we need to put an extra constraint on the density

n(r, t0): we consider that, the density n(r, t0) falls off so rapidly that at the surface,
S, it is negligible; therefore the surface integral at the L.H.S. of eq.A.0.16 vanishes.
Thus eq.A.0.16 reads as, ∫

d3r n(r, t0)

[
∇u(r)

]2

= 0 (A.0.17)

Now, if the density n(r, t0) is reasonably well behaved,

=⇒ u(r) = constant (A.0.18)

which contradicts our starting assumption eq.A.0.12. This means, eq.A.0.11 holds.

=⇒ in eq.A.0.9,
∂k+1

∂tk+1

[
j(r, t)− j′(r, t)

]
t=t0

6= 0
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=⇒ n(r, t) and n′(r, t) will be different infinitesimally after t = t0, and

hence, they are distinct. Thus the theorem is proved.
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Appendix B

Surface Plasmon Polaritons
(SPP): From Maxwell’s
Equations

The general expression for the Maxwell’s equations are:

∇ ·D = ρext (B.0.1a)

∇×E = −∂B
∂t

(B.0.1b)

∇ ·B = 0 (B.0.1c)

∇×H = Jext +
∂D

∂t
(B.0.1d)
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Considering our electric field as, E(r, t) = E(r) eiωt, the Maxwell’s equations be-

comes:

∇ · εE = 0 considering no presence of external charges (B.0.2a)

∇×E =

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣∣ = −∂B
∂t

= −iωµH (B.0.2b)

∇ ·B = 0 =⇒ ∇ ·H = 0 considering material to be non−magnetic
(B.0.2c)

∇×H = Jext +
∂D

∂t
= 0 +

∂D

∂t
considering absence of external current

i.e., ∇×H ==

∣∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣∣ = iωεE (B.0.2d)

Z

X

Y Metal
(ε2)

Dielectric
(ε1)

FIGURE B.1: Schematic representation of a metal dielec-
tric interface (Y-Z plane), which supports SPP.

In order to obtain SPP

as a solution of Maxwell’s

equation we need to solve

the equation in the system

which supports SSP. The sys-

tem is schematically shown

in Fig.B.1. It remains same

along the y-direction. This

means any derivative along

the y-direction should van-

ish.

Then from equations B.0.2b &

B.0.2d we get:
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∂Ey
∂z

= iωµHx (B.0.3a)

∂Ex
∂z

− ∂Ez
∂x

= −iωµHy (B.0.3b)

∂Ey
∂x

= −iωµHz (B.0.3c)

−∂Hy

∂z
= iωεEx (B.0.3d)

∂Hx

∂z
− ∂Hz

∂x
= iωεEy (B.0.3e)

∂Hy

∂x
= iωεEz (B.0.3f)

From these equation one can get different solutions for electromagnetic field corre-

sponding to different polarizations of electric field.

For the metal, having a dielectric function ε2 as shown in Fig.B.1, there is no electric

field inside. And, the boundary condition, the parallel component of the electric field

at the boundary of two media has to be continuous, implying, parallel components

of the electric field to be zero at the interface.

=⇒ Ey and Ez has to be zero.

Now, if both Ey and Ez are zero then there will be no surface mode.

=⇒ The solution can’t be such that the electric field is solely perpendicular to the

interface, i.e., the solution can not be a transverse electric (TE) mode.

But if the solution is a transverse magnetic (TM) wave, (i.e. there is not component

of magnetic field along the direction of propagation of the wave) there can be some

component of electric field along the direction of propagation (which in our problem

lie on the interface), and we can have electric field at the interface.

Considering z-direction to be the direction of propagation of the surface waves

(SPPs) for TM waves, we must have, Hz = 0. Having Hz,Ey and Ez disappear

from the eqs.B.0.3, we get only the following set of equations to solve in order to

describe SPP:

∂Ex
∂z

− ∂Ez
∂x

= −iωµHy (B.0.4)

−∂Hy

∂z
= iωεEx (B.0.5)

∂Hy

∂x
= iωεEz (B.0.6)
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Z

X

Y
(ε2)

(ε1)

FIGURE B.2: Schematic representation of evanescent electric fields describing SPP.

As the SPPs are surface waves they must be confined at the surface (here interface)

only. This can only happen if the field be evanescent , i.e. it decays exponentially

away from the interface, as shown Fig.2. This means we should look for solutions

having following forms:

Ei(z) =

[
Ex,i

Ez,i

]
e−κi|x| eikz (B.0.7)

Hi(z) = Hy,ie
−κi|x| eikz (B.0.8)

here, κ is the evanescent decay factor; the index “i” refers to the media, i=1 for the

insulator, i=2 for the metal; and k is the wave vector for the SPPs.

Substituting these wave forms in equations of TM modes we get,

fromB.0.4,
∂

∂z

(
Ex,ie

−κi|x| eikz
)
− ∂

∂x

(
Ez,ie

−κi|x| eikz
)

= −iωµ Hy,ie
−κi|x| eikz

(B.0.9)

from B.0.5, − ∂

∂z

(
Hy,ie

−κi|x| eikz
)

= iωε Ex,ie
−κi|x| eikz (B.0.10)

from B.0.6,
∂

∂x

(
Hy,ie

−κi|x| eikz
)

= iωε Ez,ie
−κi|x| eikz (B.0.11)

Solving these in both the regions and then canceling the exponentials from both

sides of equality we get,
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In region 1 :

ikEx,1 + κ1Ez,1 = −iωµ0µr,1Hy,1 (B.0.12)

−ikHy,1 = iωε0ε1Ex,1 (B.0.13)

−κ1Hy,1 = iωε0ε1Ez,1 (B.0.14)

From B.0.13, Ex,1 =
kHy,1

ωε0ε1
. Putting this in B.0.12 we get,

ik2 Hy,1

ωε0ε1
+ κ1Ez,1 = −iωµ0µr,1Hy,1

=
−iωµ0µr,1Hy,1

ωε0ε1
ωε0ε1 =

−iω
2

c2
ε1µr,1Hy,1

ωε0ε1
=
−ik2

0ε1µr,1Hy,1

ωε0ε1

κ1Ez,1 = − i

ωε0ε1

(
k2

0ε1µr,1 − k2

)
Hy,1 (B.0.15)

And now eliminating Ez,1 from B.0.14 & B.0.15, we get the dispersion relation in

region 1 as,

k20ε1µr,1 = k2 − κ2
1 (B.0.16)

In region 2 :

ikEx,2 − κ2Ez,2 = −iωµ0µr,2Hy,2 (B.0.17)

−ikHy,2 = iωε0ε2Ex,2 (B.0.18)

κ2Hy,2 = iωε0ε2Ez,2 (B.0.19)

(as this medium is extended over the region where x has -ve values, signs have been

changed accordingly).

Following the same analysis in region we also get ,

κ2Ez,2 =
i

ωε0ε2

(
k2

0ε2µr,2 − k2

)
Hy,2 (B.0.20)

and the dispersion relation in this region also looks same,

k20ε2µr,2 = k2 − κ2
2 (B.0.21)

BOUNDARY CONDITIONs. The electric field boundary condition is Ez,1 = Ez,2,
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and the magnetic field boundary condition is Hy,1 = Hy,2. So, using them and

either starting by equating B.0.14 & B.0.19 or starting from equating B.0.15 & B.0.20

we get,

ε1

κ1

+
ε2

κ2

= 0 (B.0.22)

This equation is known as EXISTENCE CONDITION for SPPs.

If we divide B.0.16 by B.0.21, after doing a bit of side changing of terms we get,

k2 − k2
0ε1µr,1

k2 − k2
0ε2µr,2

=
κ2

1

κ2
2

or,
k2 − k2

0ε1µr,1
k2 − k2

0ε2µr,2
=

ε2
1

ε2
2

[from eq.B.0.22]

or, k2ε2
2 − k2

0ε1µr,1ε
2
2 = k2ε2

1 − k2
0ε2µr,2ε

2
1

or, k2

(
ε2

2 − ε2
1

)
= k2

0ε1ε2

(
ε2µr,1 − ε1µr,2

)
or, k2

(
ε1 + ε2

)(
ε2 − ε1

)
= k2

0ε1ε2

(
ε2µr,1 − ε1µr,2

)
So, for interfaces where the materials that constitutes the interface are magnetic the

dispersion relation becomes,

k = k0

√√√√√ε1ε2

(
ε2µr,1 − ε1µr,2

)
ε22 − ε21

(B.0.23)

And, for interface where the materials that constitutes the interface are non-magnetic

the DISPERSION RELATION is simply,

k = k0

√
ε1ε2

ε1 + ε2
(B.0.24)
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Appendix C

Hydrodynamic Equation of
Motion

In order to describe the collective motion of the nearly-free conduction band elec-

trons in a conducting medium, the hydrodynamic variables are, the charge density

ne, the velocity of electron fluid v(r, t), and electron pressure p(r, t). Under the

influence of electromagnetic field the equation of motion for the electrons is given

by,

me
dv

dt
+ γmev = −

(
eE + ev ×B

)
− ∇p
ne

. (C.0.1)

The total time derivative of velocity is given by,

dv

dt
=
∂v

∂t
+ (v · ∇)v (C.0.2)

Having eq.C.0.2 in eq.C.0.1 we get,

me
∂v

∂t
+me(v · ∇)v + γmev = −

(
eE + ev ×B

)
− ∇p
ne

. (C.0.3)

Dividing eq.C.0.3 by me, and multiplying it by −ene, we get

− ene
∂v

∂t
− ene(v · ∇)v − eγnev =

nee
2

me

(
E + v ×B

)
+ e
∇p
me

. (C.0.4)

Now, the current density is defined as,

J = −enev (C.0.5)
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and it follows the continuity equation relating the density ne as,

∇ · J = e
∂ne
∂t

= eṅe. (C.0.6)

From eq.C.0.5 we get the partial derivative of J as,

∂J

∂t
= −eṅev − ene

∂v

∂t
(C.0.7)

Using, eqs.C.0.7 and C.0.6 in the first and second terms on the L.H.S of eq.C.0.4, we

respectively get,

−ene
∂v

∂t
=
∂J

∂t
− (∇ · J)

J

ene
(C.0.8)

−ene(v · ∇)v = −(J · ∇)
J

ene
(C.0.9)

Clubbing eqs. C.0.8 & C.0.9, and using eq.C.0.5 in the equation of motion ( C.0.4 ),

we get,

∂J

∂t
− (∇ · J)

J

ene
− (J · ∇)

J

ene
+ γJ =

nee
2

me
E− e

me
(J×B) + e

∇p
me

(C.0.10)

The second and third term in the eq.C.0.10 involves higher order of J, and can be

approximated to contribute insignificantly, to give:

∂J

∂t
+ γJ =

nee
2

me
E− e

me
(J×B) +

e

me
∇p. (C.0.11)

Recognizing the electrical polarization vector ( P ) corresponding to the polarization

of conduction band electrons, in terms of the current density as,

Ṗ = J, (C.0.12)

the equation of motion ( C.0.11 ) takes the form as,

P̈ + γṖ =
nee

2

me
E +

e

me
∇p (C.0.13)
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Thomas–Fermi pressure: In order to have a tractable expression for the pressure

term, the quantum mechanical description of the electron pressure within Thomas–

Fermi model can be considered:

p(r, t) = ζ

[
n(r, t)

]5/3

, where, ζ =
h2(3π)2/3

5me
. (C.0.14)

Thus, the electron pressure term becomes:

e

me
∇p =

e

me
ζ

5

3
n2/3∇ne '

5

3
n

2/3
0

e

me
∇ne, (C.0.15)

where, ne(r, t) is approximated to n0(r), the equilibrium electron density corre-

sponding to the system unperturbed by the electromagnetic field. The expression

for the gradient of ne(r, t) can be found through the continuity equation for density:

n(r, t) = n0r +
1

e
∇ ·P (C.0.16)

. Using eq.C.0.16, ∇ne(r, t) is,

∇ne =
1

e
∇(∇ ·P); (C.0.17)

and thus, the pressure term ( C.0.15 ) can be expressed in terms of polarization as,

e

me
∇p = ζ

5

3

n
2/3
0

me
∇(∇ ·P). (C.0.18)

Having this expression for pressure term in eq.C.0.13, we get,

P̈ + γṖ =
nee

2

me
E +

(
ζ

5

3

n
2/3
0

me

)
∇(∇ ·P). (C.0.19)

Having defined,

the plasma frequency, ωp =

√
nee

2

ε0me
, and, (C.0.20)

the nonlocal parameter, β =

√
5

3
ζ
n

2/3
0

me
(C.0.21)



186 Appendix C. Hydrodynamic Equation of Motion

we get,

−β2∇(∇ ·P) + P̈ + γṖ = ε0ω
2
pE (C.0.22)

the usual form of the hydrodynamic equation of motion for the conduction band

electrons.
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Appendix D

Working Principle Of Local
Analogue Model (LAM)

Nonlocal metal-dielectric interface
(a)

X

Z

RNL

TNL

εm = {ε
T

(ω), ε
L

(k, ω)}

εd

Fictitious dielectric layer in LAM
(b)

X

Z

4dε
Layer

εd

εm = ε
T

(ω)

RL

TL

FIGURE D.1: In (a), the geometry represnting the nonlocal metal-dielctric interface, where the
dielectric function for the metallic region is described by both the transverse and longitudinal
components. The structure represented in (b) shows the local analogue model (LAM), where
a fictitious dielectric layer is introduced in between the metal and the dielectric background.

In order to demonstrate the working principle of local analogue model (LAM), we

shall take the example of a nonlocal metal-dielectric interface, as shown in Fig. D.1(a).

The idea of LAM implementation to produce the same results as in the full three-

dimensional implementation of the hydrodynamic model is based on the following

philosophy. Mimicking the spatial nonlocality only through the transverse modes,
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and by playing with the width (4d), and the dielectric function (ε
Layer

) of an in-

termediate layer, as shown in Fig. D.1(b), between the metal and the surrounding

dielectric, one obtains the same reflection an transmission coefficients as from the

three-dimensional implementation of the hydrodynamical model, irrespective of the

parallel component of the wave vector (k) at the interface. This description of the

working principle of LAM is explained in details in the supplementary information

of Ref. [146].

Nonlocal metal-dielectric interface

Following the Fig. D.1(a), at the metal-dielectric interface, where the metal dielectric

function (εm) accounts for the spatial nonlocality as described by the hydrodynamic

model (i.e., εm = {ε
T
, ε
L
}), the electric field associated with the surface plasmon

polariton (SPP) in the metallic region can be given as,

Hm
y = T

NL

ezkz eikx, (D.0.1)

Emx =

[
−ikz
εmk0

T
NL

ezkz +
−ik0

q
L

T
LG

ezqL

]
eikx, (D.0.2)

Emz =

[
−k
εmk0

T
NL

ezkz +
−k0

k
T
LG

ezqL

]
eikx; (D.0.3)

where, k = kx̂, i.e. k is the wave vector of SPP;

T
NL

and T
LG

stands for the amplitudes (transmission coefficients) associated with

the transverse and longitudinal electric waves;

it is approximated that,
√
k2 + q2

L
= q

L
, as q

L
� k;

k0 = ω/c, kz =
√
k2 − εmk2

0 is the normal component of wave vector in the metal

which is inversely proportional to the penetration depth of the transverse compo-

nent of the SPP into the metal; and

q
L

is the wave vector of the longitudinal bulk plasmon, normal to the metal-dielectric

interface, as defined in eq. 2.3.22.

Now, if we consider a plane electromagnetic wave of unit magnetic field amplitude

to be incident upon the metal surface, in the background dielectric medium the total
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(incident + reflected) magnetic and electric fields can be written as,

Hb
y =

[
e−zk

b
z + R

NL

e+zkbz

]
eikx, (D.0.4)

Ebx =
−ikbz
εbk0

[
e−zk

b
z − R

NL

e+zkbz

]
eikx, (D.0.5)

Ebz =
−k
εbk0

[
e−zk

b
z + R

NL

e+zkbz

]
eikx; (D.0.6)

where,

R
NL

is the reflection coefficient associated with the transverse electric waves, and

kbz =
√
k2 − εbk2

0 is the normal component of wave vector in the dielectric medium,

εb being the dielectric constant.

Applying electromagnetic boundary conditions: continuity of Hy, Ex, and Ez, at the

interface z = 0, we get expressions for the reflection and transmission coefficients

as follows.

R
NL

=

1− εbkz
εmkbz

− k2

q
L
kbz

(
1− εb

εm

)
1 +

εbkz
εmkbz

+
k2

q
L
kbz

(
1− εb

εm

) , and (D.0.7)

T
NL

=
2

1 +
εbkz
εmkbz

+
k2

q
L
kbz

(
1− εb

εm

) (D.0.8)

Metal-dielectric interface with a fictitious dielectric layer in be-
tween

The structure in Fig. D.1(b) represent the LAM. In this structure only transverse com-

ponent of the electric field (which comes as the usual solution of Maxwell’s equa-

tions) are considered and consequently εm = ε
T

. The fictitious dielectric material

in between the metal and dielectric background is considered to have an anisotropic

permittivity of a parallel component εxx, and a normal component εzz. The compo-

nents of electromagnetic field in each of the three region in the Fig. D.1(b) can be

written as,
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Metal region:

Hm
y = T

L

e(z+4d)kz eikx, (D.0.9)

Emx =
−ikz
εmk0

T
L

e(z+4d)kz eikx, (D.0.10)

Emz =
−k
εmk0

T
L

e(z+4d)kz eikx; (D.0.11)

where, T
L

is the transmission coefficients associated with the electric wave. As the

metal is described in local optics, no longitudinal component appears in the field

equations.

In fictitious dielectric layer:

H
Layer

y =

[
C−ezk

Layer

z + C+ e−(z+4d)k
Layer

z

]
eikx (D.0.12)

E
Layer

x =
−ikLayerz

εxxk0

[
C−ezk

Layer

z − C+ e−(z+4d)kbz

]
eikx, for −4d < z < 0

(D.0.13)

E
Layer

z =
−k
εzzk0

[
C−ezk

Layer

z + C+ e−(z+4d)k
Layer

z

]
eikx; (D.0.14)

where,

k
Layer

z =

√
εxx

(
k2

εzz
− k2

0

)
. (D.0.15)

In the background dielectric:

Hb
y =

[
e−zk

b
z + R

L

e+zkbz

]
eikx, (D.0.16)

Ebx =
−ikbz
εbk0

[
e−zk

b
z − R

L

e+zkbz

]
eikx, (D.0.17)

Ebz =
−k
εbk0

[
e−zk

b
z + R

L

e+zkbz

]
eikx; (D.0.18)

where, R
L

is the reflection coefficients associated with the electric wave reflected

back into the dielectric.
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Applying the boundary conditions at the two boundaries at z = 0 and z = −d,

we get the expressions for the reflection and transmission coefficients as,

R
L

=

(
1− εbkz

εmkbz

)
cosh(k

Layer

z 4d) −
(
εbk

Layer

z

εxxkbz
− εxxkz

εmk
Layer

z

)
sinh(k

Layer

z 4d)(
1 +

εbkz
εmkbz

)
cosh(kLayerz 4d) +

(
εbk

Layer

z

εxxkbz
+

εxxkz
εmk

Layer

z

)
sinh(kLayerz 4d)

(D.0.19)

T
L

=
2(

1 +
εbkz
εmkbz

)
cosh(kLayerz 4d) +

(
εbk

Layer

z

εxxkbz
+

εxxkz
εmk

Layer

z

)
sinh(kLayerz 4d)

(D.0.20)

Two different solution for LAM

Anisotropic solution: In the limit of k
Layer

z 4d → 0, the second terms in the nu-

merator and the denominator of eq. D.0.19 become,

lim
(k
Layer
z 4d)→0

(
εbk

Layer

z

εxxkbz
∓ εxxkz
εmk

Layer

z

)
sinh(k

Layer

z 4d) =

(
εbk

Layer

z

εxxkbz
∓ εxxkz
εmk

Layer

z

)
k
Layer

z 4d

=
εb(k

Layer

z )24d
εxxkbz

∓ εxxkz4d
εm

=
εb4d
kbz

(
k2

εzz
− k2

0

)
∓ εxxkz4d

εm
(from eq. D.0.15)

≈ εb 4d k2

kbz εzz
∓ εxxkz4d

εm
(D.0.21)

For εxx = 0, which also means k
Layer

z = 0, eq. D.0.21 reduces to,

lim
(k
Layer
z 4d)→0

(
εbk

Layer

z

εxxkbz
∓ εxxkz

εmk
Layer

z

)
sinh(k

Layer

z 4d) ≈ εb 4d k2

kbz εzz
(D.0.22)
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Thus, in the limit of k
Layer

z 4d → 0, by having εxx = 0, eqs. D.0.19 and D.0.20

become,

R
L

≈
1− εbkz

εmkbz
− εb 4d k2

kbz εzz

1 +
εbkz
εmkbz

+
εb 4d k2

kbz εzz

(D.0.23)

T
L

≈ 2

1 +
εbkz
εmkbz

+
εb 4d k2

kbz εzz

(D.0.24)

Comparing these coefficients of reflectance and transmittance with R
NL

and T
NL

we

get,

εzz =
εb εm q

L
4d

εm − εb
(D.0.25)

Thus a local analogue model to give the same optical properties (reflectance and

transmittance) as can be found in a nonlocal metal-dielectric interface is given by

the structure represented in Fig. D.1(b), where the dielectric function of the fictitious

layer of arbitrary thickness 4d is given by εzz (eq. D.0.25) and εxx = 0.

Thin layer solution: Though the formulation of LAM using anisotropic dielectric

layer is exact, for numerical implementation it preferable to have a layer with isotropic

dielectric function as,

ε
Layer

= εt =
εb εm q

L
4d

εm − εb
. (D.0.26)

Having this dielectric function, in equation D.0.19 and D.0.20, εzz and εxx modifies

to εt; and the normal wave vector component in the fictitious dielectric layer is given

as,

k
Layer

z =
√
k2 − εtk2

0. (D.0.27)

Using equations D.0.26 and D.0.27, in equations D.0.19 and D.0.20, and expanding

the hyperbolic functions in Taylor series, R
L

and T
L

become,

R
L

=

(
1− εbkz

εmkbz

)
− k2

q
L
kbz

(
1− εb

εm

)
+

[
εbqLkz
εm − εb

+
k2

2

(
1− εbkz

εmkbz

)]
(4d)2 + · · ·(

1 +
εbkz
εmkbz

)
+

k2

q
L
kbz

(
1− εb

εm

)
+

[
εbqLkz
εm − εb

+
k2

2

(
1 +

εbkz
εmkbz

)]
(4d)2 + · · ·

(D.0.28)
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T
L

=
2(

1 +
εbkz
εmkbz

)
+

k2

q
L
kbz

(
1− εb

εm

)
+

[
εbqLkz
εm − εb

+
k2

2

(
1 +

εbkz
εmkbz

)]
(4d)2 + · · ·

(D.0.29)
where, ‘· · · ’ represents the existence of terms in higher orders of 4d, and 4d � kz

is implied.

So, considering the fictitious dielectric layer to have an isotropic dielectric func-

tion given by eq. D.0.26, introduces corrective terms having higher orders of4d. All

these higher order terms can be neglected by making 4d relatively smaller than the

penetration depth of SPP, to give

R
L

≈
1− εbkz

εmkbz
− k2

q
L
kbz

(
1− εb

εm

)
1 +

εbkz
εmkbz

+
k2

q
L
kbz

(
1− εb

εm

) , and (D.0.30)

T
L

≈ 2

1 +
εbkz
εmkbz

+
k2

q
L
kbz

(
1− εb

εm

) (D.0.31)

which is same as R
NL

and T
NL

in equations D.0.7 and D.0.8 for the nonlocal metal-

dielectric interface. Thus, the local analogue model for having the same optical

properties as the nonlocal metal-dielectric interface is given by introducing a very

thin fictitious dielectric layer in between the metal and the dielectric background.

The thickness of the layer is much smaller than the penetration length of the SPP

and the isotropic dielectric function is given by eq. D.0.26.

In this thesis, we have used the thin-layer solution of LAM using an istropic dielectric

function for the thin fictitious dielectric layer. It is worth mentioning here, that the

consideration of the intermediate layer has nothing to do with accounting for the

quantum mechanical spill-out of the ground-state electron density. The sole motive

of LAM implementation is to get rid of the cumbersome three-dimensional imple-

mentation of the hydrodynamic model. Thus, the electromagnetic fields, in the LAM

implementation, are purely transverse, and the dielectric function of the bulk metal

is given by ε(ω) = ε
T

(ω).
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Implementation of LAM for nanoparticles:

The LAM implementation using a thin layer (with isotropic dielectric function) to

nanoparticles with radius of curvature comparable to (or smaller than) the Thomas-

Fermi wavelength is shown in Fig.D.2. As we are interested for particles within the

FIGURE D.2: Schematic representation of the local analogue model (LAM, while imple-
mented to a spherical metal cluster, having a radius of curvature comparable to (or smaller

than) the Thomas-Fermi wavelength). Courtesy: Ref. [146] PRL 111, 093901 (2013)

quasi-static size limit, the polarizability of the nanosphere of radius R, within the

hydrodynamic description [235], can be obtained as,

αnl = 4πR3

ε(ω)

εd
−
[
1 +

ε(ω)− εd
εdqLR

i1(q
L
R)

i′1(q
L
R)

]
ε(ω)

εd
+

[
2 +

ε(ω)− εd
εdqLR

i1(q
L
R)

i′1(q
L
R)

] (D.0.32)

where i1 and i′1 denote the modified spherical Bessel function of the first kind

and its derivative, respectively. The expression reduces to its local optics counter-

part, eq. 2.1.7, as q
L
−→ ∞. Within LAM, the polarizability of the whole system

(nanosphere + fictitious layer) can be derived as,

αLAM = 4πR3

ε(ω)

εd
− R

R−4d

{
1 +

ε(ω)

ε
Layer

4d
R

}
ε(ω)

εd
+

2R

R−4d

{
1 +

ε(ω)

ε
Layer

4d
R

} (D.0.33)
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The expression for the ε
Layer

, can then be obtained by comparing eqs. D.0.32 &

D.0.33, as,

εsphere
Layer

=
ε(ω)

R

R−4d

(
ε(ω)− εd
εdqLR

)(
i1(q

L
R)

i′1(q
L
R)

)
− 1

(D.0.34)

This expression for the dielectric function of the fictitious shell used in LAM is exact,

irrespective of the thickness of the dielectric shell, 4d. For, a dielectric shell of very

small thickness (4d� R), the expression D.0.34 can be expressed as,

εsphere
Layer

≈ εd (4d) ε(ω) q
L

ε(ω)− εd
i′1(q

L
R)

i1(q
L
R)

(D.0.35)





197

Appendix E

Jellium Description

FIGURE E.1: A spherical jellium system. The
shaded area shows the positive jellium back-
ground. In red the Kohn–Sham potential; in
blue te xc potential (LDA). The profile of the
ground state electron density is shown in or-

ange.

A jellium system is a system of interact-

ing electrons bound by a positive back-

ground called jellium. Thus, within a

jellium description there is no notion of

atomic lattice. The charge density and

the spatial extension of the homoge-

neous positive background defines the

jellium. For the “simple" metals, like

the alkalies, the optical properties (,in

other words, the linear response to the

density) in the infrared–visible are pri-

marily governed by the loosely bound

outermost electrons. Therefore, in or-

der to describe them, it is a good ap-

proximation to put all the ions into the

jellium with a density ρ+. In order to

make the jellium description numeri-

cally more tractable, spherical symme-

try is often imposed for the shape of the

jellium, and is defined by the radius, rjellium, of the jellium sphere. The rjellium is

simply defined using the Wigner-Seitz radius, rs of the species and the number of

electrons, Ne, to be considered in the jellium system:

rjellium = N1/3
e rs (E.0.1)
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The Hamiltonian of the jellium system is thus:

Ĥjell−sys = T̂ + V̂e−jell + Ŵe−e + Ĥjell−back

= −1

2

Ne∑
j

∇2
j +

Ne∑
j=1

vj,e−jell(rj) +
1

2

Ne∑
j,k=1
j 6=k

1

|rj − rk|
+ Ĥjell−back

(E.0.2)

where, the R is used as a continuous variable for the jellium; and the external

potential, vj,e−jell(rj), is given by,

vj,e−jell(rj) = ρ2
+(R)

∫
d3R

−1

|rj −R|
(E.0.3)

Starting from this Hamiltonian one can follow the standard prescription for a RT-

TDDFT in order to get the linear response optical spectrum. An example of the

jellium description for 58-atom sodium cluster is shown in Fig.E.1. For the cases

of noble metals, there are strongly bound d-electrons which are not far away from

the Fermi level and therefore have a screening effect on the nearly–free valence

electron. The effect of this screening is incorporated in jellium description by using

an effective permittivity for an effective region inside the jellium.
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Résumé

L’intérêt de la recherche fondamentale pour les morceaux nanométriques de métaux

nobles est principalement dû à la résonance localisée des plasmons de surface (LSPR)

dans l’absorption optique. Différents aspects, liés à la compréhension théorique de la

LSPR dans le cas de clusters de métaux nobles de taille dite intermédiaire, sont étudiés

dans ce manuscrit. Afin d’avoir une vision plus large nous utilisons deux approches

: l’approche électromagnétique classique et le formalisme ab initio en temps réel de

la théorie de la fonctionnelle de la densité dépendant du temps (RT-TDDFT). Une

comparaison systématique et détaillée de ces deux approches souligne et quantifie les

limitations de l’approche électromagnétique lorsqu’elle est appliquée à des systèmes

de taille quantique. Les différences entre les excitations plasmoniques collectives et

celles impliquant les électrons d, ainsi que leurs interactions, sont étudiées grâce

au comportement spatial des densités correspondantes. Ces densités sont obtenues

en appliquant une transformée de Fourier dans l’espace à la densité obtenue par les

simulations DFT utilisant une perturbation delta-kick. Dans ce manuscrit, des clusters

de métaux nobles nus et protégés par des ligands sont étudiés. En particulier, motivé

par de récents travaux sur les phénomènes d’émergence de plasmon, l’étude par TD-

DFT de nano-alliages Au-Cu de taille tout juste inférieure à 2nm à fourni de subtiles

connaissances sur les effets d’alliages sur la réponse optique de tels systèmes.

Abstract

The fundamental research interest in nanometric pieces of noble metals is mainly due

to the localized surface-plasmon resonance (LSPR) in the optical absorption. Differ-

ent aspects related to the theoretical understanding of LSPRs in ‘intermediate-size’

noble-metal clusters are studied in this thesis. To gain a broader perspective both

the real-time ab initio formalism of time–dependent density-functional theory (RT-

TDDFT) and the classical electromagnetics approach are employed. A systematic and

detailed comparison of these two approaches highlights and quantifies the limita-

tions of the electromagnetics approach when applied to quantum-sized systems. The

differences between collective plasmonic excitations and the excitations involving d-

electrons, as well as the interplay between them are explored in the spatial behaviour

of the corresponding induced densities by performing the spatially resolved Fourier

transform of the time-dependent induced density obtained from a RT-TDDFT sim-

ulation using a δ-kick perturbation. In this thesis, both bare and ligand-protected

noble-metal clusters were studied. In particular, motivated by recent experiments on

plasmon emergence phenomena, the TDDFT study of Au-Cu nanoalloys in the size

range just below 2 nm produced subtle insights into the general effects of alloying on

the optical response of these systems.
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