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Titre de la thése

Linéarisation de structures algébriques a I'aide d’opérades et de foncteurs polynomiaux:
Les équivalences quadratiques et la formule de Baker-Campbell-Hausdorff pour les variétés 2-nilpotentes

Résumé de la thése

Le travail de thése contribue a établir des liens entre structures algébriques non-linéaires, décrites
par des théories algébriques, et des structures algébriques linéaires, encodées par des algébres sur une
opérade linéaire. Pour les théories algébriques dont les modéles forment une catégorie semi-abélienne
(ce qui inclut la plupart des structures intéressantes), un tel lien a été exhibé récemment par M.
Hartl, au niveau des objets gradués associés a une nouvelle notion de suite centrale descendante des
modeéles d’une théorie donnée : il s’avére qu’ils ont une structure naturelle d’algébre graduée sur
une certaine opérade de groupes abéliens associée a la théorie.

Le sujet de thése s’inscrit dans le projet d’étendre ce lien au niveau global, c’est-a-dire d’établir
des correspondances du type Mal’cev et Lazard dans le cas des groupes, a savoir entre les modéles
nilpotents suffisamment radicables et les algébres nilpotentes sur 'opérade linéaire correspondante
(aprés tensorisation avec un sous-anneau des rationnels approprié). Ces correspondances jouent un
role fondamental en théorie des groupes et commencent a faire leurs preuves en théorie des loops
grace au développement plus récent d’une théorie de Lie non-associative; on peut s’attendre a ce
qu’il en soit de méme dans un contexte plus général. Il est important de noter qu’aussi bien dans
les correspondances classiques de Mal’cev et Lazard que dans leurs généralisations & des variétés
multiples de loops (Moufang, Bruck, Bol etc.), le passage des algébres (de Lie, de Mal’cev etc.) ap-
propriées aux objets non-linéaires (groupes, voire loops) qui leur correspondent, est donné par une
formule de Baker-Campbell-Hausdorff appropriée, déduite d’une étude de fonctions exponentielles et
logarithmes.

Dans la thése, une nouvelle approche est développée pour construire une correspondance (en fait,
une équivalence de catégories) du type Lazard entre une variété (dite aussi catégorie algébrique) 2-
nilpotente 2-radicable (dans un sens approprié) C donnée et les algébres sur une opérade symétrique
unitaire linéaire et 2-nilpotente AbOp(C) dépendant de la variété, vivant dans la catégorie monoidale
des Z[3]-modules a gauche. L’anneau de fraction Z[35] apparait car notre définition de 2-divisibilité
d’objets de C se traduit par la condition de 2-divisibilité classique sur le premier terme de 'opérade.
L’équivalence de type Lazard se construit grace a la théorie des foncteurs polynomiaux (plus précisé-
ment quadratiques) et a la notion d’extension linéaire de catégories. L’idée principale est de chercher
une équivalence quadratique (i.e un foncteur quadratique qui est une équivalence de catégories) entre
une variété semi-abélienne 2-nilpotente 2-radicable donnée C et la catégorie des algébres sur AbOp(C),
que nous appellerons le foncteur de Lazard.

La nouveauté principale de cette approche est de ne pas construire ce foncteur explicitement sur tous
les objets et les morphismes, en utilisant une formule de BCH établie au préalable; mais au con-
traire de construire I’'"ADN" du foncteur de Lazard, c¢’est-a-dire un ensemble de données minimales
le caractérisant étudié dans ce travail de thése, et d’en déduire une formule de type BCH dans notre
contexte. Cette démarche devrait pouvoir se généraliser et ainsi fournir une approche nouvelle et
intéressante méme de la formule BCH classique.



Title of the thesis

Linearization of algebraic structures with operads and polynomial functors:
Quadratic equivalences and the Baker-Campbell-Hausdorff formula for 2-step nilpotent varieties

Abstract

The aim of this work consists of establishing the foundations and first steps of a research project
which aims at a new understanding and generalization of the classical Baker-Campbell-Hausdorff
formula with a conceptual approach, and its main application in group theory: refining a result
of Mal’cev adapting the classical Lie correspondence to abstract groups, Lazard proved that the
category of n-divisible n-step nilpotent groups is equivalent with the category of n-step nilpotent
Lie algebras over the coefficient ring Z[%, Cee %] Generalizations to other algebraic structures than
groups were obtained in the literature first for several varieties of loops (in particular Moufang,
Bruck and Bol loops), and finally for all loops in recent work of Mostovoy, Pérez-lIzquierdo and
Shestakov. They invoke other types of algebras replacing Lie algebras in the respective context,
namely Mal’'cev algebras related with Moufang loops, Lie triple systems related with Bruck loops,
Bol algebras with Bol algebras and finally Sabinin algebras with arbitrary loops. In each case, the
associated type of algebras can be viewed as a linearization of the non-linear structure given by a
given type of loops.

This situation motivates a research program initiated by M. Hartl, namely of exhibiting suitable

linearizations of all non-linear algebraic structures satisfying suitable conditions, namely all semi-
abelian varieties (of universal algebras, in the sense of universal algebra or of Lawvere). In fact,
Hartl associated with any semi-abelian category C a multi-right exact (and hence multi-linear) functor
operad on its abelian core. In the special case where C is a variety, this functor operad is even multi-
colimit preserving and by specialization is equivalent with an operad in abelian groups; the algebra
type encoded by this operad provides a linearization of the given variety. Indeed, for each of the
above-mentioned varieties of loops this algebra type coincides (over rational coefficients) with the one
exhibited in the literature. These constructions and results are based on a new commutator theory in
semi-abelian categories which itself relies on a calculus of functors in the framework of semi-abelian
categories, both developed by Hartl in partial collaboration with B. Loiseau and T. Van der Linden.
Now the project mentioned at the beginning constitutes the next major goal in this emerging general
theory of linearization of algebraic structures: to generalize the Lazard equivalence and Baker-
Campbell-Hausdorff formula to the context of semi-abelian varieties, and to deduce a way of explicitly
computing the operad AbOp(C) from a given presentation of the variety C (more precisely, the operad
obtained from AbOp(C) by tensoring its term of arity n with Z[1, ..., 1]). In the classical example of
groups this would amount to deducing the structure of the Lie operad directly from the usual group
axioms.
In this thesis, we provide the starting point of this new theoric approach for the case n = 2. In
contrast with all existing local approaches to the subject (defining the desired equivalence object-
by-object), in the classical framework of groups or loops, the approach investigated in this thesis for
the first time is of an essentially global nature; in fact, it is not based on the use of an exponential
function, but exclusively relies on the theory of polynomial functors. More precisely, we first study
the DNA-like condensed data encoding such quadratic functors. The latter data should allow to
exhibit a 2-truncated logarithm functor from a given 2-step nilpotent variety C satisfying a certain
2-divisibility condition to 2-step nilpotent algebras over the operad AbOp(C), that is an equivalence
of categories. Then the latter may be termed Lazard correspondence of degree 2 and provides an
explicit 2-truncated Baker-Campbell-Hausdorff formula, that is a formula expressing all non-linear
operations in the variety C by the linear operations of algebras over the operad AbOp(C).
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Chapter 0

Introduction

The Baker-Campbell-Hausdorff formula (BCH formula for short) has a long history and has applica-
tions in a wide variety of problems. The classical, associative version (for groups) was more recently
extended to various non-associative contexts (that is, for numerous varieties of loops). In the associa-
tive case, one of the old references about the BCH series had been provided in 1906 by F. Hausdorff
in [I5]. Some forty years later, Mal’cev gave a bijective correspondence (called now the Mal'cev
correspondence) between torsion-free radicable nilpotent groups and nilpotent Lie algebras over the
rational field Q in [29]. In 1954, M. Lazard then improved this result by establishing a bijective
correspondence between n-step nilpotent n-radicable groups and n-step nilpotent Lie algebras over
the subring Z[%, ceey %] of Q. The idea of these correspondences consists in making a (nilpotent or
complete) Lie algebra into a group by using the BCH formula. Explicitely, this group structure is
given by the element H(X,Y) = log(exp(X).exp(Y')) of the rational non-commutative power series
ring in two variables X and Y, expressed as an infinite sum of nested commutators of X and Y of
increasing weight. Thus

H(X,Y):X+Y+%[X, Y]+1—12[X, X, Y]]—%[Y, X, Y]]—i[Y, X, [X, Y]] +...

Specializing the variables X and Y to any elements of an n-step nilpotent Lie algebra G over the
subring Z[%, o %] of Q then defines an n-step nilpotent and n-radicable group structure on G.
The above explicit expression of the first few terms of the BCH formula is probably due to E.
Dynkin in [8]. The infinite BCH series is well-known to arise in the classical equivalence between
simply-connected Lie groups and Lie algebras; it expresses the multiplication of the Lie group in
terms of the linear structure of its Lie algebra.

In the nonassociative case, generalizations to other algebraic structures than groups were obtained
in the literature first for several varieties of loops (in particular Moufang, Bruck and Bol loops).
According to Lev L. Sabinin, Mal’cev has made a pioneering work of a great importance in this area
by providing the first generalization of Lie theory to a non-associative context. In fact, Mal’cev
established a bijective correspondence between simply-connected Monfang loops and Mal’cev
algebras (which was called Moufang-Lie algebras by Mal’cev). The latter correspondence was
further studied by Kuzmin in [23] and by Kerdman in [20]. Then Sabinin proved that local Bruck
loops and local symmetric spaces are essentially the same (see [38]), while it is known that the latter
spaces are classified by Lie triple systems (see [25] and [27]). In an independent work, Kikkawa
introduced in [2I] homogeneous Lie loops (some generalized version of Lie groups), and in particular
symmetric Lie loops (a slightly generalized version of Bruck loops) which are also classified by Lie
triple systems (see also [22] for a short history). Next the correspondence between Bol algebras
and simply-connected Bol loops was well-studied in [30], [33] and [37]. Finally, J. Mostovoy, J.M.
Izquierdo and P. Shestakov in [32] gave an equivalence between the category of nilpotent Sabinin
algebras over the real numbers and the category of simply-connected nilpotent loops, using a
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nonassociative BCH formula which they exhibit in this context.

In the present work, we introduce a functor theoretic approach in order to exhibit a BCH type for-
mula in a much more general context than for varieties of groups and loops, namely for semi-abelian
varieties all of whose objects are n-step nilpotent and n-radicable. In fact, in this thesis we content
ourselves of studying only the first, but already highly non-trivial case where n = 2. However, the
methods developed here are designed to serve as a model for a future treatment of higher values of
n once the necessary theory of polynomial functors will have been developed.

More precisely, given a 2-step nilpotent 2-radicable variety C, we establish a Lazard type corre-
spondence in a more general context (equivalence of categories in fact) between C and the category
of algebras over the operad in abelian groups AbOp(C) associated with C (by specialization of a
more general construction of Manfred Hartl for arbitrary semi-abelian categories). Taking C to be
the variety of 2-step nilpotent 2-radicable groups our equivalence recovers the classical Lazard cor-
respondence in nilpotency class 2. However, the classical methods based on a thorough study of the
exponential and other functions are not available at this level of generality, so we develop a new ap-
proach based on the use of functors instead of functions which proceeds in four steps: first of all, we
find minimal algebraic data, which we call DNA, characterizing quadratic functors with domain an
appropriate pointed category and with values in algebras over a given linear operad, which general-
izes the work of M. Hartl and C. Vespa for functors taking values in abelian groups in [12]. Secondly,
we give a criterion for a quadratic functor between categories of regular projective objects in 2-step
nilpotent categories, and from there between entire 2-step nilpotent varieties, to be an equivalence
of categories. This criterion is based on Baues’s notion of linear extension of categories and Hartl’s
commutator calculus for functors. Thirdly, we construct a specific DNA giving rise to a functor on a
given 2-step nilpotent 2-radicable variety with values in algebras over AbOp(C), which we prove to be
an equivalence by using the criterion obtained in the second step. Finally, analyzing this equivalence
in detail provides a way to recover not only the 2-step nilpotent group structure in C but also any
operation of arbitrary arity, in terms of a BCH formula for all operations in C.

In summary, the method in this paper is based not on any kind of exponential function as all
classical theory on the subject, but on universal algebra and the construction of a logarithm functor
via its DNA, by using the theory of quadratic functors.

We now give a detailed account of the content of each chapter of this thesis.

Chapter 1. In this chapter, we give the necessary background of the thesis. First we recall the notion
of varieties (in the sense of Lawvere). It provides a convenient formal setting to describe algebraic
structures consisting of a given family of operations of any numbers of variables (called arities) on
sets which satisfy a given family of equational axioms (or relations). Then we give generalities about
polynomial functors that are functors defined by the vanishing of their cross-effect of a certain degree.
Moreover we recall the notion of (linear) operads and algebras over such operads. A linear operad
may be seen as a way to describe a collection of modules of abstract operations with (potentially)
several entries and one output, endowed with multilinear composition operations satisfying certain
relations. Then an algebra over such an operad is a module endowed with multilinear structure maps,
which morally realize the abstract operations of the operad as concrete multilinear multiplication
operations on the given module. In addition, we recall the notion of commutators relative to a functor
introduced by M. Hartl, which play a fundamental role in our work. They are a generalization of
commutators in semi-abelian categories defined by cross-effects of the identity functor as introduced
by Hartl and Loiseau. This tool allows us to establish interesting links between polynomial functors
and nilpotent objets (i.e. objects in a given semi-abelian category such that its commutator of a
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certain order is trivial).

Chapter 2. In this part, we first recall the main results of the paper [12] in which M. Hartl and C.
Vespa provide the minimal algebraic data (or DNA) characterizing quadratic functors with domain
an appropriate category C and values in the category of abelian groups Ab. More precisely, their
DNA are quadratic C-modules that are diagrams of abelian groups homormophisms of the form

M= (Tncrg(UE)(E, E)oa M, 2L M., s M, 2 Me) (0.0.1)

satisfying certain conditions, where E is a fixed object in C. In addition, M. Hartl and C. Vespa also
give a functorial construction of quadratic functors (with domain C and values in abelian groups) from
quadratic C-modules, namely: if M is a quadratic C-module as above, they construct the quadratic
functor — ® M : C — Ab, called the quadratic tensor product (associated with M) determined by
the data which constitute M, as being the pushout of two natural transformations. It is proved that
the quadratic tensor product preserves filtered colimits and suitable coequalizers (more precisely
coequalizers of reflexive graphs if C is a semi-abelian category).

Let R be a (unitary) ring and let P be a unitary symmetric operad in the category of abelian groups
endowed with its standard monoidal structure given by the tensor product. In the present work,
we generalize the above results by providing DNA’s that characterize first quadratic functors with
domain C and values in (right) R-modules, and then those with the same domain and values in
P-algebras. In fact, we show that quadratic functors taking values in (right) R-modules are entirely
characterized by quadratic C-modules as in endowed with a structure of R-modules, i.e. each
component is a R-module and the maps preserve R-module structures. Next the first main result of
this thesis provide DNA’s of quadratic functors with values in P-algebras, namely:

Theorem 0.0.1. Quadratic functors from an arbitrary pointed algebraic theory C to P-algebras are
functorially equivalent to quadratic C-modules over P. Also, quadratic functors from any semi-abelian
variety C to P-algebras preserving filtered colimits and coequalizers of reflexive graphs are functorially
equivalent to quadratic C-modules.

Here a quadratic C-module over P is a pair M” = (M, ¢ : M? — M) where M is a quadratic
C-module enriched with a structure of right P(1)-module, M? is another such object depending on
M and ¢ : M? — M is a morphism of these kinds of objects, see definitions 1.4.3 and 1.4.6 for details.
In fact, the morphism ¢ : M? — M between quadratic C-modules recovers binary structure linear
maps of the quadratic tensor product — ® M : C — Ab so as to make it take values in the category
of P-algebras.

Chapter 3. In this chapter, we first recall the notion of linear extensions of categories introduced
by H.-J. Baues in 5.1 of [4]. Then we provide the five lemma in this context, already given by
Baues in 5.5 of [4], but whose assumption is slightly weakened here in this thesis. Then it permits
us to establish a criterion for a quadratic functor between 2-step nilpotent categories to induce an
equivalence between suitable subcategories, or even to be an equivalence between the entire categories
if they are varieties. For this we need some technical results using abstract tools such as commutators
relative to functors in semi-abelian categories established in the forthcoming paper [10], and recalled
in the first chapter in the thesis. This criterion is the second main result of this thesis, whose explicit
form is as follows:

Theorem 0.0.2. Let C and D be two 2-step nilpotent varieties. Let F': C — D be a reduced (i.e.
sending the nul object of C to the nul object of D) quadratic functor. Assume that the following
conditions are satisfied.
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(1) F preserves filtered colimits, binary coproducts and coequalizers of reflexive graphs.
(2) F sends the free object E of rank 1 in C to the free object E' of rank 1 in D.

(8) F commutes up to an isomorphism with the abelianization functors of C and D (i.e. a certain
natural triangle commutes).

(4) The functor Ab(F): Ab(C) — Ab(D) given by the restriction of F (well-defined thanks to con-

dition (3)) is an equivalence of categories.

(5) F preserves the class of monomorphism constitued to binary commutators of free object of finite
rank in C.

Then F' is an equivalence of categories.

Here note that this kind of functor necessarly preserves free objects of finite rank (by conditions
(1) and (2) of the latter theorem). Moreover an explicit construction of a weak inverse of the equiv-
alence F, in the above statement, has been given in the thesis (see Lemma 3.5.12 for details).

Next we show that quadratic equivalences with domain C and values in P-algebras can be equiv-
alently seen as a certain type of quadratic C-modules over P in which all the terms (in particular
P itself) are explicitly determined by the condition of being an equivalence, except an appropriate
action of the monoid C(F, E) on M, and the morphism H : TyycroUgp(E, E) @y M, — M., in the
structure of M in M7 (see (0.0.1)). This says that taking a quadratic equivalence with domain C
and values in P-algebras amounts to giving an appropriate explicit expression for H.

Chapter 4. In this part, we establish the desired Lazard type correspondence between a 2-radicable
2-step nilpotent variety C and the category of algebras over AbOp(C) (see section 3.1 for details)
depending on C. Let E be a distinguished object of rank 1 in C, let Fayopc) be the canonical free
AbOp(C)-algebra of rank 1 and let us denote by Alg — AbOp(C) the category of AbOp(C)-algebras.
The first step towards establishing our Lazard correpondence is to find an appropriate action of the
monoid C(E, E) on Fapop(c) such that the adjoint morphism of monoids

LE,E : C(E, E) — Alg — AbOp(C) (FAbOp(C)a -FAbOp(C)) s

which will become the effect of the functor L on C(E, FE)) is an isomorphism. Then we exhibit
the remaining structure of an appropriate quadratic C-module over the operad AbOp(C) provid-
ing a quadratic functor L : C — Alg — AbOp(C), called the Lazard functor, which satisfies the
above-mentioned necessary conditions for being an equivalence, in particular whose evaluation to the
endomorphisms of E in C is given by the above isomorphism of monoids. Next we prove that the
Lazard functor preserves finite coproducts so that its restriction to the full subcategory (E) of free
objects of finite rank of C takes values in the category (Fapopc)) of free AbOp(C)-algebras of finite
rank. Then we show that its restriction functor is an equivalence of categories between the algebraic
theories (E) and (Fapop(c)) by applying the criterion given in the third chapter.

Chapter 5. In this chapter, we prove that the equivalence of categories between the varieties
Alg — AbOp(C) and C, induced by the equivalence between their underlying theories established
in the previous chapter, provide an explicit Baker-Campbell-Hausdorff formula recovering any (non
linear) operation of the variety C from structure linear maps of AbOp(C)-algebras. This actually is
the third main result of this thesis, whose explicit form is as follows:
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Theorem 0.0.3. Let C be a 2-step nilpotent semi-abelian variety, then there is a Lazard equivalence
L*: Alg — AbOp(C) — C

given by |L*(A)| = |A| and the following Baker-Campbell-Hausdorff formula : an n-ary operation 0
of the variety C acts on |L*(A)| by

ar,...an) = 3 (M, @ 5,) + 7 Aol © 0, © H(0,)))

2
p=1

+ % Z Ao (ap ®a; ® ’)/171;2(9(1(6) ® Qp(e) ® [eq, 62]M)>

1<p<g<n

+ Z A2 (aq @ ap @ (Opg(er, e2) —ar (Bp(e1) + b4(e2))))

1<p<q<n
foray, ... a, € A.

Here \; : A®*@P (k) — A are the multiplication maps in the structure of algebra A over AbOp(C),
for k = 1,2. The unary operations 6, and binary ones 0,, in C are defined by

0(a) =6(0,...,0,a,0,...,0) and 6y(as,as)=06(0,...,0,a1,0,...,0,as,0,...,0)

where a is placed in the [-th place and aq, ay are respectively placed in the p-th and g-th places, for
I1<p<nand1l<p<q<n Moreover, for any unary operation V of C, we have

H(V) = Veipler +u e2) = (Vess(er) +u Vere(e))

where i, : E — E + E is the injection of the k-th summand, e, = iy(e) and k = 1,2. The
element [a, b]y; of |A] is the commutator of a and b for the group structure + which is given by
[a,b]]w = (CL +]y[ b) —M (b +J\/l CL).

Now if 0 is a binary operation for which 0 is a both-sided unit, 6, is the identity for p = 1,2, whence

1
0(a,b) =a+b+ 3 )\g(b® a® [el,eQ]M) + )\g(a ®b® (0(er,e2) —nr (61 +um 62)))

In particular, a+yb = a+b+ % A (b®a®]er, ea]pr), which in case C is the variety of 2-radicable 2-step
nilpotent groups becomes the classical 2-truncated Baker-Campbell-Hausdorff formula. Moreover, if
6 is a binary bireduced operation (that is 6, = 0 for p = 1,2), then

9(&, b) = /\2(b® a® 9(61,62))

In particular, [a,b]yr = A2(b ® @ ® [e1, ea]pr). Thus when C is the variety of 2-radicable 2-step
nilpotent groups, then [a, b]y; equals the Lie commutator of a and b, in accordance with the BCH
formula for commutators.

To summarize, we have given this concrete formula by using abstract concepts of a global nature
such as quadratic functors and linear extensions of categories. Let us have a look at the perspectives
resulting from a possible generalization of the methods introduced in this thesis. Denote by Gr,, and
Lie, respectively the theories of radicable n-step nilpotent groups, respectively n-step nilpotent Lie
algebras over Q. In the classical case, one observes that the classical Mal'cev equivalence preserves
the underlying sets and hence also free objects, in particular those of finite rank. This means that it
induces an isomorphism of algebraic theories L,, : Gr,, — Lie, (L, for logarithm and also Lazard).
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It follows from general polynomial functor theory that an isomorphism L,, as above is polynomial of
degree n, as well as its composite with the natural forgetful functor from Lie,, to rational vector spaces
Vect. Then generalizing the methods developed in this thesis should provide a new, exponential-free
approach to the Lazard equivalence and BCH formula for groups, which may shed some new light on
the combinatorics of the coefficients of the BCH formula, by presenting it as kind of a fusion of the
combinatorics of free Lie algebras and the one of non-linear pseudo-Mackey-functors introduced in
[13] as a DNA of polynomial functors from groups to abelian groups. If this approach works out one
may carry out a similar program for loops since the necessary ingredients from polynomial theory
have also been provided in [I3]. On the long term, one may then hope to obtain similar results for
arbitrary nilpotent semi-abelian varieties based on the theory of polynomial functors after finding
their corresponding DNA. In fact, there is unpublished work of Xantcha in this direction (see [40]);
however, it remains to be investigated whether it indeed provides the desired general results in a
satisfactory form.
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Chapter 1

Background

In this part, we give the necessary background before tackling the main subject of the thesis.
Throughout the thesis, C denotes a pointed category (i.e. having a null object denoted by 0) with
small Hom-sets, but with a possibly large set of objects with respect to a fixed universe. Thus our
categories of functors with domain C may have large Hom-sets, according to the conventions in Mac
Lane’s book [28]. We also suppose that C is a pointed category with finite coproducts denoted by +.
For the case where C (or any category) has finite products, we denote by x the product.

Notation 1.0.1. Troughout this thesis, we use the following conventions:

We denote by Set the category of sets, Gr the category of groups and Ab the category of abelian
groups. If D and £ are categories, then £P denotes the category of functors with domain D
and values in &;

We denote by U : Ab — Set the canonical forgetful functor assigning each abelian group to its
underlying set;

If D is any pointed category, Frunc,(C, D) denotes the category of reduced functors (i.e. F(0) =
0) with domain C and values in D;

Let D and & be two categories and let F, F' : C — D and G,G" : D — & be functors. We
denote by G - F' : C — & the composite functor. If o« : ' = F’ and § : G = G’ are two
natural transformations, then we denote by G, -« : G- F = G - F’ the image of o by G and by
F*-p:G-F = G- F the restriction of § to image objects of F.

For n € N* and n objects X;,...X,, in C, we denote by ¢} : X; — X; + ...+ X, the injection
of the k-th summand and r} : X; +... 4+ X,, = X}, its corresponding retraction, i.e. the unique
morphism such that r} o i} =id and r} o} =0, for [ # k.

Let X be an object in C, we write as usual V% : X" — X the unique morphism such that,
fork=1,...,n, Vi o} =1d.

If moreover C has finite products, and Xj,...X,, are n objects in C, we denote by 7} : X; X
... X X, — X}, the projection onto the k-th summand, for k = 1,...,n. In addition, we denote
their corresponding injectons ¢} : X} — X; X ... x X, such that 7} 0} = id and 7]} o} =0,
for [ # k.

If moreover C has finite products, we denote by A" : C — C*" the diagonal functor and by
A% : X — X" the unique morphism such that 77 o A% =id, for k =1,...,n.

For two objects X; and X5 in C, we denote by 7)2(17)(2 : X1+ Xo — X + X the canonical
switch. If X; = X; = X, then we write 7%, x, = 7%. If moreover C has finite products, we
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denote by T)Q(hX2 : X7 x Xy — X5 x Xj the canonical switch. If X; = X5 = X, we write
T§(17X2:T§:X><X—>X><X.

o If f1, fo are two morphisms in C with domain respectively X; and X, taking values in the same
codomain Y, then (f1, f2) : X1 + Xy — Y denotes the unique morphism given by the universal
property of the coproduct X; + Xos.

e If moreover C has finite products, and ¢, go are two morphisms in C with the same domain
X and values respectively in Y] and Y5, then we write (g1, ¢2)' : X — Yi x Y5 the unique
morphism given by the universal property of the product ¥; x Ys.

e If moreover C is finitely complete and cocomplete, we recall that a regular morphism in C is a
coequalizer of some parallel pair of morphisms. In addition we say that, for X and Y objects
in C, a morphism f : X — Y in C has a regular epi-mono factorization if we have f =ioe,
where ¢ : I — Y is a monomorphism, e : X — [ is a regular epimorphism and [ is an object
in C. The object I is usually called the image (unique up to an isomorphism) of f and it is
denoted by Im(f). It is a general fact that any morphism in a regular category (hence in a
semi-abelian category) has an epi-mono factorization. It is said that e : X — Tandi: [ — Y
are respectively the coimage and the image of f (unique up to an isomorphism).

e If moreover C has kernels and cokernels, for any morphism f : X — Y in C, we denote
respectively by ker(f) : Ker(f) — X and by coker(f) : Y — Coker(f) the kernel and the
cokernel of f.

1.1 Varieties

We here recall and discuss the definition of a variety and a pointed algebraic theory used in this
paper.

Roughly speaking, a variety (or an algebraic category) in the sense of classical universal algebra is
a collection of sets X endowed with a familly of operations X*" — X, for some n € N (for the case
n = 0, it is the same as taking a constant in X') and a set of equational relations. This definition is a
part of classical universal algebra and it is more detailed in the definition 3.2.1 of [5], in terms of logic
syntax and all of whose axioms are universally quantified equations. As an example, the category
Gr is in particular a variety: given a group G, it may be considered as a set containing a constant
0 € G (i.e. a 0-ary operation), a unary operation — : G — G and a binary operation + : G x G — G
satisfying the usual axioms

(x+y)+z=a+y+2), 2+0=0+2z, z+4+(—2)=0=(—z)+=z

where x,y,z € GG. One should observe that these axioms are now presented in a very elementary
form: just equalities between algebraic composites, without any existential quantifier, implication
symbol, conjunction, disjunction or negation. Then there is another definition of a variety in the
sense of categorical universal algebra (which is equivalent to the one in the sense of classical universal
algebra). In fact, it is first given precisely by an algebraic theory, or simply theory, whose definition
is the following:

Definition 1.1.1. A pointed (algebraic) theory is a pointed category 7 with a given object E in C
such that any object of 7 is a finite sum of copies of E, i.e. E1" for some n € N with a specific
choice of injections E »— E*" (and the convention E™0 = 0). We denote by (E)¢, or simply (E), the
theory generated by E.
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Note that this definition of an algebraic theory is dual to the classical one as being a category
encoding algebraic operations. Now a variety may be seen as a category of models (associated with
a theory), in the sense of categorical universal algebra, defined as follows:

Definition 1.1.2. A model of a theory 7 in our sense is a contravariant functor from 7 to Set
transforming coproducts into products. A wariety (in the sense of categorical universal algebra) is
the category of models of some theory 7.

The advantage of this definition is that here T identifies with a full subcategory of its category

of models, namely the category of free models of T of finite rank. This allows us to define certain
quadratic functors, from data just depending on 7, to be naturally defined on the whole category of
models of 7.
Now we are interested in certain properties of any variety and preservation properties of the forgetful
functor assigning each object of a given variety its underlying set. Let C be variety (in the sense of
and let V : C — Set denote the canonical forgetful functor. Then we provide the theorem
3.5.4 of 5] below:

Proposition 1.1.3. The variety C is reqular and exact.

Here we recall that a category is regular when it has finite limits, every kernel pair has a coequalizer
and the pull-back of a regular epimorphism along any morphism is a regular epimorphism (see the
definition in A.5.1 of [6]). In addition a category is ezact when it is a regular category and every
equivalence relation is a kernel pair relation (see the definition in A.5.11 of [6]). Then we give the
following proposition already given in 3.5.2 of [6]:

Proposition 1.1.4. The forgetful functor V : C — Set preserves and reflects coequalizers of equiva-
lence relation.

Corollary 1.1.5. If moreover C is a Mal’cev variety (i.e. it has finite limits and every reflexive
relation in C is an equivalent relation), then the forgetful functor V : C — Set preserves and reflects
coequalizers of reflexive graphs.

Proof. First we observe that in C every equivalence relation is in particular a reflexive graph. We
assume that dg,d; : R — X is an equivalence relation of an object X in C (relation means that the
morphism (dp,d;)" : R — X x X is a monomorphism). In particular, this (equivalence) relation is
reflexive, i.e. there is a morphism s : R — X in C such that the following diagram commutes

A%

R o)t X x X

Hence it is clear that the morphism s is a common section of dy and d;. This implies that dy, d; :
R — X is a reflexive graph in C.

Then we prove that a coequalizer of a reflexive graph is also a coequalizer of some equivalence relation.
Let 09,01 : T — X be a reflexive graph with common section ¢ : X — T, and ¢ : X — @ be its
coequalizer. Hence we have the following commutative diagram:

T X xX (1.1.1)



As the morphism (g, ;)" : T — X x X is not a monomorphism (i.e. a relation on X) in general, we
consider its regular epi-mono factorization as follows:

(60,61)*

where p and r are respectively the coimage and the image of (dg,01)". Thus r : R — X x X is a
relation on X (because it is a monomorphism) and it is reflexive because we get

ro(poo)=ropooc=(6,0)00c=A%

As the variety C is supposed to be Mal’cev by assumption, r : R — X x X in an equivalence relation.
In addition, ¢ : X — @ is also the coequalizer of r because p : T'— R is a (regular) epimorphism.
Finally, the forgetful functor V : C — Set preserves and reflects coequalizers of reflexive graphs. [

Next we recall the proposition 3.4.2 of [5] as follows:

Proposition 1.1.6. The variety C has filtered colimits and these are computed pointwise. In partic-
ular, the forgetful functor V . C — Set preserves and reflects filtered colimits.

In this thesis, we mostly use the semi-abelian context.

Remark 1.1.7. Any semi-abelian category (see the definition in 5.1.1 of [6] or in [17]) is Mal’cev by
5.1.2 of [6]. If the variety C is semi-abelian, then C has filtered colimits, and the forgetful functor
V : C — Set preserves and reflects filtered colimits and coequalizers of reflexive graphs. It is a direct
consequence of [1.1.5] and [1.1.6]

1.2 Generalities about polynomial functors

Let D be a semi-abelian category. Here we mainly use the second cross-effect of a reduced functor
F : C — D with domain C and values in D defined as follows:

o~

F(X|Y)=croF(X,Y) = Ker(rd = (F(r}), F(r}))" : F(X +Y) = F(X) x F(Y)),
More generally, we have the following definition (also see 1.2 of [12]):

Definition 1.2.1. The n-th cross-effect of F', denoted by cr,F : C*" — D, is the multireduced
multifunctor such that, for Xi,..., X, objects in C, ¢r,, F'(X, ..., X,) also denoted by F(X;]...|X,)
is the kernel of the following natural homomorphism

n

?;?:HF(T;Q) F(Xi+ .+ X)) = [[FX+ .+ X+ X) (1.2.1)
k=1 k=1

where, for k = 1,...,n, i Xi4 ...+ X, > X1+ ..+ X+ ...+ X, is the morphism whose
restriction to X is its canonical injection if ¢ # k and is the zero morphism otherwise, see 1.3 of [12].

Remark 1.2.2. From it defines a functor cr, : Func, (C, D) — Func, (CX”, D), for n € N*.

There is also an inductive definition of the n-th cross-effect of a functor given in 1.2 of [12].

Notation 1.2.3. We denote by (£ : cr, F(Xy,..., X,) — F(X; + ...+ X,) the kernel of @
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Now we give a property (also given in 2.25 of [I4]) of the comparison morphism rf (see (1.2.1))),
as follows:

—~

Lemma 1.2.4. Let X and Y be objects in C. Then the comparison morphism rf : F(X +Y) —
F(X) x F(Y) (defined in (1.2.1)) is a regular epimorphism.

Proof. Since the functor F': C — D is reduced, we have the following equalities:

—_—

' =1l o (F(i}),F(i3)) : F(X) + F(Y) = F(X) x F(Y)

where (F(i}), F(i3)) : F(X)+F(Y) — F(X +Y) is the morphism given by the universal property of

the coproduct F(X)+ F(Y). Since the comparison morphism r2%? : F(X)+ F(Y) — F(X) x F(Y)
is a regular epimorphism (by protomodularity of the category D), so is the comparison morphism
rf (X +Y)—= F(X)x F(Y). O

Intuitively the cross-effect of a functor can be seen as a (categorical) version of the "derivatives"
of a functor. This point of view is supported by the notation 2.21 and Lemma 2.22 of [14]. Now it
permits to define the notion of polynomial functors, already given in 1.6 of [12]:

Definition 1.2.5. A functor F': C — D is said to be polynomial of degree < n whenever its (n+1)-th
cross-effect is trivial, i.e. cr,1F = 0. We denote Funce,(C, D) the full subcategory of Func.(C, D)
constituted by polynomial functors of degree < m. In particular, Lin(C, D) and Quad(C, D) are
respectively the full subcategories of Func,(C, D) formed by linear and quadratic functors.

The following proposition says that the composition of a polynomial functor taking values in an
abelian category with another polynomial functor with abelian source and target is polynomial. It
has appeared in the theorem 1.9 of [34], the proposition 1.9 of [I9] and the proposition 2.20 of [13].

Proposition 1.2.6. Let A and B be abelian categories, and let C 5 A5 B e functors. If F 1is
polynomial of degree < n and G is polynomial of degree < m, then the composite functor G-F : C — B
18 polynomial of degree < nm.

Then we define an important natural transformation, already given in 1.7 of [12], as follows:

Definition 1.2.7. Let F : C — D be a reduced functor. Then the natural transformation SI :
crpF - A™ = F is such that, for X object in C,

(SEYx = F(V%) ol i er,F(X, ..., X) = F(X)
where cr, F' : C*™ — D is the n-th cross-effect of F' defined in

Notation 1.2.8. Here we assume that C is semi-abelian. For the special case where F' is the identity
functor Ide : C — C (the identity functor of C), the morphism (S29)x (given in[1.2.7) is also written
cXerplde(X, ..., X) = X.

n

Then it is possible to construct the "polynomialization" of a reduced functor. For this, M. Hartl
and C. Vespa introduce the notion of n-Taylorization of a reduced functor in 1.9 of [12].

Definition 1.2.9. The n-Taylorization functor T, : Func,(C, D) — Funce,(C, D) is such that, for
a (reduced) functor F : C — D, T,(F) = Coker(SE,, : crpp1 ' - A" = F). The proposition 1.10
in [12] says that T,, is left adjoint to the inclusion functor.

Notation 1.2.10. We denote by t£ : F' = T,F the unit of the adjunction that is the cokernel of
SE | erp F - A" = F, defined in [1.2.7]
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The universal property of t£ gives:

Proposition 1.2.11. Any natural transformation with source F and target a polynomial functor of
degree < n factorizes uniquely through t& : F = T, F.

Let us denote by BiFunc, .(C*? D) the category of bireduced bifunctors (i.e that are trivial
whenever one of their place is the zero object). The notion of polynomial functors has been extended
for bifunctors as bipolynomial bifunctors, appeared in 1.11 of [12]:

Definition 1.2.12. A bireduced bifunctor B : C*? — D is said bipolynomial of bidegree < (n,m)
whenever, for an object X in C, the reduced functors B(—, X) : C — D and B(X,—) : C — D are
respectively polynomial of degree < n and < m. If n = m = 1, we say that B is bilinear. We consider
BiFunce, »)(C*%,D) its corresponding category.

Remark 1.2.13. Let F : C — D be a reduced functor. By 1.2 of [12], F is a quadratic functor if, and
only if, its second cross-effect cry ' = F(—|—) : C** — D defined above is bilinear.

Now we recall the bilinearization bifunctor 71, : BiFunc,.(C**, D) — BiFunc<,1)(C*?, D)
defined in 1.13 of [12]. It is the left adjoint of the inclusion functor by 1.14 of [12]. For a bireduced
bifunctor B : C** — D, we denote by t¥ : B = Ty, B the unit of the adjunction. The universal
property of 7 gives:

Proposition 1.2.14. Any natural transformation (between bifunctors) with source B and target a
bilinear bifunctor factorizes uniquely through t1, : B = T11 B.

Notation 1.2.15. We write t¥ (a), or simply #;1(a), the equivalence class of an element a € B(X, Y)
in 711 B(X, Y) where X and Y are objects in C.

1.3 Commutators relative to functors in semi-abelian cate-
gories

Let D be a semi-abelian category and let F' : C — D be a reduced functor. For this, we give the
notion of commutators relative to a functor, introduced by M. Hartl in the forthcoming paper [10].
Here we shall recall the definition of commutators and nilpotent objects in semi-abelian categories.

Definition 1.3.1. Consider F': C — D a reduced functor and A an object in D. Let X be an object
in C and let (x; : X; — X)i<i<cn be n subobjects of X. Then

e the n-weighted commutator (X1, ..., X,|r relative to F is the image of the morphism (S%)x o
F(zy|...|zn) : F(X1]...|X,) = F(X), where SI : cr, F - A" = F' is the natural transforma-
tion given in and F(xy]...|z,) : F(X41|...|X,) — F(X]|...|X) is the restriction of the
morphism F(zq+...4+z,): F(X;1+ ...+ X,,) = F(XT") to F(X4|...|X,).

e the object A is said n-step nilpotent whenever the (n + 1)-weighted commutator [A, ..., A]4,
is trivial. We denote by Nil, (D) the full subcategory of D formed by n-step nilpotent objects
in D.

e for the case n = 1, we say that A is an abelian object of D. We denote by Ab(D) the full
subcategory formed by abelian objects in D, usually called the abelian core of D.

We now consider the notion of central subobject in semi-abelian categories using the commutators
in the sense of [L3.1] as follows:

Definition 1.3.2. Let X be an object in D and z : Z ~— X be a subobject of X. We say that
z:Z — X, orsimply Z, is a central subobject of X if [X, Z]1q4, = 0.
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Notation 1.3.3. Let X be an object in C. Here
e we write 72(X) = [X, ..., X]|F for the n-weighted commutator of X relative to F;

e we denote by ek, : F(X|...|X) — 75 (X) and i%, : 74 (X) — F(X) respectively the coimage
and the image of (SI)x : F(X]...|X) — F(X) (see [L.2.7));

e we denote by I, : Nil,(D) — D and I = I, : Ab(D) — D the inclusion functors.

It provides a functor associating to any object in C its n-weighted commutator of X relative to a
functor in D, as follows:

Definition 1.3.4. We define the functor v : C — D such that v'(X) is the n-weighted commutator
of X relative to F (given in [1.3.3), and v (f) : vE(X) — ~L(Y) is the unique factorization of
F(f)oik, through i (which exists by naturality of S}). It also satisfies

Yo (f)oen=eynocraF(f, ... f)
where X € C and f: X — Y is any morphism in C.
Notation 1.3.5. We introduce the following notations:

o If F = Idp, we write y1%> =P,

e For an object X in D, we denote respectively by ex = eﬁgfg’ : X = 4P(X) and ix = zﬁ?é’ :

7P(X) > X the coimage and the image of the morphism ¢ : Idp(X|X) — X.

Remark 1.3.6. Consider an object X in C and a subobject z : Z — X of X. Let ' : C — D be a
reduced functor. Then the 1-weighted commutator v (Z) = [Z]r relative to F is the image of the
morphism F(z) : F(Z) — F(X) (because criF(X) = F(X) since F is reduced, see [1.2.1)). It gives
the deviation of F'(z) to be a monomorphism.

Notation 1.3.7. Consider an object X in C and a subobject z : Z — X of X. We denote respectively
by e = e, : F(Z) — [Z]p and i}, = i%, : [Z]p = F(X) the coimage and the image of F(z) :
F(Z) = F(X).

Remark 1.3.8. Let F : C — D be a polynomial functor of degree < n (see [1.2.5). Then, for any
object X in Cand k >n+1, 4 (X)=[X,...,X]r =0 by because the k-th cross-effect of F
is trivial implying that the natural transformation SY : crpF - AF = F is trivial.

The next proposition provides the properties of commutators relative to functors, that appear in
the forthcoming paper [10]:

Proposition 1.3.9. Let £ be a semi-abelian category and let F': C — D and G : D — &£ be two
reduced functors. If the functor G : D — & preserves reqular epimorphisms, then we have

[ X1 X e X Xl le C X010 Xl P
where, for k€ {1,...m} and j € {1,...,n,}, Xy ; is a subobject of an object X in C.

Now we are naturally led in this thesis to consider semi-abelian categories whose objects are
nilpotent defined in an appropriate sense (see for details). It is given by the notion of nilpotent
category whose definition is the following:

Definition 1.3.10. A category D is called n-step nilpotent when it is a semi-abelian category whose
identity functor Idp : D — D is polynomial of degree < n in the sense of
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As an example, the full subcategory Nil, (D) of D (see [1.3.1)) formed by n-step nilpotent objects
in D is an n-step nilpotent category. The case n = 2 has an immediate consequence:

Proposition 1.3.11. Let D be a 2-step nilpotent category and let X be an object in D. Then the
2-weighted commutator [ X, X|a, is a central subobject of X.

Proof. By|1.3.10| the identity functor Idp : D — D of D is quadratic. Hence it is a direct consequence
of [L3.12 O

Let X be an object in D. We give a condition for the 1-weighted commutator [[X, X|;4.|F relative
to F' to be a central subobject of F(X), as follows:

Proposition 1.3.12. We here suppose that C is a semi-abelian category. Consider a (reduced)
functor ' : C — D and an object X in C. If F' is a quadratic functor and preserves regular
epimorphisms, then the 1-weighted commutator [[X, X4, |r relative F is a central subobject of F/(X).

Proof. As F is a reduced functor, F(Y) = [Y]F is the 1-weighted commutator of Y relative to F' by
[1.3.1} By [L.3.9] we have

Y, Ylraelr, F(Y) l1ap = LY, Yliaelr, Y]Fltap CLIY, Y], Y]r C[Y, Y, Y]p=0,by[1.3.§

because F'is a quadratic functor which preserves regular epimorphisms. ]

1.4 Polynomial functors and nilpotent objects

In this part, D denotes a semi-abelian category. We here study links between polynomial functors
and nilpotent objects. The next proposition says that polynomial functors of degree < n, n € N¥,
with values in a semi-abelian category takes in fact values in n-step nilpotent objects:

Proposition 1.4.1. Let F': C — D be a reduced polynomial functor of degree n, then F takes values
in Nil, (D).

Proof. Let X be an object in C. The result is a direct consequence of The last result says
in particular that the commutator /.3 (F(X)) is a subobject of the commutator v/, (X) relative
to the functor F' of weight n + 1. As F : C — D is polynomial of degree < n, 7%, ;(X) is trivial

(see [1.3.8)). Hence 7,93 (F(X)) is trivial as well. Consequently F(X) is an n-step nilpotent object in
D. [

It follows from that the second cross-effect of the identity functor of a given 2-step nilpotent
category takes values in the abelian core, as follows:

Lemma 1.4.2. If D is a 2-step nilpotent category, then the second cross-effect of the identity functor
Idp : D — D seen as a bifunctor from D X D to D takes in fact values in the abelian core Ab(D) of
D.

Proof. By [1.2.13] the bifunctor Idp(—|—) : D x D — D is bilinear because the identity functor of D
is quadratic by [1.3.10] (since the category D is 2-step nilpotent). Hence it is a direct consequence of
that the (bilinear) bifunctor Idp(—|—) takes values in Ab(D). O

Remark 1.4.3. For n € N*, the functor T,,/dp : D — D (defined in [1.2.9) is a polynomial functor of
degree n. By [1.4.1] it takes values in Nil, (D).

Notation 1.4.4. We consider the following notations:

e We denote by Nil,, : D — Nil, (D) the functor T,,Idp : D — Nil,,(D) defined in
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e We write nil, = t!9 : Idp = I,.Nil, for the cokernel of the natural transformation Sﬁﬁ :
crpp1ldp - A" = Idp given in [1.2.7) where I, : Nil, (D) — D is the inclusion functor (see
13.1).

e For the case n = 1, we denote by Nil;(D), respectively Ab” : D — Ab(D), the category Ab(D),
respectively the functor Nily : D — Nil;(D). The category Ab(D) is called the abelian core of
D, and the functor AP : D — Ab(D) is called the abelianization functor (of D).

e Moreover we write ab = nily : Idp = I.AbP for the cokernel of SédD s eroldp - A" = Idp,
where I : Ab(C) — C is the inclusion functor (see [1.3.1]).

Remark 1.4.5. For an n-step nilpotent object X in D, we consider that X = Nil,,(X) and (nil,)x =
id : X — Nil,(X) = X, i.e. the functor Nil,, : D — Nil,(D) (given in |1.4.4) restricted to Nil,(D)
is the identity functor of Nil, (D).

Proposition 1.4.6. For any n € N*, the functor Nil, : D — Nil,,(D) is a reflection of the inclusion
functor I, : Nil,(D) — D. The unit of this pair of adjoint functors is the cokernel nil, : Idp =
I,.Nil, of the natural transformation Sﬁﬁ cerppldp - A" = Idp.

Proof. Let X be an object in D. We first observe that Nil,(X) = T,,Idp(X) is an n-step nilpotent
object of D. For this we have

(SEE o) Nty (x) © Ldp ((nily) x|(nily)x ) = (nil,)x o (Sﬁq)x =0 (1.4.1)

by naturality of (Sﬁﬁ)x :crpldp - A"H(X) — X in X and because (nil,)x : X — Nil,(X) is
the cokernel of (Sﬁﬁ) «- As the identity functor Idp : D — D clearly preserves regular epimor-
phisms and (nil,)y : X — Nil,(X) is a regular epimorphism, the morphism Idp ((nil,)x|(nil,)x)
Idp(X|X) — Idp(Nil,(X)|Nil,(X)) is a (regular) epimorphism. It follows from (L.4.1) that the
morphism
(St wit(x) * 1dp (Nil, (X)|Nily (X)) — Nil,(X)

is trivial. By |1.3.1] Nil,,(X) is an n-step nilpotent object in D. Then the universal property of the
unit (nil,)x : X — Nil,(X) of the pair of adjoint functors is a direct consequence of the naturality of
(Sﬂ”l)x in X, and of the universal property of the cokernel (nil,)x : X — Nil,(X) of (Sﬁ”l)X. O
Remark 1.4.7. For an object X in D, we observe that Nil,(X) is the quotient of X by the (n + 1)-
weighted commutator v.% (X) (defined in .

Then, for n > 1, the next proposition says that polynomial functors of degree < n with semi-
abelian source and target and preserving coequalizers of reflexive graphs can be entirely described
by restricting them to n-step nilpotent objects of the source category.

Proposition 1.4.8. We here assume that C is a semi-abelian category. Let ' : C — D be a
polynomial functor of degree < n preserving coequalizers of reflexive graphs. Then the functors F
and F.Nil, with domain C and values in D are isomorphic to each other. More precisely, the natural
transformation F*.nil, : F = F.Nil, is an isomorphism.

Proof. Let X be an object in C. Then we have the following short exact sequence:

Tdp ]
b, X (niln) x

00— % (X) Nil,(X)—0 (1.4.2)
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because (nil,)x : X — Nil,,(X) is the cokernel of (Sﬁcl)x cerpIde - A"T(X) — X and %Iffl (X) =
Im((Siﬁlfl)X) by By 2.31 of [14], we get the following right exact sequence:

< SY o Ide(il y|id) >

Id
F (anl,x)

F (7% (X)|X) % F (1% (X)) ) F ((nitn)x)

By and by [1.3.9] we have

Im(Sy o Ide (i, ylid)) = [vp%(X), X] . = [[X, ..., X]1ac, X]

F(X F(Nil, (X)) —0

r C [X,-..,X]F :75+2(X>

because the functor F' : C — D preserves coequalizers of reflexive pairs (hence regular epimorphisms).
Similarly, we get

Im(7ie (X)) = [ (X)] o= [[X, ., X]rae]  C X, X]p =750 (X)

As the functor F': C — D is polynomial of degree < n, we have

75+2(X) =0= 75+1(X)
by It implies that F'((nil,)x) : F(X) — F(Nil,(X)) is an isomorphism, as desired. O

1.5 Effective actions on morphism sets in semi-abelian cate-
gories

We note that actions on morphism sets have been already treated by Bourn in a more general context
of unital categories (see the definition in 1.2.5 of [6]). This work has been studied in the paper [7]. It
also appears in the book [6] of Bourn and Borceux, in which moreover they consider these actions in
strongly unital categories (see the definition in 1.8.3 of [6]), which are in particular unital categories
by 1.8.4 of [6].

In this part, we first recall the necessary notions and the main result relative to actions on morphism
sets in [6]. In the case of semi-abelian categories, which are strongly unital, we give an alternative
definition of actions on morphism sets, which is equivalent to those of Bourn ; these are effective.
Now we recall that a unital category £ is a pointed category having finite limits such that, for X
and Y objects in &, the pair (:3,(3) is strongly epimorphic:

L2 1,2
XL XxYy <&y,

see the notations given in[1.0.1l Then we provide the notion of centrality in unital categories, already
defined in 1.3.12 of [6]. Before this, we give the following definition:

Definition 1.5.1. Let £ be a unital category. Two morphisms f: X — Z and g : Y — Z with the
same codomain cooperate when there exists a factorization ¢, : X XY — Z such that the following

diagram
2 2

X— L X xY~—2 ¥y

Pf,
P fi9 g

(1.5.1)

commutes. The morphism ¢y, is called the cooperator of f and g; it is necessarily unique because
the pair (¢3;:3) is epimorphic. To simplify the notation, we may write p = ¢, for the cooperator of

f and g.
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Remark 1.5.2. Let £ be a unital category. Consider two morphisms f: X — Zandg:Y — Zin &£
which cooperate with cooperator ¢, : X xY — Z asin[1.5.1} If moreover £ has binary coproducts,
then f and g cooperate if, and only if, the cooperator ¢, makes the following triangle commute:

Tdg
T2

X+Y

commutes.

Then we are able to define central morphisms in unital categories already given in 1.3.12 of [6],
as follows:

Definition 1.5.3. Let £ be a unital category. A morphism f : X — Y is central when it cooperates
with the identity of Y. We write ¢ the cooperator of f and idy. We denote by Z(X,Y) the set of
central morphisms from X to Y, and by Z(&) the class of central morphisms in &.

Let € be a unital category. For X and Y objects in £, we have a map +: £(X,Y) x Z(X,Y) —
E(X,Y) defined by
frg=wpg0(f idx) (1.5.2)

where f € £(X,Y),g € Z(X,Y) and ¢, : Y x X — Y is the cooperator of g and idy (see|1.5.3)). It
gives the following proposition present in 1.3.22 of [6]:

Proposition 1.5.4. Let £ be a unital category. For all objects XY € &, the set Z(X,Y) of central
morphisms from X to Y is a commutative monoid which acts on E(X,Y). The monoid operation
and the monoid action are both given by the addition in (1.5.2).

In any unital category &, each central morphism from X to Y doesn’t need to have an inverse in
the commutative monoid Z(X,Y), for X, Y € £. We shall consider those morphisms having such an
inverse, as follows:

Definition 1.5.5. Let £ be a unital category. We say that a morphism f : X — Y is symmetrizable
if f is a central morphism having an inverse in the commutative monoid Z(X,Y). We denote by
Y(X,Y) the subset of Z(X,Y) formed by symmetrizable morphisms form X to Y, and by X(€) the
class of symmetrizable morphisms in £.

Remark 1.5.6. Taking the notations of [L.5.5] the set X(X,Y") of symmetrizable morphisms is clearly
an abelian group.

There are some unital categories in which all central morphisms are symmetrizable. This fact
holds in the general context of strongly unital categories. We briefly recall that a category is strongly
unital (see 1.8.3 of [6]) when it is pointed, has finite limits and satifies the property: every split
right punctual relation is undiscrete (see 1.1.1 of [6]). Moreover also holds in strongly unital
categories because any such category is unital by 1.8.4 of [6].

Remark 1.5.7. Let &€ be a strongly unital category. For X, Y € £, Z(X,Y) = 3(X,Y), hence the set
Z(X,Y) is an abelian group, see 1.8.19 of [6].

Note that any semi-abelian category is strongly unital because it is in particular a finitely com-
plete protomodular category and any such category is strongly unital by 3.1.18 of [6]. Now we define
certain actions on morphism sets in semi-abelian categories induced by central subobjects in the sense
of , and we compare them with actions given in the context of (strong) unital categories as above.
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From now on, we assume that £ is a semi-abelian category (or merely a pointed finitely complete
regular protomodular category having binary coproducts). The next proposition says that a central
subobject of an object in £ in the sense of is exactly a monomorphism and a central morphism
as in 5.3

Proposition 1.5.8. Let z : Z — Y be a monomorphism in E. Then z : Z — 'Y is a central subobject
of Y in the sense of[1.53.2if, and only if, it is a central morphism from Z to'Y in & as in[1.5.3

Proof. First we assume that z : Z »— Y is a central subobject of Y in £ in the sense of [1.3.2, It
means that [V, Z]rs. = 0, that is equivalent to say that the morphism ¢ o Idg(id|z) : Ide(Y|Z) =Y
is trivial. Hence there is a unique factorization ¢, : Y x Z — Y of (id,z) : Y + Z — Y though the

—

comparison morphism r§d£ Y+ Z =Y x Z, ie we get
@, ors® = (id, z) (1.5.3)
because (id, z) 0 12% = ¢} o Ide(id|z) = 0 and the comparison morphism 7% : Y +Z — Y x Z is the

cokernel of its kernel 13% : Ide(Y|Z) — Y + Z. By|L.5.2/and [1.5.1] it says that z and the identity of
Y cooperate with cooperator ¢,. By we deduce that z is a central morphism from Z to Y.
Next we suppose that z : Z — Y is a central morphism in £. By and there is a unique
morphism ¢, : Y X Z — Y such that the relation holds. Hence we get the equalities as
follows:

ey o Ide(id|z) = (id, 2) o 13"
=¥z 7n2d‘g © Lgdg
=0

—_—

because 1% : Ide(Y|Z) — Y + Z is the kernel of the comparison morphism ri% Y + Z - Y x Z

(see[1.2.3). By we have
Y, Z)1ae = Im(cy o Idg(id|z)) =0
implying that z : Z — Y is a central subobject in the sense of O]

Now we assume that z : Z — Y is a central subobject of Y in &€ (i.e. a central morphism from X
toY in &).

Notation 1.5.9. Let X and Y be two objects in €. We write Zy(X,Y) for the set of morphisms of
the form z o a, where o € £(X, 7).

Then we show that, for X, Y € &, each morphism belonging to Zy(X,Y’) is a central morphism
in £.

Proposition 1.5.10. Let X and Y be two objects in E. Then Zy(X,Y) C Z(X,Y). Moreover for
a € E(X,Z) the cooperator @0 Y X X =Y of zo«a and idy is given by

Proa = Pz O (ZdY X Oé) (154)
Proof. Tt is a direct consequence of 1.3.20 and 1.3.6 of [6]. O

Remark 1.5.11. Let X and Y be two objects in €. The set Zy(X,Y) is clearly stable under the
additive law of the abelian group Z(X,Y) (by because £ is strongly unital since it is a semi-
abelian category by [1.5.8)). Hence it has a canonical abelian group structure.
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Now we are interested in an action on sets of morphisms with codomain Z (a central subobject
of Y in &) from(1.5.3)); in fact, for X,V € &, we define the map o : E(X,Y) x E(X, Z) — E(X,Y) by

fea=yp,o(f a) (1.5.5)

where f € £(X,Y) and a € £(X,Z). We prove that it is an action of £(X,Z) on £(X,Y) which
coincides with the restriction of the action given in (1.5.2)) to £(X,Y) x Zy(X,Y).

Lemma 1.5.12. Let X and Y be two objects in €. For f € E(X,Y) and a € E(X, Z), we have
fea=f+a
Proof. Tt suffices to prove that ¢,., = ¢, o (idy X «). For this, we have the equalities as follows:

f4a=0wao(fid)
= Q.0q 0 (f x id) 0 A%
=, 0 (id x a) o (f x id) o A% ,by (1.5.4)
=p.o(f xa)oA%
=¢.o(f,a)
=fea,
as desired. O

Remark 1.5.13. We recall that z : Z »— Y is a central subobject of Y in £. Let X and Y be objects
in £. Then the abelian group £(X, Z) acts on £(X,Y) as

fra=p.o(fa) (1.5.6)
where f € £(X,Y) and a € (X, Z). Moreover this action coincides with the one given in (1.5.2) by
512

Then we prove that each abelian object in £ has an internal binary operation in the sense of
Definition A.1.1 of [6].
Proposition 1.5.14. Let A be an abelian object in £. Then A has an internal binary operation
my : AX A — Ain AV(E), that is the unique factorization of V% : A+ A — A through the
comparison morphism rgd‘g A+ A— Ax A

Proof. The morphism my4 : A x A — A exists because V2 o 14% = ¢} = 0 by (since A is an
abelian object in &). O

Remark 1.5.15. Since Z is a central subobject of Y (hence an abelian object in &), there is an internal
binary operation mz : Z X Z — Z by [1.5.14] It determines an abelian group structure on £(X, Z)
as follows:

f+g:mZo<fug)t

where f,g € £(X,Z). It is in fact the restriction of the action + : £(X,Y) x £(X,Z) — £(X,Y)
(see[1.5.13) to the set £(X,Z) x E(X, Z).

The next proposition gives an isomorphism of abelian groups:

Proposition 1.5.16. Consider an object X and an abelian object A both in E. Then the map
(abx)*: E(X®, A) — E(X, A) is an isomorphism of abelian groups.
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Proof. Tt suffices to observe that the morphism ¢y : Idg(X|X) — X (given in (1.2.8))) is natural in
X, ie. foc =cyolde(f|f), for f € E(X,Z). As A is an abelian object in £, we have ¢ = 0 by
Hence f factorizes uniquely through the cokernel aby : X — X of cf. O

Notation 1.5.17. Consider an object X and an abelian object A in £, and f € £(X, A), then we
write f2% € C(X, A) for the unique factorization of f through aby : X — X.

Now we provide a criterion for a subobject of an object in £ to be central, already given by D.
Bourn and M. Gran. The proof has been adapted for our own context.

Proposition 1.5.18. Lete : Y — Q) be a reqular epimorphism in £. Consider the following diagram:

K=——K
& ker(e)
R—" Y
s do e
Y - Q (1.5.7)

where the bottom rectangle 1s the kernel pair of e, s :' Y — R 1s the canonical common section of d
and dy, and k : K ~— R is the unique morphism such that kody = 0 and k o dy = ker(e) by the
universal property of the kernel pair of e.

Then K is a central subobject of Y (in the sense of if, and only if, there is a morphism
o:R— K in & such that cok =id, cos =0 and (dy,0)" : R =Y x K is an isomorphism. In
other terms, there is a morphism o : R — K n &£ such that the span

in € is a split punctual and undiscrete relation (see the definitions in 1.11 of [6]]).

Proof. First we assume that K is a central subobject of Y, i.e. [Y,K]|jq. = 0. Ass:Y — R
is a subobject of Y, it implies that (s, k) o 14 = ¥ o Ide(s|k) = 0 because Im(cE o Ide(s|k)) =
Y, K14, = 0 by[1.3.1} As the comparison morphism rgdg Y+ K — Y x K is the cokernel of its kernel
15% : Idg(Y|K) — Y + K (since it is a regular epimorphism), there is a unique @z : Y x K — R
such that

—_

Do) 0 12" = (s, k) (1.5.8)

Note that & : K ~— R is the kernel of dy : R — Y by a categorical argument because the bottom
rectangle of diagram ((1.5.7) is a pull-back. Then we consider the following morphism of split short
exact sequences:

P(s,k)
/T\
k do
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By applying the split five lemma (by protomodularity of £) to the above diagram, it proves the
Qsk) 1 Y X Z — R is an isomorphism. Next we set the morphism o = 73 o go(_slk) : R — K. We first
have

cok=0co0(sk)oil

=00 0y odg, by (L5.8)

_ 2 -1 Ids _ -2
T T2 0 P(sk) ©Psik) OT2 Ol
2 /d\g -2
=75 01y 0

2,2
= T5 O L5

=1id
Then we get

cos=oc0(sk)oi]

—

_ 2 Ide -2

_ 2 2
= Ty O

=0
Hence we obtain
cok=1id and cos=0 (1.5.9)

It remains to prove that the morphism (dy,0)' : R — Y x K is an isomorphism. For this, it suffices
to show that (do, 0)" o (s = id. First we have the equalities as follows:

—_ —_

73 0 (do, 0)" 0 o) 05" = do 0 (s ) 0 T

=dp o (87 k) , by "
= (dpos,dyok)
= (id,0)

—

Id
= 72 0 1y¢

Hence we obtain
3 0 (do, 0)" © (s py = 77 (1.5.10)

—

because the comparison morphism réds Y + K — Y X K is an epimorphism. Next we get

—_ —_

2 t Idg Idge
Ty 0 (do, 0)" 0 Qs ) 013 =T 0 Qs k) O Ty

oo (s,k), by (L5.8)

=(cos,00k)
= (0,id) , by (L.5.9)
_ 2
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Thus we have

7 o (do, )" © Pepy = 75 (1.5.11)
By (1.5.10) and (1.5.11]), it implies that
(do, 0)" 0 (s ) = id (1.5.12)

by uniqueness in the universal property of the product Y x K. Consequently, the morphism (dy, o) :
R — Y x K is an isomorphism.

Now we assume that there is a morphism ¢ : R — K such that c ok = id, 0 os = 0 and
(do,0)! : R — Y x K is an isomorphism. We aim at proving that ker(e) : K »— Y is a central
subobject of Y. By using similar calculations as above, we get

(do, o)t o (s,k) =13’ (1.5.13)

We set the morphism ¢, ;, = ((dy,0)")~!. Hence we have

—_

¢y o Idg(id|ker(e)) = (id, ker(e)) 0 15" = dy o (s,k) 015" = di 0 ps gy 013 015 =0
implying that [Y, K]r4, = 0. Thus it proves that ker(e) : K — Y is a central subobject of Y. O

We recall that z : Z »— Y is a central subobject of Y in £&. We denote by ¢ = coker(z) : Z —

Y):Y — Coker(z) the cokernel of z. Note that the monomorphism z is normal by using Lemma
4.2 of [39].

Remark 1.5.19. By Proposition 3.2.20 and Lemma 4.2.6 both in [6], the monomorphism z : Z — Y
is the kernel of ¢.

Then we determine the orbits of actions on morphism sets as in ([1.5.6]).

Proposition 1.5.20. Let X and Y be two objects in £. Consider f,g: X — Y two morphisms in
E. Then we have qo f = qo g if, and only if, there is a morphism d : X — Z such that

g=1f+d

whose action is defined in (|1.5.6)).
Proof. Consider the following diagram:

Z 7

k z

R—" Y

s| |do q
Y T~ Coker(2) (1.5.14)

where the bottom rectangle of the above diagram is the kernel pair of ¢. It is a similar diagram as
in (1.5.7) in the statement of [1.5.1§] (replacing respectively e, ker(e) and K with ¢, z and Z). By
, there is a morphism o : R — Z such that c ok = id, cos = 0 and (dp,0)' : R > Y x Z
is an isomorphism (because z : Z — Y is a central subobject of Y). We set the morphism ¢(sx) =
((do,o))™: Y x K- R
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We first assume that qo f = qog. By the universal property of the kernel pair of ¢, there is a unique
morphism a : X — R such that

f=dyoa and g=dioa (1.5.15)

We set the morphism d =coa: X — Z. We have

> = d1 0 P(s ) (1.5.16)

by (??). Then we get the equalities as follows:

frd=¢.o(fd)
= dio g o (f,d) by (L5.17)
=dy 0@ o (dgoa,o0a), by (L517)
=dy 0 () 0 (do,0)" 0

=d; oa, by (1.5.12))

=9,

as desired. Now we assume that there is a morphism d : X — Z such that ¢ = f + d. We have the
following equalities:

gog=qo(f+d) =qop.o(f,d)f =qop.o(fxd)oAk

Then we get

qogpzo(fxd)OTng —qogoZOTngo(f—l—d) by naturality
— go (id,2) o (f +d) , by
o (f,z0d)
=(go £,0)
ofor?

— Idg
=qofomionr,

Hence we obtain
gow.o(fxd)=qo foni (1.5.17)

Thus we have

gog=qow,o(fxd) oAk
=gqo fomoA%, by (L.5.17)
=qo f,

as desired. []
Now we give an important property of actions on morphism sets as in [1.5.5
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Proposition 1.5.21. Let X be an object in £. Then the action of the abelian group E(X,Z) on
E(X,Y) given in s simple, i.e. if f: X =Y and d: X — Z are two morphisms such that

frd=f
then it implies that d = 0.

Proof. Let f: X — Y and d : X — Z be two morphisms such that f = f+d. We have the following
relations:

f=f+d<= f=¢,0f f,dt,by (1.5.6)

— f= dlo‘zpsk)ofd bym
First we observe that dy o (so f) = f =dy o o o (f,d)', ie

dio(sof)=dioperol(fd)f (1.5.18)
Then we have
doOSO(s,k)O(f,d)t " oby (1.5.10) = f =dyo (so f)
Hence we obtain
do o psky o (f,d)' =doo(sof) (1.5.19)
The relations (|1.5.18)) and ((1.5.19) imply that
so f = o (fd)f (1.5.20)

by uniqueness in the universal property of the kernel pair of ¢ (see (1.5.14))). Now we have

Sof:(5>k)oi%of:@(s,k)orzd£Ollof by ([L5.4) = pmotiof
Then we have the relations as follows:
50 f =@ oo(f,d) <= pp oiof=puroo(f d) by (L5.4)
—dof=(fd)
Thus we obtain
o (f.d) =m3oido =0
O

Then we are led to consider a certain type of actions on morphism sets (induced by specific central
subojects) in 2-step nilpotent categories as follows:

Corollary 1.5.22. Let £ be a 2-step nilpotent category (see|1.3.10). Then, for X, Y € &, the abelian
group E(X,[Y,Y]14.) simply acts on E(X,Y) as

fra=gpo(fa) (1.5.21)

where f € E(X,Y), a € E(X,[Y,Y]14,), iy : [Y,Y]ra, — Y is the image of ¢y : [dg(Y|Y) = Y (see

and @i, 1Y X [Y,Y]14. = Y is the cooperator given in (1.5.3) (replacing z with iy ).
Moreover, for f,g: X — Y two morphisms in £, then we have aby o f = aby o g if, and only if, there
is @ morphism d : X — [Y, Y|4, such that

g=1rf+d
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Proof. In this case, [Y,Y]q, is a central subobject of Y by [1.3.11} Then it is a direct consequence
of [1.5.13] [1.5.21| and [1.5.20] O

Notation 1.5.23. In (1.5.21)), we often write ¢ = ;...

Proposition 1.5.24. Let £ be a 2-step nilpotent category and let X, X', Y,Y' € €. Then for [ €
EYY), ge&(X,Y), he &X', X) and a € E(X,[Y,Y]14.) we have

{ fo(g+a)=fog+mn™(f)oa

(9g+a)oh=goh+aoh
where the action + : E(X,Y) x E(X,[Y,Y]1a,) = E(X,Y) is defined in (1.5.21)).
Proof. For this we have the following equalities:

fowiyo(gxa)o Tédg = foy o Tédg o (g + «), by naturality

= fo(id,iy) o (g+a)
=(fog,foivoa)

= (fog,iviom™(f)oa)

= (id,iy) o ((f o g) + (" (f) o @))

=i, 050 ((fog)+ (1n™(f)oa))

—

— i, 0 ((fog) x (1% (f) o a)) o rlde

Hence we obtain
fopnolgxa)=w,, o((fog)x(n*(f)oa) (1.5.22)
Then we get

= iy 0 ((fog) x (1™ (f) 0a)) 0 A%
= @i 0 (fog, Be(f)oa)
=fog+m"(f)oa,
as desired. Next we consider the equalities as follows:
(g+a)oh =, 0(g,a) oh = o(goh,aoh)=goh+aoh,

as desired. []

1.6 Linear operads and algebras over such an operad

In this part, we recall the notion of (algebraic) operads wich can be found in chapter 5 of [26], and
in chapter 1 of [9]. Intuitively, the notion of operad consists of a collection of objects P(r) (indexed
in N) in some monoidal category which collects (formal) operations with r variables. It is formally
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defined by a structure given by such a collections of objects P(r) together with composition product
that model the composition of operations. In our context, we consider (right) linear operads in the
whole thesis, namely the objects P(r) are abelian groups (or modules over a commutative ring)
together with structure maps which are linear.

Definition 1.6.1. We consider the following definitions:

e We say that P is a right (resp. left) linear operad when it is an operad in the monoidal category
of modules over a commutative ring k, i.e. it consists of a sequence of k-modules P(r), r € N,
together with structure linear maps

Vitrohinin : P(k1) @ ... @ P(kn) @ P(n) = P(k1 + ...+ kn) (1.6.1)
( 1eSp. Yuikrk : P(0) @ Ph1) @ ... @ Pkn) = Plky+ ... + k) ) (1.6.2)
defined for all kq,...,k,,n € N, satisfying associativity relations expressed in the diagram of

Figure 1.3 of [9]. We often omit the term righ and left for an operad. For r € N, we call P(r)
the k-th term of P and the integer r its arity. An element p € P(r) is called an operation of
arity r.

e A (linear) operad P is symmetric if, for r € N, the k-module P(r) has an additional (left)
S,-module structure and the structure linear maps in (1.6.1]) verify the equivariance relations
expressed in the diagram of Figure 1.1 of [9].

e A (linear) operad P is unitary when there is a unit morphism 7 : k — P(1) satisfying the unit
relation given in the diagram of Figure 1.2 of [9]. In fact, it is equivalent to have an element
1p € P(1), called the unit of P, such that certain appropriate axioms hold.

e A (linear) operad P is reduced if P(0) is the zero object.

e If O is another such operad, a morphism ¢ : P — Q of (linear) operads is a sequence of k-
module homomorphisms ¢, : P(r) — Q(r), r € N, which commutes with the operad structure.

From now on, we consider k a commutative ring. One can see a unitary operad as a monad, i.e.
a monoid in the category of endofunctors of the category of k-modules endowed with its standard
(strict) monoidal structure given by the composition of functors. This is a point of view already
given in 5.2.1 of [20] by seing the operad P as an endofunctor of the category of k-modules defined
on objects by
P(M) = P M®" @y P(n) (1.6.3)
neN

for the case where P is not symmetric, or by

P(M) =P M®" &, P(n) (1.6.4)

neN

for the case where P is symmetric. For n € N, the summand M®" ®g,_ P(n) is the quotient of
M®™ @y P(n) by equivariance relations involving operations of arity n in the operad P.

Remark 1.6.2. Now we recall that a linear operad P can be seen as an endofunctor defined on
objects in (|1.6.3) and according to the structure of P. In any case, it provides a left adjoint
functor to the forgetful functor from the category of (nonsymmetric or symmetric) linear operads
to the category of k-modules. Moreover setting M = k in (|1.6.4)) resp. determines the free
(symmetric resp. nonsymmetric) P-algebra of rank 1, denoted by Fp.
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Now we provide a fundamental example of (left) linear operad given as follows:

Example 1.6.3. Let A be a k-module. We write Homy (B, A) the set of k-module homomorphisms
from B to A, for any k-module B. Then we consider the (left) endomorphism operad End 4 associated
with A that is a unitary symmetric linear operad given by a collection of hom-sets

Ends(r) = Homy(A®", A)
for r € N, together with the structure linear maps

Yokyokn - Enda(n) @ Enda(k) ® ... ® Enda(k,) — FEnda(ky+ ...+ k)
fOA®...® fa — fo(fi®w...®f),

for all k1,...,k,,n € N, and the unit of this operad is the identity idy € Ends(1) = Homy(A, A).
Moreover, for 7 € N, the abelian group End4(r) is canonically endowed with a &,-module structure
whose action is given by the permutations of the inputs A®", and the operad End, clearly satisfies
the equivariance relations.

In the whole thesis, we are led to consider right linear operads and a certain type of them given
as follows:

Definition 1.6.4. A (linear) operad P (endowed with any monoidal structure) is n-step nilpotent
when any k-th term of P is trivial, for & > n.

We observe that this definition can be extended to operads in any pointed monoidal category.
Now we can construct canonically a nilpotent operad from a given linear operad.

Definition 1.6.5. Let P be a linear operad. We define Nil, (P) the (linear) n-step nilpotent operad
associated with P such that the collection of abelian groups { Nil,,(P)(k)}ken is given by

Pk), if1<k<n

0, otherwise

<mgwxm:{

endowed with the structure linear maps of P but truncated to order n.
Next we define algebras compatible with the structure of linear operad as follows:

Definition 1.6.6. Let P be a linear operad. A P-algebra A is a k-module endowed with a morphism
¢a: P — Endy of linear operads. Equivalently speaking, it consists of a k-module A together with
structure linear maps

MA@ P(r) = A,

for r € N, satisfying appropriate associativity relations. If moreover the operad P is supposed to be
unitary (resp. symmetric), then the structure linear maps should verify the unitary (resp. symmetric)
relations.

Notation 1.6.7. Let P be a linear operad. Then we denote by Alg — P the category of P-algebras.

Remark 1.6.8. Let P be a linear operad. Then the category Alg — P can be seen as a semi-abelian
variety associated with an algebraic theory containing an abelian group whose presentation is taken
in such a way that associative relations and multilinearity relation for operations hold. If moreover
‘P is unitary and symmetric, unitary and equivariance relations must hold.

Let P be a linear operad. Any P-algebra can be clearly considered as an abelian group or a set.
Hence it gives rise to two forgetful functors as follows:
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Notation 1.6.9. We denote by W : Alg — P — Ab, respectively V : Alg — P — Set, the forgetful
functor from the category of P-algebras to the category of abelian groups, respectively the category
of sets.

The next proposition says that the forgetful functor W : Alg — P — Ab has the following
preservation properties:

Proposition 1.6.10. The forgetful functor W : Alg—"P — Ab preserves and reflects filtered colimits
and coequalizers of reflexive graphs.

Proof. For this, we consider the following commutative diagram:
Set

U

Alg—P — Ab

As the category Alg — P is a semi-abelian variety (see , it follows that the forgetful functor
W Alg — P — Set preserves and reflects filtered colimits and coequalizers of reflexive graphs by
It is the same for the forgetful functor U : Ab — Set because Ab is an abelian category
(hence in particular a semi-abelian category). Hence it is straighforward that the (forgetful) functor
W : Alg — P — Ab preserves and reflects filtered colimits and coequalizers of reflexive pairs. O

The proof of the proposition [1.6.10] can be slightly extented replacing the forgetful functor W :
Alg — P — Ab with a certain type of functors, as follows:

Proposition 1.6.11. Let C be any category having filtered colimits and coequalizers of reflexive
graphs, and let F' : C — Alg — P be a functor. If the composite functors W.F : C — Ab preserves
filtered colimits and coequalizers of reflexive graphs, then F preserves these colimits.

Proof. For this we consider the following commutative diagram:

Ab

W.F w

C Alg —P

F

By assumption, the composite functors W.F preserves filtered colimits and coequalizers of reflexive
graphs. As the forgetful functor W : Alg — P — Ab reflects these colimits by [1.6.10} it follows that
the functor F' preserves also filtered colimits and coequalizers of reflexive graphs. n

1.7 Nilpotent algebras over a linear operad

We assume that P is a linear operad as in In this part, we determine nilpotent P-algebras.
First, for n > 2, we shall compute on objects the n-th cross-effect of the identity functor of the
category Alg — P on objects. Then we provide commutators of any P-algebra. Next we verify that
taking a 2-step nilpotent P-algebra is the same as taking an algebra over a certain 2-step nilpotent
operad depending on P. Let Aq,..., A, n be P-algebras and iy : Ay, — A;+...+ A, be the injection
of the k-th summand, for 1 < k& < n. To simplify, we write S = A; + ... + A,.
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Proposition 1.7.1. The n-th cross-effect Ida,—p(Ai|...|A,) is generated as a subgroup of S by
elements of the following form

)\g <i1(a171) ®X...Q0 il(aLkl) ®...Q0 Z'n(aml) ®X...Q in(amkn) ®p) (171)

where k is a natural number such that k > n, aj; € A; (for1 < j<nand1 <1< k;), pePk)
and ki, ..., k, are natural numbers such that ky, ... k, € {1,...k—n+1} and k1 + ...+ k, = k.

Proof. Denote by P, the assertion for a given n > 2. We prove this result by induction. First we
prove that P, is true. Let iy : Ay — A; + Ay and i3 : Ay — A + Ay be respectively the injections of
the first and the second summand, and ry : A} + Ay — Ay, ro : A; + Ay — Ay their corresponding
retractions. We first observe that A; + A may be seen as a (right) P(1)-module generated by
elements of the following form:

)\;€41+A2 (il(aljl) ® .. ® il(a1’k1> ® 7:2(@2’1) ® Ce ® 1'2((12’]Q> ®p) (172)

where a;; € A; (for 1 < i< k), ag; € Ay (for 1 < j < ko), p € P(k) and ky, ko are natural numbers
such that k; + ko = k. By convention, the case k; = k (resp. ko = k) and ky = 0 (resp. k; = 0)
corresponds to the fact that there are only elements in A; (resp. Ap) in A\;*"** above. Then there
is a retraction pi? : A; + Ay — Ida, p(Ai]Az) (as only a right P(1)-module homomorphism) of
the inclusion map 2% : Id,—p(A1|As) — A; + Ay which is the kernel of the comparison morphism
rgdAlg’P = (ry, o)t : Ay + Ay — Ay X Ay, given by:

Vee A+ Ay, pl(x) =z — (i om)(x) = (iz 0 7o) ()

As pld s Aj+ Ay — Ida,—p(A1|Az) is surjective, the elements of p5?(A;+As) generate Ida,—p(A;]As)
as a sub-P(1)-module of A;+A,. Tt suffices to evaluate the morphism pi? on the generators of A;+ A

given in (1.7.2). Hence we find
phd ()\;31“‘2 (il(al) ® ... Q11 (ag) ® p)) = pld ()\?HAQ (ig(bl) ® ... Ris(bg) ® p)) =0
where a; € Ay and b; € Ay, for 1 <i < k, and p € P(k). However we have
phd ()\21“‘2 (z’l(am) ® ... Qi1(a1 ) @iz(az)) ® ... R iz(agk,) ® p))

= )\?1—&-.42 (Z'1<Cl1’1> R...RQ ’i1<a17k1) & i2<a2,1> R...R iQ(agka) ®p>

if we assume that £ > 2 and k;, ko are natural numbers such that 1 < kq,ky < k — 1 such that
ki + ko = k. It proves that the property P; is verified.

Now, proceeding by induction, we assume that P,_; is true , for a given n > 3. We aim at proving that
the property P, is also true. For this, we first consider the coproduct S to be (A1 4+ As)+As+...+ A,
the coproduct of n — 1 P-algebras whose i}~* = (i%, i}) : A; + Ay — (A + Ay) + Az + ...+ A, is
the injection of the first summand and, for 2 <p <n—1, @t =dr, - Ay — (A + Ay) + Az +
...+ A, the injection of the (p+ 1)-th summand of S (seen as the injection of the p-th summand of
(A1 4+ A2) + A3+ ...+ A,). Then we use the inductive definition of the cross-effect of the identity
functor Idy,—p : Alg — P — Alg — P given in 2.20 of [14] as follows:

Idyg-—p(A1] ... |Ay) = Idag—p(—|As| ... |An)(A1|A2)

To simplify, we write G = Id,—p(—|As]| ... |A,) which is a functor with domain and range Alg — P.
There is a retraction p§ : G(A; + Ay) — G(A;|Az) (as a P(1)-module homomorphism) of the kernel
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G(A1|A2) — G(A; + Ay) of the comparison morphism @ = (G(r1), G(r))' : G(A; + Ag) —
G(Al) x G(Ay); this retraction is given by

Vo € G(A 4+ As), pS(z) =2 —G(iyor)(z) — Glig 0 ry)(x)

As p§ 1 G(A1 + Az) — G(A1]Ay) is surjective, the elements of p§ (G(A; + Az)) generate G(A;]As) =
Idy,—p(Ay...|A,) as a P(1)-module. Then it suffices to evaluate p§ on the generators of G(A;+ Asy)
given by induction, namely G(A; + As) = Ida,—p(A1 + As| ... |A,) is generated (as a P(1)-module)
by elements of the following form:

k1 n—1 kq
1= ( @50 0 @ &) it aas) © 1)
i=1 a=2 =1
where k is a natural number such that £k > n—1, s, € Ay + Ay (for 1 < i < ki), a;; € Ajn
(for2<j<n—-1land 1l <I<kj), pe Pk and ky,... Lk, are natural numbers such that

ki,....ko1€{1,...k—n+2} and ky + ... + k,_1 = k. We know that, for 1 < i < k;, we have
S; = (21 OT’l)(Si) + (’LQ O?”Q)(Si) + péd(sz)

where pgd t Ay 4+ Ay — Idag—p(A1]|As) is the map given above. By the previous argument, we know
that, for 1 < i < ky, pb%(si) € Iday,—p(A1]Az). Then we have

k1 n—1 kqo

25 = Af(@f?l((@l o71)(s:) + (iz 0 72)(5:) + ph(s; ) ® Q)X ir'1(aa,s) ®p)
=1 a=2 =1
k1 n—1 kq
= Ag(@ <Z7f(7’1(81)) + iy (7“2( )) + iy 1 Si ) ®®®ll+1 (aa,s) ®p>
i=1 a=2 f=1
k1 n—1 kq
(@i (1)) © QR itii(aa) @ 1)
=1 a=2 =1
k1 n—1 kq
X ( Qs (ra(50) @ R @ italaas) @ p)
i=1 a=2 =1
k1 n—1 ka
X (@i (o (50) © Q Qitia(0) @ ) ()
i=1 a=2 =1

+ sum of mixed terms (#)

It is not necessary to make the sum explicit but it is interesting to see in which form are the mixed
terms:

( Kl k2 n—1 kq
Af(@i?(rﬂsﬂ)@@ig(rz(s] ®z dUs)) ®®®zl+1 ) ®p1>
i=1 j=1 a=2 f=1
kl n—1 kq
/\5<®z1 ri(si)) ®Z 2(51) © Q) Q) i1 (aa0) ®P2>
)\5<®Z2 7a( 3@ ®Z Sj)) ® ®®i?+1(aa,ﬁ) ®p3>
i=1 a=2 =1
k% n—1 kq
Af(@zl r1(s ®®22 ro(s ®®®Zz+1 UaB) ®p4)
i=1 a=2 =1
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where k¥ € N* and p; € P(k), fori = 1,...,4and [ : 1,...,3. Moreover we know that pli(s;) €
Id g14-p(Aq|As) so that it can be expressed as a sum of the elements as in ((1.7.3) (for n = 2). Hence
(%) and (#) are sums of elements having the form of those in ([1.7.3). In addition, we have

k1 o n—1 kq
o) = N (@i (oh(s:) CQR" i (a0p) @) + (#)
i=1 a=2 B=1
Consequently, the property P, is true. This proves the result. O

A direct consequence of is to find a generating set of commutators (in the sense of in
the category of P-algebras as an abelian group.

Proposition 1.7.2. For a P-algebra A, the n-weighted commutator v """ (A)=1A,... 4]
15 generated as a subgroup of A by elements of the following form

Idaig—p

A?<a1®...®ak®p) (1.7.3)

where k is a natural number such that k > n, a; € A fori=1,... k.

Proof. Let i} : A — A™ be the injection of the I-th summand, for 1 <! < n. By |[1.7.1] the n-th
cross-effect Ida,—p(A|...|A) is the P-algebra generated by elements of the following form:

)\5 (i?(am) R...® Z'Tf(al,kl) R...® iZ(anJ) R...Q 2Z(an7kn) ®p>

where S = A, k is a natural number such that k > n, a;; € A (for 1 <j<nand 1 <I<kj),pe€
P(k) and ky, ..., k, are natural numbers such that ky,..., k, € {1,...k—n+1}and k1 +...+k, = k.
Hence we get

A (W) @ @) @ . @ ian) @ . @ i(ans,) @) )
n IdAlg P S(:n -n, -7, )
— (V}o J(M (@) @ @ i) @ @ i(an) © . @ik ang,) @) )

=V’ (/\k( Ha11) ® ... Qi (a14) Q... 1 (An1) @ ... @ ir(ank,) ®p)>
=AN011® .. Ry ®.. . ® A D ... Dy, @)

because V% : A™ — A is the unique homomorphism of P-algebras such that, for 1 < I < n,

"o = id. Since by the n-weighted commutator 4,97 (A) of A is the image of ¢/
Idgy—p(A|...|A) = A, it concludes the proof. O

Then it is now possible to characterize nilpotent P-algebras as follows:

Corollary 1.7.3. Let A be a P-algebra. Then A is an n-step nilpotent P-algebra if, and only if, its
structure linear maps Mt : A% @ P(k) — A are trivial for k > n.

Proof. Tt is a direct consequence of 0

Corollary 1.7.4. Let A be a P-algebra. If P is a 2-step nilpotent operad (see , then the
2-weighted commutator [A, Alra,,_» , defined in is

[A, A] =Im(\) : AP @ P(2) — A)

Idaig—p

where \j is a structure linear map of A.
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Proof. 1t also is a direct consequence of O

Corollary 1.7.5. The abelian core Ab(Alg — P) is exactly the category of (right) P(1)-modules.

Proof. Let A be an abelian object in Alg — P. It means that VQIdALQ’P(A) is trivial by |1.3.1L By |1.7.3|,
it implies that the structure linear maps \{! : A ® P(k) — A are trivial, for k > 2. H

Now it is possible to determine an explicit expression of the abelianization functor Ab49=—7 :
Alg —P — Ab(Alg — P) = Modp(y on objects and on morphisms.

Notation 1.7.6. We consider the following notations, as follows:

e For a P-algebra A, we denote by A% the ideal of A consists of elements of the form \3'(a;®@ay®@ps)
where a;,as € A, py € P(2) and M : A®?2®P(2) — A is the structure linear map of A encoding

binary bilinear operations in A parametrized by P(2). Moreover we denote by A the quotient
of A by A2

e For a € A, we write @ the equivalence class of A in A.

Corollary 1.7.7. The abelianization functor Ab*9=F : Alg — P — Ab(Alg — P) = Modpy is such
that

e On objects, for a P-algebra A, AbA9=F(A) = A% = A the quotient of A by the ideal A? (see

73).

e On morphisms, for a morphism f : A — B of P-algebras, AbY9 =P (f): A% = A — B® =B is
the unique canonical factorization.

The next result now says that taking an n-step nilpotent P-algebra amounts to picking an algebra
over the n-step nilpotent operad Nil,(P).

Proposition 1.7.8. Let P be a (linear) operad as in . We have the following isomorphism of
categories

Nil, (Alg — P) = Alg — Nil,,(P)
where Nil,(P) is the n-step nilpotent linear operad defined in .
Proof. 1t is an immediate consequence of [1.7.3] O]

1.8 Binary coproducts of 2-step nilpotent algebras over a lin-
ear operad

Let P be a linear symmetric unitary operad as in supposed here 2-step nilpotent (see(1.6.4). In

this part, we give an explicit expression of binary coproducts in the category of P-algebras. We first

give an explicit expression of the free P-algebra of rank 1, denoted by Fp. As P is a 2-step nilpotent
operad, the free P-algebra of rank 1 has the following expression:

D2 @, Pn) = (2 PO)) & (252 G, P(2)) = P(1) 6 P(2e, (1.8.1)

where P(2)g, is the set of the coinvariants by the action of the symmetric group &, on P(2) present
in the structure of the operad P.

Notation 1.8.1. We denote by ¢ : P(2) — P(2)s, the canonical quotient map. If po € P(2), we write
q(p2) = P2 to denote the equivalence class of py in the set of coinvariants P(2)g,.
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Remark 1.8.2. By ([1.8.1]), we here consider Fp to be P(1) ®P(2)e, together with its structure linear
maps given by:

e M7 Fp®@P(1) = Fp is given by
N ((p1,72) @ 1) = (o1 @ p1), Y20 (p2 @ ))) (1.8.2)
where p1,p} € P(1), p2 € P(2).
o \J7: F§? ®P(2) — Fp is defined by

227 (01, ) @ (7, 03) ®@ p2) = (0, 12(pt @ pF @ o)) (1.8.3)
where p} € P(1), ph,p2 € P(2) and k = 1,2.

Notation 1.8.3. We set 0z, = (0,0).

Let A be a P-algebra and let evg,g : Alg — P(Fp, A) — A be the canonical isomorphism that

assigns each morphism with source Fp and target A to its evaluation to the basis element (id, 0) of
Fp. We observe that its inverse is given by:

6”(:';,6)(@ (p1,12) = M (a®@p1) + A5 (a®a® ps) (1.8.4)

where p; € P(1), po € P(2) and a € A. Now we observe that the ideal (Fp)? of Fp consists of
elements of the form (0,p3) where py € P(2). Consequently, (Fp)? is isomorphic to P(2)g, in the
abelian category Modp(). Let iy : P(2)s, — Fp and m : Fp — P(1) be respectively the injection
of the second summand and the projection onto the first one. Then we have clearly the following
canonical short exact sequence in Modp(y):

0= P(2)s, > Fp 5 P(1) =0
This implies that there is an isomorphism of P(1)-modules as follows:
AP (Fp) = Fp 2 P(1) (1.8.5)

Remark 1.8.4. Tt is straightforward to see that the (right) P(1)-module Fp consists of elements of

the form (p;,0), with p; € P(1).

Then we give an explicit expression of binay coproducts in the category of P-algebras (that is
here specific for the case where P is a 2-step nilpotent operad) as follows:

Proposition 1.8.5. Let A and B be two P-algebras. Then the coproduct A+ B is the abelian group
A X B x (A ® B @p1)er1) 77(2)) together with its structure linear maps defined below:

e MTB . (A+B)®P(1) = A+ B is given by
AP ((a, b, d @V @pa) @p1) = (A{‘(a@pl), A (b@pr), d @V @ v21(ps ®p1)>
where a,a’ € A, b0 € B, py € P(1) and py € P(2).
e B (A+B)®?@P(2) = A+ B is defined by
AT (a1 @ by @ ur) @ (as, b, uz) @ po)
— (M@ @aop), Mbohop), Gebhop + G600 (p1)
where ay,as € A, by,by € B, uy,us € Z@E@p(l)@@(l) P(2) and py € P(2).
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and the injections of the first and the second summands are given by i4 : A— A+ B,aw (a,0,0)
andig: B — A+ B, b (0,b,0). Here, for a P-algebra A, A = AbM9=F(A) is the quotient of A by
the ideal A? (see|1.7.6) and|1.7.7)

Proof. Tt is straightforward to check that A+ B defined above together with its structure linear maps
is a P-algebra. Then we need to prove that A 4+ B verifies the universal property of the coproduct.
Let f: A — C and g : B — C be two morphisms in Alg — P. Then we define the morphism
h:A+ B — C by

h(a, b, d @V @ py) = fla)+g(b) + A (f(d) @ g(t) @ ps) (1.8.6)

where a,a’ € A, b,b' € B and py € P(2). It is easy to check that hoiy = f and hoip = g. Now
we prove that h : A+ B — (' is a morphism in Alg — P. For this, we consider the two following
diagrams.

e We verify that the following diagram commutes:

h®id

(A+ B)®@P(1) C@P(1)
B A
A+ B h C

We have
ho AP ((a,b,d @V @ ps) @ p1)
=h(A(a@p), A\ (b@p1),d @Y @ Y21 (p2 @ p1))
= fO @@ p) + 9 (0@ pr)) + AT (f(a) @ g(b) @ 12 (p2 @ 1))
= A (f(a) @ p1) + [ (g(0) @ p1) + AT (A7 (f(a') @ g (V) @ p2) @ p1)
=27 ((f(@) + 90) + XS (f(a) @ g0 @ p2)) @ 11 )
=X o (h®id)((a,b,d @V & p2) @ p1)

where a,a’ € A, b,b' € B, p1 € P(1) and p, € P(2).

e We prove that the following diagram commutes:

h®2®id

(A+ B)** @ P(2) C2 @ P(2)
A §
A+ B h C

We have

ho XS ((ay, by, a} @ b @ p3) @ (az, b, ah @ by @ pj) @ ps)

= h(A (a1 ® az ® pa), AT (b1 ® by ® ), a1 @ by ®@ o + @2 @ by ® (pa-t)))

= (A3 (a1 ® az @ pa)) + g(AF (b1 © by @ p2)) + A (f(a1) © g(bs) @ p2) + A5 (f(a2) @ g(b1) @ (pa.t))

= A5 (f(a1) ® f(az) ® pa) + AT (g(b1) ® g(bs) ® po) + AT (f(ar1) ® g(b2) @ pa2) + AF (g(b1) ® f(az) @ pa)
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Moreover we obtain

X o (12 @id) (a1, b1, 5 © T, @ p}) @ (az,bo, G 0 T @ 1) @ po)

= X8 ((Flar) + g(br) + A5 (F(ah) @ g(b1) © 1)) @ (F(az) + 9(ba) + XS (F(ah) © 9(1h)) © 13)

= A5 (f(a1) @ f(az) ®p2) + AT (g(b1) @ g(ba) @ p2) + AF (f (a1) ® g(b2) @ p2) + A5 (9(b1) ® f(az)  pa)

because the other terms of the sum disappear as they generate ternary linear operations that are
trivial, where ay,as, ay,a € A, by, by, b}, by, € B and pl, p3, ps € P(2). O

Let ry: A+ B — A and rg : A+ B — B be respectively the two retractions onto the first and
the second summand. Then we give the second cross-effect of the identity functor of P-algebras as
follows:

Corollary 1.8.6. Let A and B be two P-algebras, then we have
Idag-p(A|B) = A® B ®puyepra) P(2)

and the kernel X% : Ida, p(A| B) = A+ B of the comparison morphism réd‘”g” = (ra, )’ :

A+ B — A x B is given by tt4(u) = (0, 0, u), where u € Ida, p(A| B).

Remark 1.8.7. Let A be a P-algebra. We see that the (right) P(1)-module Id4;,—p(A|A) is endowed
with the involution T ®p1yep(1) t where T : (A)®? — (A)®? is the canonical switch.

Notation 1.8.8. For a P-algebra A, we denote by Id,—p(A|A)s, the coinvariants set and by = :
Idyg—p(AJA) = Iday—p(AlA)s, the canonical quotient map.

By (or by , we get the following isomorphism of P(1)-modules:
Idug-»(FplFp) = Fp ® Fp @payepa) P(2) = P(1) @ P(1) @puerm) P(2) = P(2)

because P(2) is a (P(1) ® P(1))-P(1)-bimodule.
Remark 1.8.9. Tt permits us to consider that the binary coproduct Fp + Fp has the following ex-
pression

Fp+Fp=Fp x Fp xP(2)
endowed with the following structure linear maps:
. )\{T;Q (F?) @ P(1) — F4? is given by
N ((hpd)s (.83, 1) @ 1)
= ((71;1(]?} ® 1), Y21 (D3 ®p1)), (71;1(]9% ® p1), V2. (P3 ®p1)), Y2;1 (D2 ®p1)))
where py,pt € P(1), p§,p € P(2) with k = 1,2.
o NP (FE)P @ P(2) — Fi?is defined by
7 (0 o), 0 58 w) @ (6355, (32, 13°),ws) @ 1o
= (M7 (@) @ W i) @ pa), N7 (01787 @ (072, 537) @ ),
(Pt @ P @ pe) + Nl @t ® (pz-t)>

where pi/ € P(1) and p%’, py, uy, uy € P(2), for i,j =1,2.
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and the injections of the first and the second summands are given by iy : Fp — Fp + Fp, (p1,02) —
((p1>p_2)7070) and 7;2 : JT_‘P — ‘FP +F777 <p17p_2) = (07 (plap_Q)ao)

Then it is possible to know the generating set of F3? as a (right) P(1)-module.

Remark 1.8.10. The (right) P(1)-module F3? consists of elements of the form ((p%,ﬁ), (p%,O),O),
where pi,p? € P(1). This is due to the fact that we have

A (((0d,0),05,,0) © ((id,0),05,,0) © p2) = ((0,72), 05, 0)
N7 (05, (id.0),0) © (07, (id, 0),0) @ ) = (07, (0,73).,0)

A;g2<((Zd,6),Ofp,0) & (0]:737 (Zdaﬁ)ao) ®p2) - (0]:73,0]-‘7;.,}92)

for p, € P(2).
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Chapter 2

Quadratic functors

In this chapter, we are interested in studying quadratic functors. We first give the appropriate
context for those taking values in Ab. Then we provide minimal algebraic data (or also called DNA)
characterizing quadratic functors taking values in (right) modules, and those with values in algebras
over a linear symmetric unitary operad.

Assumption: we recall that C denotes a pointed category (whose zero object is denoted by 0)
having finite coproducts (whose coproduct is denoted by +), and E' is a fixed object in C.

For a set S, let Z[S] denote the free abelian group with basis S. Let X € C, then we consider
the pointed set C(E, X) with basepoint the zero map Ogy : £ — X, and we can define a subfunctor

Z[0] of Z|C(E, —)] : C — Ab such that, for X € C, Z[0](X) = Z|{0gx}] € Z[C(E, X)]. This allows
us to give the following definition:

Definition 2.0.1. The universal functor Ug : C — Ab relative to E is the quotient of Z|C(E, —)] :
C — Ab by the subfunctor Z[0] : C — Ab.

Moreover there is a retraction ps : Ug(E+E) — Ug(E|E) of the kernel ¢ : Ug(E|E) — Up(E+FE)
of the comparison morphism 5% (see (1.2.1)) defined by

p2(€) =& —itoriof —izor; oL, (2.0.1)

for £ € C(E, E™?). The above definition is given in 1.1 of [12].

Notation 2.0.2. The abelian groups Ug(E) and T1Ug(E) are rings denoted respectively by A and A
where T} is the linearization functor defined in To keep notation simple we write also f for
the equivalence class in Ug(X) of an element f of C(E, X) and t;(f) for the equivalence class of f
in Tl UE'(X> .

For an object X in C, we observe that Ug(X) has clearly a left A-module structure whose action of
A is given by the precomposition of elements in the monoid C(E, E'). Tt also provides a left A-module
structure on T1Ug(X). More precisely, we get

Remark 2.0.3. For an object X in C, the abelian group T1Ug(X) is a left A-module. This is a direct
consequence of 3.8 of [12] because T1Ug : C — Mod, is a linear functor by

Notation 2.0.4. Let D be any variety. If C is supposed to be a semi-abelian variety (or merely a
Mal’cev variety), then we denote by QUAD(C,D) the full-subcategory of Quad(C,D) constituted
with quadratic functors from C to D preserving filtered colimits and coequalizers of reflexive graphs.

In chapter 3 and 4 of the thesis, we are led to study quadratic functors between (2-step nilpotent)
semi-abelian varieties.
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2.1 Quadratic functors with values in abelian groups

In this part, we mainly recall definitions and results of [I12]. The main result of [12] provide minimal
algebraic data characterizing quadratic functors taking values in abelian groups.

Definition 2.1.1. A quadratic C-module (relative to E) is a diagram of homomorphisms of abelian
groups
M = (Tiers(Up) (B, B) @y M % Moo 2% M, 25 M, ) |

where
e M, is a left A-module;
e M, is a symmetric (A ® A)-module with involution Ty : Moo — My,;

o Py : M., — M, is a homomorphism of A-modules with respect to the diagonal action of A on
M., i.e. for « € C(E, FE) and m € M,,,

Py (ti(a) @ t1(a).m) = aPy(m)
and satisfies Py, o Ty = Pyy.

o Hy : Tyiery(Up)(E,E) @4 M, — M, is a homomorphism of symmetric A ® A-modules such
that, for ¢ € C(E, E™?), m € M, and a € M,,

(Vio&a=(r;o&a+ (r;o&)a+ (PyoHy) (tn(PgE(ﬁ)) ®a) (QM1)
and

Ht (b (p57)(€) ® Parlm) = (730 €) @ 1§ 0 ). (m + T (m) ) (QM2)

where py = p5? : Ug(E+E) — Ug(E|E) is the retraction of the inclusion ¢ty = 15 : Ug(E|E) —
Up(E + E) defined in 2.0.1]

A morphism between quadratic C-modules is a pair of homomorphisms of abelian groups (¢, @) :
M — N such that ¢. : M, — N, and ¢.. : M., — N, are respectively homomorphisms of left
A-modules and A ® A-modules which make an obvious diagram commute. We denote by QMod the
corresponding category.

We shall know the structure of Coker(Py), where Py : M., — M, is the morphism involved in
a quadratic C-module as in This is given by the following remark:
Remark 2.1.2. Let M be a quadratic C-module, then Coker(P)y;) is a left A-module by 5.2 of [12].

For an object X in C, we now define the map ¢} : T\Ug(X)®? @pagr T11cr2Us(E, E) — ToUgp(X)
as being the following composite map:

d)/
TlUE(X)®2 ®A®A THCT2<UE)(E,E> ! T2UE<X>
id®2®c7"2(t2) = SZQUE
TlUE(X)®2 ®A®A CTQ(TQUE)<E, E) o CTQ(TQUE)(X,X> (211)
C’I‘2(T2[]E)

Here

46



e the natural transformation cro(ty) @ Th1(craUg) = cra(ToUg) between these bifunctors is the
unique factorization of cry(ts) @ croUp = cro(ToUg) through tyy : croUp = Tii(croUg), see
(2.4.1) in [12]. Tt is a natural isomorphism by 2.5 of [12].

e the natural transformation e, (v, : T1Up @ T'Ug @ Ti1cra(Ug)(E, E) = cra(ToUg) between
bifunctors from C x C to Ab is defined in 3.21 of [12] (replacing B with the bilinear bifunctor
CT'y (TQ UE)) .

Then, we recall the construction of a quadratic functor with values in Ab corresponding to an
arbitrary quadratic C-module. This is given by taking the push-out of two natural transformations,
see 6.2 and 6.4 of [12], called the quadratic tensor product whose definition is given below:

Definition 2.1.3. Let M be a quadratic C-module and X be an object in C. The quadratic tensor
product X @ M € Ab is defined by the following push-out diagram of homomorphisms of abelian
groups:

b x=(¢,@id,t2@Pnr)

(TlUE(X)®2 ®A®A T11CT2(UE)<E7 E) ®A M6)62 @ (UE(X) ® Mee> TQUE(X) ®A Me

Bx =] w(0%id)) "y
(TUB(X)®2 ©pon M) g, — XoM
Y.

where Y] =id®id® H, § : Ug(X) — ThUr(X) @ TVUg(X), f — t1(f) @ t1(f), 7 is the cokernel of
T®id—id® T with T : T1Ug(X) @ T1Up(X) — T1Ur(X) ® T1Ug(X) being the canonical switch.

In the sequel, we shall give the explicit expression for the morphism ¢/ involved in the definition
of the quadratic tensor product (see 2.1.3)):

Lemma 2.1.4. The abelian group homomorphism ¢} has the following explicit expression:

91 (11(£1) @ 11(f2) @aen tua(pa(©)) = 1oV 0 (fi + fo) 0€) — talfr 075 0€) ~ talfa 075 0 €)

where f1, fo € C(E, X) and §& € C(E, E™2).
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Proof. Let fi, fo € C(E, X) and ¢ € C(E, E*?). We have

ol <t1(f1) ® t1(f2) ®aca tn(ﬂz(f)))

= 5527 0 Ul gy, © (id @ id @pen cra(ta)) (t1(f1) ® ta(f2) @ ta(p2(€)))
= ToUs(V%) 0 1”7 0ty gy (11 (1) @ 11 (f2) @ era(ta) (p(€)))
= TyUg(V%) 0 13°7% 0 cra(ToUg) (fi, f2) (cra(t2) (p2(€)))
= TUp(VX) o ToUs(fi + f2) 0 13°7F 0 crs(t) (pa(6)
= ToUg(V%) 0 ToUg(fi + f2) o ta(ta 0 pa(€))
= TUp(V%) 0 ToUg(fi + f2) 0 ta(€) — ToUg(VY) 0 ToUg(fi + f2) o ta(if o 7f 0 §)
— TUp(V%) 0 ToUs(fi + fo) o ta(i3 075 0 §)
=t2(Vi o (fi+ fo) 0&) —to(Vi o (fi+ fa) o 0orf 0 &) = to(Vi o (fi + fo) 0 i 015 0)
=t2(Vi o (fi+ fo) o) —ta(Vioifo frorfof) —ta(Vi oizo fror; 0f)
=1(Vi o (fi+ f2) o) —ta(frorf o) —ta(faor30¢)
as desired. -

Corollary 2.1.5. Let f1, f, € C(E, X), h € C(E, Id¢(E|E)) and a € M.. Then we have

¢_X(t1(f1) ® t1(f2) @asa t11(,02(bédc oh))®a, O> =12 (Cé( o Ide(fi]f2) o h) ®a

Proof. Tt is a direct consequence of replacing £ with Lgd‘j oh and of the relations r3 o Lgdc =0, for

X—

k =1,2 (because 1% : Ide(E|E) — E+ E is the kernel of the comparison morphism r2% : £+ E —
E x E, see[1.2.1)). Moreover we observe that we have

Vi o(fi+ fa)os™ oh=V% o™ olde(filf2) oh =c5 olde(filfz)oh,

see O

The diagram of is clearly functorial. Let M be a quadratic C-module, then the Proposition
6.5 of [12] says that —® M : C — Ab is a quadratic functor. It allows to define the following functor:

Definition 2.1.6. The functor Ty : QMode — Quad(C, Ab) is given as follows:

1. On objects, for a quadratic C-module M, Ty(M) = — ®@ M : C — Ab such that, for all X € C,
(—® M)(X) =X ® M is the corresponding quadratic tensor product given in [2.1.3|

2. On morphisms, let ¢ = (¢e, ¢ee) : M — N be a morphism of quadratic C-modules. Then Ty(¢) :
Ty (M) = Ty(NN) is a natural transformation such that, forall X € C, Ta(¢)x : XM — XN
is the unique morphism given by the universal property of the pushout in 2.1.3] satisfying

Ta(¢)x 0 ¥ = 43 o (ta(f) @1 id)
Ta(¢)x o @ = /1]?[ o (t1(f1) ® t1(f2) ®rsa id)62

where f, f1, fo € C(X,Y).

(2.1.2)
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Moreover a quadratic functor with domain C and values in Ab gives rise to a quadratic C-module,
see 5.16 of [12]. This defines a functor as follows:

Definition 2.1.7. The functor S, : Quad(C, Ab) — QMod. is defined as follows:

1. On objects, with a quadratic functor F' : C — Ab, we associate a corresponding quadratic
C-module Sy(F') as follows:

Hy, Tg (53)E
So(F) = (Tuch(UE)(E, E)@n F(E) 25 F(E|E) -5 F(BE|E) ‘24 F(E)) .
Here we have

o HY : Tyiery(Ug) - A2 @\ F(E) = cryF the natural transformation given by the following
diagram

Tiera(Ug) (X, X) @a F(E) = cro (X, X)

tCTz(UE)® id
1 A era(up) x, x

CTQ(UE)(X7 X) ®A F(E)

where X € C and v : Up ®) F(F) = F is a natural transformation given by (u)x :
Up(X)®s F(E) — F(X), f®pyxz+— F(f)(z), for f € Ug(X) and z € F(E);

o TF : croF(X, X) — eryF(X, X) the restriction of the involution F(7%) : F(X + X) —
F(X + X) to ero F(X, X).

o SF i ¢ryF - A2 = F the natural transformation given in 1.8 of [I2] and defined by
(SIx = F(Vx) o', for an object X in C.

2. On morphisms, let a : F' = G be a natural transformation between quadratic functors, then
Sa(ar) = (ag, cra(@)pE) : So(F) — So(G).

Notation 2.1.8. Let F : C — Ab be a quadratic functor. Then we set M = Sy(F') its corresponding
quadratic C-module.

Then the following result says that the two functors Sy : Quad(C, Ab) — QMode and Ty :
QMode — Quad(C, Ab) are both additive.

Proposition 2.1.9. The functors Sy : Quad(C, Ab) — QMode and Ty : QMode — Quad(C, Ab)

are additive.
Proof. The proof is given in two steps.

1. First we prove that the functor Ss : Quad(C, Ab) — QMod is additive. Let o, 5 : F = G be
two natural transformations. Then we have

Sa(a+ B) = (ag + Be, cra(a+ B)e,p)
We verify that, for two objects X and Y in C, we get
cra(a+ B)xy = cra(a)xy + cra(B)xy
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We have the following equalities as follows:

1§ ocrs(a+ B)xy = (ax+y + Bxsv) oty
= (axty 0ty + Bxiy 0ty)
= (Lg; ocry(a)xy + Lg o crz(ﬂ)xy)
= LQG ° (CT’Q(CY)X,Y + crg(ﬁ)x,y)
As § 1 G(X]Y) — G(X +Y) is a monomorphism, we get
cra(a+ B)xy = cera(a)xy + cra(B)xy

Hence we have

So(a+ B) = (g + Be, cra(a+ B)ek)
= (ap + Be, cra(a)pe + cra(B)eE)
= (ap, ero(a)pp) + (B, cra2(B)ep)
= Sa(@) +S2(5)
as desired.

2. Then we prove that the functor Ty : QMode, — Quad(C, Ab) is additive. Let X be an object
in C. For this it suffices to observe that the functors ToUg(X) ® — and (T1 Up(X)®2@rpn —)62
with domain C and values in Ab are additive.

[]

Now we recall the theorem 7.1 of [I2] which says that quadratic functors taking values in Ab can
be characterized by quadratic C-modules:

Theorem 2.1.10. Let C be a pointed category with finite coproducts.
o IfC is a small category, the functors
So @ Quad(C, Ab) = QModc : Ty
form a pair of adjoint functors.
o [fC = (E), the functors S and Ty are equivalences of categories inverse to each other.

o IfC has sums and if E is a small reqular-projective generator object of C, then the functors
S, : QUADE(C, Ab) 2 QModc : T,

are equivalences of categories inverse to each other, where TY is given by Ty which actually
takes values in QUADg(C, Ab) (by 6.24 of [12]), and where S|, is the restriction of Ss.

Here QU ADE(C, Ab) denotes the full subcategory of Quad(C, Ab) formed by (reduced) quadratic
functors from C to Ab preserving filtered colimits and E-saturated coequalizers (see the definition
in 6.21 of [12]); from the proposition 6.23 of [12]|, E-saturated coequalizers can be replaced with
FE-saturated E-free coequalizers, and with coequalizers of reflexive graphs if C is Mal’cev and Barr
exact (as all semi-abelian categories).
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Remark 2.1.11. The third point of the statement in [2.1.10] can be replaced with the following one: if
C is a semi-abelian variety and if E denotes the free object of rank 1 in C, then the functors

Sy : QUAD(C, Ab) = QModc : T,

are equivalences of categories inverse to each other, where T is given by Ty which actually takes
values in QUAD(C, Ab) (see the definition of this category in [2.0.4), and where S}, is the restriction
of SQ.

Notation 2.1.12. We denote respectively by 1 : Id = Sy - Ty and € : Ty - Sy = Id the unit and the
counit of the adjunction [2.1.10]

Remark 2.1.13. The unit n : Id = S, - Ty is a natural equivalence by 7.10 of [12]; but not the counit
€:Ty-Sy = Id in general.

2.2 Quadratic functors with values in right modules

In this part, we take R a ring, F' : C — Modg a quadratic functor and Modg denotes the category
of right R-modules. The functor F' : C — Modg is the same as considering a pair (F, \") where F
is seen as taking values in abelian groups and \" : F @ R = F is the right action of R on F. As F
is a quadratic functor taking also values in Ab, it allows us to apply the functor Sy to F' (see [2.1.7))
representing a part of its minimal algebraic data given by the following quadratic C-module:

So(F) = (THCTQ(UE)(E, E) @, F(E) 1, F(E|E) I, F(E|E) 52 F(E))

Moreover there is a homomorphism of rings a : R? — End(F),r? — " that is the right action of
R on F, more precisely, for r € R, o : F = F is the natural transformation defined by

o T F(X) = F(X), 2— M)x(@@er)

where X is an object in C and (M) x : F(X)® R — F(X) represents the right action of R on F(X).
By restriction of o, i to F(E|E), we obtain a right action of R on F(X|X) denoted by cro(a™ ) g
making F(E|FE) into a right R-module. Then, for any r € R, we have the following commutative
diagram by applying S, to the natural transformation o : F' = F:

Hi; T (S9)e
Tyers(Us)(E, E) @ F(E) F(EIE) F(B|E) F(B)
idoaaty” era(a™ ) g p cra(a" ™) g g o
HF
Tiera(Us)(E, E) @ F(E) —"—= F(E|E) ———~ F(E|E) ————~ F(E)
E 2

This commutative diagram expresses the fact that HL, TL and (SI')g are homomorphisms of right
R-modules.

2.2.1 Quadratic C-modules over a ring R

We define the notion of quadratic C-modules enriched with a right R-module structure as follows:
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Definition 2.2.1. A quadratic C-module over R is a quadratic C-module as follows:
M = <Tllcr2(UE)(E,E) @a M. 25 Mo 25 M. 55 Me>

as in 2. 1.1l such that

e M, and M., are right R-modules; moreover the action of A (resp. A ® A) on M, (resp. M.,.)
commutes with the action of R on M, (resp. M,.).

e P, H and T are homomorphisms of right R-modules.
We denote by QModZ the corresponding category.

Let A be a preadditive category. We denote by Modg(.A) the category of right R-modules whose
objects are pairs (A, ¢') where A is an object in A and ¢* : R? — End(A), 7P — ¢4, is a
homomorphism of rings. A morphism f : (4, ¢*) — (B, ¢?) in Modr(A) is a morphism f: A — B
in A preserving the right R-modules structure in the following sense: for r? € R?, we have

fodih, =¢0,0f

Remark 2.2.2. We remark that QMod% is isomorphic to the category Modr(QModc). Tt makes
sense because (QModc is clearly a preadditive category. Similarly we also observe that the category
Quad(C, Modg) is isomorphic to Modg (Quad(C, Ab)).

2.2.2 The functors S¥ and T%

In this part, we define two functors so as to settle a similar theorem as in [2.1.10| for quadratic functors
with domain C and values in Modg. First we check that a quadratic C-module over R provides a
quadratic functor taking values in Modp.

Proposition 2.2.3. Let M be a quadratic C-module over R, then the quadratic functor To(M) =
—® M : C — Ab, defined in|[2.1.6, lifts into a functor from C to Modg.

Proof. Tt remains to recover the right action of R on — ® M. We write § = (S, Bee) : R? —
End(M), r°P — 37" = (B, Br") denoting the right R-module structure for M. For each r € R,

ee

a™ = To(B™) : —® M = — ® M is the natural transformation given by applying Ty to the
morphism A7 : M — M of quadratic C-modules. The uniqueness in the universal property of the
push-out defined in says that a : R? — End(—® M), 7P — o™ is a homomorphism of rings.
Finally To(M) = — ® M is a quadratic functor taking values in Modg. ]

Now it is convenient to define two functors in order to summarize the above arguments.

Definition 2.2.4. We define two functors as follows:

1. The functor S¥ : Quad(C, Modr) — QMod% is defined by:

e On objects, let F': C — Modg be a quadratic functor, S¥(F) is the quadratic C-module
R HE Tg (83)E
SE(F) = (Tucrs(Us) (B, B) @4 F(E) =5 F(E|E) = F(B|E) =¥ F(E))
equipped with the (right) action of R on SE(F') given by
R? — End(So(F)), P (ay ,cra(@™)pE)

Here a : R? — End(F) is the homomorphism of rings corresponding to the action of
R on the quadratic functor F' and S, : Quad(C, Ab) — QModc is the functor defined in

2.1.7%
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e On morphisms, SE(B) = Sy(B), for 3 : F = G a natural transformation in
Quad(C, Modg).

2. The functor TF : QMod} — Quad(C, Modg) is defined by:

e On objects, let M be a quadratic C-module over R as in 2.2.1) TE¥(MT) = (— @ M, \M),
where A}/ : (—® M) ® R = — ® M is the natural transformation representing the right
action of R on — ® M; more precisely, for all X € C, we have

My (X@M)®@R—X®M, x@r+— ay (7)

where o = Ty(f"™) : — ® M = — ® M is the natural transformation given by ap-
plying Ty : QMode — Quad(C, Ab) (see to g : M — M, and 3 : R? —
End(QMode), r°P + 7" is the homomorphism of rings associated with the (right) ac-
tion of R on M.

e On morphisms, for ¢ = (¢e, ¢ee) : M — N a morphism of quadratic C-modules over R,

T3 (¢) = Ta(4).

Notation 2.2.5. We give a similar notation as in Let F': C — Modg be a quadratic functor.
Then we also set M} = SE(F) its corresponding quadratic C-module over R.

Remark 2.2.6. If we assume that C is a semi-abelian variety and if £ denotes the free object of rank
1 in C, then the functor T¥ takes in fact values in QUAD(C, Modg). This is due to the fact that,
for a quadratic C-module M over R, the composite functors W - TE(M) = W - (=@ M) : C — Ab
preserves filtered colimits and coequalizers of reflexive graphs by where W : Modr — Ab is
the forgetful functor. By [1.6.11] the (quadratic) functor TH(M) = — ® M : C — Mody preserves
filtered colimits and coequalizers of reflexive graphs.

2.2.3 The adjunction between S¥ and T
The two functors S§ and T% defined in give rise to the following theorem:

Theorem 2.2.7. Let C be a pointed category with finite coproducts.
o IfC is a small category, the functors
SE: Quad(C, Modg) = QModf : TE

form a pair of adjoint functors extending So and Ts.

o IfC = (E), the functors SI' and TY are equivalences of categories inverse to each other.
o IfC is a semi-abelian variety and if E denotes the free object of rank 1 in C, then the functors
(SEY : QUAD(C, Modg) = QMod% : (TE)

are equivalences of categories inverse to each other, where (TR) is given by TE which actually
takes values in QUAD(C, Modg) (by[2.2.6), and where (SF)' is the restriction of SF.

Before tackling the proof of this theorem, we need a technical lemma providing a pair of adjoint
additive functors between categories of modules in pre-additive categories from such a pair between
preadditive categories.
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Lemma 2.2.8. Let A and B be two preadditive categories. Suppose that there is a pair of adjoint
additive functors
F-ASB:G
Then it fits into another pair of adjoint additive functors
FR MOdR(.A) = MOdR(B) . GR
where Fr is the functor defined by

1. On objects, let (A, ¢*) be an object in Modr(A), Fr((4, ¢)) = (F(A), WD), and ¢F'
RP — Endg(F(A)) is the homomorphism of rings given by:

Vr €R, ¢’ = F(df)
2. On morphisms, for any f : (A, ¢*) — (B, $®) morphism in Modgr(A), we set
FR(f) = F(f) : (F(A),¢"Y) — (F(B), ")
In addition, G is defined in the same way.

Proof. By we know that Sy : Quad(C, Ab) — QMode and Ty : QMode — Quad(C, Ab) are
additive functors. Let n: Id4 = G - F be the unit of the adjunction.

e Given an object (A4, ¢?) in Modgr(A) and set ¢ @A . RP — End((G - F)(A)) the homo-
morphism of rings given by:

Vr € R ol = (G- F)(0h)
By naturality of n, we have

N oy = (G- F)(6) ona = no ¢y

This proves that n4 : (A, ¢%) = (G - F)(A), ¢/@A)) = G - Fr((A, ¢*)) is a morphism in
Modg(A) and that 1 : Idyeama) = Gr - Fr is a natural transformation from Idpsoq,4) to
Gr - Fg.

e It suffices to prove that the universal property of n : Idyoqya) = Gr - Fr is satisfied in
Modg(A). Let (A,¢") be an right R-module in A and f : (A4,¢%) — Gr((B,v¥?))
(G(B),%®) be a morphism in Modgr(B). As the universal property of n : Idy = G -
works in A, there exists a unique f : F(A) — B morphism in B such that

f= G(?) o7A

Then we prove that f : Fr((A, ¢%)) = (F(A), ") — (B,4?)) is a morphism in Modg(B).
Let r € R, then we have

=

G(F o g1a") ona = G(F) o Gl )na
= G(f) o (G-F)(¢por) © na
= G(f)onao dro
= [ o Gl
=y o f
=G o f
= G(Yw) 0 G(f) o na
= G(thror 0 f) 0 my
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By uniqueness in the universal property of 7,
wBop © 7 = ¢FOEJA)
Consequently f : Fr((A,$1)) — (B, ") is a morphism in Modg(B). This proves the result.
]

Proof. of Theorem 2.2.7. We consider the following commutative diagram:

(S2)r
Mod — R(Quad(C, Ab)) Mod — R(QModc)
(T2)r
83
Quad(C, Modg) = QMod¥}
%

The left and right isomorphisms of categories comes from [2.2.2l By [2.2.8] (Sz)g and (Ts)g form a
pair of adjoint functors because Sy and Ty is a pair of adjoint additive functors, see This
implies that SI and T¥ form also an adjunction pair.

The unit, respectively the counit of the adjunction pair is exactly the unit n : Id = S, - Ts,
respectively the counit € : Ty - Sy = Id of the pair of adjoint functors (see the notations
given in ; they both preserve the (right) R-module structure (by naturality of n, respectively
e) if restricted to the category QModg, respectively to the category Quad(C, Modg). Then we can
consider the unit n (respectively the counit ) as a natural transformation from the identity functor of
QMod% (respectively the composite functors T3-S, to the composite functors S - TZ (respectively
the identity functor of Quad(C, Modg)).

As n: Id = S¥ - TE is a natural equivalence by it suffices to prove that ¢ : T - S¥ = Id is a
natural equivalence for the second and third points in the statement.

If we assume that C = (F), then ¢ is a natural equivalence by the second point of implying
that the functors S¥ and TZ form a pair of adjoint equivalences.

Now we suppose that C is a semi-abelian variety and FE is the free object of rank 1 in C. For a quadratic
functor F' : C — Modpg preserving filtered colimits and coequalizers of reflexive graphs, the counit e :
TE-SE(F) = —®S,(F) = F (evaluated to F') is a natural transformation between quadratic functors
preserving filtered colimits and coequalizers of reflexive graphs which is a natural isomorphism if
restricted to the full subcategory (E) of C (by the second point in the above statement). Hence it
is a natural isomorphism by 6.25 of [12]. Thus the functors (S¥)" and (T¥)’ in the statement form a
pair of adjoint equivalences. 0

Notation 2.2.9. We denote respectively by 1 : Id = SI- T and ¢ : T§ - SF = Id the unit and the
counit of the adjunction pair [2.2.7]

2.3 The linearization of the quadratic tensor product

Let M be a quadratic C-module. Here we give an explicit expression of the linearization of the
functor To(M) = — ® M : C — Ab defined in [2.1.6, However we shall give two results before.

Proposition 2.3.1. Let A, B be two abelian categories, G : C — A be a reduced functor and
L: A — B be a functor preserving right exact sequences. Then we have

T, (L-G)=L-T,G

95



where T,, : Func,(C, A) — Func<,(C, A) is the n-Taylorization functor defined in 1.9 of [I2]. More
precisely, the unique factorization L, -t¢ : T,,(L-G) = L-T,G of L, -t% : L -G = L - T,G through
thG . L. G = T,(L-G) is a natural isomorphism.

Proof. We observe that the following diagram commutes by naturality of t¢®4M . .G = T,(L-G):

LSS, wt§
L- (crnHG . A"H) i L-G Lt L-T,G——=0

t"l/ ‘ t,,L{G

T, (L . (crn+1G . A”“))

Tn(LsSy)

As the functor L -T,,G : C — Ab is polynomial of degree < n (by Theorem 1.9 in [34] or Proposition
1.6 in [I9] because it is a polynomial functor of degree < n postcomposed by a linear functor with
abelian source and target), the universal property of t£¢ : L. G = T,(L - G) (see 1.10 of [12]) says
that there is a unique natural transformation L, -t : T,,(L - G) = L - T,,G such that

(L, -tG)ott¢ =11, 1 (2.3.1)
Moreover the n-Taylorisation of the functor L - (crn41G - A™™) : C — Ab is trivial by 2.19 of [13], i.e

To(L - (cranG-A™1)) =0

since L, - crp1G 1 C*"Y) — Ap is a multireduced multifunctor (the latter fact is also expressed by
saying that L - (cr,11G - A"™) : C — Ab is cohomogenous of degree < n). Hence we have

ty o (L* : S??—H) =0

By 1.9 of [12], t& : G = T,,G is the cokernel of S¢,, : ¢r,, 1 1G - A™™ = G. As the functor L: A — B
preserves colimits (right exact sequences in particular), the top sequence of the above diagram is
right exact. Consequently, there is a unique natural transformation tZ¢ : L - T,,G = T,(L - G) such
that

tLGo (L, -tS) =th¢ (2.3.2)

The two composites of the maps Lo (L* . tf) and (L* . tg) otLG respectively with the epimorphisms

tE@ and L, - t¢, and the equations (2.3.1) and (2.3.2)) show that ¢t£C and L, - t& are inverse to each
other. O

Proposition 2.3.2. Let D be a semi-abelian category, F : C — D be a reduced functor, and n,m be
two natural integers with 1 < n < m. Then we have the following natural isomorphism

T.(TnF) =T,F
More precisely, the natural transformation T -t T, F = T,(T,,F) is an isomorphism.

Proof. As tf' : F = T,,F is the cokernel of the natural transformation SI : cr,,F - A™ = F in
Func.(C, Ab) and the n-Taylorization functor T, : Func,(C, Ab) — Func<,(C, Ab), given in 1.9 of
[12], preserves colimits (because T, is a left adjoint functor by 1.10 of [12]), we obtain the following
right exact sequence:

QF LF

Ty(crpF - A7) Tfm p p Tk p o (p gy —
Applying 2.19 of [13], we deduce that T, (cr,,F - A™) = 0 because the m-th cross-effet cr,,F :
C*™ — Ab of F (see 1.2 of [12]) is a multireduced multifunctor and 1 < n < m. This proves that
(T,). - SE =0, so that (T3,). - t& : T,F = T,(T,,F) is a natural isomorphism. Consequently, the
functors T,,(T,, F') and T,,F are isomorphic in Funcg,(C, Ab). O
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Proposition 2.3.3. Let M be a quadratic C-module and X be an object in C, then we have
Ti(—M)(X)=ZT\Ug(X) ® Coker(P),
which is natural in X. In particular, we obtain the following isomorphism of left A-modules:
Ti(— ® M)(E) = Coker(P)

Proof. Let M be a quadratic C-module. By we recall that the quadratic functor — @M : C — Ab
is the pushout in Func(C, Ab) given below:

o=(¢, ®id,t2®P
(TIU§2 Rnwa Thicra(Ug)(E, E) @4 Me)@ @ (Ug @ M,,) PG en) ToUp @ M,
2
w=<wm<6®id>>‘ o
(T1U§2 ®A®A Mee)62 W - ® M

Let iy : Up @ M, = (TlU%@? @pen Tiicrs(Ug)(E, E) @, M6)62 ® (Ug ® M,.) be the injection of
the second summand. As the functor 77 : Func.(C, Ab) — Lin(C, Ab) is left adjoint to the inclusion
functor, then T; preserves colimits in Func,(C, Ab). This leads to the following pushout in Lin(C, Ab):

T1(¢)

T <(T1U§®2 ®asa Tiicra(Up)(E, E) @4 Me)62 ® (Up® Mee)) TV (ToUg @4 M)

T (1/1)] T (@M)

T1<(T1U§>2 Rnsn Mee)GZ) T (—® M)

Tl(@)

We know that Tl((TlUgQQ Rash Mee)%) : C — Ab is trivial by 2.4 of [12] or 2.19 of [13] because

(Tl U?Q QAzA ]\/[66)62 : C — Ab is a diagonalizable functor (also called cohomogenous of degree < 1),
see the definifion at the beginning of section 2.2 in [I2]. The same argument also works for the
diagonalizable functor (TlU,%)2 Qnen Th1er2(Ug)(E, E) ®@a Me)62 : C — Ab, so that its linearization
is trivial. Finally, we obtain the following right exact sequence in Lin(C, Ab):

oy M
T3 (U @nen Ticra(Up) (B, B) 0 Moo, ® (Up®M..) ) 25 Ti(TUp @ M) "5 Ty(—~0M) = 0

As the functor 77 : Func,(C, Ab) — Lin(C, Ab) preserves colimits in Func,(C, Ab), we obtain the
following isomorphisms in Lin(C, Ab):

T ((T1U§2 Rawa Thicra(Ug)(E, E) @) Me>62 ® U ® Mee))

=T ((T1Ufg®2 @asa Thicra(Ug)(E, E) @4 Me)62> & T (Ugp ® M,.))
= Tl(UE & Mee)

= TlUE ® Mee ) by '

The third isomorphism above holds because the functor (TlUg)2 ®apa Thiers(Ug)(E, E) @ Me)62 :
C — Ab is a diagonalizable functor so that its linearization is trivial by 2.4 of [12]. Evaluating the
above isomorphisms on X, we have the following isomorphism in Ab:

B(X) & TyUp(X) ® M.,

57



where B(X) = ((T1U®2 Qnga Ti1cre(Up)(E, E) @5 Me)s, ® (Ur ®Mee)> (X)) whose injection of the
first summand can be chosen to be the zero morphism, and the injection of the second summand can
be taken to be Ti(is) : T1(Ug ® M,)(X) — B(X). In fact, the morphism T} (is) is an isomorphism
thanks to the isomorphisms above. Moreover we get the following isomorphisms by using and
2.3.2]

T (ToUg @a M.)(X) = T (ThUg)(X) @ M, = TYUp(X) @ M,

Then we have the following diagram in Ab:

T1(3)x Ty (M) x

B(X) Ty (TyUp @ M,)(X) Ty(— @ M)(X) —0

ax | = = 8x > X

I
|
|
Y

id®coker(P) Tl UE (X) ® COk’er(P) S

1d®QP

TWUge(X) ® M., TWUg(X) ® M,

where B(X) is defined just above and ax : B(X) — TYUgp(X) ® M., Bx : T1<T2UE ® Me) —
T1Ug(X) ® M, are the unique morphisms in Ab such that

ax o Ti(iz)x o (t/7*M<) =ty ®id and By o (t]7%) o ((to)x ®id) =t; ®id  (2.3.3)
We prove that the left-hand square commutes, as follows:
Bx o Ti(d)x o Ti(ia)x o (1/79") = Bx 0 Ti($ 0da)x o (¢77%M)
= BxoTi(t;® P)x o (tUE@’MEE)X
= o (H%) o ((t2)x © P)
—fxo < PUESNE) o ((12)x ©id) o (id @ P)
= ((t1)x ®1id) o (id® )
(zd ® P) o ((t1)x ®id)
= (id ® P) o ax o Ty (i) x o (1]®%Me)
As (£]5EMe) 1 Up(X) ® Mee = Ty (Up ® Mee)(X) is an epimorphism, we have
Bx o T1(¢)x o Th(i2)x = (id ® P) o ax o Ty (ia) x
As Ty(iy)x : Ty(Ug ® M,)(X) — B(X) is an epimorphism, we get
Bx oTi(¢)x = (id® P) o ax

as desired. Then a categorical argument provides a unique isomorphism vy : T3(— ® M)(X) —
TWUp(X) ® Coker(P) (natural in X) which makes the right-hand square of the above diagram
commutes, i.e. such that

vx o T (YM)x = (id @ coker(P)) o fBx ,
that is equivalent to

Tx o (M) x o} = yx o Ty (M) x o (ﬁrQUE@AMe)X = (t1)x ®x coker(P) (2.3.4)

by 1} and because (t{QUE@AMe)X is a regular epimorphism (see |1.2.10). Moreover Coker(P) is
a left A-module by and it gives us the following isomorphism:

Ti(— ® M)(E) 2 TYUg(E) ® Coker(P) =2 A @ Coker(P) = Coker(P),
as desired. []
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Notation 2.3.4. We denote by 7 : T1(— ® M)(E) — Coker(P) the isomorphism obtained by precom-
posing vg : T1(— ® M)(E) — A ® Coker(P) with the evaluation isomorphism from A @ Coker(P)
onto Coker(P). If x € Coker(P), we write T = 7~ !(x) to simplify notations.

2.4 Quadratic functors with values in algebras over a linear
symmetric operad P

Here we give the assume the following important hypothesis:

Assumption: from now on, we assume here that C is a semi-abelian variety and E is the free
object of rank 1 in C.

Notation 2.4.1. Let P be a linear symmetric unitary operad in the category of abelian groups endowed
with its standard monoidal structure given by the tensor product. The unit of P is denoted by

lp € P(1).

In this part, we intend to make the same work as before for quadratic functors with domain C
and values in P-algebras.

Notation 2.4.2. For a P-algebra A, we denote by \{ : A* @ P(k) — A, for k € N*, the structure
linear maps of A. Moreover Alg — P denotes the category of P-algebras.

2.4.1 Aim and main arguments

We aim at finding DNA describing quadratic functors with domain C and values in P-algebras.
Assumption: we suppose that F': C — Alg— P is a (reduced) quadratic functor in this section.

First we observe that I’ may be considered as taking values in Modp(), so we know that a part
of its DNA is given by the following quadratic C-module over P(1) (see [2.2.7):

STO(F) = (T11C7’2(UE)(E> E)®a F(E) Mz, F(E|E) I, F(E|E) (S5 ) F(E)>

where Sg(l) : Quad(C, Modp1y) — QMod?(l) is the functor defined in . It says that unary
operations in the P-algebra structure for I’ are entirely described by the notion of quadratic C-
module over P(1), see

Then we need three main steps to describe multilinear operations in the P-algebra structure for F
by using the notion of quadratic C-modules over P(1). The first step is to remark that the linear
operad P can be supposed to be 2-step nilpotent, i.e. the abelian groups P(k) are trivial, for k£ > 2
(see|1.4.1) and [L.7.8| for details). Hence we observe that the quadratic functor F': C — Alg — P can
be interpreted as a triple (F, A", \l"), where F' is seen as taking values in abelian groups, endowed
with the structure natural transformations A\’ : F @ P(1) = F and A} : F*? ® P(2) = F encoding
respectively unary and binary operations.

The second step is to describe binary operations A" : F®? @ P(2) = F encoded by P(2) as a
certain morphism between quadratic C-modules over P(1). For this, we compress the P-algebras
structure for F' into just one natural transformation A : Th(F®2 ®¢ P(2)) = F which is the unique
factorization of \J' : F®? ® P(2) = F through a certain natural transformation. Here T5 is the
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quadratization functor defined in and S = (P(1) @ P(1)) 1 &5 is the wreath product recalled in
2.4.9. Then it provides the morphism S;V () « STW(T(F®2 04 P(2))) — STY(F) of quadratic

C-modules over P(1) by applying the functor Sg(l) to the natural transformaton A\J'.
The third step is to prove the existence of a natural isomorphism ¢ : Ty(F®? 05 P(2)) = T1 F®? @5
P(2) between quadratic functors with values in Modp(1y. It leads to the isomorphism Sg(l)(ng ) from
S;D(l)(Tg(F®2 ®s P(2))) onto S;)(l)(TlF@’2 ®s P(2)) in the category QMod?(l). The main interest of
this result is that S;D(l)(TlF®2 ®gP(2)) is a more understandable quadratic C-module over P(1) than
5y (1, (F=* @5 P(2)).
Finally it gives the morphism S; Y (AF o (¢7)71) : ST F®2 @g P(2)) — STW(F) of quadratic
C-modules over P(1). This leads us to define quadratic C-modules over P as pairs of the following
form:

MP = (M, o™ . M? — M)
where M is any quadratic C-module over P(1), M? is another such objects depending on M and ¢™
is a morphism between these kinds of object, see for details. The aim of this section is to prove

that minimal algebraic data describing quadratic functors with domain C and values in P-algebras
are quadratic C-modules over P, see the theorem [2.4.37

2.4.2 Assumption on the linear operad P

In this part, we observe that quadratic functors with domain C and values in algebras over a linear
operad can be considered as taking values in algebras over a 2-step nilpotent linear operad (i.e. the
linear n-ary operations of the operad are trivial for n > 2).

As F' : C — Alg — P is a (reduced) quadratic functor, it takes values in the full subcategory
Nily(Alg —P) of Alg — P constituted with 2-step nilpotent P-algebras. By there is an isomor-
phism of categories between Nily(Alg — P) and Alg — Nilo(P), the category of Nily(P)-algebras.
Here we recall that Nily(P) is the 2-step nilpotent linear (unitary and symmetric) operad associated
with P, see for details.

Consequently, taking a quadratic functor with domain C and values in Alg — P is equivalent to take
a quadratic functor with domain C and values in Alg — Nils(P). This explains why we don’t need to
consider the multi-linear maps (\f)x : F(X)®" ® P(n) — F(X) for n > 2 present in the P-algebra
structure for F'(X) where X an object in C.

Assumption: from now on, the linear unitary symmetric operad P supposed to be 2-step nilpo-
tent. In this case, P = Nily(P).

2.4.3 The structure bilinear maps for F' encoded by P(2)

Let X be an object in C. In this part, we prove that the natural homomorphism (A))yx : F(X)®? ®
P(2) — F(X) is P(1) ® P(1)-bilinear and that it is also a homomorphism of right P(1)-modules
thanks to the axioms of P-algebras for F'(X). First we give some notations:

Notation 2.4.3. Let B be a ring and A be a subring of B. Take M and N be respectively right
and left B-modules (hence A-modules). As the tensor product ®p : M x N — M ®p N is clearly
A-bilinear, there is a unique homomorphism of abelian groups ¢§ : M @4 N — M ®p N such that
the following diagram

MxN—22 MosN
®B qg
M &g N
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commutes. We observe that ¢§ : M @4 N — M ®p N is B-bilinear and is an epimorphism. It
is a straightforward exercice to prove that it satisfies the following universal property, namely: any
B-bilinear map with domain M ®4 N and values in an abelian group factorizes uniquely through
g7 : M ®s N — M®g N (it is a direct consequence of the universal property of the tensor product
®p and the fact that ®,4 is an epimorphism).

Then we denote by 711 : P(1) ® P(1) — P(1), 121 : P(2) @ P(1) — P(2) and 7110 : (P(1) ®
P(1)) @ P(2) — P(2) the structure linear maps of the operad P. By the axioms of the linear operad
P, 711 conferes a ring structure on P(1). Moreover the homomorphisms v,.; and ;1.2 confers P(2)
a (P(1) ® P(1))-P(1)-bimodule structure. Now we observe that F'(X) is a right P(1)-module, with
action of P(1) given by (M)x : F(X) ® P(1) — F(X). This is due to the following commutative
diagram

[~23

F(X)® (P(1) @ P(1)) (F(X)®P(1)) @P(1)

1d®7y1;1 (M xid

F(X)®P(1) F(X)®P(1)

(A\x (A\Dx
F(X)
Then one of the axioms of the P-algebra for F/(X) is given by the following commutative diagram:

o

F(X)* o (P(2) ® P(1))

(F(X)®? @ P(2)) @ P(1)

id®2@y2;1 (A x®id

F(X)®2®P(2) F(X)®P(1)
(M) x (A)x
F(X)

It says that (\))x : F(X)®? @ P(2) — F(X) is a homomorphism of right P(1)-modules. Hence the
natural transformation Ay : F®? @ P(2) = F is a morphism in the category Func,(C, Modp)).
Then another axiom is given by the following commutative diagram:

F(X)® @ (P(1)@P(1) @ P(2) — ((F(X) @ P(1)) ® (F(X) @ P(1))) @ P(2)

id®2®’y1,1,2| (Af)?f@id

F(X)®? @ P(2) F(X)®? @ P(2)

(A)x (\)x

It says that (A)x : F(X)®? @ P(2) — F(X) is P(1) ® P(1)-bilinear. By there is a unique
F

~

homomorphism of abelian groups (A2 )x : F(X)®* @pnyera) P(2) = F(X) such that
~F
(Ao )x o VP = (\)x (2.4.1)
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~F
As (M)x is a homomorphism of right P(1)-modules and qg(l)@ﬂ)(l) is an epimorphism, (\y )x

~F
also is a homomorphism of right P(1)-modules. As the construction is functorial, Ay is a natural
transformation living in Func,(C, Modpq)).

We here point out that the above arguments in this subsection also hold for any P-algebra.
Then we here provide a classical way to compress the axioms of P-algebra for A in term of a
unique morphism. Consider a P-algebra A with its structure linear maps A\{' : A ® P(1) — A and
A A®2 @ P(2) — A. By|[L.8.6, we recall that, for two P-algebras A and B, the second cross-effect
of the identity functor of Alg — P is defined on objects by

Iday-p(A|B) = A® B @payera) P(2)

where A (resp. B) is the quotient of A (resp. B) by the ideal A? (resp. B?), see the notations given
in Now since the operad P is supposed to be 2-step nilpotent, we obtain

Ao (M ®id®id) =0= X o (id® A} ®id)

by an associativity relation for P-algebras. Hence there is a unique morphism E L (A)P2@P(2) — A
such that

—

M (@ ®@az ©p) = N5 (a1 ® a2 @ p)

where a;,a; € A and p € P(2). It is a (right) P(1)-module homomorphism because so is Aj.
Similarly, we know that the map A is a (right) P(1)-modules homomorphism. In addition, there is

o~

a unique abelian groups homomorphims A" : (4)®2 @p1ygp) P(2) — A such that

by [2.4.3] It is a (right) P(1)-module homomorphism because so is S\\QAT. The equivariance axiom says
that

A (a1 ® as @ p) = A3 (T(a1 ® az) @ (p-t))

where T': A®? — A®? 1z @y — y ® x is the canonical switch and ¢ : P(2) — P(2) is the (right)
action of &, on P(2) in the operad structure of P. As q;’(”@”” t AP2QP(2) = A®? @pmyepa) P(2)
is natural and is surjective, we also have

M(@eowmep) =2 (T @a) @ (pt)) (2.4.2)
where T : (A)®2 — (A)®2 also is the canonical switch.

Notation 2.4.4. We denote by

Idag-p(AlA)s, = (A @pmyere) P(2)) s

2

the set of coinvariants of Ida,,—p(A|A) and by 7 : Ida,—p(A|A) = Ida,—p(AlA)s, is the canonical
quotient map which clearly satisfies

ﬂ:ﬂo(T@)t)

where T : A%?2 — A®2? ig the canonical switch.
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The relation (2.4.2) implies that there is a unique abelian group homomorphism E
Idgy-p(A|lA)s, — A such that

YA, _ A
Ajom =\,

It also is a (right) P(1)-module homomorphism because so is X‘;‘. By [1.7.4) we recall that
NP 4y = (A, A] — Im(M - A2 @ P(2) — A).

Idaig—p

Notation 2.4.5. We denote by M : Idyg-p(AlA)s, — [A, Al14y, » the restriction map of M
Idy,-p(AlA)s, — A onto its image. It is clearly a surjective map.

Remark 2.4.6. In summary, for a;,as € A and p € P(2), we have

M@ @ @ p) = M(a1 ®ay @ p)

We now are able to give another description of the image [A, Alra,,, , = Im(A3) (see [1.7.4)
whenever A is a free P-algebra of finite rank.

Proposition 2.4.7. If A is a free P-algebra of finite rank, then the surjective map

>‘§4 : [dAlg—P(A|A)62 - [A7 A]IdAlg—P
given in [2.4.5 is an isomorphism of P(1)-modules.

Proof. First we recall that ? : Iday,—p(AlA)s, — Im()3) is defined by
M(@OTmE ) =M (0 ® e p) (2.4.3)

where ay,a; € A and py € P(2). Then we observe that AZ : Idyg-p(AlA)s, — [A, Al ajg—p is natural
in A so that it gives rise to a natural transformation

Ao T - ((AbAlg*P)®2 Ppra)eP) 7)(2))

o — ’ygdAlg—'P
in the category of P-algebras, where I : Modpny = Ab(Alg —P) — Alg — P is the inlcusion functor.
We observe that Im(A2) can be seen as a subfunctor of the identity functor Ida,_p : Alg — P —
Alg —P. As P is a 2-step nilpotent operad, the category of P-algebras is 2-step nilpotent so that
the functor Ida,_p : Alg — P — Alg — P is quadratic by [[.3.10} It implies that the functor
Im(X\y) : Alg — P — Alg — P also is quadratic. Then the functor

I- ((AbAlg_P)®2 Ap)eP(1) 'P(Q)) ) Alg—P — Alg — P

&

is quadratic by Hence the natural transformation )\=2 with quadratic source and target restricted
to (Fp) (the full subcategory of free P-algebras of finite rank of Alg — P) is an isomorphism if, and

only if, M is an isomorphism of P(1)-modules, for A = Fp and A = F? by 1.17 of [12].

We first prove that, for A = Fp, E is an isomorphism. We observe that Im()g”) consists of elements
of the form (0,7z), for p» € P(2) (see|1.8.3). For this we defined the P(1)-module homomorphism

ree : Im(A37) = (Fp)®? @pmyera) P(2)) g, bY

r7,(0,72) = (id,0) ® (id, 0) @ ps (2.4.4)
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where py € P(2). Then we have the equalities as follows:

N7 ((p1,0) ® (p),0) @ p2)) , by

TFp © )\.27:7:((]?1,6)’ (pllvﬁ) ®p2> = rfp(
75 (0, Y,1:2(p1 ® Ph @ p2))

= (id,0) ® (id,0) ® 11 1.2(p1 ® P @ p2)

= (p1,0) ® (p},0) @ py

where py,pi € P(1) and p, € P(2). Thus we obtain rg, o )\277’ = id implying that /\277’ :

((Fp)®* @pnyera) 77(2))62 — Im()\J7) is a monomorphism. Since )\277’ is a surjective map, it is
an isomorphism. o

Next we check that, for A = F3?, E is an isomorphism. By [1.8.10, we recall that the (right)
P(1)-module F3? consists of elements of the form ((p},0), (p?,0),0), where p},p? € P(1). Then we

2 R
define the P(1)-module homomorphism Trt2 Im()\fg ) = ((FA*)®2 @payera) P(2)) , defined by

(&

TJ'—;Q ((O’p%)u (0,]9%), p2)

= ((id,0),0%£,,0) ® ((id,0),0%,,0) ® p} + (0%, (id,0),0) ® (0%, (id,0),0) ® p3

+ ((Zd7 6)? 0.7-—737 0) ® (Ofpa (Zda 6)? O) & p2
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where pb, p2,p; € P(2). Let p}/ € P(1) with i, = 1,2. Then we have the following equalities:

+2 — — — —
rezo Xy’ (((100), (01%,0),0) @ ((7,0), (v7%,0),0) @ p2)
+2 _ _ _ _
= 1y (Af P (((p%’l, 0), (p1%,0),0) @ ((*1,0), (1°*,0),0) pg))
= e (AP (01 0) @ 01, 0) @ p2), A7 ((01%0) @ (97°,0) @ o),

e (P pyh) @ (P2 2 @ pa) + 71,1;2((pf’1,p§’1)®(pi’2,p§’2)®(pz-t)) ,by [89]

= 7”]_-7-;2 ((07 71,1;2(])%71 ® p?’l ® p2>)7 (07 71,1;2 (p}’2 ® p%Q ® p2))7

1)) by

((id,0),05,,0) ® M1 1.2(p1" @ P’ @ po)

71,1;2((1?}’1 ®py°® p2) + ’71,1;2(]9?’1 ®p”®

= ((id, 0),05,,0) ®

(075, (id,0),0) ® 2P0 @ pT? @ pa)

(075, (id,0),0) ® (r112((pr" ® PY* @ p2) + Y110
X (0.7:7;7 (p%276)7 O) X D2

+ (0%, (id,0),0

+((id, 0), 0z, pt @py @ (pat))

),07,,0) ®@p2) + (07, (p*,0),0)

+ ((id,0), 055, 0) ® (075, (id,0),0) @ Y1,12((py" ® p* @ po)

(05, (id,0),0) ® Ta2(pt @ pi? @ (pa-t))

+ ((id,0), 0%,
(0-7'—737 (p17276)70) ® (0-7:737 (p%276)70) ®p2

) ®
0) ®
= ((p1"',0),07,,0) @ ((p",0),
0)
0) ®
((

:((p%’ O-7:737 ) pl 7_ 0.7‘—7)7 )®p2) +

+ ((pi’lvﬁ) 0-7:7>70) ® (07797 (p%Q’G)’O) @ p2 + ((p%176)70f7370) ® (0]:737 (pi’{ﬁ),[)) ® (pQ t)

Moreover we get
((p7",0),0%,,0) ® (0%, (p1?,0),0) @ (pa-t)
see 244l Then we obtain
rrso Xy ((GF0). (1%.0).0) @ (7. 0). (7.0).0) & o)
(075, (1%,0).0) @ (0, (17,0),0) ® p2

- (O]:p7 (p}’276>,0) ® ((p%176)70-7:7”0) ®p2’

= ((piJ?G)?O]:P?O) ® ((p%’1’6)70.7‘—7970) ®p2> +
+ (", 0),0%,,0) ® (055, (p7°,0),0) @ p2 + (07, (p12.0),0) @ ((p1".0),07,,0) @ ps

= ((p".0), (p1*,0),0) ® ((p1",0), (p7*,0),0) @ py

Thus we have

Fi? .
7"]_—;2 o )\2 = Zd

2
is surjective, it is an isomorphism.

+2
7 is a monomorphism. Since A"
O

implying that the map )\;
Hence A2 is an isomorphism of P(1)-modules, for any free P-algebra A of finite rank
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In summary, a P-algebra A can be equivalently seen as a right P(1)-module endowed with a

P(1)-module homomorphism A3 : ((4)®? @p)epr) 77(2))62 — A. In the next subsection, we

give a different way to describe the equivariance axiom by taking the cokernel of a certain natural
transformation. Then we use the (polynomial) functors calculus providing a functorial way to describe
the structure linear natural transformations Al : F®2 = F A\ : F®2@P(2) = F and their relations
into a unique natural transformation.

2.4.4 The equivariance axiom

Here we show that the equivariance axiom for F' (as it takes values in P-algebras) allows to factorize

~F
the natural transformation Xy : F®? ®p1ygp) P(2) = F through a certain cokernel.

Notation 2.4.8. For a (reduced) functor G : C — Ab and an object X in C, we denote by 7/}\? :
G(X)®? - G(X)®?, 2 ® y —~ y ® x the canonical switch which is clearly natural in X.

As P is a symmetric 2-step nilpotent operad, there is just one diagram left as follows:

F(X)®2  P(2) F(X)®2 @ P(2)
TEwid (M)x
F(X)®2 @ P(2) ) F(X)

where 7/}7; C F(X)®? —» F(X)®?, 2 ® y — y ® z is the canonical switch and ¢ the right action of &,
on P(2). This above diagram equivalently says that we have

M)y o (TE @id—id®t) =0
Then we have the following equations:
(Af)x o (ﬁ?@id—id@t) —0
\as (AAQF)X o gy MFPW o (@ ®id—id®t) =0
& ()TQF)X o (@ Qpyepa) id — id @payep) t) o q§(1)®7>(1) -0

—

~F . .
& (A )x o (TE @payep) id — id @payepa) t) = 0, because qg(l)@)(l)

is a regular epimorphism.

Finally we obtain
~F — o
(A2 )x o (TX ®p1)er) td — 1d @pmyer) t) =0 (2.4.5)

Notation 2.4.9. Here we denote respectively R = P(1), and S = (R ® R) ! &, the wreath product
defined by
(RRR)1Gy=(R®R)® (R® R).t

whose multiplication is given by
(7‘1 ®r2+ (51 ® 52)'t) (Tll ®ry+ (5] ® 5/2)‘t) - (7“17’1 ® Tory + 5185 @ 825/1) + (7”18/1 ® 198y + 5175 @ 827“1).?5

where 7,77, s;, 8, € R and t denotes the generator of G,. It is defined in 3.24 of [12].

Remarks 2.4.10. We have the following three observations:

e R® R is a subring of S.
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e Any left (resp. right) S-module is a left (resp. right) (R ® R)-module, and any S-bilinear map
is (R ® R)-bilinear.

e A right symmetric (R ® R)-module M with involution 7" has a right S-module structure and
it is given by
m.(r1 @7y + (51 ® s2).t) = m.(r1 @ra) + T(m).(s2 @ s1) (2.4.6)

where r;, 7}, s;, 5, € R.
Example 2.4.11. As an example, we observe that

e [(X)®? has a right S-module structure given by
_\F F F F
r@y. (o) +(s18s2).t) =M (2Qr) @A (y@7r2) + A (Y © 53) ® A (7 © s1)

where x,y € F(X). This structure commutes with the right P(1)-module structure on P(2) so
that P(2) actually is an S-P(1)-bimodule;

e P(2) has a left S-module structure given by
((7”1 ® 1)+ (51 ® 82).15) D ="Y1,12(r1 @ra @p) + Y1,12(51 @ 52 @ p.t)
where 74, s € P(1) and p € P(2).

Notation 2.4.12. For X an object in C, we write ¢ = ¢hop : F(X)®? Qror P(2) = F(X)*? @5 P(2)
(see [2.4.3)) which is natural in X.

Then we prove that ¢% : F(X)®2 Qper P(2) — F(X)®? @5 P(2) is the cokernel of 7/}?; Qrer id —
1d @prgr t.

Proposition 2.4.13. The natural transformation ¢ : F*?QperP(2) = F?@5P(2) is the cokernel
Of TF ®R®R id —id ®R®R t: F®2 ®R®R P(Q) = F®2 ®R®R P(Q) n FUHC*(C, MOdp(l)).

Proof. Let X be an object in C. First we remark that ¢% : F(X)®? QprerP(2) = F(X)*?®sP(2) is
an epimorphism and that is a homomorphism of right P(1)-modules. Then we check that ¢% is the

cokernel of 7/}?; Qror 1d — id Qpgr t. Let ¢ 1 F(X)®? Q@rgr P(2) — C be a homomorphism of right
P(1)-modules such that

QZ5 o (T)}; ®R®R Zd) = gzﬁ ] (Zd ®R®R t)
It suffices to prove that ¢ : F(X)®? @ger P(2) — C is S-bilinear as follows:
gb(:v ®@y.((rn @72) + (51 @ 52).t) @ror p)
= oM (@ ®@r1) @M (y @12) @rerp) + ¢(M (y @ 52) @ N (2 ® 51) @rar p)
However we get
P\ (Y ® 52) ® A (2 ® 1) @perp) = ¢ 0 (TE Qrarid) (A (2 @ 51) @ A (y @ $2) @rar D)
= ¢ o (id ®pert) (A (z ® s1) @ A (y @ $2) ®rer D)
= o\ (z @ 51) ® A (y @ 55) @par p.t)

= (b(a? ® Y Oror Y1,12(51 @ 52 @ p.t))
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Hence we have

/N

(2 @y.((rn @7r2) + (51 @ 52).t) Qprar p)

= (25(36 ®Y Qrer M12(Mr @ra ® p)) + ¢(I QY @rer V1,1:2(51 ® s2 ® p.t))
o

<35 ® Y OreR (7171;2(7“1 R 1y ®@p) +Y1,12(51 ® 52 ® p.t))
= ¢<$ XY QroR ((7“1 ® TQ) + (81 X Sg).t).p)

This proves that (b:_F(X)®2 ®rerP(2) — Cis S-bilinear. By [2.4.3] there is a unique homomorphism
of abelian groups ¢y : F(X)®? ®5 P(2) — C such that

¢ =¢x oqk

Moreover ¢x is a homomorphism of right P(1)-modules because so are ¢x and ¢%. It proves the
result. O

~F
To summarize, we have the natural transformation Xy : F®? Qggp P(2) = F verifying

~

Ao o (TF @paywpq) id — id @payepay t) =0

~F
By [2.4.13| and (2.4.5)), there is a unique natural transformation Ay : F'®? ®5 P(2) = F factorizing
X2 through ¢ : F®2 @pep P(2) = F®2 04 P(2), ie.

)/\\2F = XQF o qF (2.4.7)

However we observe that we can not apply the functor Sg(l) : Quad(C, Modpny) — Qmod?(l) (see

~F

2.2.4) to the natural transformation Xy because F®* ®@g P(2) : C — Modp(1y is not a quadratic
functor in general but polynomial of degree 4. That is the reason why we use the universal property
of the unit of the adjunction given in 1.10 of [12], which makes sense because F'is a quadratic functor.

More precisely, there is a unique natural transformation Py Ty (F®* ®g P(2)) = F such that
~F _
No =g ol TSP (2.4.8)

The proposition 1.10 of [12] also says that Ty(F®? ®¢ P(2)) : C — Ab is a quadratic functor taking
values in right P(1)-modules. Finally we have expressed the P-algebra structure for F' in terms of
a natural transformation )\_2F : Ty(F®? @5 P(2)) = F between quadratic functors with domain C
and values in right P(1)-modules. By applying S;)(l) to this natural transformation, it provides the
morphism Sg(l)(E) ; S;D(l)(TQ(F®2 ®s P(2))) — Sg(l)(F) between quadratic C-modules over P(1).
Finally, it interprets the binary bilinear operations involved in the P-algebra structure for the functor
F :C — Alg — P in terms of a morphism between quadratic C-modules over P(1).

2.4.5 Isomorphism between two quadratic C-modules over P(1)

Here we prove that the quadratic C-module Sg(l)(Tg(F‘82 ®s P(2))) over P(1) is isomorphic to an
another such object more understandable. On the one hand, we show that the quadratic functors
To(F®? @5 P(2)) and T1 F®* ®g P(2) with domain C and values in Modp(y) are isomorphic to each
other. On the second hand, we give the explicit expression of each component and morphism involved
in the quadratic C-module over P(1) corresponding to the quadratic functor T} F'®? ®@g P(2).
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First we provide a technical result which gives the bilinearization of a specific (bireduced) diago-
nalizable bifunctor (see 2.2 of [12]) depending on the functor F. By the universal property of the
bilinearization of the bifunctor F @ F : C** — Ab (see 1.14 of [12]), there is a unique morphism be-
tween bilinear bifunctors ¢ ®@ t1 : Ty, (F® F) = T'F @ T\ F factorizing ¢} @tf : FO F = T'FQ T\ F
through t!** : F@ F = Ty, (F QF ) The following proposition says that this morphism is a natural
isomorphism.

Proposition 2.4.14. The natural transformation tf ® tf : TM(F® F) = TFRTF 1s an isomor-
phism between bilinear bifunctors.

Proof. Tt is an immediate consequence of and of right-exactness of the tensor product. m

There is a more general setting than [2.4.14] given in Example 1.15 of [I2]. Now we give the
following natural isomorphism between quadratic functors:

Proposition 2.4.15. The quadratic functors To(F*?*@perP(2)) and Ti F®* ®perP(2) with domain
C and values in Modp(y are isomorphic to each other in Quad(C, Modp)).

Proof. By 2.7 of [12] and [2.4.14] we have the following natural isomorphisms between quadratic
functors with domain C and values in Modpy:

Ty (F** @rer P(2)) 2 T((F® F) - A?) @per P(2) 2 Tu(F O F) - A’ @per P(2) = T1F® Qpgr P(2)

By |L.2.11] there is a unique factorization (t1)%2 ® id : To(F®* Qrer P(2)) = T1F®? ®5 P(2) (that
exists because its target object is quadratic) of (t1)®? @ id : F®? Qrer P(2) = T1F®? @5 P(2)
through t1 FeRP® . pe2 g 0 P(2) = Ty (FO2 @pep P(2)), Le

(N @idoty =merP?) — (1F)%2 g iq (2.4.9)
We prove that W is a natural isomorphism. We have the following equalities:
(@ 0)xx Ororid) o (A3 157 x @rerid) o (57 @ id)x ®rerid) o (ty =~
Dx.x @rer id) o (A ") x Qrgr id) o ((t§®2)x Qrer id) , by
1)x.x @RreR Zd) ((tﬂ@F)X,X QRoR id) , by 2.7 of [12]

NS Q@ rer id , by 2.4.14]
= (P @id) o (¢ ") by @LIS

Hence we get

(NP @id) = (1 ® ) x.x ®rerid) o (A3 t1°")x Qrerid) o (L5 ®@id)x @per id)

= ((
= ((
—(t

th®t
11 &t

®2
because (tg ®R®RP(2))X

posite of isomorphisms.
By using [2.4.13| we have the following right exact sequence in Func,(C, Modp)) as follows:

®2

is a (regular) epimorphism. Thus ()% ® id is an isomorphism as a com-

_— ;
F? @pop P(2) T L0 po2 g 2 P(2) Lo FO2 @4 P(2) = 0

The quadratization functor 15 : Func.(C, Modpn)) — Quad(C, Modp() is the left adjoint functor
of the inclusion functor by 1.10 of [12]. Hence T, is a right exact functor. Then we have the following
right exact sequence in Quad(C, Modp(1)):
Ty (TF @id—idt
(st

Ta(qF)

To(F** @ror P(2)) To(F* @rer P(2)) = To(F®* ®s P(2)) =0
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Let X be any object in C. Then we consider the following diagram:

To(TF @id—id Ty (qF
Ty(F®? @pon P(2))(X) — 2 200X 1 (P92 @0 n P(2))(X) 220 T (F22 04 P(2)) (X)
|
|
|
=~ | (52 wid =~ | (12 wid =
|
|
22 T @id—idot - goF ®2
TV F(X)®* ®rer P(2) T1F(X)®? Qrer P(2) TVF(X)®? ®¢P(2)

Now we prove that the left-hand rectangle is commutative:

(NP @id) o Ty(TF @id —id @ t)x o (t5 Z*FPP)

((tf)?f ® id) o (t§®2®R®RP(2))X o (7/}7; ®id —id ® t)
(P @id) o (T ®id—idw 1), by @49)

= (T @id—id®t)o ((t])F ®id)

= (TP @id—idot)o (NP @id) o (15 ")y by
Hence we obtain

(tH¥ @id) o To(TF @ id —id®@t)x = (THF @ id —id® 1) o (Y ®id)

(152" )x

is a (regular) epimorphism. As ((#1)%° ®id) is an isomorphism (see [2.4.15

and (2:4.9)), a category argument provides an unique isomorphism ¢k : Th(F®* @5 P(2))(X) —
TV F(X)®? ®g P(2) such that

because

0% o To(q)x = q2F o (1P @ id) (2.4.10)

We remark that the morphism @ is natural in X. Then it defines a natural isomorphism ng_F :
TQ(F®2 Qs P(Q)) = T1F®2 Rs P(Q) in Quad(C, MOdp(l)). O
Remark 2.4.16. By applying the functor S;)(l) : Quad(C, Modpny) — QModg(l) to the natu-
ral isomorphism OF : TH(F®2 ®g P(2)) = T1F® ®g P(2), we get an isomorphism S, (¢F) =
(05, cra(0F) pi) - Sy M (To(F2? @5 P(2))) — Sy V(T F®? @5 P(2)) in QMod, ™.

Before giving the quadratic C-module over P(1) associated with the quadratic functor 77 F ®g
P(2) : C = Modp(), we give the following proposition:

Proposition 2.4.17. Let A and B be two abelian categories, G : C — A be a reduced functor and
L: A — B be an additive functor. Then the n-th cross-effect of the composite functor L -G :C — B
18

cro(L-G)(Xa, ..., Xy) = L(ernG(Xy, ..., X,))
where X1, ..., X, € C. Moreover the kernel (% : cr,(L - G)(X1,...,X,) — (L-G)(X1 + ...+ X,)
of the comparison morphism rt-¢ (see (1.2.1)) is given by

b = L(1;))
with 1€ : cr,G(Xq, ..., X,) — G(X, + ...+ X,,) being the kernel of the comparaisaon morphism @
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Proof. 1t is an immediate consequence of the inductive definition of the n-th cross-effect of G (see
1.2 of [12]) and of the fact that L preserves finite products (because it is an additive functor between
abelian categories). O

Proposition 2.4.18. The quadratic C-module Sg(l) (T1F®? @5 P(2)) over P(1) is as follows:

—

T F

Tricrs(Up)(E, E) @4 (TVF(E)™ ©5 P(2)) 2 DB @ron P(2) = TLF(B)® @5 P(2)

Here
—_—

e The involution involved is the morphism Te'" @rort : TIF (E)*?@perP(2) — TVF(E)®?@rer
P(2), where To'" - TVF(E)®? = TV F(E)®? 2 @y + y ® = is the canonical switch;

e the morphism qglF, respectively the map @L is the cokernel of TglF Rpror id —id Qprgrt (see
, respectively the homomorphism of (A ® A)-P(1)-bimodules defined as follows:

—_

HE (tu(p2(©) ® (c @y @ p) =hi(l e @ t(Fo8).(v0y0p+yese (pt))

where v,y € TVF(FE), £ € C(E,E+ E) and p € P(2).

Proof. Let X and Y be two objects in C. We denote respectively by i : X — X +Y and i3 :
Y — X +Y the injections of the first and the second summand. Moreover consider z, 2’ € T} F(X),
y,y € TVF(Y) and p € P(2). There are several steps to prove this proposition:

1. Computation of cra(T1F®*@sP(2)). First we observe that the quadratic functor 71 F®?®4P(2)
is the postcomposite of the additive functor —®gP(2) : Mods — Modp) with the (quadratic)
functor (T1F®T1F) A2 =T F®%:C — Modg. Moreover the second cross-effect of the functor
(F @ TyF) - A2 = TyF®* : C — Mods is

cro(TVF*?)(X,Y) = (F(X) @ TWF(Y)) @ (W F(Y) @ T F(X)) (2.4.11)

by 2.6 of [12] because the bifunctor T1F @ Ty F : C** — Modg is bilinear. In addition, the

kernel 117+ cry (TiF®?)(X,Y) = TiF(X +Y)®2 of the comparison morphism 1'% (see
(1.2.1))) is given by
AT = (MF @ TF) (3, i), (WF @ Ty F) (i, i2))
= (0P (i7) @ TiF(i3), T1F (i3) ® TyF (i)
We remark that cro (T3 F%?)(X,Y) is a right (R ® R)-module with involution 7" defined by

T(a®b, c®d)=(d@c, b®a)

Hence cry(T1F®?)(X,Y) has a canonical right S-module structure by |2.4.1()|. By |2.4.17|, the
second cross-effect of the functor T3 F'®? ®¢ P(2) is given as follows:

cry(TiF®* @5 P(2))(X,Y) = ero (I F®?) (X, Y) ®5 P(2), (2.4.12)

and the kernel 12" 5P . ory (TLF92 @5 P(2))(X,Y) — TiF(X 4 Y)®2 @4 P(2) of the
comparison morphism (see (1.2.1))) is given by

T F®205P(2 T, F®?2 .
L21 s ()=L21 ®sid.
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Now let us define the morphism ¢ : Ty F(X) Ty F(Y) ®prerP(2) = cr2 (1 F®?®5P(2))(X,Y)
by
Plr®y®p)=(r®y, 0)®sp,

Then we prove that ¢ is an isomorphism in Modp(). For this, it suffices to find its inverse.
Let ¢ : cro(T1F®?)(X,Y) Qror P(2) = TiF(X) @ i F(Y) ®per P(2) be defined by

p((z@y, Yy @2)®p) =20y@p + 7' 9y ® (pt)

where z, 2" € T\ F(X), y,y € T/ F(Y) and p € P(2). We verify that ¢ is S-bilinear. For this,
we get

go((x Ry, ¥ @').(r @72+ (51 @ 52).1) ®p)
=M@Eern)Myern)@p+ A (@ e@r) @M (Y @r)® (pt)
+ M@ @) N (Y @s1)@p+ A (2@5) @M (y® sy) @ (pt), by
=2QY@Y12(r@r®p) + QY ®Y11.2(51 @ 52 ® (p.t))
+ 2 @Y @M12(r2 @11 @ (pt)) + 7' @Y @ Y11.2(52 @ 51 @ p)
By the equivariance axiom of the operad P, we have
Y2(r2 @711 ® (pt) + Y1152(82 @ 51 @ p) = (’71,1;2(7’1 R 1y @ P) + Y1,152(51 ® 52 ® (Pt))) 1
Hence we get
go((x ®y, ¥ @2).(r1 @ra+ (51 ® 52).1) ®p)
=2Qy® (M12(r1 @2 ®@p) +Y1,12(51 @ 52 ® (p:)))
2 @Y @ (Yi12(r1 @1 @ p) + Y112(51 @ 52 @ (pit))) .t

=rR®Y® (T1®T2+<81®82).t).p
ey <(r1 ®71y+ (51 ® 32).t).p.> t,by2.4.11

= QD((ZL‘ XY, y/ ® ZE,) X (Tl & 1o + (Sl & 32).t) p)

where 71,79,51,85 € R. By there is a morphism v : cry (T1F®2) (X,)Y) ®s P(2) —
TiF(X) @ TiF(Y) Qrgr P(2) such that ¢ o ¢fun = ¢. It is clear that it is a (right) P(1)-
module homomorphism. Let us prove that ¢ and ¢ are inverse to each other.

e On the one hand, we have ¢ o 1) = id because we get
(po)((z®y, ¥y @) ®sp) =d(zQyRp+2' @Y @ (p.t))
=(2®y, 0)®sp+ (0, ¥y ®2') ®sp
—(z®y, ¥y 1) ®sp

as desired.

e On the other hand, we get ) o ¢ = id as we have
(Yod)z@y®p)=¢(z@y, 0)®sp) =2QYyp

as desired.
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Now let us define k : TyF(X) @ TVF(Y) Qror P(2) — THF(X + Y)®? ®5 P(2) to be the

T1F® ®sP(2) ot
?

composite morphism k£ = which is clearly a kernel of the comparison morphism

phFeresPE) (see ([1.2.1))). We have the following expression of k:

PEEesPO) o )z @ y @ p)

(5"

(15" @5 id) ((x @y, 0) @ p)

(F @ TyF)(i3,43), (WF @ TvF) (i3,i7)) (z @ y, 0) @ p
= (WF(i}) @ Ty F(i3), Ty F(i3) @ TVF(i3)) (x ® y, 0) ®g p
T F(i})(x) @ TV F (33)(y) ®s p

iy © (MFG7) ® T1F(i3) @par id)(z @ y @ p)

k(z@y®p) =

Moreover we deduce that we have the following isomorphism of (right) P(1)-modules:
() (T1F®2 ®S P(Q)) (X, Y) = TlF(X) (%9 TlF(Y) ®R®R P(Q)
From now on, we consider that the second cross-effect of the functor BL - A% : C — Modp) is

cro(TVF®? @5 P(2))(X,Y) =T F(X) @ TVF(Y) ®psr P(2) (2.4.13)
setting here (L2TIF “esP ))X7y =gy ly o (T F (i) ® TV F(i3)) ®per id), for X,Y € C.

. Computation of (S, S BsPON L oy (T F®* ®s P(2))(E, E) — Ty F(E)®* @5 P(2). We prove
that (STlF ®SP(2))E = q". We have the following equalities:

(STFERsPR)y (TLF(V3)®2 @ id) o (] BFPesP2) o by definition

= (WF(Vy) @ iF (V) s id) o gl o (TLF (i) © TyF(i5) @rer id)
=qp" o (TWF(VE) @ iF(Vy) ®perid) o (T1F(i}) @ T1F(i3) ®per id)

by naturality of ¢k in F
= qglF
. Computation ofHTlF "8sP@) TllcrgUE(E E)®A(T1F(E)®2®s77( )) = TiF(E)**QperP(2).
We prove that HT1F® ®sP() HF where Hg is given in the statement of 2.4.18 We recall
that the morphism H, DFP9sP() ¢ defined in 5.15 of [12] as follows:

7 F®2ggP(2)
Hy

Tiers(Ug)(E,E) @p (T1F(E)®? ®s P(2)) T\ F(E)®* ®per P(2)

#2Y) p porid
2 uT1F®2®SP(2))E,E

cro(Ug)(E, E) @x (1 F(E)®* @ P(2))

where, for X object in C, (uf, pesg p())x : Up(X) @4 (T F(E)®?®sP(2)) = T1F(X)®?®sP(2)
is the morphism deﬁned by

(U, pergp() X (f @A (£ @y @sp)) = TVF(f)(x) @ TIF(f)(y) ®s p
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where f € C(E, X), z,y € T'F(E) and p € P(2). Moreover we recall that cra(uy, peog op(o) ) E,E
is the unique morphism such that the following diagram commutes:

L2®Aid

cry(Up)(E, E) @y (TiF(E)®* @5 P(2)) Up(EY?) @a (TLF(E)*? @5 P(2))

/
cra(ul T F®2®S7’(2)) (uT1F®2®SP(2))E+2

T FO2@4P(2)
)

T1F(E)®? ®rer P(2) (TP (E+2)%* @5 P(2))

/\

with 15 : Ug(E|E) — Ug(E*?) being the kernel of the comparison morphism 757 : Up(E+?) —
Ug(E)*% (see 1.3 of [12]). We recall that iy has a retraction py : Ug(E™?) — Ug(E|E) (as the
functor Ug takes values in the abelian category Mody). Hence po(Ug(E*?)) generates Ug(E|E)
(as a left A-module). Let z,y € Ty F(E), £ € C(E, E™?) and p € P(2). It suffices to prove that
the above diagram commutes if cry(u, F®2®S7>(2)> g.p has the following explicit expression:

cro (U, pezg gp(2) ) BB (p2(8) @4 (@ y @5 p))
=11(r{ o) @11 (15 0€).( ® Yy ®ror P+ Y @ = Qrer (pt))
=TF(r{ o &)(x) @ TVF(r; 0 £)(y) ®rer p + TVF (r} 0 &) (y) @ Ty F(r5 0 §)(2) @rer (p-t)

by uniqueness of CT2(U’,T1F®2®SP(2))E7E‘ On the one hand, we have
(L2TIF®2®SP(2))E,E ° CT?(ulTlF®2®SP(2))E7E (Pz(f) R (T ® Y ®s p))
= gB5 o (TLF() © TF () ©nonid) (TLF( 0 €)(x) © TLF(r 0 )) Onon
+ TiF(r} 0 §)(y) © TiF(13 0 €)(x) Oren (p-) )
— gL (T (i o1 0 €)(2) @ TiF( 013 0 €)(y) @nanp

+TF(iorfo&)(y) @ TiF(i5 075 0 §)(7) ®rer (N))

=T F(iforio&)(z) @ TiF(i50r508)(y) ®sp
+TiF(iforf 0 &)(y) @ TF (i3 075 0 €)(2) ®s (p-t)

=TiF(iforf o &)(z) ® TiF (i3 0130 €)(y) ®s p
+TiF(iz0r;08)(x) ® TIF(if or{ 0 §)(y) ®s p
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On the other hand, we obtain
(U/T1F®2®S73(2)>E+2 o (12 ®4 id) (P2(§) R (T @y Vg p))
= (g, pezggp(2) B2 © (120 p2)(§) @ (2 @ Y @5 p))
= (U, perggp(2)) B+2 (@ (z @y Rsp))
— (Up, perg gp(2)) B+ ((Forfof)®n(z®y®sp))
— (U, poaggp) B2 ((13 075 0 &) @a (2@ y @5 p))
— TyF(€)(x) ® TiF(€)(y) @5 p — TiF(i2 0 13¢)(2) @ TiF (i 0 12 0 €)(y) B p
— T\ F(i30rioé)(z) @ TLF(i30730&)(y) @ p
As T F : C — Ab is a linear functor, we have the following relation:
TLF(©) = TiF(orto )+ TiF(iorios),
by 2.14 of [12]. Hence it follows that we have
(uile®2®SP(2))E+2 o (12 ®n id) (92(5) (T ® Y ®s p)
=TF(iforio&)(x) ® iF(iz0r50&)(y) ®sp
+TiF(i30ri0é)(z) @ TLF(i2 0r? 0 £)(y) ®s p
as desired. Finally we get Hp TP esP() ;IE
. Computation of the involution TTlF "esP) : Y F(E)®? @5 P(2) — T1F(E)®? ®s P(2). By the
definition of TTlF® ®sP(2) , it is the unique morphism such that the following diagram commutes:

T F®2g4P(2)

T\F(E)*? @rer P(2) 2 T\F(E)®?* @5 P(2)
T§1F®2®SP(2) TIF(T%)®2®S7)(2)
LT1F®2®SP(2)
T\F(E)®? Qrer P(2) 2 T\F(E)*? @5 P(2)

where the morphism 72 : Et?2 — E*2 is the canonical switch. We get the following equalities:
(TyF(r2)®* ®g id) 0 2" *PD (2 0 y @ p)
= (IWF(13)%* ®@sid) 0 qg'ls o (T F(i7) 0 T1(i3) ©per id) (z ® y © p)
=T\ F(r5 043)(x) ® TiF (13 043)(y) ®s p
= T1F(i3)(v) @ T1F(i7)(y) ®s p
= TVF(i7)(y) ® Ty F(i3) (z) ®s (p-t)

= g5 o (W F(i}) ® TiF(i3) ®rer id) o (THT ®pert)(z @ y @ p)

2
= [FPesPO) o (TTF @ 1)z @y ® p)
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where z,y € TV F(E) and p € P(2). This proves that

TVF®2@5P(2) _ I F

E ®rort

by uniqueness of TTIF@Q@SP@)

This proves the result. []

In summary, we get the morphism SP(I)()\_F (5 I Sp(l (T1F®? @pmygpa) P(2)) — 1)(F)
in the category QModg(l). It describes the binary bilinear operations encoded by P(2) (and their
relations) involved in the P-algebra structure for the functor F.

2.4.6 Quadratic C-modules over P

Here we give the definition of quadratic C-modules over a symmetric unitary linear operad. We recall
that R and S are rings respectively equal to P(1) and (R ® R) ! &, (see or 3.24 of [12]). First
we define a quadratic C-module over P(1) from a given such object as follows:

Definition 2.4.19. Let M be a quadratic C-module over the ring P(1). We define M? the quadratic
C-module over P(1) depending on M by

M? = STV(Ty(— @ M)®2 @5 P(2))
Explicitly the quadratic C-module M? has the following form by [2.2.4

HM

M? (Tnc'rz(UE)(E E) @n M2 5 a2 TMErgrt o 0, M2)

where
e M? is the left A-module Ti(— ® M)(E)®? @g P(2);

o M?2 is the symmetric (A ® A)-module T} (— @ M)(E)®? ®ger P(2) with involution ™ QproRrt,
where TM : T} (— @ M)(E)#? — Ty(— ® M)(E)®?, 2 ® y — y ® x is the canonical switch;

e the map ¢y, respectively f]f‘\/f,_is the cokernel of ™ ®Rror 1d — 1d Qpgr t, respectively the
homomorphism of symmetric (A ® A)-modules defined by:

fp\”(tll(m(ﬁ)) (@Y ®gp)) =t1(rf 0 &) @ t1(r3 05)-<9€ QY rorP +Y T QreR (p-t)>

where z,y € T1(— @ M)(E), £ € C(E, E™?) and p € P(2).

Let M be a quadratic C-module over P(1). Then we give an expression of the other such object
M? (depending on M) up to isomorphism as follows:

Proposition 2.4.20. Let M be a quadratic C-module over P(1). Then up to isomorphism the
quadratic C-module M? has the following form:

M2 = (Tnch(UE)(E E) @y 12 T, 37z TiOrpnt g a, M§>

where
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o M2 is the left A-module Coker(Py)®? @5 P(2) (induced by the left A-module structure of
Coker(Py), see where Py M., — M, is the morphism involved in the structure of

quadratic C-module over P(1) for M (see ;

) is the symmetric (K@K} module Coker(PM)®2®R®R73( ) (as Coker(Py;) is a left A-module
by with involution Ty ®per t, where Ty : Coker(P)®? — Coker(Py)®* xQyr—yQx
is the canonical switch;

e the map qyr, respectively @,_@‘s the cokernel of f]\\4 Rreor 1d — id Qrer t, respectively the
homomorphism of symmetric (A ® A)-modules defined by:

?[J\w(tll(/)z(f)) (@Y ®Rsp)) =t(ri o) @t1(r5 0 5)~<$ @Y PrerP+Y T Qrer (P-ﬂ)

where x,y € Coker(Py), £ € C(E, E*?) and p € P(2).

Proof. First we have an explicit expression of the quadratic C-module M? (over P(1) by m Then
it suffices to observe that the isomorphism 7 : T (— ® M)(E) — Coker(Py) of A-P(1)-bimodules
given in @ implies that M2 is a quadratic C-module over P(1), and that (()®?®sid, (7)** ®rer
id) : M? — M? is an isomorphism of quadratic C-modules over P(1). O

Notation 2.4.21. Let f = (fe, fee) : M — N be a morphism in QMod?(l). We set f2 = (f2, f2)
where

o 2=Th (11‘;’<1>(f))§2 ®gid : M2 — N2

o 12 =Ty (T;V(f) ®rarid: M2 — N2.

ee

by keeping the notations in [2.4.19, where Tg)(l) : Func,(C, Modp1)) — Quad(C, Modpy) is the
functor defined in 2.2.4

Proposition 2.4.22. Let M and N be two quadratic C-modules over P(1), and let f = (fe, fee) :
M — N between these objects. Then the pair of morphisms f2 = (f2, f2) : M? — N? is a morphism
between quadratic C-modules over P(1).

Proof. We recall that ¢}/ : E® M = T,( — ®M)(E) is the cokernel of the morphism S;*" :
cro(— @ M)(E,E) — E ® M, it is a (regular) epimorphism. Let z,y € E® M, p € P(2) and
¢ €C(E, E*?). We prove that we have

2o HM = N o (id @4 f?). For this, we get

HN o (id 01 12)(tu(pa(6)) @4 (1 () © 1Y () @5 )
= HY (tu(p2(©) @1 (1(T50()) o1 (@) @ T (TEV () (1 (1) @5 1))
= HY (t(p() @1 (8 (T3 (H)p(@) & 8 (T3 () 6v) @5 7) )
= (308 @ (13 0©). (1Y (T (N)m(@) @ 8 (TF V() p(y)) @ren p
+ V(T (e) © 8 (T7V(f)6() ©ren pt)
= (Ti(= @ N)(rF o) o ) (T3 ()(2))) @ (Ti(= @ N)(r3 0 &) o 1) (T (1)) ©ren p
+ (Ti=® M) 0 &) ot (T, (M) @ (Ti(= @ N)(r5 0 €) 0 (T3 (/)(x)) @rar pt
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Then we observe that, for k = 1,2, we have

Ti(~ @ N)(r7 0 &) ot (T3 (f)p(2)) =tV

[
s

(T3 (1)) y o Ta(— @ M)(rF 0 €) (11 ()
Hence we get
Ti(= @ N)(rF o &) ot (T3 () () = Ti(TF V() , 0 Ta(— @ M)(rf 0 () (2))  (2.4.14)

Thus we have the equalities as follows:

—_—

HY o (id ®5 £2) (tn(p2(€)) @4 (8 () @ 11 (y) @5 p))

= (Ti(= @ N)(r} 0 &) ot (T3 (£)i())) ® (Ti(= ® N)(r3 0.) o t) (T3 (f)£(v))) @reor P
+ (T —@N)(r7o&) ot (T3 (Me()) ® (Ti(— @ N) (15 0 &) ot (T (f)r())) @reor pt
= (TU(TFV() 5o Ti(— @ M)(r} 0 )t (2))) @ (T (T3 (£)) , 0 T (= ® M)(r3 0 &) (' (V))) @ p
= (T(T5V(f)) 5 o Ti(= @ M) (1} 0 )1 (%)) @ (T4 (T3 (f)) o Ti(— @ M)(r3 0 ) (1" () @ p

+ T (TV()) g o Ti(= ® M)(r} 0 ) (1 (1)) ® (T1 (T30 (f)) 0 Ti(— @ M)(r3 0 &)t} (2))) @ pt
= (T(T7 ()5 @renid) o (Ti(= @ M) 0 &)(1 (2)) @ Ti(— & M) (13 0 ) (11 (4)) @ p

+Ti(= @ M)(r 0 )(1 () @ Ta(— ® M)(r§ 0 (1 (2)) @ pt)
= f2 (0T e @ (F o). (1 (@) @ 1 (y) op+ 1l (y) @ 1 () @ p) )

— 12 0 HM (113 (pa(€)) @4 (¥ (2) ® 1 (y) ®5 D)) ,

as desired.

o 20 (ﬁ QReoR t) = (fJ\V QReoR t) o f2. For this, we get

12 0 (TM @pen t) (t (x) ® 1 (y) ®ren p)

= ffe(tM( ) @t (1) Qron (pt))

=Ty (T3 (£)) (1 () ® Ta (T3 V() , (11 () @ pt
= (T™ @rort) (T( T3 (f)) o (1 (@) @ T (TS V(1)) (1 () @ p)
= (TN @port) o (Th (11”’ V()3 @rerid) () () @t (y) @ p)

= (T¥ ®port) o f2(1)(2) @ ) (y) @ p)
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e ¢V o f2 = f2oqM. For this, we have the following equalities

¢ o 21 (z) @ 1} (y) ®rer p)
= ¢V o (TU(T V()2 ®ranr id) (1 (2) ® 1 (y) ©ran p)
=T (15 (£)) , (1 (2) @ T (TS V() (1 () @ id
= (B(TV()}y ®sid) (1) (2) © 1 (y) @ p)
= (T30 (h))y) @sid) 0 ¢ (1 (x) @ 1 (y) @per D).
as desired.
]

Then we give the definition of a quadratic C-module over P by relying on the previous arguments.
It just consists in interpreting them entirely in terms of quadratic C-module over P(1) as follows:

Definition 2.4.23. A quadratic C-module over P, denoted by M7, is a pair (M, ¢*) where M
is a quadratic C-module over P(1) (see 2.2.1)), M? is the other such object defined in and
oM = (M, ¢M): M? — M is a morphism of quadratic C-modules over P(1).

A morphism f : M? — N7 between such objects is a morphism f : M — N between the two
underlying quadratic C-modules over P (1) making the following diagram commute in QM od?(l):

M
e —2 M
f? f
N2 N

where f2: M? — N? is defined in 2.4.21] We denote by QMod] the corresponding category.

2.4.7 The functors S} and T}

Let MP = (M, ¢™) be a quadratic C-module over P (see [2.4.23). First we prove that, for an object
X in C, the abelian group X ® M, given in [2.1.3] is endowed with a P-algebra structure implying
that the quadratic functor — ® M : C — Ab takes in fact values in Alg — P. Next we define two
functors ST : Quad(C, Alg —P) — QModl and TY : QMod? — Quad(C, Alg — P), see for
details.

Now we first determine up to isomorphism the quadratic functor taking values in Modp() corre-

sponding to M?, the quadratic C-module over P(1) defined in [2.4.19}

Proposition 2.4.24. Let M be a quadratic C-module over P(1) and M? be the other such object

defined in(2.4.19. Then the following natural transformation between quadratic functors with domain
C and values in Modp)

enom@aspe Ty (M?) =ToW ST (— © M)®2 05 P(2)) = Ti(— ® M)®? @4 P(2)
(2.4.15)

P -S;D(l) = Id 1is the counit of the adjoint pair of functors given in

15 an isomorphism, where € : T,

2.27
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Proof. First we recall that the (linear) functor T3(— ® M) and T1Ur ®, P(1) whith domain C
and values in Modp() are isomorphic to each other by 2.3.3] By 6.24 of [12] and by [1.6.11} the
functor T1'Ug : C — Mody preserves filtered colimits and coequalizers of reflexive pairs. As the
functor — ®g P(2) : Mods — Modp(1y prerserves colimits, it follows that the quadratic functor
Ti(— ® M)®* @5 P(2) : C = Modpqy preserves also filtered colimits and coequalizers of reflexive
pairs. Moreover the following quadratic functor

T;’(l) .S;’(l) (T1(— @ M)®* @5 P(2)) : C — Modp

preserves also filtered colimits and coequalizers of reflexive pairs by 6.24 of [12] and by .

Hence the natural transformation e, (_gan9204p@1) is a natural isomorphism by 6.25 of [12] because it
is a natural transformation whose source and target are functors which preserve filtered colimits and
coequalizers of reflexive graphs, and it is a natural isomorphism if restricted to the full subcategory

(E) of C by B-2.7] 0

Now we verify that, for any object X in C, X® M : C — Ab is a P-algebra. We know that there is
a morphism ¢M = (M, $M) : M? — M of quadratic C-modules over P(1) involved in the definition

of MP = (M, ¢M), see [2.4.23, Applying the functor T, : QMod?(l) — Quad(C, Modp)) to this
morphism, we get its corresponding natural transformation

T,V (M) T V(M) = —o M = Ty V(M) = —o M

between quadratic functors with domain C and values in Modp(;). Then we define the natural trans-
formation \)! : (—@ M)®?@P(2) = —® M to be the following composite of natural transformations:

N =T0(0M) 0 enoanersgp © (DT ®sid) 0 g 0 7" (2.4.16)

where we recall that

o cnameesre)  To ) - SE(Ty(— @ M)®2 @5 P(2)) = Ti(— ® M)®2 04 P(2) is the counit of
the adjunction pair of functors [2.2.7 it is a natural isomorphism by [2.4.24] (see also (2.4.15)));

o (M T (—@M)*2RperP(2) = Ti(—®M)E2@5P(2) is the cokernel of T @ pepid—id @ pent
(see 2.4.13|replacing F' with — ® M);

o t1: —@M = T\(—® M) is the cokernel of Sy ® : cry(— @ M)-A%? = —@ M (see 1.9 of [12]);
o (7% (—@M)®?@P(2) = (—®M)®?®@per P(2) is the natural transformation given in m

We also recall that we have the natural isomorphism ¢=2M : Tp((— ® M)®? @5 P(2)) = Ti(— ®
M)®* ®g P(2) between quadratic functors with domain C and values in Modp(1), and the natural

transformation A : Th((— @ M)®2 @g P(2)) = — @ M given respectively in (2.4.10) and (2.4.8)
(replacing F' with — ® M). The following proposition says that there is another expression of the

natural transformation T}V (¢M) : Ty(— ® M)®2 ®g P(2) = — ® M as follows:

Proposition 2.4.25. The natural transformation Ty (oM : Ti(— @ M)®? @5 P(2) = — ® M is
equal to the following composite:

T2(¢M) ° 5%11(—®M)®2®573(2) = )‘éw © (¢7®M)_1
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Proof. Let X be an object in C. We have the following equalities:

(M)x 0 (6x7") o ()T s id) 0 g~ 0 "

= (A)x o (0x™) T o gx o ()X ®ror id) © ¢z

_ 3 22
_ (AQJ)XOTZ(QM)XO (té ®M)®?*®@RrgrP(2) ) OqZ®R by m

— A @2
=My o (té OM)®?*®@rerP(2 )) o qX o qgl@R

= (Mx ogy 0g®, by 247)
= (Mxoqz®", by @47

= (A)x
P . .-
=T, (1)(¢M) o €Tl( SM)P205P(2) o (1Y ®s id) o g} o ¢ff*" by definition of A}’
As (MY @sid) 0 ¢~®M 0 ¢ff*" is a natural epimorphism, we get
(¢M) o ST ®M)®2®S7D( ) = )\é\i © (¢7®M)_1 )
as desired. O]

Proposition 2.4.26. Let X be an object in C and M” = (M, ¢™) be a quadratic C-module over P
(see(2.4.29). Then (X @ M, (\))x, (A))x) is a P-algebra, where A} : (- @ M) @ P(1) = —@ M

and Ny - (— @ M)®? @ P(2) = — ® M are the nalural transformations respectively given in m
and (2.4.16)).

Proof. Let X be an object in C and M7 = (M, ¢™) be a quadratic C-module over P. By [2.4.23] we
know that the object M, involved in the definition of M”, is a quadratic C-module over P(1). By

applying the functor ’]I‘;D(l) ; QMod?(l) — Quad(C, Modpy), we obtain its corresponding quadratic
functor with domain C and values in Modp(y):

T,V (M) = (— @M, M), by

Hence we know that X ® M is a right P(1)-module whose action of P(1) on X ® M is given by
(AM)x. It can be interpreted by the following commutative diagram:

~

(X ®M)® (P(1)®P(1)) (XoM)®P(1) P(1)

id®v1;1 (M) x®id
(X ® M)®P(1) (X ® M)®P(1)
(M) x %
XM

As TV () x : Ti(— @ M)(X)®2 @5 P(2) - X @ M and () ®gid : (X @ M)®2 @5 P(2) —
Ti(— ® M)(X)®? @5 P(2) are S-bilinear, they are both (R ® R)-bilinear by [2.4.10, Hence the
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composite morphism (A\)!)x : (X @ M)*2@P(2) — X ® M, given in [2.4.16] is also (R ® R)-bilinear.
It is equivalent to say that the following diagram commutes:

~

(X @ M)* @ (P(1) 8 P(1) © P(2) — (X ® M) @ P(1)) @ (X © M) @ P(1))) & P(2)

id®’yl,1;2l \(/\{VI)??@M
(X @ M)®2 @ P(2) (X @ M)®2 @ P(2)
R /
XM

Moreover we observe that (M) y : (X @ M)®? ® P(2) — X ® M is a homomorphism of right P(1)-
modules as it is a composite of right P(1)-module homomorphisms. It is equivalent to say that the
following diagram commutes:

(X @ M)*? @ (P(2) @ P(1))

(X o M)*? @ P(2) @ P(1)

1d®7y2;1 | ()\é\/l)x@)id
(X @ M)®2 0 P(2) (X M) @ P(1)
()‘éw)X %
XM

Then it remains to check that (X @ M, (A')x, (A3')x) satisfies the equivariance axiom. It holds
because we have the following relation:

W)y o (TM @id) = (\)x 0 (id ® t)
by [2.4.13|and (2.4.16)). Finally, (X @ M, (A})x, (A))x) is a P-algebra. O

We recall that the functors S;% : Quad(C, Modpy)) — QMod," and T, : QMod," —
Quad(C, Modp1y) both defined in [2.2.4] form a pair of adjoint functors by [2.2.7. We now give two
1) J y g

functors which summarize the previous arguments.

Definition 2.4.27. We define the functors S} : Quad(C, Alg — P) — QMod} and T} : QModl —
Quad(C, Alg — P) as follows:

1. The functor S} : Quad(C, Alg —P) — QMod[ is such that
o On objects, let F: C — Alg — P be a quadratic functor, then SJ(F) is the pair
<MF7 oML (MFY? MF)

Here

- MF = S;)(l)(F) (see [2.2.5)) is the quadratic C-module over P(1) corresponding to F'
seen as a functor with domain C and values in Modp)

— (MF)? = Sg(l) (T (T;)(l)(MF))®2®7;(1)®73(1)73(2)) is the quadratic C-module over P(1)
associated with the quadratic functor

T (T§(1)<MF))®2 Qp(1)eP(1) P2) =T (T;)(l) . Sg(l)(F))(gz p(1)eP(1) P2):C— Modpy)
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— oM = S;)(l) (E o (¢F) ' o (T1(€F)®2 ®s Zd)) P(MT)?— MT

where A} @ Th(F®2 @5 P(2)) = F and ¢F : Th(F®2 @5 P(2)) = T1F®* @5 P(2) are
respectively the natural transformations given in and (2.4.10), and ep : Tf(l) .
S;)(l)(F) = F' is the counit of the adjunction m evaluated to F.

e On morphisms, let a : ' = G be a natural transformation in Quad(C, Alg — P), then
ST (o) = (g, cra(a)p.g).

2. The functor TY : QMod? — Quad(C, Alg — P) is such that

o On objects, let M” = (M, ¢™) be a quadratic C-module over P as in [2.4.23) T5 (M7) =
(— @M, A, AY"), or simply TF (M”) = — @ M, where
— M is the quadratic C-module over P(1) (see [2.2.1) involved in the definition of M”.
— (—eM, A1) = T, (M) where TS - QMod? ™ — Quad(C, Modp)) is the functor
defined in
— M (=@ M)®? @ P(2) = — ® M is the natural transformation defined in (2.4.16]).

o On morphims, let f = (fe, fee) : M — N be a morphism of quadratic C-modules over
P, then TY(f) = ']I‘E(l)(f) = Ty(f) is the unique natural transformation given by the
universal property of the push-out [2.1.3]

Remark 2.4.28. If we assume that C is a semi-abelian variety and if F denotes the free object of
rank 1 in C, then the functor T} takes in fact values in QUAD(C, Alg — P). This is due to the
fact that, for a quadratic C-module M” = (M, ¢™) over P, the composite functors W - TY (M) =
W (—=®M) : C — Ab preserves filtered colimits and coequalizers of reflexive graphs by , where
W : Alg—P — Abis the forgetful functor. By[1.6.11} the (quadratic) functor TS (MP) : C — Alg—P
preserves filtered colimits and coequalizers of reflexive graphs.

2.4.8 The DNA of a quadratic functor from C to Alg-P is a quadratic
C-module over P

We prove that the minimal algebraic data (called DNA) which characterize quadratic functors with
domain C taking values in Alg — P are quadratic C-modules over P. Before giving the main theorem
of this section, we recall that n : Id = Sg(l) -T;)(U and ¢ : ']I‘;D(l) ~S§(1) = Id are respectively the unit
and the counit of the adjunction (that is the same as in the adjunction pair 2.1.10)), see [2.2.9]
Let M be a quadratic C-module over P(1). Then ny : M — S5 - TPW (M) is clearly a morphism

of quadratic C-modules over P(1), hence so is the pair of morphisms

(nu)? = S5 <T1 (TSN (nar))** @5 id) - M2 (SyM T (M) (2.4.17)

by [2.4.22| (replacing f with 7y) where Ty : Func,(C, Modpn)) — Lin(C, Modp()) is the linearization
functor (see [1.2.9)), and (S;D(l) -']I‘;j(l)(M))2 is the quadratic C-module over P(1) as follows:

(SF 170 (a))? = 7O (i (- e8] TV (00)* @5 P(2))
_ S;’(l) <T1 (T;’(l) . S;’(l) . T;D(l)(M))@’z s 73(2)>

Notation 2.4.29. Let M = (M, ¢™) be a quadratic C-module over P. We set the following composite
morphisms of quadratic C-modules over P(1):

7500 =y 0 6™ o ST (T (o) ™ @sd) : (] TV (0))" = ST - TS ()
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where e_gy 1 TZW - ST (— @ M) = TP(1) - STV - TPD (M) = — @ M = TYW (M) is the counit of
the adjunction evaluated to the quadratic functor — ® M : C — Modp(y).

Remark 2.4.30. Let M = (M, ¢™) be a quadratic C-module over P. We observe that the pair
<S§(1) . T;)(l)(M), ¢’]1‘2~S2(M)>

is a quadratic C-module over P (see the definition given in [2.4.23)).

Lemma 2.4.31. Let M” = (M, ¢™) be a quadratic C-module over P, then the following diagram in
QMod:"
¢1W

M? M
(na)? Y
P(1) mP(1) 2 P(1) P
(SQ W T2 (M)> $T2:82(M) Sz W TQ ( )(M)

commutes.

Proof. We have the equalities as follows:
28200 6 (N2 — o M o S;D(l) <(T1 (€7®M)®2 R zd)) o S;(U (T1 (Tf(l)(mf))@ ®s z'd)
= oMo (Tl (5,®M o "]T;)(l)(n]\/[))®2 ®g Zd)>
= o ¢V
because €_g © ’]I‘;)(l)(nM) = id. O

Corollary 2.4.32. Let M? = (M, ¢M) be a quadratic C-module over P. Then the unit ny - M —
Sf(l) : T;J(l)(M) of the pair of adjoint functors is a morphism of quadratic C-modules over P
from MP = (M, M) to (85 - T3 (M), ¢T+50D).

Proof. 1t is a direct consequence of [2.4.31] O]

Remark 2.4.33. We observe that the unit 1 : [d = Sg(l) . T;D(l) of the pair of adjoint functors m
can be considered as a natural transformation from the identity functor of QModZ to the composite
functors S7 - T%. It is denoted by n” : Id = S} - T} in this case.

Now we prove that, for a quadratic functor F' : C — Alg — P and an object X in C, the counit
(ep)x : (Tf(l) -Sg(l)(F)) (X)=X®@M" — F(X) is a homomorphism of P-algebras. We known that
it is a homomorphism of (right) P(1)-modules by [2.2.7, Then we have the following proposition:

Proposition 2.4.34. Let F : C — Alg—"P be a quadratic functor and let X be an object in C. Then
the counit (ep)x : (T;)(l) -Sg(l)(F))(X) — F(X) satisfies

F

(A)x o (er)x = (er)x o (A

where (\E)x : F(X)®2 @ P(2) — F(X), respectively (A )x : (X @ MF)®2 @ P(2) - X @ MF
(defined in is the structure linear map involved in the P-algebra structure of F(X), respectively
Xo M~

)x
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Proof. First we recall that R = P(1). Then we get the following equalities:

epo A"
=ep o Ty (OM) 0 er onrpezaape © () ®gid) 0 gM" 0 gf"
=¢po TE(U : Sg(l) <E o(¢pF)to (Ti(er)®* ®s Zd)) o 5;11(—®MF)®2®SP(2) o ((t{\ﬂ)@) ®sid) oq "o qFer
=M 0 (7)o (Ti(ep)® ®s id) 0 1, (_anrrys2asp(2) © € oM P)205P(2) © o ((B")® @sid) o g™ o gf®"
= 0 (6F) " o (Ti(er)™ @s id) o (1")" @s id) 0 g™ 0 g7*"
By naturality of 1" in M¥, we have Ti(ep) o 1" = tF o ep. Hence we obtain
epo I
=M 0 (F) Vo (Ti(ep)® @g id) o (HM7)® @ id) 0 g™ o gioR
=\ o (@) o ((# ®Szd) ((ep)®? 05 id) 0 gM" 0 gFER
:_go(q& Lo ( ® Qg zd) oqfo ((5F)®2 oR®Rz'd) oqg‘@R
=M o(¢F) o (t1)® ®@sid) 0 ¢" 0 ¢ o ((ep)®* 0 id)
=Xy o ((ep)®%o zd) ,
as desired. []

Corollary 2.4.35. Let F': C — Alg — P be a quadratic functor and let X be an object in C. Then

the morphism (ep)x : (']I‘;)(l).S;)(l)

(F))(X) = F(X) is a homomorphism of P-algebras.

Remark 2.4.36. Let F : C — Alg — P be a quadratic functor. By [2.4.35] we observe that the counit
€ T;)(l) T, P() — Id can be seen as a natural transformation from the composite functors TS - SP
to the 1dent1ty functor of Quad(C, Alg — P). Tt is denoted by €7 : T} - S} = Id in this case.

The main result of this section generalizes the theorems 7.1 of [12] and [2.2.7] Tt says that quadratic
functors with domain C and values in Alg—P are entirely characterized by quadratic C-modules over

P (see 2.4.23)) which constitute their DNA.
Theorem 2.4.37. Let P be an operad as in|2.4.1. Then

e the functors

ST : Quad((E), Alg — P)

are equivalences of categories, inverse to each other.

e if C is a semi-abelian variety, then the functors

(S7) : QUAD(C, Alg — P) =

= QMod], : T}

QMod? : (T}

also are equivalences of categories, inverse to each other. Here the functor (T%) is given by T

(defined in which actually takes values in QUAD(C, Alg —

the functor (S}) is the restriction of S} (given in :
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Proof. First we assume that C is a semi-abelian variety. In the whole proof, X, M” and G : C —
Alg — P will denote respectively an indeterminate object of C, a quadratic C-module over P (see
and a quadratic functor. Here we prove that the natural transformation n” : Id = SJ - T
(given in (2.4.33))) is the unit of the pair of adjoint functors in the statement. For this we check that
v = nur : MT — ST - TT(M7) satisfies the universal property of the unit of the adjunction in the
statement.

Let a = (e, aee) : MP — SP(G) be any morphism in @ModZ. We check that there is a unique
natural transformation 3 : T} (M7”) = G in Quad(C, Alg — P) such that o = SF(3) o mys. First we

remark that o : M — S;)(l)(G) is also a morphism in QModg(l). Hence there is a unique natural

transformation £ : ’]T;)(l)(M) = G in Quad(C, Modp)) such that
a=STY(8) oy (2.4.18)

by the universal property of the unit 1y : M — S;D(l) : ']I‘;D(l)(M) of the adjunction Next we
have

eq o Ty V() =eqo (T3 -STM)(B) o T W ()

= Boc_guoTi D)

=0
Thus we get
ecoThW(a) =B (2.4.19)
Then we verify that o = S} (3) o nye. It remains to prove that the following diagram commutes:
M2 d)]\l M
a nMm
P1) mP(1
$52°T2(M) SQ w. TQ ( )(M)
57 (8)
P(1 2
(877(@) 7M@)

d)]\/IG

Here we recall that ¢M“ = SJ®) (AF o (¢%) " o (T1(e0)®* @gid)) = oM o sy (T1(e6)®? @sid), see
the definition in[2.4.27] The top rectangle and the right-hand triangle of the above diagram commute
by and (2.4.18). Moreover the diagonal rectangle commutes because a : M7 — SP(G) is a
morphism of quadratic C-modules over P. Then we prove that the left-hand triangle commutes. We
have the equalities as follows:

(STV(B)? o (nu)? = STV ((Tu(B)®* @ id)) o STV ((Tu(TF P (ar))** @5 id) )
= Sg(l) (Tl (8o Tg(l)(ﬁM))m ®s id)

_ S’g(l) (T1 (Tg’(l)(a»@? R Zd)

:aQ,

as desired. As (n37)? is an isomorphism (hence an epimorphism), the bottom rectangle of the above

diagram commutes, i.e.

oM o (s(8))" = ST () 0 T (2.4.20)
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implying that Sf(l)(ﬁ) : Sf(l) : ’JI‘;D(I)(M) — Sg(l)(G) is in fact a morphism of quadratic C-modules
over P.

Next we prove that, for all X € C, fx : T;)(l)(M)(X) = X ®M — G(X) is a homomorphism of
P-algebras. By [2.4.18 and [2.2.7, we know that Sx is a P(1)-module homomorphism. It remains to
prove that

Bx o (M)x = (A)x o ((Bx)™ @5 id)
For this we consider the following equalities:
s (803 (6M)) o mare
=8B 0 (877 T ™) (@) 0 e
=8,(8) o mar 0 M
=8,(8) om0 6™ 087 (Ty(e-enr) ™ ®s id) o (mar)?
_ Sf(l)(ﬂ) o ¢SQ-T2(M) o (77M)2
= Moy (T1(B)** ®s id) o ()

= Sg(l) E o (¢9) o (T1(e6)** @5 ’id) o Sf(l) (T1(8)%* ®s id) o (nu)?

=8 (0 0 (69) o (Ty(Boc—em)™) ®5 zd) o (1a)?

=SV (G 0 (%)™ o (Tu(B)** ®sid)) o Sy (T1(e—omr) ™ @5 id) © (nar)?
=8,V (AF 0 (99" o (T1(B)** ®s id))

=s;W (EO (69) " o (T1(B)** ®g id)) oS é‘T1 —eM)P2egP(2)) © N

= 5(1) (E o (¢9) o (Tl B)** ®g Zd) O ey ®M)®2®s7>(2)) O Ns2

By the uniqueness in the universal property of the unit 2 : M2 — S70 - T (M2), we obtain

BoTyM (M) = AF 0 (¢%) ™' o T1(8)* ®s id) o er,(—emys2asp() (2.4.21)
Then we get the equalities as follows:

BoX'=po T;D(l)(¢M) ©Er_ameesp © () @sid) 0 g™ o gz®"

= 2§ 0 (69) 7" o (TL(B)** ®s id) 0 7y (—orne20sP@) © 1 _aanerasp © (1) @sid) 0 g™ o g™
:Eo (6%) " o (T1(B)*? ®s id) o ((t})** ®s id) 0 ¢ 0 gF®"

=X o (%) o(tG )¥? ®gid) o (%* @gid) 0 g™ o ¢ff*"

=29 0 (%) o ((t9)%2 g id) 0 % 0 ¢f® o (8%% @ id)

o (82 ®id),
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as desired.
Asn:ld= sy -T;D(l) is a natural equivalence by [2.1.13} so is n” : Id = S - T} (see the notation

given in [2.4.33). Hence it suffices to prove that the counit €” : T} - ST = Id (see is a natural
equivalence for the second and third points in the statement.

If we assume that C = (E), then ¢ is a natural equivalence by the second point of implying that
e” is also a natural equivalence. Hence the functors S} and T} form a pair of adjoint equivalences.
Now we suppose that C is a semi-abelian variety and E is the free object of rank 1 in C. For a
quadratic functor F' : C — Alg — P preserving filtered colimits and coequalizers of reflexive graphs,
the counit €7 : TY - SJ(F) = — @ Sy(F) — F (evaluated to F) is a natural transformation between
quadratic functors preserving filtered colimits and coequalizers of reflexive graphs which is a natural
isomorphism if restricted to the full subcategory (E) of C (by the above argument). Hence it is a
natural isomorphism by 6.25 of [12]. Thus the functors (S}) and (T}) in the statement form a pair
of adjoint equivalences. O

This concludes the proof of 1.4.42, which gives the "DNA" of quadratic functors with domain C
and values in P-algebras.
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Chapter 3

Quadratic equivalences

Here we assume that C is a 2-step nilpotent category. Moreover we recall that P is a linear symmetric
unitary operad in the category of abelian groups endowed with its standard monoidal structure given
by the tensor product. The unit of P is denoted by 1p € P(1), and Alg — P denotes the category of
P-algebras.

In this chapter, we first give a criterion for certain quadratic functors to be quadratic equivalences
by using the notion of linear extension of categories. Then we characterize quadratic C-modules over
‘P which correspond to quadratic equivalences with values in P-algebras.

Notation 3.0.1. We denote by C? the dual category of C whose objects are the same as those in
C and, for X and Y objects in C, morphisms are of the form f? : Y — X, where f : X — Y is
a morphism in C. In addition, we consider Op® : C — C° the contravariant functor which is the
identity on objects and reverses direction of any morphism in C.

If G : C — D is any functor, then GO : C%? — D is the unique functor factorizing Op? - G
through Op®. Then we recall that Ab(C) is the full subcategory of C formed by abelian objects (see

1.3.1) and that AbC : C — Ab(C) is the abelianization functor defined in As [X, X4, is a
normal subobject of X, we have the following short exact sequence in C:

abX

00— [X, X]rgp 25 X 25 X% 0 (3.0.1)

where ix : [X, X]74, — X is the image of ¢ and we denote ex : Ide(X|X) — [X, X]1q, its coimage
(see the notations given in (1.3.5)).

3.1 2-step nilpotent categories as linear extensions of abelian
categories

In this part, we shall use the notion of linear extensions of categories given in 5.1 of [4]. There
are countless examples of this setting in algebra as well as in homotopy theory. As an example,
it is used to characterize the category of the Moore spaces M(A,?2), for A an abelian group, as
a non trivial cohomology class of the second cohomology of Ab in coefficients on the Ab-bimodule
Ext(—, T') : Ab? x Ab — Ab, where I' : Ab — Ab is the J.H.C Whitehead’s quadratic functor [39],
see [3]. Here we recall the basic definition:

Definition 3.1.1. Let B be a category and let D : B? x B — Ab be a bifunctor. We say that
D5 ALB
is a linear extension of the category B if
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1. A is a category with the same objects as B, and p is a full functor which is the identity on
objects;

2. for each f: A — B in B, the abelian group D(A, B) acts transitively and effectively on the
subset p~!(f) of morphisms in A. We write fy+a for the action of « € D(A, B) on fo € p~*(f).
Any fo € p~(f) is called a lift of f;

3. the action satisfies the linear distributive law:

(fo+a)o(go+ B) = foogo+ (Dlide, f)(B) + D(g,idp)(a))

where f: A — B and g: C — A are morphisms in B and fy: A — B (resp. go : C — A) are
respecitvely lifts of f (resp. g).

The fundamental algebraic example studied and exploited in many contexts is the following; it
provides the model of our generalization to arbitrary 2-step nilpotent categories below.

Example 3.1.2. Let us denote by (Z) nis,(Gr) the full subcategory of the category of groups Gr whose
objects are free 2-step nilpotent groups of finite rank. We denote by (Z) 4, the full subcategory of the
category of abelian groups Ab formed by free abelian groups of finite rank, and by Ab : Gr — Ab the
abelianization functor. Here we take the restriction of the abelianization functor to (Z) niy,Gr) taking
values in (Z) 45 (since the functor Ab preserves coproducts), also denoted by Ab : (Z) Ny (ary = (Z) ab-
Then we consider the category Im(Ab) that has the same objects as (Z) ni,(cr) and, for F and H two
free 2-step nilpotent groups of finite rank, I'm(Ab)(F, H) is the set of morphisms Ab(f) = f* : F® —
H% where f : F — H is a morphism in (Z) Nity(Gr)- We define the functor AV : (Z) N, (cr) — Im(AD)
that is the identity on objects and the abelianization functor on morphisms. Moreover we consider
the functor v, : Im(Ab) — Ab given by

o On objects, let F' be an object in (Z) yi,(ar), then 7(F) = %(F) = [F, F| € Ab. We recall
that [F, F] is here the classical binary commutator in Gr.

e On morphisms, let F and H be two free 2-step nilpotent groups of finite rank and g : F% — H
be a morphism in I'm(Ab), then we set 72(g) = v2(fo) where fo : F' — H is any lift of g o abp
through aby, i.e. such that

goabp =abgo f

where abp : F — F® is the quotient map. Such morphisms exist because F is projective (as
any free group). Let f1, fo : F — H be two such lifts, then their "difference" takes values in
72<H) = [H7 H]; 1. e.

Ve e F, (fify")(x) = fi(z)fo(x)! € [H, H] = v2(H)

because, for x € F, aby(fi(z)) = aby(f2(z)) and Ker(aby) = [H, H]. Moreoever we observe
that fi.f, ' : F — ~,(H) is a group homomorphism because v, (H) is central in H (as H is a
2-step nilpotent group). Then we deduce that f; and f, are equal if we both restrict them on

72(F) = [Fv FL Le. 72(f1) = ’VQ(fQ) because

(fofa R FI) = [ DE), (fufs )] C [a(H), 2(H)] =0

This is due to the fact that vo(H) is central in H (hence it is an abelian group) because H is
a 2-step nilpotent group. As a consequence, the functor v, : Im(Ab) — Ab is well-defined on
morphisms.

90



We consider F' a free 2-step nilpotent group of finite rank. As we know, there is a natural extension
of Ab(F) = F by the binary commutator vo(F) = [F, F| (which is an abelian group because it is
a central subgroup in F') as follows:

00— [F, F] 25 F 25 pab 5 (3.1.1)
where ip : [F, F] — F is the inclusion map and abp : F — F% is the quotient map. Then such
"concrete" extensions can be put into a global structure by considering the following linear extension
of the category Im(Ab):

Hom(—, %) — (Z)nusir) s Tm(Ab) (3.1.2)
Here the bifunctor Hom(—, 72) : Im(Ab)? x Im(Ab) — Ab is defined on objects by

Hom(—, ig)(F, H) = Hom(F, Y2(H)) = Hom(F, v(H)),

for F" and H objects in (Z)ni,(cr)- Note that, for any free 2-step nilpotent group of finite rank F,
the abelian group 1»(F) = [F, F] may be seen as the second exterior algebra A2F'% of F®. For this
we observe that [—, —] : ' x F' — F factorizes through the surjection abp X abp : F' x F — F% x b
and clearly maps into the central subobject [F, F] of F. We denote by [—, —] : F® x F% — [F, F]
its (unique) factorization which is bilinear since F' is 2-step nilpotent. By the universal property of
the tensor product, there is a unique abelian group homomorphism ¢ : F? @ F® — [F, F] that
factorizes [—, —] : F% x F% — [F, F] through @ : F% x F* — F @ % Hence we have

¢r(@©9) =199
where g, € F. If g = ¢/, then ¢p(g ® g) is trivial. Hence there is a unique abelian group
homomorphism ¢z : A2F® — [F, F|] by the universal property of the second exterior algebra of F.
It is clearly a surjection (already true if F' is any 2-step nilpotent group). Now thanks to Witt’s
theorem, the abelian group homomorphism ¢z : A2F® — [F, F] is an isomorphism whenever F is a
free 2-step nilpotent group of finite rank. Thus we get back the classical central extension for 2-step
nilpotent groups as follows:

Hom(—, /\2) LN (Z) Nita(Gr) Ab Im(Ab)

Now we generalize this example to any 2-step nilpotent category.

Definition 3.1.3. We define the category Im(Ab°) such that it has the same objects as C and, for
X and Y objects in C, Im(Ab°)(X, Y) is the set of morphisms f® : X% — Y% where f : X — Y is
a morphism in C. If we take the restriction of the above linear extension to any full subcategory C’
whose objects are regular projective, then Im(A°)(X, Y) = Ab(C")(X®, Y®) for X and Y objects
in C'.

Notation 3.1.4. We consider the functor (A°)" : C — Im(Ab°) that is the identity on objects and
the abelianization functor Ab¢ : C — Ab(C) on morphisms.

Let X and Y be two objects in C. We set D(X, Y) = C(X, [V, Y]r4.), and it is an abelian
group because [Y, Y]z is an abelian object in C (since it is a central subobject of Y'). Since
(abx)* : C(X® [Y,Y]1a,) = C(X,[Y,Y]14.) is an isomorphism of abelian groups, the abelian group
D(X, Y) simply acts on C(X, Y') by as follows:

f4+pa=f+(abx) () = piy o (f, aoabx)’, (3.1.3)

for f € C(X,Y) and a € D(X,Y), where ¢;, : Y X [Y, Y|4, — Y is the unique factorization of
(id, iy) : Y +[Y, Y]q, — Y through r4% : Y + [V, Y]i4. = Y X [Y, Y]ia, (see[1.5.4).
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Remark 3.1.5. Let f,g : X — Y be two morphisms in C. Then, aby o f = aby o ¢ if, and only if,
there is & € D(X,Y) such that

g=[f+pa
It is a direct consequence of [1.5.22
Remark 3.1.6. Let X, X" YY" €C. For f € C(X,Y), g€ C(X",X), he C(Y,Y') and « € D(X,Y),

we have
(f+pa)og=fog+paog®
{ ho(f+pa)=hof+prs(h)oa
It is a direct consequence of
Definition 3.1.7. We define the functor 5,¢ : Im(Ab°) — Ab(C) of the following way:
e On objects, let X be an object in C, then we set 7,(X) = 1§(X) = [X, X]14..

e On morphisms, let f X — Y be a morphism in C, then (f“b) = ~S(f). We shall verify
that the functor 4, is well-defined on morphisms. We consider f : X — Y another morphism
such that f®oaby = aby o f. It follows that aby o f = aby o f. By|L m there is a morphism

: X% — Y, Y14, such that

f=F+pa
By precomposing with the image iy : 75(X) — X of ¢ : Idp(X | X) — X, we get

b

foix=(f+pa)oix <& foix=foix+pao(ix)” <& iyos(f)=iyors(f)

because abx oix o ex = abx oi, o ex = 0 implying that abx oix = 0 (since ex : Ide¢(X|X) —
[X, X]14. is an epimorphism). Asiy : [Y,Y]q, — Y is a monomorphism, we have 75 (f) = 75 (f)
as desired.

Then we define the following bifunctor:
Definition 3.1.8. The bifunctor D : Im(Ab°)? x Im(Ab°) — Ab is defined such that:
e On objects, let X and Y be objects in C, then D(X, Y) = C(X®, [V, Y]14.).

e On morphisms, let f € D(X, X') and g € D(Y,Y"), we set D((f%), g®) = 7, (g®), 0 (f2)* =
1§ (g). 0 ()" : D(X',Y) — D(X,Y").

Now we are able to see any 2-step nilpotent category as a linear extension of categories, as follows:

Proposition 3.1.9. Let C be a 2-step nilpotent category. Then we have the following linear extension

of categories:
(AV}
*c@JMAm

where Im(AC) is the category given in and (AVC) and D : Im(Ab°)P x Im(AWC) — Ab are
respectively the functor and the bifunctor deﬁned in[3.1.4) and[3.1.8.

Proof. The first point of is clearly satisfied by construction of the category I'm(Ab°) and of the
functor (AbC) : C — Im(Ab°). Now let g € Im(Ab°)(X,Y). Then there is a morphism f: X — Y
in C such that g = f%. Then putting

f+pa=f+(abx)*(a) (see (3.1.3))
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defines a simple action of D(X,Y) on the set C(X,Y) since (abx)* : C(X® [Y,Y]rs.) —
C(X,[Y,Y]r4.) is an isomorphism of abelian groups by [1.5.16} the orbits of this action is the set
((Abc)’)fl(f) by [1.5.22] Hence the second point of|3.1.1|holds. Then it remains to check that the third
point is verified, i.e. the linear distributive law. Let f € Im(A)(Y,Y’) and g € Im(AV¥)(X,Y).
Consider fo : Y — Y’ and go : X — Y respectively two lifts of f and ¢g. Let a € D(Y,Y’) and
p e D(X,Y). First we get

(90 +p ﬂ)ab oabx = aby o (go +p B) = aby o0 gy = g o abx

by [1.5.22] Hence we obtain (go +p 3)%° = g because abx : X — X is an epimorphism. Then we
have

(fo+pa)o(go+pB)=foo(go+pB) +p o (go+p 5)ab,by
= foo go+p5(fo) o B+p aog,byB.16
:f0090+D72C(f)05+D0409aseem

= foo g0 +p 2°(£)(B) +p g (a)
= foogo+p (D(id, H(B) + D(g, id)((x)) ,see B.1.8

3.2 The five lemma for linear extensions of categories
First taking a linear extension of category as in [3.1.1] the functor p : A — B has the following
property already proved in [I] by H.J Baues:

Proposition 3.2.1. Given a linear extension of categories as in then the functorp: A — B
reflects isomorphisms, equivalently speaking it satisfies the sufficiency condition in the sense of H.J.
Baues, see 1.3 of [1)].

Proof. This is a straightforward application of 2.12 of [I] because the mixed term (see 2.7 of [1]) of
the action D : B? x B — Abon p: A — B is trivial. ]

Then we give the five lemma in this context of linear extension of categories which has been
provided in 5.5 of [4] for the first time. However we provide a slightly generalized assumption of this
lemma and a more detailed proof as follows:

Lemma 3.2.2. Consider the following morphism of linear extensions of categories:

+ 4

D’ Al B
F G
D - A P B

that is, F' and G are functors as indicated such that the right-hand square commutes, and ¢ : D =
(GO x G)* - D' is a natural isomorphism between bifunctors with domain B x B and values in Ab
such that

F(f+a)=F(f) +é¢xy(a)

where X and Y are objects in A, f € AX,Y), a € D(X,Y). Suppose that G : B — B is an
equivalence of categories. Then F' is an equivalence of categories.
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Proof. First we prove that F' : A — B is essentially surjective, i.e. for each object B in A, there
exists A € A such that F(A) = Bin A". As G : B — B’ is an equivalence of categories (in particular
essentially surjective), there exists A € B and an isomorphism ¢ : G(A) = p/(B) = B in B'. Moreover
the right square of the above diagram commutes, then we have

G(A) =G -p(A) =p' - F(A)

Asp' : A" — B is full, there exists ¢ : F(A) — B morphism in A" such that ¢ = p/(@). By [3.2.1}
¢ : F(A) — B is an isomorphism in A’. Then it suffices to prove that F' is full and faithful. Let X
and Y be two objects in A, we have

o F s full. Let g € A(F(X), F(Y)). We consider the diagram below:

AX, Y) - A(F(X), F(Y))
B(X, Y) 5 B(F(X), F(Y))=B(G(X), G(Y))

As p, p’ are surjective on morphisms and G is a bijection on morphisms, there is f € A(X, Y)
such that

P9) =G-p'(f) =p" F(f) =p'(F(f))
Then there exists § € D'(p'(F (X)), p'(F(Y))) such that g = F(f) + 8 by As ¢xy is

surjective, we have

Ja € D(p(X), p(Y)), B =odxy()
Consequently, we have
g=F([)+8=F(f)+oxy(a) = F(f+a),
It proves that F' is full.

o F'is faithful. Let f,g € A(X, Y) such that

By applying p’, we obtain G - p(f) = G - p(g), which is equivalent to p(f) = p(g) because G is
faithful. Then there exits a € D(p(X), p(Y)) such that g = f + «. By applying the functor
F', we have

F(g) = F(f +a)=F(f) + ¢xy(a) = F(g) + ¢xy(a)

By [1.5.21} ¢xy(a) = 0 implying that o = 0 because ¢x y is injective. Finally g = f. Hence F
is faithful.

]

3.3 Existence of a morphism

Let C be a semi-abelian category. We need to recall the "join" between two subobjects, defined in
2.7 of [14]. For subobjects

Lo x oM
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of an object X in C (merely in homological categories), we write
LVM=1Im((l,m): L+M — X),

see [6]. Let D be a semi-abelian category, F' : C — D be a reduced functor and 6 : A — G be a
morphism. We start to recall the existence and uniqueness of a certain morphism, already determined
in [14]. Here we denote respectively by r¢ : A+ G — G, ig: G — A+ G and iy : A — A+ G the
retraction onto the second summand, the injections of the second and first summand. First we have
the split epimorphism F(rg) : F(A + G) — F(G) whose section is F(i¢) : F(G) — F(A+ G) and
its kernel is denoted by ker(F(rg)) : Ker(F(rg)) — F(A+G). As F is a reduced functor, there is a
unique morphism s : F(A) — Ker(F(rg)) factorizing F'(ia) : F(A) — F(A+G) through ker(F(rg)).
In addition, there is a unique morphism k : F(A|G) — Ker(F(r¢)) such that ker(F(rg)) o k = &
where I F(A|G) — F(A+ G) is the kernel of the regular epimorphism ri" = (F(ra), F(rg))t :
F(A+G) — F(A) x F(G). Setting p = F(ra) o ker(F(rg)) : Ker(F(rg)) — F(A), it is a split
epimorphism whose section is s. The nine lemma applied to the following commutative diagram:

0 0 F(G)

F(rg) TG

00— F(A|Gh—2— F(A+ G) — " F(A) x F(G)—0

ker(F(rg)) LA
0—— F(A|Gy——L—+ Ker(F(r¢)) F(A)——0
0 0 0

ensures that the bottom sequence of the diagram is split short exact, where 7 : F(A)x F(G) — F(G)
and 1y @ F(A) — F(A) x F(G) are respectively the projection onto the second summand and the
injection of the first summand. By 3.10 of [II] or 3.1 of [I4], there is a strict action core (see 3.5 of
[11]), or simply an action (see 3.1 of [14]), ¢ : Idp(F(A|G)|F(A)) — F(A|G) which is the restriction
of the regular epimorphism (k, s) : F(A|G) + F(A) — Ker(F(rg)) (by protomodularity of D) to
Idp(F(A|G) | F(A)), such that

i 0t = (15, Fia)) 015"

Then we prove that the following diagram commutes:

Idp(F(A|G) | F(A)) a F(A|G)

1dp (S§oF(dlid) | F(6)) SFoF(3lid)

Ldp(F(G) | F(G)) F(G)

Sé’d:cg(g)
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We have
S3% o Idp(Sy o F(8id) | F(0)) = (S5 o F(dlid), F(8)) o t3?

= (F((8,id)) 0 13, F(8)) 0 13"

= (F((8,id)) 0 5, F((3,id)) 0 F(in)) © 13"
= F((6,id)) o (13, F(ia)) o 13"
= F((6,id)) o 1 o4

= SF o F(8lid) o

P
By 4.4 of [I1], there exists a unique morphism h = < (52) G y F (0]id) > : F(A|G) x F(A) = F(G)
such that ho k = (S o F(6]id) and ho s =

3.4 Commutators and the effect of functors on exact sequences

In this part, we provide short exact sequences by applying reduced functors preserving coequalizers
of reflexive graphs to right short exact sequences. The next proposition gives a useful short exact
sequences as follows:

Proposition 3.4.1. Let F': C — D be a reduced functor preserving coequalizers of reflexive graphs.
Consider the following right exact sequence in C:

A—-G—=Q 0
Then it gives rise to the following short exact sequence:

F(q)

0—[4, GlpV [Alr — F(G) F(Q)——0

Proof. As F preserves coequalizers of reflexive graphs, we have the following exact sequence by 2.31
of [14]:
F(q)

F(A|G) x F(A)—"—F(G) F(Q)—0

Then it suffices to determine the image of h so as to have our desired short exact sequence because
im(h) : Im(h) — F(G) is the kernel of F(q). We remark that the images of (SI')g o F(6]id) and
F(9) are respectively [A, G]r and [A]r by definition of these commutators. Hence we have

Im(h) =Im(ho (k, s))

= m(((8)c 0 F(dlid), F(5)))
— Im ((S5) o F(8lid)) v Im (F(6))
=[A, Glr V [AlF
as desired. O

Corollary 3.4.2. Let F' : C — D be a reduced functor preserving coequalizers of reflexive graphs and
Y be an object in C. If, moreover, we suppose that F' is quadratic, then we have the following short

exact sequence
- F

Iy, Ylrde F(aby)
_—

0——[[Y, Yralr F(Y) F(Y®)——=0
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where we recall that zf; Vi, WYy Ylelr — F(Y) is the image of the morphism F(iy)
’ C

F([Y, Y]ia,) = F(Y).
Proof. We just apply to the following short exact sequence:

iy aby

Y Yab 0

0——=1[Y, Yia
If, moreover, F' is a quadratic functor, then
Y, Y]ige, YIp CIY, Y, Y]r =0,

by and by because F preserves regular epimorphisms (since it preserves coequalizers of
reflexive graphs by 2.31 of [14]). O

3.5 Ciriteria for quadratic equivalences

In this part, we find criteria for certain quadratic functors between 2-step nilpotent categories re-
spectively varieties to be quadratic equivalences, at least when restricted to suitable subcategories.
We start by stating the precise results.

Theorem 3.5.1. Let C and D be two 2-step nilpotent categories with distinguished full subcategories
C' respectively D' all of whose objects are reqular projective. Let F: C — D be a reduced quadratic
functor which preserves coequalizers of reflexive graphs and carries C' into D'. Denote by F': C' — D/,
AV C" — Ab(C) and AVP': D' — Ab(D) the functors given by the corresponding restrictions of F,
AWC and AbP, respectively.

Also let Ab(C') (resp. Ab(D')) be the full subcategories of Ab(C) (resp. Ab(D)) whose objects are
isomorphic to the abelianization of some object in C' (resp. D').

Then the functor F': C' — D' given by restriction of F is an equivalence provided the following
three conditions hold.

1. There is a natural isomorphism o: AbP - F = F - AWC of functors from C to D such that the
triangle

F(X9b) X F(X) (3.5.1)
commutes for all objects X in C.

2. The functor Ab(F): Ab(C) — Ab(D) given by restriction of F (which is defined thanks to
condition 1.) s full and faithful, and its restriction Ab(F"): Ab(C') — Ab(D') is essentially
surjective. Here Ab(C') and Ab(D') denote respectively the full subcategories of Ab(C) and
Ab(D) whose objects are isomorphic to abelianizations of objects in C' and D', respectively.

3. For every object Y in C', the morphism F(iy): F(745(Y)) — F(Y) is a monomorphism.

This result can be considerably strengthened for 2-nilpotent varieties, as follows.

Theorem 3.5.2. Let C and D be two 2-step nilpotent varieties. Let F': C — D be a reduced quadratic
functor. Suppose that F satisfies the following properties.
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1. F preserves binary coproducts, filtered colimits and coequalizers of reflexive graphs.
2. F carries a given free object E of rank 1 in C to a free object of rank 1 in D.

3. Up to isomorphism F commutes with the abelienization functors of C and D, as in condition
1. of Theorem 3.5.1,

4. The functor Ab(F): Ab(C) — Ab(D) given by restriction of F (which is defined thanks to

condition 3.) is an equivalence.
5. Forn>1 and Y = E*", the morphism F(iy): F(YS(Y)) — F(Y) is a monomorphism.
Then F is an equivalence, with a weak inverse F~1 described in Lemma below.

Remark 3.5.3. Condition 4. may be replaced with the condition that the map
Fpas gav: C(E®, E*) — C(F(E™), F(E™))

is bijective. In fact, as both F' and abelianization functors preserve binary sums and F' commutes with
the abelianization functors (up to isomorphism), it follows that Ab(F') preserves direct coproducts
and thus is additive. Hence if Fgas g is bijective it is a ring isomorphism and hence the functor

—_—

A(F): (B®) — (F(E™))

is full and faithfull since morphisms in these categories can be described by matrices with coefficients
in the rings C(E®, E%) respectively C(F(E®), F(E®)), and composition of morphisms corresponds
to matrix multiplication. Now Lemma applied to Ab(F') instead of F' shows that Ab(F') is an
equivalence (note that Ab(F) preserves coequalizers of reflexive graphs and filtered colimits since F'
does and commutes with abelianization functors).

Now let C and D be 2-step nilpotent categories. Recall the bifunctors D : Im(Ab°)P x Im(Ab°) —
Ab and D' : Im(AbP)P x Im(AbP) — Ab the bifunctors defined in For all X,Y € C, we know
by |1.5.22] that the abelian group D(X,Y) simply acts on the set C(X,Y") as follows:

f—FD(LY:QDiYO(f,OéOCbe)t

where f € C(X,Y), o € D(X,Y) and ¢;, : Y X[Y,Y]14. — Y is the cooperator of iy : [Y, Y14, — Y
and the identity of Y (see (1.5.4)). Similarly, for A, B € D, the abelian group D’(A, B) acts on the
set D(A, B).

Remark 3.5.4. Let X and Y be two objects in C, and let F': C — D be a reduced quadratic functor
preserving coequalizers of reflexive graphs (hence regular epimorphisms). Since [F(Y), F(Y)]a, is a
central subobject of F(Y') by [1.3.11] we observe that the abelian group D(F(X), F(Y)) acts on the

set D(F(X), F(Y)) by (1.5.6), as follows:
9+ B = Gipy, (9,80 abr))’ (3.5.2)

where g € D(F(X), F(Y)), 8 € D'(F(X), F(Y)) and i, : F(Y) x [F(Y), F(Y)]1ap, — F(Y) is
the cooperator of ipyy and the identity of Y (see (1.5.4))).

Now we define a functor 517 : Im(Ab°) — Ab(D) as follows:

e On objects, let X be an object in C, then 7,"(X) = [[X, X]1a.]r-
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e On morphisms, let f: X — Y be a morphism in C, then 5, (f?) is the unique morphism such
that the two rectangles of the following diagram commute:

F(E(X)) F(y§(f)))=F (726 (£*)) F((Y))
P§(0]p === - - e ~PEO)r
F(X) il F(Y)

where the functor %,¢ : Im(Ab°) — Ab(C) is defined in subsection 2.1. Is is clear that the
functor 71 : Im(Ab°) — Ab(D) is well-defined on morphisms.

Next we define a specific bifunctor D : Im(Ab°)°P x Im(Ab°) — Ab depending on F which kind
of “interpolates” between D and D', as follows:

Definition 3.5.5. We define the bifunctor D : Im(Ab°)? x Im(Ab°) — Ab as follows:

e On objects, let X and Y be two objects in C, then D'(X,Y) = D(F(X*), [[Y, Y]14.]r) which
is an abelian group because [[Y, Y]iq.]r is an abelian object since it is a central subobject of

F(Y) by [[.3.12

e On morphisms, let f € C(X’, X)and g € C(Y, Y"), then DF((f®)?, g®) = F(f®)* o’ (g?). :
DF(X,Y) — DF(X",Y").

Remark 3.5.6. It is a consequence of [1.5.13|that the abelian group D (X, Y') acts on D(F(X), F(Y))
as follows:
g+pra=¢o(g ao F(abX))t

where g € D(F(X), F(Y)), a € DF(X, Y) and ¢’ : F(Y) x [[Y, Y]ia.]r — F(Y) is the unique
factorization of (id, i¥) : F(Y) + [[Y, Y]ia]r — F(Y) through the comparison morphism 73
FY)+ Y, Y lr = FY) %< [[Y, Y] )p- It is due to the fact that [[Y,Y];4.]F is a central
subobject of F(Y') by [1.3.12

Then we provide a natural transformation between the bifunctors D and D both with domain
Im(Ab°)P x Im(Ab°) and values in Set. For all X,Y € C, we first define the map

¢k y @ DX, Y) —  DF(X,Y)

a — ef;y] o F(a) . (3.5.3)

Ide
where ef";,vy]ldc : F([Y,Y]14.) = [[Y, Y]1a.]F is the coimage of F(iy) : F([Y, Y].) = F(Y).

Proposition 3.5.7. The collection of maps gbf(y for X, Y € C defines a natural transformation
o' . D = DF between bifunctors with domain Im(Ab°)? x Im(Ab°) and values in Set.

Remark 3.5.8. Without further hypothesis on F' the map (bf(yy is not a homomorphism; a sufficient
condition would be to require that F' preserves binary products of abelian objects. This in fact is a
consequence of the hypothesis of Theorem [3.5.1] see its proof below.

Next we give the following proposition:
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Proposition 3.5.9. If I is a quadratic reduced functor preserving reqular epimorphisms, then for
al X, Y € Cthemap F :C(X,Y) — D(F(X), F(Y)) carries the action +p of D(X,Y) onC(X,Y)
to the action +pr of D¥(X, Y) on D(F(X), F(Y)) along (bfm, : V(D(X, Y)) — V(DF(X, Y));
more precisely, for f € C(X,Y) and o € D(X, YY), we have

F(f +p @) = F(f) +pr ¢ y(a)
where

o V. Ab — Set is the canonical forgetful functor;

e D and DY are the bifunctors with domain Im(Ab°)P x Im(A°) and values in Ab respectively
defined in |3.1.8 and|[3.5.5, and +p and +pr are the actions given in (3.1.3) and (3.5.6);

o for all X,Y €C, ¢%y : D(X,Y) = D"(X,Y) is the map defined in (3.5.3).
Proof. By (3.5.6]), we recall that for f € C(X,Y) and a € D(X,Y’) we have
f+pa= Piy © (.fa Qo abX)t (See 313

where ¢;, 1 Y X [Y,Y]q. — Y is the cooperator of iy and the identity of Y given in (1.5.4). Now
we consider the following diagram:

F((id, iy))

F(ry) F(piy)
F(Y +[Y, Y]) : FY x[Y, Y]ra,) — F(Y)
;5
(F(i1), F(i2)) (F(m1), F(mr2))*
F(Y) + F([Y, Y]Idc) 2 F(Y) X F([Y, Y]Idc) (354)
id+e$ id><e§
LD ,

FY)+ Y, Ylialr : FY) < [[Y, Yllr F(Y)

(id, if)

However it does not allows us to conclude that the right-hand square commutes. This happens

whenever the composite morphism F(rs%)o (F(i3), F(i3)) : F(Y)+ F([Y, Y]a,) = F(Y x[Y, Y]14.)
is a regular epimorphism (which is false in general). For this, we search the deviation of the morphism
(F(i2), F(3)) : F(Y)+ F([Y, Y]ia,) = F(Y +[Y, Y];4.) to be a regular epimorphism. We take

the pull-back of the morphism 1% : F(Y) + F([Y, Y],) — F(Y) x F([Y, Y1) along rf :
F(Y+Y, Y]i.) = F(Y) x F([Y, Y]14.) as follows:

0—=F(Y[[Y, Y]1q) P FY)+ F([Y, Y]ig) —=0
q Tdg
Ta
oF
2




By regularity of the category D, the morphisms p and ¢ are regular epimorphisms as pull-back of
regular epimorphisms. Next, k : F(Y | [Y, Y]4.) — P is the unique morphism such that kop =0
and ko ¢ = I by the universal property of the pull-back. A categorical argument says that &
is the kernel of p : P — F(Y) + F([Y, Y]14.) (it works in any finite complete category). Finally
s: F(Y)+ F([Y, Y]4.) — P is the unique morphism such that pos = id and qo s = (F(i%), F(i3))
by the universal property of the pull-back. Hence we deduce that the top sequence of the above
diagram is short split exact. By protomodularity of the category D (as any semi-abelian category),
the morphism (s, k) : (F(Y)+F([Y, Y]ia,)) + F(Y|[Y, Y]1a,) — P is a regular epimorphism. So the
morphism ((F(i%), F(i3)),J) = qo(k, s) : (FY)+F([Y,Y]1a.)) +FY Y, Y]ia.) = FY+[Y, Y]1a,)
is also a regular epimoprhism as a composite of two regular epimorphisms. Now we consider the
following diagram:

F(Y + [Yv Y]Idc> F(Y X [Yv Y]Idc) F(Y)
T
((F(ir), P(i)), o) (F(m1), F(m2))*
(F(Y)+ F([Y, Y]ae)) + F(Y | Y, Y]ige) = FY) x F([Y, Y]iq)
(ry ©,0)
(id+ef,0) idx ey
Tdp ,

—_

Note that F(r3%) : F(Y +[Y, Y]14.) = F(Y x[Y, Y]1a,) is a regular epimorphism because F preserves

regular epimorphisms. The outside and left-hand rectangles commute and F(r2%) o (F(i2), F(i3)) :
FY)+ F(Y, Y].) = F(Y x Y, Y]4.) is a regular epimorphism as a composite of two regular
epimorphisms. Hence the right-hand rectangle commutes. Finally, the result of the assumption
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comes from the following commutative diagram:

F(f+pa)

F((f, coabx )?) F(piy

FY x[Y, Yla)

F(X)

F(Y)

(F(m1), F(m2))*

FY) x F([Y, Yla)
1), % y (@)oF(abx))

; F
idXey;

F(f)+prok o (@
O

Now we assume that the functor F' : C — D commutes with the abelianization functors, i.e. there
is a natural isomorphism o : Ab? - L = L- A° such that for all X € C the triangle (3.5.1) commutes.
Then we consider the following diagram:

F(aby)

iF
0—[[Y, Y] —— F(Y) F(Y®) ——=0
A
|
E}\/Ig |0y
|
|
| 7 ab
0—=[F(Y), F(Y)]tap —> F(Y) ——> F(Y)® ——0

The top sequence is short exact by because F' : C — D is a quadratic functor preserving
regular epimorphisms. The bottom one is also short exact by definition of abp(y) as a cokernel of the

image of cQF(Y) :1dp(F(Y)|F(Y)) — F(Y). Since the right-hand square commutes, there is a unique
morphism oy : [F(Y), F(Y)]1ap — [[Y, Y]1a.]r such that

Uyy]1a, © OV = 1F(Y) (3.5.5)
Moreover it is an isomorphism by the five lemma. Hence it induces a natural isomorphism
(671, 0(0)*: DI = (G°F x G) - D

between bifunctors with domain Im(Ab°)°P x Im(Ab°) and values in Ab. For all X,Y € C, we define
the map
oxy : DIX,)Y) — D'(F(X), F(Y))

oF(a)oox . (3.5.6)

(0] ? Oy o) e[Y7Y}IdC

We observe that for « € D(X,Y") we get

dxy(a) = (o) oy oox, (3.5.7)

see (3.5.3). Then we have a condition for a quadratic reduced functor F' : C — D preserving
coequalizers of reflexive graphs to carry the action +p of D(X, Y) on C(X, Y) to the action +p/ of
D'(F(X), F(Y)) on D(F(X), F(Y))
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Corollary 3.5.10. Let X and Y be two objects in C. We assume that ' : C — D 1is a
quadratic reduced functor preserving coequalizers of reflexive graphs. If, moreover, there is a nat-
ural isomorphism o : AbP - F = F - A° on C such the triangle commutes, then the map
F:C(X,Y)—=D(F(X), F(Y)) carries the action +p of D(X, Y) on C(X, Y) to the action +p of
D'(F(X), F(Y)) on D(F(X), F(Y)) along ¢xy : D(X,Y) — D'(F(X),F(Y)); more precisely for
felCX,Y)and a e D(X,Y), we have

F(f+pa)=F(f)+p ¢x,v(a)

where

o D is the bifunctor with domain Im(Ab°)P x Im(Ab°) and values in Ab defined in and D’
is the bifunctor with domain Im(AbP)°P x Im(AbP) and values in Ab defined in

e +p and +p are the actions given in (3.1.3) and (3.5.4);

e for all XY € C, ¢xy is the map defined in (3.5.6).
Proof. Let f € C(X,Y) and a € D(X,Y). By [3.5.9, we have

F(f +pa)=F(f) +pr ¢ky(a) = ¢ o (F(f), 6% y(a) o F(abx))'

It remains to prove that

F(f) +pr ¢k y(a) = F(f) +p ox,v(e)
First we get

Tdp _ (i
SO © Té P = (Zd7 Z[};‘/;Y}Idc)

= (id,ipyy o (oy)7") by
= (id, i) o (id + (oy) ")

IdD

= Pipy) © OT2 (zd+ ay) ) by -

= Pipyy © (id X (6}\’)_1) © 7’2 dp , by naturality

Hence we obtain
¢ = Pipy © (z’d X (53\/)_1) (3.5.8)

because the comparison morphism 75% : F(Y) + [[Y,Y]a.]r — F(F) x [[Y,Y]1a.]r is a (regular)
epimorphism. Then we get the equalities as follows:

F(f) +pr ¢Xy(a) = ¢ o (F(f), ¢§,Y<a> o F(aby))'

= Qi © (id % ( )o (F(f), #xy () o Flabx))", by (B5.8)
= Gicer, © (F(f), (7)o 8% y (@) o F(aby))'
= Pipr) © (F to ¢XY( Jooxo abF(X))t’by

= Pipe, © (F(f) éxx () 0 abpex)', by

= F(f) +p ¢x,v(a), by (3.5.4)
as desired. .
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Let F : C — D be a reduced quadratic functor preserving coequalizers of reflexive graphs (hence
regular epimorphisms), which commutes with the abelianization functors as in condition 1. of The-
orem We now define a functor depending on F' as follows:

Definition 3.5.11. We define the functor Im(Ab(F)) : Im(Ab°) — Im(AbP) such that:
e On objects, let X be an object in C, Im(Ab(F))(X) = F(X),

e On morphisms, let f : X — Y be a morphism in C, we set Im(Ab(F))(f) = F(f)®™. We prove
that it is well-defined on morphisms. For this, consider morphism ¢g : X — Y in C such that

fabzg“b, l.e. abyof:abyog
By [3.1.5] there exists d € D(X,Y) such that
g=[f+pd

By we get
F(g) = F(f) +p ¢x,v(d)

Hence we have
abpy) o F(g) = abpyy o (F(f) +pr ¢x,y(d))
= abp(y) o F(f),byB.I.5

Thus we get F(g)® o abp(x) = F(f)* 0 abp(x) implying that F(g)** = F(f)*, because abp(x) :
F(X) — F(X)% is a (regular) epimorphism.

Then we observe that we have the following diagram of linear extensions of categories:

D/
p— D A Im(ADP)
F Im(Ab(F))
C\/
p—-o>F C O Im(AK) (3.5.9)

where the two linear extensions of categories are given in [3.1.9] the bifunctor D (resp. D’) with
domain Im(A)P x Im(A°) (resp. Im(AbP)P x Im(AbP)) and values in Ab is defined in [3.1.8]
and the functor Im(Ab(F)) : Im(Ab°) — Im(AbP) is defined in |3.5.11}

Now we are ready to prove the equivalence criteria stated at the beginning of this section.
Proof of Theorem Suppose that the hypothesis 1. and 2. hold. Consider the following diagram.

D'\ ,
Doyt —— DA [ (AP L2 Ab(D)

F] | Abm)]

C'\/ ,
Dert ——¢" 2L i Any < an(c)

where G = Im(Ab(F")) is the functor defined in [3.5.11} the bifunctor D¢ is given by restriction of

D to Im(Ab )P x Im(AbC"), and similarly for D/, ; in fact, omitting the right-hand square the lines
are sub-linear extensions of the ones in diagram (3.5.9). Next, G is defined by G(X) = F(X) and
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G(f®) = F(f)® = oy o F(f®)ooy for X,Y in C’ and f € C(X,Y); the second identity ensures that
G(f%) does indeed only depend on f. Thus the left-hand square commutes. Moreover, the functor
Jer defined by Jor(X) = X% and Jer (f%°) = £ is an equivalence since it is essentially surjective, full
(by regular projectivity of the objects of C’) and faithful by definition of the category Im(Ab°); the
same holds for Jpr. As the right-hand square commutes up to the isomorphism o and as Ab(F’) is
an equivalence by condition 2. so is G.

Now let XY be objects of C' and consider the following decomposition of the map
dxy: D(X,)Y)— D'(F(X),F(Y)):

CX A5 (V) DR (X, PSS D (p(X ) AP(F(Y)))

Note that the functor Ab(F) is additive since being an equivalence it preserves binary coproducts.
Hence the map Fya ,¢(y) is an isomorphism of abelian groups since X% and ~§(Y) are abelian
objects. Moreover, (0x)* is an isomorphism of abelian groups since ¢ is an isomorphism in D; the
same with (ef), since being a regular epimorphism ef’ is an isomorphism iff it is monic. But this is
equivalent with F(iy) = Z% ) © el being monic. Thus ¢xy is an isomorphism of abelian groups.
Together with we conclude that the five-lemma for linear extension [3.2.2] applies to the
above diagram of linear extensions (omitting the right-hand square) and shows that F’ is an equiv-

alence. O

The proof of Theorem now heavily relies on the following general lemma.

Lemma 3.5.12. Let C and D be two 2-step nilpotent semi-abelian categories and let F': C — D
be a functor which preserves finite coproducts, coequalizers of reflexive graphs and filtered colimits.
Moreover, suppose that F carries a given free object E of rank 1 in C to a free object of rank 1 in D,
and that its restriction to (E) is full and faithful. Then F is an equivalence, and a weak inverse F~1 of
F is given as follows: consider that the objects of C and D are sets endowed with operations satisfying
given equational axioms, and let X be an object of D. Then F~Y(X) has the same underlying set
| X| as X, and for an n-ary operation 0 of the variety C and an element x = (xy,...,2,) € |X|"
the element O(xy, ..., xy) is given as follows: let ¢ be a basis element of F(E) and € C(E, Et™)
be the morphism sending €' to 0(i%(e),...,i"(¢")). Furthermore, let s: F(E)*" — F(E™) be the
isomorphism such that soi}l = F(i}) fork =1,...,n, andz € D(F(E)*", X) be such that |zoi}|(¢') =
ap fork=1,....n. Then 0(xy,...,x,) = |z os o F(O)|(e).

Proof. We proceed in several steps.

Step 1: passing to the language of models of an algebraic theory. Consider the theory (FE) in C.
By hypothesis, the injections F(i}'): F(E) — F(E1"), k=1,...,n, make F(E'") into a coproduct
of n copies of F(FE); in particular, F(E™™) is a free object of rank n. So let the theory (F(F))
in D be given by taking F(E)™ = F(E™) x {n} with injections (pr1)~* o F(i}) (the products
with the sets {n} render the objects F'(E)*" formally distinct). Now by hypothesis the restriction
F: (E) — (F(E)) of F is an isomorphism of theories. We thus obtain a diagram of functors, cf.
section 1.1:

C i D

Model({)) =5 Model({F(E))

Both pe and pp are equivalences as C and D are varieties, and the functors F*, (F ~“H* are mutually
inverse to each other.
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Step 2: Reduction to the construction of a certain natural isomorphism I'. We contend to construct

a natural isomorphism I': (F'~1)* - pc — pp - F as then we can deduce isomorphisms
pe' F*pp - F = pgt - F* (BTN pe = Ide.

Since G = pp ' - F* - pp is an equivalence since its three factors are it follows that F is an equivalence
with weak inverse G. Using the construction of p;' in section 1.1 it then is easily seen that G is the
functor F~1 described in the assertion.

Step 3: Construction of T' on (E). Abbreviate Iy = (F~')* - pc and F, = pp - F. Let m,n > 0.
Then

Fy(ET™)(F(E™)) = C(E™ E™™)
Fy(ET)(F(E™)) = DF(E™), F(E™™))

Hence we may define a map
(Cgim)pin = Fgin gem: Fy(ET™)(F(E™)) — By (ET™)(F(E™))

which is a bijection since F'is full and faithful on (E). Now it is immediate to check that for fixed
m the collection (I'g+m)p+n, n > 0, is a natural transformation and hence natural isomorphism
Cpim: Fy(ET™) — Fy(E™™), and again that the collection of maps T'g+m, m > 0, is a natural
transformation and hence a natural isomorphism I'; between the restrictions of F; and Fy to (E).
It is then clear that I'; extends to a natural isomorphism I's between the restrictions of F; and
F; to Free(C), the full subcategory of all finite sums E with itself. More precisely, for a set S let
L(S) = [1,cq E be a chosen coproduct with injections i;: ' — [[, ¢ for all t € S. Then the objects
of Free(C) are of the form L(S) for S a finite set.

Step 4: FEaxtension of I' to all free objects. First note that the above construction is a way of
describing a left-adjoint L: Set — C of the forgetful functor X ~— |X| where for a map f: S — T
in Set the morphism L(f): L(S) — L(T) is defined by L(f) o i, = if for s € S. Now let (E)g
be the full subcategory of C whose objects are of the form L(S) for any set S; it is equivalent with
the full subcategory of all free objects. Let S be a set. Denote by Fin(S) the filtered category of
finite subsets of S and their mutual inclusions, and for T" € |Fiin(S)| let jrg: T < S. Note that the
morphisms L(jrs): L(T) — L(S) with T varying over the objects of F'in(S) form a colimit cone of
the diagram given by applying L to Fin(S). As F and also the equivalences F*, (F~1)*, pc and pp
preserve filtered colimits so do F} and Fj, hence for k = 1,2 the morphisms Fio L(jrs): FroL(T) —
Fy, o L(S), T € |Fin(S)|, again form a colimit cone. It follows that there exists a unique morphism
sy Fi(L(S)) = F5(L(S)) such that I'pisy o Fi(L(jr,s)) = Fo(L(jr,s)) o Ly for all T' € |Fin(S)|.
To prove that the collection of maps I'fg), S a set, is a natural transformation let S, 5" be two sets
and f € C(S,5"). Note that in order to show that I' ;g0 Fi(f) = Fo(f)ol' (s it suffices to show that
this identity holds after precomposing with Fy(L(jrs)) for all T € |Fin(S)|. Fix such a set T". The
key fact is that £ and hence L(T") are small objects, so that there exists a finite subset 7" of S’ such
that f o jrg factors through the monomorphism L(jrv g), so that there exists fr € C(L(T), L(T"))
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such that f o jrg = jrv g o fr. Hence

Fy(f) o T'resy o Fi(L(jr,s)) Fy(f) o F5(L(jr,s)) o Lremy
= F(foL(jrs))olym
= F(L(jr.s)o fr)olrm)
= I3(L(jr,s)) o Fa(fr) o T'pem)
= F2(L(]T’S/))OFL T) o F1(fr)
= Iy o Fi(L(jr.s)) o Fi(fr)
(
(s

(L
Iy o Fi(f o L(jr.s))
(

= FL OF1 f)oFl( (]Tﬁ))a

as desired.

Step 5: Extension of I' to all objects. It is clear that it suffices to present any object X of C as a
coequalizer of a natural reflexive graph in (EF)g. The natural way to do this is the following. For

any object Y of C let py : L(|Y|) = Y be given by py oi,(e’) =y for y € |Y|. Now let X be an object
do

of C and R=<=0— L(|X]|) be the kernel pair of px. Let U be the disjoint union of R and |X| and
d1

for k =0,11et d;.: L(U) — L(|X|) be defined by dj, 0i,(¢') = d(u) if u € R and d}, o i,,(€e') = i,(€)
if u € | X|. Defining also s;: L(|X|) — L(U) by s; 0, = i, for z € | X| we obtain a natural reflexive

o

graph L(U)=si= L(|X|) whose coequalizer is px. O
d/

Proof of Theorem[3.5.3; Apply Theorem with C' = (E) and D' = (F(F)). O

3.6 Quadratic C-modules over P associated with quadratic
equivalences

In this section, we characterize quadratic C-modules over P (see corresponding to quadratic
equivalences taking values in P-algebras. Let C be a semi-abelian category and F' : C — Alg — P
be a quadratic equivalence. As F' is bijective on objects, there is an object E in C such that F(FE)
is isomorphic to the free algebra of rank 1 in Alg — P, denoted by Fp. To simplify calculations, we
can suppose that F'(E) = Fp.

We know that the functor F| gy : (E) — Alg — P restricted to the algebraic theory (E) generated
by E (as in preserves finite coproducts because F' is an equivalence of categories. Then the
quadratic equivalence Fj gy, or simply F, takes values in the category of free P-algebras of finite
rank, denoted by (Fp)a,—p. We now give the second cross-effect F'(E|E) evaluated twice on E as
below:

Proposition 3.6.1. Let F' : C — Alg — P be a quadratic equivalence, then there is a natural
isomorphism of (A ® A)-P(1)-bimodules F(E|E) = P(2).

Proof. As F'is a reduced functor in particular, we know that the right-hand square commutes in the
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following diagram:

2

LF
0 F(E|E) : F(E + E)

F(E) x F(E)—=0

«

A
|
= (F(i}), P(i3)) | =
|
|

—
Tdppg—p Tdpg1g—p
T2

0 — Idu,_p(F(E) | F(E))?—— F(E) + F(E) F(E) x F(E)——0

The morphism (F(i%), F(i3)) : F(E) + F(E) — F(E + E) is an isomorphism because F preserves
finite coproducts. Then there is a unique morphism « : Ida,—p(F(E)|F(E)) — F(E|E) such that
the left-hand square of the above diagram commutes, i.e.

Foa=(F(i?), F(i3)) oy (3.6.1)

by using a categorical argument. Then, by a straightforward categorical argument, « is an isomor-
phism in Alg — P. By [1.8.6| and (1.8.5]), we deduce that

F(E| E) 2 Iduy p(F(E)| F(E)) = Iduy »(Fp | Fp)
By [1.8.6| and (1.8.5), we get

Idpg—p(Fp | Fp) = Fp @ Fp @payerq) P(2) = P(1) @ P(1) @pmyera) P(2).
and there is a canonical isomorphism evy : Ida;y—p(Fp|Fp) — P(2) defined by:

6712((17%7 p_%) ® (p, p_%) ®p2> = 71,1;2(]?% ®p§ ® p2) (3.6.2)
where p5 p, € P(2) and pf € P(1), for k =1,2. O
Since F(FE) is a left A-module by 3.2 of [12], so is Fp whose action is given by

f‘(pla p_2) - F(f)(pb 29_2) )

for p; € P(1) and py € P(2). Moreover, 3.17 of [12] says that F(E|E) is a left (A ® A)-module
(because the second cross-effect of F' is a bilinear bifunctor [1.2.13] since the functor F' is quadratic),
hence so is P(2) whose action is given by

t1(f) @t1(g).pa = evy 0ot o F(f|g) o o evy (ps) (3.6.3)
where f,g € C(E, E), a: Iday—p(F(E)|F(E)) — F(E|E) is the isomorphism defined in (3.6.1]) and
evy : Idag—p(Fp|Fp) — P(2) is the canonical isomorphism defined in [3.6.2]
Proposition 3.6.2. Let f,g € C(E, E) and ps € P(2). Then we have

t1(f) @ t1(g).(p2-t) = t1(g9) @ t1(f).p2

Proof. First we check that acevy ' (pe.t) = Tgoaoev, ! (p), where a : Iday, p(F(E)|F(E)) — F(E|E)
is the isomorphism in the proof of and evy : Ida,_p(F(E)|F(E)) — P(2) is the evaluation
isomorphism given in (3.6.2)). We have the following relations:

1y oavoevy (po.t) = (F(i}), F(i3)) o 4 ((1p,0) ® (1p,0) @ (p2.1))
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because F(72) : F(E + E) — F(E + F) is a morphism in the category Alg — P. Then we have
1y oo ey (pat) = F(7g) o (F(ii), F(i3)) o 3" 0 evy” (p2)
= F(12) o1y oaoevy(py)
= 1E oTpoaoevy (p2)
As il : F(E|E) — F(E + E) is a monomorphism, we obtain
aoevy(prt) =Tgoaoevy (po)
Hence we have
t1(f) @t1(g).(pat) = evy o™t o F(f|g) o aoevy(pa.t)
=evyoa  F(flg) o Tr o aoevy(p2)
= evyoa  Fg|f)oaoevy(p2), because F(flg) o Tp = F(glf)
=11(g) @ t1(f).p2
as desired. Now it is easy to see that the left action of A on P(2)e, is well-defined. O

Remark 3.6.3. The abelian group P(2)e, is a left A-module whose action is given by:

[ =t(f) @ t(f)pa
where f € C(E, E) and ps € P(2). It is immediate that the left A action on P(2) is well-defined by
B3.6.21

Notation 3.6.4. We define the map ¢ : P(2) — Fp by ¢ = i3 0 ¢ where ¢ : P(2) — P(2)gs, is the
canonical quotient map and i, : P(2)g, — Fp is the inclusion of the second summand.

Now we give the linearization of the functor F' evaluated on E:

Proposition 3.6.5. There is an isomorphism of A-P(1)-bimodules between the linearization of F
evaluated to E and P(1).

Proof. We consider the following diagram:

(83)e

F(E|E) F(E) T, F(E) ——0
) :
Idaiy-»(F(E)|F(E)) —*— F(E) 15
P(2) d Fp m le) 0

where m; : Fp — P(1) is the projection onto the first summand and ev, is the isomorphism given in
(3.6.2). We recall that o : Ida, p(F(E)|F(E)) — F(E|FE) is the isomorphism such that f' o a =
(F(i%), F(i3)) o 1% given in the proof of
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e The top left-hand rectangle commutes because we have

(ST)poa=F(Vi) o oa=F(V%) o (F(i3), F(i3) o d? = Vi ol = ™

e The left bottom one commutes because we have

3 o evy (p) = Vg o 14 ((1p, 0) @ (1p, 0) @ po)
= Vi (0,0, (1p, 0) ® (1p, 0) ® p2) , by
=27 ((1p, 0) @ (1p, 0) @ pa) , by
= (0, 7112(1p © 1p @ ps))
= (0, p2)

= q(p2)

where p, € P(2).

As (1) g : F(F) = TYF(E) and 7 : Fp — P(1) are respectively the cokernels of (SI)p : F(E|F) —
F(E) and ¢ : P(2) — Fp, there is a unique isomorphism (of abelian groups) § : ' F(E) — P(1)
such that S o (t{)g = m. As each (not dotted) morphism in the diagram is a homomorphism of
A-P(1)-bimodules, so is the isomorphism g : Ty F(FE) — P(1). O

Notation 3.6.6. If (p1, p2) is an element of F(E) = Fp, then we set (p1, p2) the equivalence class of
<p7 ) in TlF(E)

The next result gives a specific quadratic C-module over P(1). We shall use it to determine the
one corresponding to the quadratic equivalence F': C — Alg — P.

Proposition 3.6.7. The diagram of homomorphisms of right P(1)-modules
M] = (Tn(chUE)(E, E) @s P(2)s, —= P(2) =5 P(2) L 79(2)62)

where
o .t:P(2) — P(2) is the (right) action of t = (1,2) on P(2) involved in the structure of operads;
o H: Ty (cryUp)(E, E) @) P(2)s, — P(2) is defined by

H(t11(p2(€)) @ P3) = ti(ri 0 &) @ t1(r3 0 £).(p2 + p2.t)
where py € P(2) and £ € C(E, E*?);
is a quadratic C-module over P(1).

Proof. Let £ € C(E, E*?), f,g € C(E, E), p1 € P(1) and p, € P(2). First we know that P(2)e,
and P(2) are respectively left A-module and (A ® A)-module by and We verify that
q: P(2) — P(2)s, is a homomorphism of A-modules with respect to the diagonal action of A on
P(2) as follows:

gt (f) @t (f)-p2) = t(f) @ ta(f)-p2 = f2 = falp2)

by using [3.6.30 By definition, H : Ty1(cryUg)(E, E) @5 P(2)e, — P(2) clearly satisfies (QM2) in
21T

H(t11(p2(€) @ q(p2))) = H(t11(p2(€)) ®a T2) = t1(r} 0 &) @ t1(r3 0 €).(p2 + pa.t)
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In addition, H also satisfies (QM1) as follows:
(Vi o &)z =0(Vi o) @ (Vi ol)p

= tl(r% 0&)® tl(VQE 0&).py+ tl(rg 0§)® tl(V%E 0 &).pe ,by 2.14 of [12]

=ti(rfod) ®@ti(rf o &).pa +ta(rf o §) @t (13 0 &).po

+t(r30) @ti(rF o &) pr + 11 (r3 0 &) @ t1(r3 0 §).pa
P2t t(rf o) @t (rio&)pa+ti(rf o) @ ti(rfo&).pz, by B.6.3
= (r{o&) P+ (r3 08P+ t(ri 0 &) @t (r3 0 &).pa + ti(1f 0 &) @ t1(r3 0 €).(p2t)

= (r{o&)p + (r;0&).p:+ (q ° H)(tn( 2(£)) ®a D2)
as desired. As P(2) is a right P(1)-module, P(2)e, is also a right P(1)-module defined by
P2.p1 = 721(p2 ® p1)
and the quotient map ¢ : P(2) — P(2)s, is a homomorphism of right P(1)-modules because we have

=(rio&)p2+(r30

(rf
)
)
)

q(v2:1(p2 @ p1)) = Y21 (P2 ® p1) = P2.p1 = q(P2)- ;M
To prove that H : Ty (cryUg)(E, E) @5 P(2)s, — P(2) is a homomorphism of right P(1)-modules,
it is sufficient to prove that
Yo (t1(f) ®t1(9)-p2 @ p1) = ta(f) @ t1(g)- 721 (P2 @ p1)

For this, we use relation (3.6.3), and the fact that « : Idg,p(F(E)|F(E)) — F(E|E) (defined in
(3.6.1)) is a homomorphism of right P(1)-modules (as it is the restriction of the homomorphism of
right P(1)-modules (F(i3), F(i3)) : F(E) + F(E) = F(E+ E) to Ida,—p(F(E)|F(E))). O

Before giving the quadratic C-module corresponding to the quadratic equivalence F' : C — Alg—7P,
we give the following lemma:

Proposition 3.6.8. The objects S;D(l)(TlF®2 ®sP(2)), given in and MY, given in are
1somorphic in Mod?(l)
Proof. We set R =P(1) and S = (R® R)1 6, (as in [2.4.9) and we define the canonical isomorphism
of (P(1) ® P(1))-P(1)-bimodules evg, : (P(1) ® P(1)) ®s P(2) = P(2)s, by:

eve, ((p1 ® p1) @5 p2) = 112(p1 @ Pl @ pa) ,
for p1,p, € P(1) and ps € P(2). We prove that (eve,o(22®ygid), ev20(f22@perid)) : St (Ty F#2@g
P(2)) — MJ is an isomorphism of quadratic C-modules over P(1).

1. Computation of ¢& : T\ F(E)®? Qper P(2) — T1F(E)®? @5 P(2). We check that the following
diagram commutes:

TVF(E)® @por P(2) % TVF(E)®2 ®g P(2)
B22Q@rerid | > | B92Qgid
(P(1) ® P(1)) ®rer P(2) (P(1) @ P(1)) ®s P(2)

P(2) : P(2)e,
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Let (p¥, p§) € F(E), py € P(2) and k = 1,2. First we have

g o evs o (8% @per id)((pl, Ph) ® (9}, P3) ® p2) = q o eva(p} @ P} @ po)

= q(1,1:2(p1 @ P} ® p2))

= 71,1;2(]9% ®p% ® pa)

Then we have

evs, 0 (B%2 @s id) o g5 ((ph, P3) @ (3, P3) @rer P2) = eve, (P} @ P? Ds p2)

= 7,12(p1 ® P @ p2)

This proves that the above diagram commutes.

2. Computation of the involution 7/}? Qreort: TVF(E)®? @per P(2) = T1F(E)®? Qrer P(2). We
verify that the following diagram commutes:

T\ F(E)® @par P(2) TV F(E)® @rar P(2)
ﬁ®2®R®R’id >~ =~ /B®2®R®Rid
(P(1) @ P(1)) @ron P(2) (P(1) ®P(1) @ror P(2)
P(2) & P(2)

We have

evs 0 (%% @par id) o (TE Qrer t)((lﬁ; p_%) ® (pi, p_%) OReR pz)

= evy 0 (8% @per id) (93, P3) @ (D1, P}) @ror (P2-1))
= evs(p} @ p1 @ (p2.t)) = Y1,12(P; @ Py ® (pa-t)) = Y1,12(p1 @ P} @ pa).t

= ey (p% ® pi ®p2).t

= (.t) o evy 0 (B%2 @per id) ((pl, ) ® (P2, P3) @rer P2)

where .t : P(2) — P(2) denotes the action of t = (1,2) € & on P(2) (involved in the structure
of the operad P).

3. Computation of HE : Tiiery(Ug)(E, E) ® (TyF(E)®2 @5 P(2)) — TyF(E)®2 @per P(2). We
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prove that the following diagram commutes:

Tll(C’f’QUE)(E, E) ®A (TlF(E)®2 ®S P(Q))

T\ F(E)** Qrgr P(2)

1R
R

id@A (822 ®gid) ~ | B92QpeRid

Tiy(erUp)(E, E) @a (P(1) @ P(1)) @pmerays. P(2)) (P(1) @ P(1)) @pmyera) P(2)

d@peve, |

1R

€V

)

T11(crUg)(E, E) @4 P(2)s,
Let po € P(2) and £ € C(E, E + E). First we have
t11(p2(§)) @ P2 = (id @ eve,) o (id @5 (8% @sid)) (t11(p2(€)) @a (1,0) @ (1p,0) @s p2)
where ev; : Fp — P(1) denotes the isomorphism in (1.8.5). Then we also have

evy 0 (8%% @ per id) o HE (t11(p2(8)) ®@a (1p,0) ® (1p,0) ®s p2)

P(2)

= evy 0 (8% Qper id) <t1<7"% 0 &) ®ty(rjo f)-((lPaa) ® (1p,0) ®ror p2

+ (19,0) ® (1p,0) @rer (Pz-t)))

=11(r} 0 &) @ t1(r5 0 €). evy 0 (8%* Qpgr id) <(173a 0) ® (1p,0) @rgr P2
+(19,0) @ (1p.0) @ (p21)))

=t1(rf 0 &) @ t1(r3 0 €). 6“2<17> ® 1p Qrerp2 + 1p @ 1p Qrer (p2-t)))
= tl(T% 0{) ® 751(7'5 0&).(p2 + pa-t)

= H (t11(p2(€)) @ P2)
This proves that the above diagram commutes.
O

Now we give the quadratic C-module over P corresponding to the quadratic equivalence F' : C —
Alg — P as follows:

Proposition 3.6.9. The quadratic C-module over P corresponding to the equivalence F' : C —
Alg — P is the following commutative diagram of homomorphisms of right P(1)-modules up to an
isomorphism:

Tyers(Ug)(E, E) @x Fp 7l P(2) 4 Fp
1dR@ Ao 12
Tiery(Ug)(E, E) @4 P(2)e, 7 P(2) 7 P(2)e,
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Here

o HF . Tiers(Ug)(E, E) @a Fp — P(2) is a homomorphism of (A @ A)-modules satisfying the
following relations

(V3 08)-(p,12) = (r} 0&).(p1,72) + (13 0 &).(p1, 2) + (40 H) (111(p2(8)) @ (p1,3))
H (t11(p2(€)) @4 (0,72)) = t1(13 0 €) @ t1(12 0 €).(p2 + pa-t)
where § € C(E, EY?), p1 € P(1) and p; € P(2);

e the bottom diagram is the quadratic C-module over P(1) given in[3.6.7

Proof. By applying the functor S} : Quad(C, Alg —P) — Mod?, defined in [2.4.27] to the quadratic
functor F' : C — Alg — P, we know that its corresponding quadratic C-module over P is given by the
following diagram:

H (55
Tyero(Us)(E, E) ® F(E) F(E|E) F(E)
id Al era(WF) g B vE
Tvery(Ug)(E, E) @ (TWF(E)** @5 P(2)) =7 TF(E)** @rer P(2) 7 TVF(E)* @5 P(2)
E E

where R = P(1) and S = (RQR)1S, (seef2.4.9). By|3.6.8] the quadratic C-module Sy(T1 F®?®5P(2))
over P(1) is isomorphic to MJ given in [3.6.7 Let us denote by M* the top quadratic C-module
over P(1) of the diagram in the assumption, then we prove that (id, evy o a™t) : Sy(F) — MF
where a : Ida,—p(F(E)|F(E)) — F(E|E) is the isomorphism given in (3.6.1]), such that 4 o o =
(F (i), F(33)) o 57.

1. Computation of 1E. We consider the diagram below:

vk

T\F(E)** @5 P(2) F(E)
B22®gid | =
(P(1) @ P(1)) @perys, P(2)
P(2)e, Fp

Let po € P(2). We have the following equalities:

g o (8% @gid)™" o evgl(P2) = vE((1p,0) ® (1p,0) ®s ps)
= A7 ((19,0) ® (1p,0) ® pa)
= (0,71,12(1p @ 1p @ p2))
= (0,2)

= is(p2)
This proves that the above diagram commutes.
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2. Computation of cra(Y) g p. We verify that the following diagram commutes:

cra(¥)p, B

T\ F(E)** @rer P(2) F(E|E)
B?@pgrid | )
(P(1) @ P(1)) @payera) P(2) Idyg—»(F(E)|F(E))
P(2) P(2)

Let py € P(2), then we have

vy ocra(¥)pe((1p,0) ® (1p,0) @rer p2)

®2 — —
= b0t PP ((15,0) ® (1p,0) @ren po)

— E (F(2)(1p,0) @ F(i3)(1p,0) ®g p2)

= M (F(i)(1p,0) ® F(2)(15.0) © p2)

= (F(i}), F(i3))(0, 0, (1p,0) ® (1p,0) ®par p2) , by [[.33

= (F(i}), F(i3)) o 4 ((1p,0) ® (1p,0) @rer p2) , by

=15 oa((1p,0) ® (1p,0) ®per p2) , by definition of o

As (I is a monomorphism, we have the following relation:

cra (V) g, p((1p,0) ® (1p,0) ®rer p2) = a((1p,0) ® (1p,0) @rer p2)

Therefore we have

evyoa o cry(Y ) pp o (B¥? Qper id) ™t o ev™(ps)

=evyoa tocry (¥ )pr((1p,0) @ (1p,0) @rar po)

= 6’02((17?,6) ® (1p,0) @rer pz)
= P2
This proves that we have
evy o a o cry(YF ) pp = evy 0 (B2 ®per id)
as desired.

3. Definition of HY. We define HY : Ty1(cryUg)(E, E) 5 Fp — P(2) by the following composite
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of morphisms:

Ti1(eraUg)(E, E) ® Fp e P(2)

1%

eva

Iday—p(F(E)|F(E))

IR
|

T F
HE

Tll(C’I"gUE)(E, E) ®A F(E)

F(EIE)
By using appropriated isomorphisms, it is easy to check that

ﬁF(tu(Pz(ﬁ)) ® (0, p_z)) =t1(r{ 0 &) @ t1(r3 0 &).(p2 + p2.t)
where £ € C(E, E + FE) and p, € P(2). This proves that the left-hand diagram in the
statement commutes. As HE : Ty1(croUg)(E, E) @ F(E) — F(E|E) verifies (QM1) in [2.1.1}
the morphism H” : Ty (cryUg)(E, E) @5 Fp — P(2) satisfies the following relation:
(sz © §)<p17 p_Q) = (T% o 5)(]?1, p_2) + (T% © 6)(2717 p_2) + (q © ﬁF) (tll(pQ)(g) A (p17 p_2>)
where £ € C(E, E + E) and (py, P2) € Fp.
[

We point out that HF T11(crUg)(E, E)®xFp — P(2), given in , has no explicit expression
comparing with the other maps in the diagram of Then taking a quadratic equivalence F' :
(E)e — Alg—P with domain an algebraic theory (E) generated by E and values in Alg—P amounts
to taking an appropriate explicit expression of H : Ty1(croUp)(E, E) @5 Fp — P(2).
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Chapter 4

Lazard correspondence for 2-step nilpotent
varieties

In this chapter, we aim at finding the Lazard correspondence between any 2-radicable 2-step
nilpotent variety and the category of algebras over a 2-step nilpotent linear symmetric unitary
operad depending on the variety. In the final chapter this equivalence of categories will then provide
the BCH formula for arbitrary operations in the variety.

Notation 4.0.1. Recall the following notations:

e We denote by E the free object of rank 1 in C, and (F) the algebraic theory generated by F
(as in [1.1.1)) representing the full subcategory formed by free objects of finite rank in C.

e We denote by ev. : C(E, X) — | X]|, f — f(e) the canonical bijection. Given z € |X|, we write
&= ev; }(z).

Then the object E% is the distinguished free object of rank 1 in the abelian core Ab(C) whose
basis element is € = abg(e).

Notation 4.0.2. We also consider the following notations:

e We denote by (E%) the theory (as in [1.1.1) generated by E® representing the full subcategory
of free abelian objects of finite rank in the abelian core Ab(C).

e We consider eve : C(E®, A) — |A|, g — g(€) the canonical bijection, where A is an abelian
object in C. Given a € |A|, we write @ = ev>'(a). Let X be any object in C and z € | X|, we
write T = abx (x).

e If f: X — Y is any morphism in C, we denote f = |f?| and we clearly have f(Z) = f(z).

Now we point out the following important property of the variety C (in fact of any variety).
Remark 4.0.3. The free object E of rank 1 of C is a small regular-projective generator.

We recall that small means that the functor C(F,—) : C — Set, preserves filtered colimits,
reqular-projective means that F is projective with respect to the class of all regular epimorphisms,
and generator means that any object X in C is a colimit of copies of E, or equivalently, admits a
regular epimorphism +;c;E — X, where [ is a set. The property in [£.0.3] permits us to use the next
proposition about certain natural transformations (holding here for merely Mal’cev and Barr exact
categories) that has been already given in 6.25 of [12] as follows:
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Proposition 4.0.4. Let D be any category. Let ¢ : F' = G be any natural transformation between
functors F,G : C — D preserving both filtered colimits and coequalizers of reflexive pairs. Then ¢ is
an isomorphism if, and only if, @g+n is an isomorphism for all n > 1. Similarly let v : B = D be
any natural transformation between bifunctors B, D : C x C — D preserving both filtered colimits and
coequalizers of reflexive pairs. Then v is an isomorphism if, and only if, Yg+n p+m is an isomorphism
for alln,m > 1.

4.1 2-step nilpotent varieties

Assumption: Throughout this section we assume that C is a 2-step nilpotent variety (see [1.3.10)).

We here establish certain specific properties of these varieties which are needed to construct the
quadratic C-module which gives rise to the Lazard correspondence. They could basically be deduced
from the theory of square ringoids in [4] using the framework of linear extensions of categories which
in section 2 was made available in our context; however, as several important formulas in that paper
are wrong and many proofs not explicitely developed we give a (mostly) independent treatment here.

In particular, we show that there exists a (non-unique) 2-step nilpotent group structure among
the operations in C, denoted by +. Thus for any object X in C its underlying set | X| has a natural
2-step nilpotent group structure. If X is an abelian object, this structure is abelian and coincides
with the natural one. Moreover, we study the compatibility between the induced group structure on
morphism sets between free objects and the composition operation.

Assumption: In this subsection, we consider X an object in (F), the full subcategory of free
objects of finite rank in C, and Y, Z any objects in C.

First we recall the definition of a cogroup:

Definition 4.1.1. Let D be a pointed category having finite coproducts (also denoted by +). A
cogroup in D is a triplet (Z, u,v) such that Z is an object in D,and p: Z - Z+ Z andv:Z — Z
are morphisms in D satisfying the following properties:

e the counity property: (0+id)o u = (id+0) o p = id, where 0 : Z — 0 is the zero morphism;

e the coassociativity property: (u+id) o p = (id + p) o p;

e the coinverse property: (v +id)opu = 0 = (id + v) o pu, where here 0 : Z — Z is the zero
morphism.

As X is a regular-projective object in C (because it is a finite coproduct of copies of E that is a

regular-projective object), there is a morphism px : X — X + X in C such that

rlde oy = A% (4.1.1)

—

because the comparison morphism 7% : X + X — X x X (see (1.2.1)) is a regular epimorphism,

where A% : X »— X X X is the morphism given in m Then we verify that the morphism
px : X — X + X satisfies the counit property as in [4.1.1] as follows:

rx 0 (0+id) o px =75 015" 0 (0 +id) o ux , by ([:21)

— —

= 720 (0 x id) 0 3% o jux , by naturality of ri%

—idom}o A%, by (LT
=1id
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where rx : 0+ X — X is the canonical isomorphism (retraction) and 72 : 0x X — X is the projection
onto the second summand (that is also an isomorphism). Similarly we also have rxo(id+0)oux = id,
as desired.

Hence we use the Lemma 6.4 of [4] saying that a morphism with domain an object X and with target
object X + X, that satisfies the counit property as in [L.1.1] provides a structure of cogroup on X.
Let X3, X5, X5 be objects in C. For this, we point out that the authors only use the injectivity of
the comparison morphism

73 Xy + Xo 4 X5 — (X1 + Xo) X (X1 + X3) X (Xy + X3),see (1.2.1)

for the coassociativity property as in 4.1.1 By the kernel of the comparison morphism 73 is
Ide(X1]|X2|X3), the third cross-effect of the identity functor of C. As the category C is supposed to

be 2-step nilpotent (see [1.3.10)), it follows that
Ide(X1]1 X2 X3) =0

Hence it permits us to use this lemma. By 6.4 of [4], there is a morphism vy : X — X in (F) such
that (X, px,vx) is a cogroup in C with px being its comultiplication. By 6.6 of [4], it yields a group
structure (written additively) on the set C(X, Y') given by

Vi,geC(X,Y), f+g=(f g)oux (4.1.2)

whose neutral element is the zero morphism 0 : X — Y and, for each morphism f € C(X,Y’), the

inverse of f, denoted by f~', is given by f~' = fowvy. In the case where Y = X + X, f =% and

g =13, we get

px =i+ i (4.1.3)
Notation 4.1.2. We write 2x = id + id, or simply 2 for the case X = FE.

The upshot of these considerations is the following result.

Proposition 4.1.3. Every object X of (E) admits a (non unique) cogroup structure (X, px,vx)
which we choose once and for all. Then the representable functor C(X,—) : C — Set takes its values
in Gr. In particular, C is a variety of w-groups where a group law on any object Y (depending on
the choice of i) is defined by x +vy = |(Z,79) o ug|(e) for x,y € |Y].

The following proposition says that the group structure given in (4.1.2)) is left distributive:

Proposition 4.1.4. Let Y’ be an object in C, f1, fo € C(X,Y) and g € C(Y,Y"). Then we have

90(f1+f2) =gofitgolf
Proof. We have the equalities as follows:
go(fi+fo)=go(fi,fo)oux =(go fi,go fa)oux =go fi+gofs,
as desired. []

Now for an abelian object Z of C the internal binary operation my : Z x Z — Z on Z (see|1.5.14])
provides an abelian group structure on C(X, Z) given by

Vf,geC(X, Z), feg=mgzol(f, g) (4.1.4)

whose neutral element is the zero morphism 0 : X — Z. Then we observe that C(X, Z) has two
group structures. However we have the following proposition:
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Proposition 4.1.5. Let Z be an abelian object of C. Then the two group structures on C(X, Z)

given in (4.1.2)) and (4.1.4) coincide.

Proof. Let f,g € C(X,Z). Then we have

f+g=1(f9)opx,by
= V3o (f+g)oux

=myori®o(f+g)oux,by[L.5.14

—

where 7% 1 Z + Z — Z x Z is the comparison morphism given in (1.2.1). Then we have

—_ —

f+g=mgzo(fxg)oriopux, by naturality of ri%

:mZo(fXg)oAﬁ(,by
=mzo(f,g)
= feg.by
as desired. O
Now we show that the abelian group C(X, Z) has an additional (right) module structure. For

this, we need the following remark:

Remark 4.1.6. Let Z be an abelian object in C. We remark that the abelian group C(X%,Z2)
is a (right) C(X%, X%)-module whose action is given by the precomposition of elements in the
endomorphism ring of X%. Hence it provides a (right) C(X, X)-module structure on C(X, Z), as
follows:

fa = (abx)* (((abx)") ' (f) 0 )
for a € C(X®, X%) and f € C(X, 2).

The linear functors Ide(—|Y) and Ide(Y|—) : C — Ab(C) (cf. Definition and Proposition
1.4.2)) are “additive” on (E), as follows:

Proposition 4.1.7. Consider an object X' in (E) and an object Y' in C. Let f € C(X,Y) and
g € C(X",Y'"). Then the morphism Ide(flg) : Ide(X|X'") — Ide(Y|Y) is linear in f and g in the
sense of [4l], i.e. we have

Ide(f | g1+ g2) = Ide(flg1) + Ide(f|g2)

where fi, fo € C(X,Y) and ¢1, 92 € C(X",Y").

{ Ide(fi+ f2] g) = Ide(filg) + Ide(f2lg)

Proof. Let f1, fo € C(X,Y) and g € C(X',Y”"). Then we have
Ide(fr+ f2lg) = Ide((f1, f2) o ux | g) s by
= Ide((f1, f2) | 9) o Ide(px | 9)

As for any object Z in C, the functor Id¢(—|Z) : C — C is linear in the sense of [1.2.5 By 3.6 of [12],
we have

Ide(id|id) = Idc (i} o ri|id) + Ide (i3 o r3 | id)
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Hence we have
[dc(f1 + fo g) = Idc((f1,f2) ‘9) o ([dc(i% ory] id) +[dc(i§ ors | zd)) Oldc(ﬂx ] g)

= Idc((f1, f2) oiioriopx | g) + Ide((f1, f2) oi30715 0 ux | 9)
By ([#.1.1)), we get 7} o ux = id, for k = 1,2. Then it implies that we have

Ide(fr+ folg) =Ide(fi]g) + 1de(f219) .
as desired. Similarly Idc(f|g) is linear in g. O

As the representable functor C(X, —) : C — Gr is exact and preserves finite products, the second
cross-effect of C(X,—) : C — Gr is given by

ers (C(X, =) (V. 2) = C(X, 1de(Y2)) (4.1.5)
where (12%), - C(X,1de(Y|Z)) — C(X,Y + Z) is the kernel of the comparison morphism rg(X’f)
(see (1.2.1)). Note that Id¢(Y'|Z) is abelian by Lemma hence the bifunctor cro(C(X,—)) :
C*? — G'r takes in fact values in Ab by |4.1.4]

Notation 4.1.8. The second cross-effect of the representable functor C(X, —) : C — Gr is denoted by
C(X,—|-):C x C — Ab. More precisely, we have

e On objects, for two objects Y and Z in C, C(X,Y|Z) =C(X,1dc(Y|Z)).

e On morphisms, let f:Y — Y and g : Z — Z' be two morphisms in C, then C(X, flg) =
Ide(flg)s-
Notation 4.1.9. The abelian group C(X,Y|Z) = C(X, Idc(Y|Z)) is equipped with the involution
Txyz where we write Txy.z = (Ty,z). : C(X,Y|Z2) = C(X,Y|Z), with Ty, : 1dc(Y|Z) — Idc(Z]Y)
being the restriction of the canonical switch 73, : Y 4+ Z — Z +Y to Ide(Y|Z). It clearly satisfies
TxyzoTx zy = td. In the case where X =Y =7 = I, we write Txy z =T
Notation 4.1.10. We denote by (C(X, Idc(Y|Y)))
C(X, Ide(Y]Y)) — (C(X, Idc(Y|Y)))6
Since the representable functor C(X,—) : C — Gr preserves finite products and the bifunctor
Ide(—]—) : C** — C is bilinear (by [1.3.10| since C is supposed to be 2-step nilpotent), we have the
following remark:
Remark 4.1.11. The second cross-effect of the representable functor C(X,—) : C — Gr is a bilinear

bifunctor (see [1.2.12)). Tt implies that the functor C(X,—) : C — Gr is quadratic by [1.2.13] Hence
the representable functor C(X, —) : C — Gr takes values in Nily(Gr), i.e. the full subcategory of Gr

formed by 2-step nilpotent groups by [1.4.1]
By 3.21 of [12], we get a natural transformation ué(E,Idc(—\—)) : TYUgp ® TiUg ®Qaga
C(E,Id¢(F|E)) = C(E,Idc(—|—)) between bifunctors defined by

(Ue(p,1a0(~1-y)xy (L1 (f1) @ ti(f2) @ h) = Ide(fil f2) o h (4.1.6)

By and 3.22 of [12], ug(p 4.1y restricted to (E) x (E) is an isomorphism. In ad-
dition, for all X; and X, objects in C, Id¢(Xi|Xs) is an abelian object in C implying that
(abg)* : C(E®, Id¢(E|E)) — C(E, Ide(E|E)) is an isomorphism by Hence we get the natu-
ral isomorphism ug gy 1.1y * T1Us ® TiUp @aga C(E®, Id¢(E|E)) = C(E®, Ide(—|—)) between
bifunctors defined by

(ue(ren rde (- 1)y ) xy = ((abg)*) ™" o (Ue(p 1)y xy © (id © id @rpa (abg)*) (4.1.7)
where X and Y objects in C.

& the abelian group of coinvariants and by 7 :

, the canonical quotient map.

121



Notation 4.1.12. For an object X in C, we denote by
(e rao—1-n) x * (TMUB(X)?? @asn P(2)) s, — C(E, Ide(X|X))e,

the canonical factorization between the sets of coinvariants.

Remark 4.1.13. The map (ué(E Idc(—l—)))X’ given in 4.1.12} is a P(1)-module homomorphism which
is an isomorphism by the five lemma applied to an appropriated diagram.

Now we recall that iy : [V, Y]r4. — Y is the image of the morphism ¢} = VZouild?: Ide (YY) = Y
(see|1.2.8) and aby : Y — Y is its cokernel. Then we need the following technical lemma:

Lemma 4.1.14. The morphisms Idc(abylid) : I1de(Y|Z) — Ide(Y®|Z) and Idc(id|aby)
Ide(Y|Z) — Ide(Y|Z%) are isomorphisms.

Proof. By 2.26 of [14], the functor Id¢(—|Z) : C — C preserves coequalizers of reflexive graphs.
Hence the claim follows from Proposition [1.4.§] O

Then the following proposition says that the morphism (c} ). : C(X, Ide(Y]Y)) — C(X,Y’) maps
to the center of the group C(X,Y).

Proposition 4.1.15. Let Y be an object in C, f € C(X,Y) and £ € C(X,Y|Y). Then we have
frchot=clot+f
Proof. First we observe that we get
Ide(id|aby) o Ide(f|c) o &) = Ide(flaby o) 0 &) =0

implying that we have Id¢(f|cy o€) = 0 because aby : Y — Y% is the cokernel of ¢} : Ide(Y|Y) =Y
and Ide(Y|aby) : Ide(Y|Y) — Ide(Y|Y?) is an isomorphism by [4.1.14] Hence we have

(fie3 0€&) o™ =5 olde(fley 0€) =0

—

As the comparison morphism 2% is the cokernel of 2% : Ide(X|X) — X 4+ X (see [1.2.3 and
1.2.1)), there is a unique factorization ¢; : X x X — Y of (f,c) 0&) : X + X — Y though

X + X = X x X, ie.

—_

(f,cy 0&) = ¢rory (4.1.8)
Similarly there is a unique ¢ : X x X — Y such that

—

(¢ 0&, f) = ppory™ (4.1.9)

Next we have the equalities as follows:

fHeyo&=(fcy o0& opux,by ({12

—

Ide
=¢107y°opux

= §10 A%, by (1)

= ¢y 0T o A% ,because T% o A% = A%
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where T% : X x X — X x X is the canonical switch and A% : X »— X x X is the diagonal morphism
(see [1.0.1)). However we have

—

¢10T% 0 réd‘f = ¢ 0 rgdc o 7% , by naturality of rIdC
= (ficy 0&)oT% by
=(c3 o0&, f)
— gy} by (TT)

where 73 : X + X — X + X is the canonical switch given in[1.0.1l As 7% : X + X — X x X is an
epimorphism, we have

¢1 0T = ¢ (4.1.10)

Hence we get
frcyof=¢0T%0AY
= ¢y 0 A%, by ([£.1.10)
= (¢ o0& f)ori® o A% by (E])
= (c) o&, f) o px , by (ELI)
=cy o0&+ f,by 12
O

Remark 4.1.16. From [4.1.15, we deduce that, for each morphism & € C(X, Ide(Y|Z)), the morphism
1% o € € C(X,Y + Z) belongs to the center of the group C(X,Y + Z). Because we have

CO§ (1=Z§)Obzdcof vY+Z (i ‘Hz)o%dcog VY+ZOLQCOIdC<1|i§)05—C%/Jrzoldc(iﬂig)of

The set C(X, [Y,Y]14.) may be seen as a subgroup of the group C(X,Y’) whose inclusion map is
the injection map (iy). : C(X,[Y,Y]1q.) = C(X,Y).

Corollary 4.1.17. The subgroup C(X,[Y,Y|14.) is central in the group C(X,Y).

Proof. Let h € C(X,[Y,Y]14.)- As X is a regular-projective object in C (as a finite coproduct of
copies of the regular-projective object E'in C) and ey : Ide (YY) — [V Y] Idc 18 a regular epimorphism
(because it is the coimage of the morphism ¢, there is a morphism h € C(X, Idc(Y|Y)) such that
h = ey o h. Hence we get

(iy)o(h) =iy oh =iy oeyoh=cy oh
Then it is a direct consequence of [4.1.15 0

Moreover there is a (set-theoretic) retraction 75 : C(X,Y +Z) — C(X,Y|Z) of the kernel 157 =

(11%), 1 C(X,Y|Z) — C(X,Y +Z) of the comparison morphism TS(X’_) such that, for £ € C(X,Y +72),
ro(€) € C(X,Y|Z) is the unique map satisfying

e ory€) =&~ (Rorfot + Borfot) =€~ Borfot ~iortof (4111
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Then the map Hxy : C(X,Y) — C(X,Y]Y) (already given in 2.11 of [4]) is defined such that, for
aeC(X,Y), H(a) € C(X,Y]Y) is the unique morphism satisfying
B o Hyy(a)=(+i3)oa— (foa+itoa) =% or((i2+1i3)0a), (4.1.12)
implying that we get
Hyy(a) =ry((i; +1i3) o )
where here Y is supposed to be in (E).
Notation 4.1.18. For X =Y, we write Hyy = Hy : C(X, X) — C(X, X|X).
In the special case where X = Y = E, we consider the map H : C(E,E) — C(E® E|E) =
C(E®, Idc(E|E)) such that, for o € C(E, E), we have
H(a) = Hp(a)™ (4.1.13)

where Hg(a)® € C(E®, Ide(E|E)) is the unique factorization of Hg(«a) € C(F, Idc(E|E)) through
abp € C(E, E) (which exists because the target object of Hy is an abelian object in C, see [1.5.16

and [1.5.17).

Remark 4.1.19. We have the following observations:
1. First we have 15 o Hx(2x) = [i3, i3] = i3+ 143 — i3 — 3. This is due to the following equalities:
e o Hy(2x) = (i24i2) 02x —i202x —i?02x, by
=343+ it iy — i3 — i3 — i — 1]
B (@R ) -2
=it + [iz, i) — 1]
Tﬁeiwe observe that the morphism [, i%] belongs to the kernel of the comparison morphism

) see ([L1.5). By 4.1.16] [i2, i2] is in the center of the group C(X, X + X). Hence we have

147 o Hy(2x) = i} + [i3, i3] — i1 = [3, i3]

2. Next it is straightforward to see that Ty o Hx(2x) = —id, where T : Ide(X|X) — Ide(X|X)
is the restriction of the canonical switch 7% : X + X — X + X to Ide(X|X).

Now we determine the deviation of the group structure given in to be commutative:

Proposition 4.1.20. Let f,g € C(X,Y). Then we have
g+ f=1Ff+g+c olde(flg) o Hx(2x)
Proof. We have the following equalities:
g+ =1(9.f)onx
(f,9) o7x o (if +1i3) , by L3
(fig9) o (1% 0if + 7% 0i3) , by 14]
= (f,9) o (i3 + i)
(f,9)
= (f.9)
=/+

7

,9) o (i1 +i2 + 1% o Hx(2x)) , by E.1.19) and {.1.10

OZ1+(f 9)022 (f, Q)OLQdCOHX@X) by [4.1.4]
+(f.9) 015 o Hx(2x)
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In addition, we have

(f.9) 013" =V3 o (f+g) o™ =V} 0% olde(flg) = c} olde(flg),by 2§
Hence we get
g+f=f+9+(f.9) 030 Hx(2x) = f+g+c} olde(flg) o Hx(2x)
Il

The map Hyy : C(X,Y) — C(X, YY) defined in (4.1.12) is not a homomorphism of groups in
general, where Y is here supposed to be in (F). The next proposition gives the deviation of the map
Hx y to be a homomorphism of groups.

Proposition 4.1.21. We consider an object X' in (E). Let f,g € C(X,X'). Then we have
Hx x/(f +9) = Hxx(f) + Hx x/(9) + Ide(g|f) o Hx(2x)
Proof. We have the following equalities:
15°¢ 0 Hy xi(f + 9)
(i +1i3) o (f+9) —i50(f +g)—ito(f+g),by @11
(i%+i2) f+( +22)Og—z20g—220f—11Og—zlof by -
(i1 +145) 0 f+ (i +43) 0o g — i 09 — (i1°9+i2of) —ifof
Moreover we have
2og+itof=1ilof+i20g4cy ™ olde(ilo fli?og)o Hx(2x),by

:igof—i—zlog—i—cg("_X OTX/+X/o]dc(@gofﬁ%og)oHX(QX)

=iyof+ijog+cy N olde(iioglizo f) o Tx o Hx(2x)
—i2of+idog—cf ™ olde(i? 0 gli2o f) o Hx(2x), by E1.19

=i30 f+ifog— 5% olde(g|f)o Hx(2x)

where, for any object Z in C, Ty : Ide(Z|Z) — Ide(Z]Z) is the restriction of the canonical switch
T2:Z+7Z— 7+ Zto Ide(Z|Z). Hence we get

1% o HX,X’(f +g)

—1—22) 2—i—i%)og—z’gog—(ifog—i—z’gof)—ifof

(it +(

(F+i5) o f+ (if +i3) og—iz09— (50 f+iiog— 1" olde(glf) o Hx(2x)) —ifo f

(i +i3) o f+ (1T +i3) 0og—ijog—iiog—iso f —ijo f+13% o Ide(g|f) o Hx(2x) by (L1.16)
(it +13) 0 f+L2COHX,X’(9)_ZgOf it o f + 1% o Ide(glf) o Hx(2x) , by [EL12)

= (i} +i3) o f —iso f —if o f + 157 o Hx x:(g) + 1,° o Ide(g|f) o Hx(2x) , by (E1.16)

= 15 o Hx x/(f) + 15% o Hx x/(g) + 15° o Ide(g|f) © Hx(2x) , by

= 15 (HXX'(f)+HX,X'( )+ Ide(g|f) o Hx(2x ) by ([4.1.4)

As ol Ide(X'|X") — X'+ X' is a monomorphism, it concludes the proof. ]
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In addition we provide the deviation of the group structure given in (4.1.2)) to be right distributive:

Proposition 4.1.22. Consider an object X' in (E). Let g1,g0 € C(X,Y) and f € C(X', X). Then
we have

(gl+92) of =giof+gof+cyolde(gilgs) o Hxx(f)

Proof. We have the following equalities:

(91,92) o px o f by ([@#.1.2)

= (91,92) 0 (i1 +i3) o f ,by (L1.3)
= (

= (

)
2)

g1,92) 0 (i o f +is of + ' o Hxx/(f)),by (4.1.12) and [1.1.16]
)

91, 92 021Of+(91;92)0220f+(91,92)0L2 COHXX’(f>>bY

(91 +92) of =

Moreover we have
(g1,92) © Lédc oHxx/(f)= V%/ o(g1+g2)0 Lgdc o Hxx/(f)

= V%/ o Lgdc o Ide(g1]g2) o Hxx/(f)
= C;/ o Ide(g1]92) o Hxx/(f) by

Hence we get
(g1+92) o f = (g1,92) o110 f + (g1, 92) 042 0 f + (g1, g2) © 147 0 Hx ()
=giof+grof+cyolde(gig) o Hxx:(f)

]

There is another expression of the involution Txyy : C(X,Y|Y) — C(X,Y|Y) given in the next
proposition.

Proposition 4.1.23. Consider an object X' in (E). We have Tx x'x» = Hx x o (¢3 ), — id.

Proof. Let £ € C(X, X'|X"). Then we have

/7

15°¢ 0 Hy xr 0 (3 ). (€)
= 15 0 Hx x/(c3 o)
= (i} +22)°C2 of—ijocy ot - 3oy "o, by ([£.1.12)
— X 0 Ido (i + i3 + 3) 0 € — & 0 Tde (13]i3) 0 € — X X o Ide(3133) o€
By [{.2.8] we get
Ide (i + i3|i7 +43) = Ide (i3|i; + 13) + Ide (i385 + i3)

de(i3]i7) + Ide (i7]i3) + Ide (i3]i7) + Ide (i3]i3)
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Hence we have
1% o Hx xr 0 (c3):(€)
=X o Ide (i3

o€+t o Ide(i3i2) o
=X o Ide (mz Yo+ e X o Ty xr o Ide(i2]i?) o €
iliz) o

£+ o Tde(i3)i2) o Ty o€
—L2 ac of—l—LQdc oTxro
= 3% 0 (£ + Tx xr.x/(6))
As 2% Ide(X'|X") — X' + X' is a monomorphism, it concludes the proof. O

Then the next proposition says that the full subcategory (E) of C formed by free objects of finite
rank in C has a square ringoid structure, as introduced in definition 3.1 of [4].

Proposition 4.1.24. The full subcategory (E) of C is a square ringoid, when endowed with the

multifunctor C(—, —|—) : (E)? x (E) x (E) — Gr and, for X, Y and Z objects in (E), the following
diagram of maps

(C(X, Y)Y ex, YY) 2 ek, Y)) , (4.1.14)
and with Tx.y,7 : C(X,Y|Z) — C(X, Z|Y') being the bijection given in[4.1.9 and Pxy = (c} )., where

ey Ide(Y|Y) — Y is the morphism given in . It means that the maps Hxy, (¢} )« and Tx.y 7
satisfy the following properties:

o Pxy = (). : C(X,Ide(Y|Y)) = C(X,Y) is a homomorphism which is natural in both vari-
ables, i.e. for fi € C(X,X') and fo € C(Y,Y"), we have

(fi) oley)e = ()0 (f1) and (¢ )soIde(folfo)e = (f2): 0 (c3 ) (4.1.15)

o Let X', Y and Y’ be objects in (E). For fi € C(X,X'), fo € C(Y,Y'), & € C(X, X|X') and
& e C(Y,Y'|Y"), the maps

Ide(fi| ) 0&),  Ide(cy o0& | fo), :C(Z,X|Y) = C(Z,X'|Y)

are trivial, i.e.
Ide(fil ey 0&), =Ide(c) o& | fo), =0 (4.1.16)

o Let f,g€C(X,Y), we have
Hxy(f+9) = Hxy(f) + Hxy(g) + Ide(g]f) o Hx(2x) (4.1.17)
o For fi € C(X,Y) and fy € C(Y, Z), we have
Hx z(f20 fi) = Ide(fol f2) o Hxy (fr) + Hy,z(f2) © fi (4.1.18)
o ForaeC(X,Y), we get
Txyy(Hxy(a)) = Hxy(a) + Hy(2y) o a — Ide(ale) o Hx(2x) (4.1.19)
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o Let Z be an object in (E) (or merely in C). For g1,92 € C(Y,Z) and f € C(X,Y), we get "the
quadratic left distributivity law”:

(gi+g)of=giof+gaof+cdolde(gi|gs) o Hxy(f) (4.1.20)

o Let Z be an object in (E) (or merely in C). For g € C(Y,Z) and fi, fo € C(X,Y), we have
"the linear right distributivity law":

o(fit f2)=gofitgolf (4.1.21)
o The bijection Txyz : C(X,Y|Z) = C(X, Z|Y) satisfies
Txyy =HxyoPxy —id= nyO<C2) —id (4.1.22)
Proof. The first property is verified because the map (c)). : C(X,Idc(Y]Y)) — C(X,Y) clearly
satisfies (4.1.15). The property is satisfied because we have
Ide(id | aby') o Ide(f1 | ey 0 &) = Ide(fi]abyrocy 0&) =0

and Ide (id | aby) : Ide(X')Y') — Ide(X'](Y')™) is an isomorphism by 4.1.14L Then the properties
(4.1.17), (4.1.20), (4.1.21)), (4.1.20) and (4.1.22) are respectively given by [4.1.21] 4.1.22] 4.1.4] and
4.1.23. Hence it remains to prove the properties (4.1.18) and (4.1.19)).

e First we prove that the property (4.1.18)) holds. Let f; € C(X,Y) and f; € C(Y, Z). Then we
have

15 0 Hxz(f20 f1)
:(i%‘f‘i%)o(fz fl)—lz (fa0 fi) —iio (fao f1) bym
= (ifszH%szﬂédcoHyz(f2)>Ofl—i30fzof1—i30fzof1,by and
In addition we get
(Z% ofatiofot 1o Hyz(f2)> ofi=(ifo fatijofo)ofi+1oHyz(f2)ofi
by and because we have

15% 0 Hyz(f2) o fi = 5% o Ide(i3]i3) o Hyz(f2) © fi

Hence we have

13% 0 Hyz(fo0 f1)

—ijofao fitizo fao fi+cf 7 o Ide(if o foli3 o f2) 0 Hxy(f1) + 5™ o Hyz(f2) © f1, by 122
—i30 fao fi—ijo fyofy

= it o Ide(i% o foliz o fo) o Hxy (f1) + 157 o Hyz(fs) o f1, by (&1.15) and ([@.1.16)

= 7 o Ide(i3]i3) o Ide(flfa) © Hxy (f1) + 15 o Hyz(f2) 0 fu

= 15 o Ide(fal f2) © Hxy (f1) + 5% © Hy z(f2) © fu

= %o <Idc(f2|f2) o Hxy(f1) + Hyz(f2) o f1> ,by 4.1.4]

As (2% . Ide(Z|Z) — Z + Z is a monomorphism, it gives the desired relation.
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e Then we prove that the property (4.1.19) holds. For a € C(X,Y), we have the following
equalities:

137 o T yy (Hxy(a))
=1%o Tyy o Hxy(a),see
=T1¢0 ((i?—i—ig)oa—igoa—ifoa)

(B+2)oa—Boa—ioa,by (ELI)

(zf+z2+L£dCoHy(2y))oa—ifoa—igoa

(2 +ioa+ %o Hy(2y)oa—i2oa—i2oa,by ([(#1.22) and f.1.16]

:(i%+@'§)oa+édco[{y(2y)oa—(igoa—l—ifoa)

By (4.1.20), we have

2 _ 2
12004—{—21 a =17

oa+isoa+cy ™ olde(idoalizoa)o Hx(2x)
—i2oa+i2oa+ 14 o Ide(ala) o Hx(2x)
Hence we have

Lgdc o TX,Y,Y (ny(Oé))
2

(if—l—ig)oa—i-bédco}]y@y)oa—(izooz—i-ﬁooc)

(2 +i2) oo+ k% o Hy(2y) 0

B (2% o a+i30a+ ;% o Ide(ala) OHX(QX))

(3 +B) oa -+ o Hy(2y)oa—Boa—ioa—u*old(ala) o Hy(2x) by (119
=B +id)oa—iloa—itoa+1l%oHy(2y)oa—ib% olde(ala) o Hx(2x), by (£.1.16)
= Lédc o Hyy(a) + Lédc oHy(2y)oa — Lé ¢ olde(a|a) o Hx(2x), by (1.1.12)

= (Jde (ny( ) + Hy(2y) o a — Idc(ala) o Hx(2x ) by @.19)

As 2% Ide(Y]Y) — Y 4+ Y is a monomorphism, we obtain the desired relation.

Remark 4.1.25. We have the following observations:
1. Let f € C(Y,Z). Using (4.1.20) with g; = 0 and go = —f, we get

(=f)og=—(fog)+c olde(f|f)o Hyz(g) (4.1.23)

2. The morphisms in C involved in the relations (4.1.17)), (4.1.18), (4.1.19) and (4.1.22)) have an
abelian object as a target object. By [1.5.17] these relations remain the same if we replace each
morphism with its unique factorization through the abelianization morphism (see [1.5.16| and
1.5.17)). For exemple, (4.1.17) is equivalent to the following relation:

Hxy (f +9)® = Hxy (f)* + Hxy(9)" + Ide(flg) o Hx(2x)™,

for f,g € C(X,Y).
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Now we give the deviation of the retraction r5 : C(X,Y +Y) — C(X, YY) to preserve the (right)
action of the monoid C(X, X), as follows:

Proposition 4.1.26. Let X be an object in (E) and Y be an object in C. Then, for £ € C(Y,Z + Z)
and o € C(X,Y), we have

ra(§ 0 a) =ry(€) o+ Ide(rf o &lri 0 &) o Hx y(a)
Proof. We have the following equalities:
g or(@oa=(¢- (Borfog+Boriot))oa
—goa+< (20r105+z2or2o§)>)oa
— o]dc(§|zlor1o§—|—2207’20§)oHXy ) by (£.1.20)
By (4.1.23), we get
(- (@ortog+iorog)))oa
=—(ijorfol+ijoriof)oa
+c olde(Fortog+isorioglilortot+iioriog) o Hyy(a)
Denoting 12 or? o £ + i3 or2 o & by h, we have
Ide(&|h) = Ide(i3 0 r2 0 &|R) + Ide(i5 0 15 0 £|h) = Ide(i o 1} o € 4143 o r3|h) = Ide(h|h)
by 3.6 of [12] because the functor Ide(—|E™2) : C — C is linear. Hence we have
Lédcorg(f)ooz:f‘oa—(i%or%of—l—z’%or%of)oa

=foa — (iforfogoa—l—igor%ogoa

+ b o Lde(if o} ol o130 €) 0 Hyy(a))
However we get
B o Ide(i 0 13 0 €l ord 0 €) 0 Hyy(a) = (1%,) 0 1% o Ide(r3 0 €lr3 0 €) o Hxy ()
= 14" o Ide(r} o élrio &) o Hyy ()

It implies that

2 ory(f)oa=Eoa— (iforfofoa+ijoriofoa)— 139 o JTde(i2 ort o €li2or2 0 &) o Hyy(a)
= 15 0ry(§ 0 a) = 15% o Ide(r} 0 EJr3 0 €) 0 Hx v (a)
:édco<r2(§oa)—]dc(rlo§|r205)oHXy )bym

As Lédc C(X,Y|Y) — C(X,Y +Y) is a monomorphism, it concludes the proof. H

In addition we give the deviation of the retraction r, : C(X,Y +Y) — C(X,Y]Y) to be a
homomorphism of groups, as follows:
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Proposition 4.1.27. Let X be an object in (E) and Y be an object in C. Then, for f,g € C(X,Y +
Y), we have
ro(f +g) = ra(f) +ra(g) + Ide(r7 o glr3 o f) o Hx(2x)

Proof. We have the following equalities:

e or(f+g)=(f+g) —isorso(f+g)—ijorio(f+g)
=f+g—iyorjog—ijoryof—iforiog—ijoriof, by (412I)

=f+g— 1207“209 (%orlog+z2or2of)—zforlof

By (4.1.18), we get

92 9 92 9
ijorjog+tizoryof

Y+Y

=iyoryoftijoriogte ™ olde(izoryo fliortog)e Hx(2x)

:ZgO’I"gOf—f-lgOT‘%Og—i—C;/—i_YOTy+YOIdC(i%OT%Of|i%OT%Og)OHX(2X>
=ijorjofditoriog+cy ™ olde(itorioglisoriof)oTxxo Hx(2x)

—ijsorsof+itoriog—cy Y olde(itoriogliaoriof)oHx(2x),by EII9

—i2oriof+itoriog— % olde(r?oglrio f)o Hx(2x)

Hence we have
" ora(f +9)
=f+g—iyoryog— (iforfog+izoryof) —ijoriof
— ftg-iorjog— (Borief+itoriog— %o driogho f)o Hy(2y)) ~ fiorio f
=[+g—isorjog—iforiog—ijoriof—iforiof

+ k% o olde(r? o glr? o f) o Hx(2x) , by 119
= [+ or(g) —izorio f—iioriof+1% olde(rfoglrio f)o Hx(2x),by (EI1)
— f—orfof—&ortof+i% ory(g)+ 5% o Ide(r o gl o f) o Hx(2x) by [EIIH
= Lédc 2(f) +L£dc ory(g) + Lédc Ofdc(r% 09|7“§ o f)oHx(2x),by
= 13 o (ra(f) +7alg) + de(r o glrd o f) 0 Hx(2x)) ,by EI2])

As 3% : Ide(Y|Y) — Y +Y is a monomorphism, it concludes the proof. O

Remark 4.1.28. From {4.1.27 and [4.1.7] we deduce that the map ro : C(X,Y +Y) = C(X,Y[|Y) is a
quadratic map in the sense of [4].

Then we give the following relation:

Proposition 4.1.29. Consider X an object in (E), and Y and Z two objects in C. Then, for
fi,2€CY,Z+Z) and £ € C(X,Y|Y), we have

ro(c§H7 o Ide(fi] f2) 0 &) = Ide(ri o fi|rj o fo) 0 & + Ide(r3 o folrs o f1) o Tx vy (€)
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Proof. We get the following equalities:
hde o ra(c5t7 o Ide(f1]f2) 0 €)
=y olde(filfo) o€ — i3 01505 7 o lde(filfz) o€ Z%OT%0022+ZO[dc(f1|f2)of’by
=ci? o lde(filfa) o & —cZ 7 o Ide(i3 073 0 filizors 0 fa) 0
G+ o Ide (it or} o filii o rf o f2) o &, by naturality of 3

Z+7Z

As the bifunctor Id¢(—|—) : C x C — C is bilinear, we have
Ide(id)id) = Ide (i} o rilid) + Idc (i3 o r3|id)
= Ide (i3 o r}|if or}) + Ide(if o ri]i3 o r3) + Ide (i3 o r3|it o r?) + Ide (i3 o r3)i3 o 13)

by 3.6 of [12]. Hence we have

Ide

1% oy (7 o Ide(f1]f2) 0 €)

=t olde(iforio filizorso fo) o+ i 7 olde(isoryo filiioriofa)of
=Ide(rio filrio foa) o€+ 517 0Ty z01de(i50rs0 filifor;o fo) o

= Ide(ri o filrso fo) o &+ c§ 7 o Ide(iiori o folisorio fi) o Tx o
:Lgdcofdc(r%ofﬂ?"gofz) 5+L2dcoldc(7”1of2|7’20f1)OTXYY(S)

— Lgdc (Idc(rf o fi|rs o f2) o0&+ ]dc(r% o folrs o fl) oTX’y’y(§)> , by (4.1.21))

As 1J% : Ido(Z|Z) — Z + Z is a monomorphism, it concludes the proof. ]

Remark 4.1.30. As in [4.1.25] the relations in [4.1.26] [4.1.27) and [4.1.29] also hold if we replace each
morphism with its unique factorization through the abelianization morphism by [1.5.16|because it has
an abelian object as a target object. For exemple, the relation in [4.1.26|is equivalent to the following
one:

ra(€0a)® =r3(§)" 0 a® + Ide(r} o |13 0 €) o Hxy(a)®,

for £ € C(Y,Z+ Z) and a € C(X,Y).

4.2 Definition of the operad AbOp(C)

First we recall that the set of morphisms with abelian source and target has a natural abelian group
structure and we consider the following notation:

Notation 4.2.1. For A and B abelian objects in C, we denote by Ab(C)(A, B) = C(A, B) the indicated
morphism set endowed with its natural abelian group structure.

From now on, we suppose that we have the 2-divisibility condition as follows:

Assumption: idga + idgas is invertible in the endomorphism ring C(E%, E®).

Hence it permits us to consider that, for an abelian object Z in C, the abelian group C(E?, Z)
(see [4.1.4) is a left Z[3]-module. Then the 2-divisibility condition implies the next proposition:
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Proposition 4.2.2. Let X be an object in (E). If we assume that the 2-divisibility condition given
above holds, then we have the following isomorphism of A-P(1)-bimodules

C(E™, [X, X]iae) = C(E”, Ide(X|X))g,

Proof. We recall that the morphism ix : [X, X], — X and ex : Ide(X|X) — [X, X4, are
respectively the image and the coimage of ¢ : Ide(X|X) — X given in|1.3.5, We have the following
equalities:

o Ide Ide E

“oTyx =Viorion®=V%oun®=c

Cg( OTX,X = VX @) L2
As ¢ =ixoex and iy : [X, X]rq, ~— X is a monomorphism, we get ex = ex o T'x.x implying that
we have

(ex)« = (ex)s 0 (Tx.x)« = (ex)s 0 Tgav x x

Hence there is a unique morphism (ex), : (E*, Ide(X|X))s — C(E®, [X, X]14.) such that

(&P

(ex) = (ex)com (4.2.1)

where 7 : C(E™, Idc(X|X)) — C(E®, Ide(X|X))g, is the cokernel of the morphism T x x —
id : C(E™, Ide(X|X)) — C(E®, Ide(X|X)). We observe that (ex). : C(E®, Ide(X|X)) —
C(E®, [X, X]4,) is a surjective homomorphism of A-P(1)-bimodules because E® is a regular-
projective object in the abelian core Ab(C) and ex : Ide(X|X) — [X,X]m. is a surjective
homomorphism of A-P(1)-bimodules. As (ex). : C(E™, Ide(X|X)) — C(E®, [X, X]14.) and
T C(E®, Ide(X|X)) — C(E™, IalC(X|X))62 are also surjective homomorphisms of A-P(1)-
bimodules, so is (ex), : C(E™, JdC(X|X))62 — C(E®, [X, X]14.) by regularity of the category
C. Then we define a set map 0y : C(E*, [X, X];q.) — C(E™, IdC(X\X))62 by:

Ox(f) = 5 Axlix o f o abp)® (122)

where f € C(E®, [X, X]jq,) and the set map Hx : C(X, X) — C(E, Id¢(X|X)) is given in (4.1.12)
(also see [1.1.18). As (ex). : C(E®, Idc(X]X))62 — C(E®, [X, X]1q4.) is surjective, it suffices to
prove that fx o (ex)* =id. Let h € C(E®, Idc(X|X)), then we get

&l
I
>

Ox o (ex)( x 0 (ex)«om(h)

X(eX O h)

I
S

Hx(ix oex ohoabg)®

HX(Cg( oho CLbE)ab

l———

5 TEab XX by and m

1 — e
= h,because h = Tgav x x(h)

i~
_|_

D‘I

N S S e M
[\

as desired. []
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Remark 4.2.3. By 4.2.2) we deduce that we have the following isomorphism of P(1)-modules
|IdC(X|X)|(‘52 = |[X7 X]Idc| )

for an object X in C (see the notations given in [4.0.1). In the category of P-algebras with P here
being an operad as in supposed to be 2-step nilpotent (see [1.6.4)), the above isomorphism is
exactly the one given in 2.4.7

Then we define a linear 2-step nilpotent operad depending on the variety C, already constructed
by M. Hartl.

Definition 4.2.4. The 2-step nilpotent symmetric unitary (right) operad AbOp(C) actually is an
operad in the monoidal category of Z[}]-modules as

AbOp(C)(1) = C(E™, E**) and AbOp(C)(2) = C(E™, Idc:(E|E)) (4.2.3)

and the second term of AbOp(C) is endowed with the involution T' = (Tg)., where Tg : Ide(E|E) —
Ide(E|E) is given in Then abbreviating P = AbOp(C) the only non-trivial ones among the

composition operations
Vg : P(k1) @ ... @ P(ky) @ P(m) = Pk + ... + k)
are given as follows:
Ya(a®b) =aob, mu(p®a)=poa, Y12(a®@b®@p)=Ide(d'b)op (4.2.4)

where a,b € P(1), p € P(2) and d',b' € C(E, E) are respectively a (non-unique) factorization of
aoabg and boabg through abg (which exist because E is a regular-projective object). The structure
linear map 71 1.0 : P(1) @ P(1) @ P(2) — P(2) is well-defined because Idc(abglabg) : Ide(E|E) —
Ide(E®|E®) is an isomorphism.

Now we recall the rings A = Ug(E) and A = T\Ug(E) where Ug : C — Ab is a reduced standard
projective functor associated with F, defined in [2.0.1} Then we remark that P(1) has a left A-module
structure given by

boa=v1(a"®a), (4.2.5)

fora € P(1) and a € C(E, E). As C is a 2-step nilpotent category, the bifunctor Ide(—|—) : CxC — C
is bilinear making P(2) into a left A ® A-module (see 3.17 and 3.26 of [12]) given by

a.a=a

ti(a) @t (B).b = Ide(alB) ob = y112(a" @ B @ b) (4.2.6)

where o, 5 € C(E, FE) and b € P(2). Now we recall that T : Ide(E|E) — Ide(E|E) be the involution
of Ide(E|FE) obtained by taking the restriction of the canonical switch 72 : E+ F — E + E to
1d¢(E|E).

Notation 4.2.5. We denote by P(2)e, the coinvariants of P(2) (i.e here the quotient of P(2) by the
image of 7" — id) and we consider ¢ : P(2) = P(2)s, the canonical quotient map, where 7' = (Tg). :
P(2) = P(2).

Then we observe that the linear unitary (whose unity is here equal to id € P(1) = C(E®, E%))
operad AbOp(C) is symmetric because we have the following equality:

Y1,12(a@bRT (1)) = Ide(d'|V) o T(p) = Ide(d'|V)oTpop = Trolde(t|a')opu=T(v112(b®a® p))

by taking the same notations as in (4.2.4). Moreover we recall that the free P-algebra of rank 1 is
Fp =P(1) & P(2)s,, see the beginning of section 2.4. Now we give specific abelian objects in the
category of P-algebras obtained from abelian objects in C, as follows:
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Proposition 4.2.6. Let Z be an abelian object in C. The sets C(E,Z) and C(E®,Z) are abelian
objects in the category of P-algebras, i.e. right P(1)-modules by .

Proof. It is a direct consequence of (4.1.4) (providing an abelian group structure), (giving a
right P(1)-module structure) and (saying that abelian objects in Alg — P are (right) P(1)-
modules). O

Remark 4.2.7. Hence says that the representable functors C(E, —) and C(E®, —) with domain C
taking values in G (see (4.1.2)) restricted to the abelian core Ab(C) preserve abelian objects. Hence
their restrictions to the abelian core Ab(C) (see [1.3.1]) are functors between abelian categories.

Proposition 4.2.8. The representable functors C(E,—) and C(E®, =) restricted to the abelian core
Ab(C) and values in Modp(yy are linear in the sense of[1.2.5,

Proof. The restriction of the representable functors C(FE, —) and C(E®, —) to the abelian core Ab(C)
take values in the abelian category Modp(1y and preserve finite coproducts. Hence their comparison

morphism rg(E’_) and rg(Eab’_) (see [1.2.1)) are isomorphisms (as coproducts and products coincide in
the abelian category Ab(C)) implying that their second cross-effet (see [1.2.1]) are trivial. O

We define the natural transformation #; : Up = C(E“b, Abc) between functors C — Ab such that,
for X an object in C and a € C(E, X), f1(a) = t;(a®). As the functor C(E®, AIX) : C — Abis
linear by (because it is a linear functor postcomposed by a linear functor with abelian source
and target), there is a unique morphism ¢, : TyUp = C(E“b, Abc) such that

Lot =1 (4.2.7)
by
Proposition 4.2.9. The natural transformation t, : TyUp = C(Eab, Abc) 1S an tsomorphism.
Proof. Consider the following factorization of ¢;:

(T\UR)x.

TS 222N UR) 0 AN e C (B, AIF)

The first factor is an isomorphism by since T\Ug preserves coequalizers of reflexive graphs
by 6.24 of [12]. The second factor also is an isomorphism since for an abelian object A the map
C(E®, A) — TWUg(A), f + t:1(f o abg), is an inverse of () 4. O

We recall the rings A = Ug(F) and A = T1Ug(E), see [2.0.2|
Corollary 4.2.10. The ring homomorphism (t)g : A — P(1) is an isomorphism.

We now consider the natural transformation ué(Eab Ay - TWUg®sP(1) = C(E“b, Abc) such that,
for any object X in C, « € C(F, X) and f € P(1), we have

(e ae)) x (t1(@) ® f) = (a™)u(f) = a™ o f (4.2.8)
see 3.5 of [12]. Combining [4.2.9 and [4.2.10| we obtain

Proposition 4.2.11. The natural transformation
Up(gas apey * T1UE @4 P(1) = C(E, Ab°)

(defined in (4.2.8)) is an isomorphism living in the category of functors from C to the category of
A-P(1)-bimodules.
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4.3 The graded algebra over AbOp(C)

As a first “approximation” of the intended Lazard correspondence functor, we here consider the
graded algebra over the linear symmetric unitary operad P = AbOp(C) (see (4.2.3))) associated with
any object in C, by taking the associated graded of its lower central series. Then we prove that this
defines a quadratic functor with domain C and values in Alg—"P. Finally we exhibit its corresponding
quadratic C-module over P. In the following sections we will modify the latter by a suitable “twist”
(or “perturbation”) in order to construct the quadratic C-module over P whose associated functor, in
contrast with the associated graded functor, is an equivalence, thus establishing the desired Lazard
correspondence.
For X an object in C we associate its graded P-algebra as follows:

@'YIdc iljﬂ(X) =X"® (X, Xrde

n>1

in the category C, because y4c(X) = 0 for n > 3 (as C is a 2-step nilpotent category) and X =
X /bt (X)) = Idc( ) /2% (X). Hence we have the following abelian groups isomorphism:

X @ |[X, X]ia.| = C(E®, X™)®C(E?, (X, X]14.) = Grad(X)

Note that |[X, X];4.| is an abelian group because [X, X]q4,. is a central subobject of X in C (as C is
a 2-step nilpotent category). Then the structure linear maps of Grad(X) are given by:

e the map \{"% : Grad(X) ® P(1) — Grad(X) is such that
AT(fh) @ a) = (foa, hoa)
e the map \§"% : Grad(X)®? ® P(2) — Grad(X) is such that

AzGrad((fb hy) @ (fa, hy) ® b) = (0, ex o Ide(abx|abx)™" o Ide(fi|f2) o Ide(abglabg) o b)

Here we recall that the morphism Ide(abx|abx) : Ide(X|X) — Ide(X | X ) is an isomorphism

by [L1.14

This gives rise to the functor Grad : C — Alg — P that is defined on morphisms by Grad(f) =
(fob, ~Lde(£Y), for any morphism f in C.

4.3.1 The second cross-effect of the functor Grad from C to AbOp(C)-
algebras

Before determining the second cross-effect of Grad : C — Alg — P, we need the following proposition:

Proposition 4.3.1. Let X and Y be two objects in C, then the second cross-effect of ﬁdc :C—C
1S given by
7" (X|Y) = Ide(X]Y)
Idc /}Fc
and the kernel 1> : 3% (X|Y) — 3% (X +Y) of the comparison morphism 3> : v (X —|— Y)—
yde (X)) x WQMC(Y) is the unique factorization of 15% : Ide(X|Y) — X +Y through ’Lx+y Y3% (X +

Idc
1d
Y)— X +Y, ie 15 =ixiy oty
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Proof. Let X and Y be two objects in C. Moreover we denote by i% : X — X +Y,i%:Y — X +Y
respectively the injections of the first and the second summands, and by r% : X + YV — X, r% :
X +Y — Y their respective retractions. We consider the following diagram:

Jde yldc
0 Ide(X|Y') 2 X+Y - X xY 0
IxX+y ix Xiy
JLde
0 [de(X[Y )= = = =5 = = =yl (X 4 V) ——m e (X)) X Ale(y) ——0
(7,'d7 Tyx) EX+Y ex Xey
Idci|\—).A2

0—=Ide(X|Y) & Ide(Y|X 2 Ido(X + Y|X + Y Ide(X|X) x Ide(Y]Y) —0

where k = (Ide(i%|i%), Idc(i¥]i%)) is the kernel of rldet=174% (gee the Lemma 1.20 of [12]), Tyx
Ide(Y|X) — Ide(X]|Y) is the restrinction of the canonical switch 72, : Y+ X — X +Y on

Ide
Ide(Y|X). The two right-hand rectangles commute by naturality of the comparison morphism r,>

7 (X +Y) = 4% (X) x 74%(Y) in v4%. Then it remains to prove that the outside left-hand
rectangle commutes. It commutes because we have

e "V o Ide (i i) = (%, i3) 0 15" = 15"

and

" o Ide (i |i%) = (i3, %) 0 " = (i%, i¥) o T x 0 " = 13" 0 Tyx
We observe that (id, Tyx) = V2o (id® Ty x) is a regular epimorphism as a composite of two regular
epimorphisms. Hence we deduce that Idc(X[Y) is the image of the morphism 2% o (id, Tyx). By
the universal property of the image, there is a unique morphism & : Ide(X|Y) — 74% (X +Y) such

that
Lédc = ix+y O E (431)

Moreover we get
€x.y © k= E o) (Zd, Tyx) (432)

because we have the relation (&.3.1), ¢ ™Y o k = 1% o (id, Ty, x), and ix y : V(X +Y) is a
monomorphism. It remains to prove that the morphism & : Ide(X|Y) — 72% (X +Y) satisfies the

—

Idg
universal property of the kernel of the comparison morphism r,> . Let f : Z — ’ygdc (X +Y) any

Ide
morphism in C such that 7,> o f = 0. By postcomposing with ix X iy, we obtain

Ide —

O:(ixxiy)or;/Z ofzrgdcoixwof

By definition of 2%, there is a unique morphism f : Z — Ide(X|Y) such that e o f =ix,yof.

By (#.3.2), we get

. 7 ~ Id rs .
ixyyokof =1 of=ixiyof

Asiyiy: ’yédc (X +Y) — X +Y is a monomorphism, we have k o f = f. Tt finishes the proof. [
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Corollary 4.3.2. Let X and Y be two objects in C, then the second cross-effect of Grad s given by:

Grad(X|Y) = I<C(E“", Idc(XIY))>

and the kernel 157 : Grad(X|Y) — Grad(X +Y) of the comparison morphism 7@ : Grad(X +
Y) — Grad(X) x Grad(Y') is defined by:

Ide
157 a) = (0, 1”0 @)

where a € C(E®, Ide(X|Y)), and I : Modpy = Ab(Alg — P) — Alg — P is the inclusion functor
(see the notation given z'nfor C=Alg—"P).

Proof. Let (f, h) € Grad(X +Y) such that @(f, h) =0, i. e.

((15)™ 0 f, (%) 0 h) = 0 o f=0 f=
((TZ )ab o f Ide (TQ ) o h) —0 < /hd\c — /'Y;d\c
Y y V2 Y - T_’QYQ oh — r oh —

because AVC : C — Ab(C) is a linear functor which is equivalent to say that 7:§4bc (X + Y)Y —
X x Y is an isomorphism by 1.3 of [12]. By there is a unique morphism h : E% — Id¢(X1]Y)
Id,

such that h = 1, “oh. Then we have

Id, N

(f 1) = (0, h) = (0, 3 o) = 57 (R)
as desired. 0
Corollary 4.3.3. The functor Grad : C — Alg — P is quadratic.

Proof. The bifunctor Grad(—|—) : C x C — Alg — P (whose expression is given in {4.3.2) is bilinear
because the functor C(E®, —) : C — Ab restricted to Ab(C) is linear and Ide(—|—) : C x C — C
is a bilinear bifunctor (because C is a 2-step nilpotent category). Hence it proves that the functor

Grad : C — Alg — P is quadratic by Remark [1.2.13 n

4.3.2 The linearization of the functor Grad
We now determine the linearization of the functor Grad : C — Alg — P.
Proposition 4.3.4. Let X be an object in C. The linearization of Grad : C — Alg — P 1is given by

Ty (Grad)(X) = [(c( foid Xab))

where t§™ : Grad(X) — T1(Grad)(X) is the projection onto the first summand, and I : Modp ) =
Ab(Alg — P) — Alg — P is the inclusion functor (see the notation given in[1.3.3 for C = Alg — P).

Proof. Let X be an object in C. We give another expression of the morphism (SQG’"‘“’)X
Grad(X|X) — Grad(X) as follows:

Id Id Id
(5§ y () = Grad(V%)or§™(a) = Grad(V%)(0,13  oa) = (0,7%(VZ)o1* oa) = (0,(S3 )xoa)

where a € C(E®, Ide(X|X)). Let g : E® — [X, X]|r4. be any morphism in Ab(C). As E® is a
regular-projective object in Ab(C), there is a (non-unique) morphism g : F% — Id¢(X|X) such that

g=exog
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Then we have
e Ide (72 7o
) ) - . ! N
ix 0 (S )xog=rixo1“(Vx)ow® of
2 e
=V%oixix0ly® 0F

2 Ide _ ~ " 7,
=Vxo1,¢0g, by definition of ¢,

= oj
=ix0€ex0(g
=1ix0g
Ide
Hence we have g = (S,> )x o g because ix : [X, X];4. — X is a monomorphism. It proves

that the canonical injection of the second summand of Grad(X) is the image of the morphism
(S§rad) v+ Grad(X|X) — Grad(X). Finally we deduce that the projection of Grad(X) onto the first
summand is the cokernel of (S$7%)x : Grad(X|X) — Grad(X), denoted by (t§7%%)y : Grad(X) —
T1(Grad)(X) = C(E®™, X®). O

4.3.3 The quadratic C-module over AbOp(C) associated with the functor
Grad

In this part, we give the quadratic C-module over P = AbOp(C) (see (4.2.3))) associated with the
quadratic functor Grad : C — Alg — P.

Remark 4.3.5. We first observe that the 2-divisibility condition ensures that Grad(E) is isomorphic
to Fp the free P-algebra of rank 1 because we get
Grad(E) = C(E™, E®) & C(E™,|E, El1a.) = P(1) ® C(E™, [E, El1a,) = P(1) & P(2)e, = Fp

by (replacing X with E) because the 2-divisibility condition holds.

As Grad : C — Alg — P is a quadratic functor by it makes sense to consider S} (Grad) its
corresponding quadratic C-module over P where ST : Quad(C, Alg — P) — QMod} is the functor
defined in [2.4.27

Remark 4.3.6. Recall that 0 : C(E®, [E, E]4,) — P(2)s, is the isomorphism of (right) P(1)-
modules defined in (4.2.2)) and that ez : P(2)s, — C(E®, [E, E|14.) is its inverse given in then
we have another left A-module structure on Fp given by

a.(f, h) = (id ® 0g) o Grad(c) o (id ® eg)(f, h)
= (a®o f, Ide(a|a) o h)

= (M@ @ f), nagla® ®a® @ h)),

for o € C(E, E), f € P(1), h € P(2) and h denotes the equivalence class of h in P(2)s,. The
structure linear maps of the linear symmetric unitary operad P are defined in (4.2.4)).

The next result provides another quadratic C-module over P isomorphic to S¥(Grad) in QModf, .
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Proposition 4.3.7. If the 2-divisibility condition holds, the quadratic C-module over P corresponding
to Grad is isomorphic to the following one in the category QMod[, :

Thiers(Us)(E, E) @a Fp HEe P(2) d Fp
1d@ A2 12
Tiery(Ug)(E, E) @4 P(2)e, = P(2) 7 P(2)e,

Here
o we define the map HE : Tycry(Ug)(E, E) @ Fp — P(2) by
HO (111 (p2(€)) @ (f, 7)) = H(tua(pa(€) @ah) = 01(r} 0 §) @ 11(r5 0 €). (b + T (1)
where £ € C(E, ET?), f € P(1) and h € P(2).

o iy : P(2)s, — Fp is the canonical injection of the second summand and ¢ : P(2) — P(2)s, is
the map defined by ¢ =iy 0q.

Proof. By [2.4.27] the quadratic C-module over P corresponding to Grad is given by:

ngad (SQGrad)E
Tiera(Ug)(E, E) @p Grad(E) Grad(E|E) Grad(E)
id®A(()\QGTad)EO(¢grad)71) cro (Agrado(¢Grad)—1)E7E (AQGTad)EO(¢gTad)71
Tiery(Ug)(E, E) @ (T1Grad(E)®? ®s P(2)) ———7= T1Grad(E)*? Qrgr P(2) G TiGrad(E)** @5 P(2)
HE E

By |4.3.4l and 4.3.2] we know that T1Grad(E) = P(1) and Grad(E|E) = P(2). The calculations are
the same than those in the proof of It is just necessary to focus on the morphism H %, Let
£ € C(E, E™?) and (f, h) € Fp. We define the morphism H% : Ty cry(Ug)(E, E) @7 Fp — P(2)
by

HGT‘ad —_ ngad o) (’Ld X (Zd ) @)) (433)
where eg : P(2)s, — C(E®, [E, E];4,) is the isomorphism given in (4.2.1)). Then we have explicitly
HE (1 (pa(€)) @ (f, b)) = HE™ (tu(p2(8)) @ (f, en(h))) , [(@3.3)

= ngad<t11(p2<£>> ® (f7 €g © h)) 7by
= cra(Ugaa) .2 (p2(6) © (f, e oh)) by

We recall that ug,,, : Ug ®a Grad(E) = Grad is the natural transformation given by

(UGraa)x (@ ® (g, b)) = Grad(a)(g, b)
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where X is an object in C, a € C(E, X) and (g, b) € Grad(E) (see 2.1.1). Now we have
1§70 HY (t11(p2(€)) @ (f, 1))
=157 6 19 (tlgyog) 5,5 (2(6) © (f, ep o h))
= (Ugraa) 2 © (12 @ id) (p2(€) ® (f, e o )
= (Ugraa) 2+ (120 p2(€)) ® (f, ep o h))
= (Ugraa) 5+ (£ @ (f, €m0 h)) = (Ugag) e (T 0 77 0 &) ® (f, epoh))
— (Ugraa) 2 (5 073 0€) @ (f, ep o h))
= Grad(§)(f, egoh) — Gmd(z’f o frf o&)(f, egoh)— Gmd(z’% o r§ 0 &)(f, egoh)
= (€0 f, n*(€)oesoh) = ((Iforfo)®o f, (il ori o) o h)

— (3o o &)™ o f, ™ (ijory o) oh)
As the functor Ab¢ : C — Ab(C) is linear, we get

60 = (iforfo)” + (Borsog)"”
by 3.6 of [12]. Hence we have
157 0 HE 4 (t (p2(€)) @ (f, 1))

— (0, 4% oepoh— %@ orio)oepoh — L (Foriog)oesoh)
=<0, epre 0 Ide(E]€) o h —epra o Ide(ii o olifori o) oh
—eprolde(Bordogliforiog)oh)
<0 6E+2o]dc(zlorlo§|2207“2o§)oh—|—]dc( or205|zlorlo§)oh> by 3.6 of [12]
As the bifunctor Ide(—|—) : C** — C is bilinear, it implies that
Idc(fK)—IdC( 07"1082107"105)4‘[%( OT205‘22O7”2°5)
+Idc( orl05\2207*2o§)+]dc(120r20§|210r1og)

by 3.6 of [12]. Then we get
5" o HE (t11(pa(8)) @ (f, 1))

= (0, emez o (Ide(B13), Tde(i13)) o (Ide(r3 0 €lr3 0 €) & Ide(r3 0 €lr3 0 ) o h)
= (0.3 o (id, To) o (Tdelr3 o €3 0 €) & Ide(r o €l 0 €)) o ), by
= §7((id, Tix) o (Ide(r} o €lr3 0 €) @ Ide(r3 0 €l 0 ) o h) by (132

— Lg;rad

<Idc 7’105|7“205)Oh+TEoIdc(r2OS|7’1OS)Oh)
—L2Gmd<t1 108 @ (13 0&).h+ Ide(r} o €lrd 0 €) 0 Tpoh) by 3.17 of [12]
(h0eg) @ (o) h+h(io) ©h(fo)T(h))
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As §7 : Grad(E|E) — Grad(E + E) is a monomorphism, it proves the result. O

We also denote Grad : C — Alg — P the quadratic functor corresponding to the quadratic C-
module over P given in [£.3.7] Note that the functor Grad : C — Alg — P is not an equivalence of
categories because the map Grad : C(E, E) — Alg — P(Fp, Fp) is not a bijection. In order to see
this first note that we have the canonical isomorphism ev, 5, : Alg—P(Fp, Fp) = Fp, f — f(id,0).
Then, for o € C(E, E), we have

eV © Grad(a) = a.(id, 0) = (o™, 0)

where a.(id, 0) is given in Hence we deduce that the map Grad : C(E, E) — Alg—"P(Fp, Fp)
is not a bijection.

This observation leads us to modify the left A-module structure for Fp and the expression of the
morphism HE : Tyycry(Ug)(E, E) @5 Fp — P(2) (present in |4.3.7) by [3.6.9 It is the first step
to determine the Lazard equivalence with domain C and values in Alg — P. Before tackling this, we
need to provide a version of the five lemma for quadratic maps relative a (normal) subgroup.

4.4 The quadratic five lemma

In this part, we first give the definition of quadratic maps, already given in 2 of [4] and in [18] (as
weakly quadratic maps), and those relative to a subgroup introduced by M. Hartl. Then a five lemma
is provided for quadratic maps relative to a subgroup. It recovers the classical five lemma in the
category of groups by considering the homomorphisms of groups (equivalently saying linear maps)
as a particular case of quadratic maps.
Let f : G — H be some function between arbitrary groups. We shall however, write the group law
of H additively since in many applications H is abelian, and in those in [4], where H is genuinely
nonabelian, it is written additively anyway to match the conventions in homotopy theory which
originally motivated these developments. Define the deviation function, or the cross-effect of f, to
be the map:

dy:GxG—H by d(a, b)= fla+b)— (f(a)+ f(b)) (4.4.1)
Furthermore, let Iy and Dy denote respectively the subgroup of H generated by Im(f) and Im(dy).
Definition 4.4.1. We say that f as above is

1. linear if dy = 0, i.e. f is a group homomorphism;

2. quadratic if dy is bilinear and Dy is central in I, or more explicitly, Va, b, c € G, [ds(a; b), f(c)] =
0.

We also need the relative version of quadratic maps as follows. Let A be a subgroup of G, then
we say that f as above is quadratic relative A if f is quadratic and df(A X G) = d¢(G x A) = 0. Note
that f is quadratic if, and only if, it is quadratic relative the trivial subgroup {0}. Now we establish
the five lemma for quadratic maps relative a subgroup, here called the quadratic five lemma:

Lemma 4.4.2. Given a commutative diagram where the two horizontable short sequences are exact
in the category of groups:

q1

0 A G U 0
fi f2 f3
0 B H—2= 1% 0

If f5 is a quadratic map relative A, f1 is a reduced (i.e. f1(0) = fo(0) = 0) bijection map and f3 is
a bijection, then fo is a bijection.
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Proof. This proof is mainly the same as the classical five lemma, except we need the following
property dy, (A x G) = ds, (G x A) = 0 which holds because f is a quadratic map relative A.

1. First we prove that f, is surjective. Let h be any element in H. As ¢(h) € V and f; is
surjective, there is u € U such that ga(h) = f3(u). Moreover there exists ¢ € G such that
u = q1(g) because ¢, is also surjective. Hence we have

q2(h) = fs(u) = (fsoq)(g) = (2 f2)(9) .

It implies that h — fo(g) € B. As f; is surjective, there is a € A such that h — fo(g) =
fi(a) = fa(a) (because f; is the restriction of fy to A). Then the map fs is quadratic relative
A implying that we get fo(a+ g) = fa(a) + f2(g) because dy,(A x G) = 0. Hence we have

h = fa(a) + fa(g) = fo(a+ g)

Finally f; is surjective.

2. Then we prove that fs is injective. Let g and ¢’ be two elements in G such that fs(g) = f2(g).
By postcomposing with ¢, we have

(g2 f2)(9) = (20 f2)(¢g) <= (fse @)(9) = (fs o a)(d)
< qi1(9) = ¢1(¢’) because f3is injective
—g-—geA
As fo is a quadratic map relative A, we get f2(g) = fo((9—9')+4') = f2(9—¢')+ f2(¢'). Hence
we have fo(g — ¢') = 0 because f2(g) = fa(g'). But g — ¢’ € A and f; is the restriction of f; to
A, so we have fi(g — ¢’') = 0 implying that we get g = ¢’ because f; is injective. Finally f; is
injective.

[]

4.5 Construction of the Lazard functor

Now we search for a quadratic equivalence with domain C and values in Alg — P. We call this the
Lazard correspondence for the 2-radicable 2-step nilpotent variety C. For this we first modify the
left A-module structure for Fp, the free P-algebra of rank 1, given in in such a way that we
obtain a bijection Lgp : C(E, E) — Alg — P(Fp, Fp). Then we find an appropriate quadratic
C-module over P whose associated quadratic functor L : C — Alg — AbOp(C) will be proved to be
an equivalence in the next section.

4.5.1 The quadratic functor L : C — Alg — AbOp(C)

Here we find the quadratic functor L : C — Alg — AbOp(C) by picking a particular quadratic C-
module over P = AbOp(C) (see (4.2.3))) with a suitable A-module structure on Fp. As the quadratic
functor L has to be an equivalence of categories, we know that its corresponding quadratic C-module
over P is of the following form (by [3.6.9):

Thero(Up)(E, E) ®4 Fp 1 P(2) : Fp
1dR A2 12
THCT’Q(UE)(E, E) (S9N P(Q)GQ = P(Z) P(Z)Gz (451)
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where iy : P(2)g, — Fp is the canonical inclusion of the second summand, ¢ : P(2) — P(2)e, is the
cokernel of T'—id (see , G : P(2) — Fp is the composite iyoq, H- : Ty1ery(Ug)(E, E) ®@p Fp —
P(2) is a morphism satisfying the relations (QM1) and (QM2) (the relation (QM2) holds if, and
ony if, the left-hand square commutes) in and H : Tyiery(Ug)(E, E) @4 P(2)s, — P(2) is the
morphism defined by

H(t0(p2(6)) @ ) = t2(r 0 ©) @ 11(s3 0 €). (h + T(h) (45.2)

for £ € C(E, E™?) and h € P(2).

Notation 4.5.1. The top and the bottom rows of the diagram (4.5.1]) are respectively denoted by M*~
and by (M%)2.

On the one hand, we give another structure of left A-module for Fp = P(1) @ P(2)e,, the free
‘P-algebra of rank 1. For this we first define the map
__ 1

H(a)) = a.(id, 0) + = 4(H(a)) (4.5.3)

¢éE C(E, E) = Fp by gbé,E(a) = (aab, 5

where a € C(E, F) and a.(id, 0) is given in [4.3.6]
Proposition 4.5.2. The map (Z)%,E :C(E, E) — Fp is quadratic relative C(E, [E, E][dc).

Proof. First we prove that the deviation of qb@E’E to be a homomorphism of groups (see (4.4.1)) for
f = ¢k ;) is bilinear. Let f1, fo € C(E, E), then we have

dyg (f1 f2) = Sk p(fi + f2) = S5 p(h) = D% p(f2)

SH) - (. 5 A)

(fi+ f2)*, 1H(f1+f2)) - ( i 5

2

(H(fi+ f2) = H(f) — H(f2)

Tde(Flfi) o H(2)) by

NI —= N = N

Tap(fs* @ f* ® H(2))) . (4.2.4)

We deduce that dye —: C(E, E) x C(E, E) — C(E, E) is bilinear. Next we verify that
d(bgﬂ (C(E, [E, E}Idc) X C(E, E)) = d‘ﬁfE,E (C(E, E) X C(E, [E, E]Idc)) = 0. Let f c C(E, [E, E]Idc)-
If we replace fy (or f1) with (ig).(f) =ig o f, then we clearly have observe that

H(fi+ f)=H(fi)+ H(f)
because abp : E — E is the cokernel of ip : [E, E]4. — F implying that (ig o f)® = 0. O
Proposition 4.5.3. The map ¢% p : C(E, E) — Fp is a bijection.

Proof. First we prove that the following diagram is commutative:

0 C(B,[E, Bl (B, E) — " (B, E™) 0
& | 0go((abp)*) ™! b g NI((abE)*)l
0 P(2)e; = Fp = P(1) 0
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where 0g : C(E®, [E, E]14,) — P(2)e, is the isomorphism given in i is the injection of the
second summand and 7 is the projection onto the first summand. The top sequence of the above

diagram is exact because we apply the representable functor C(F, —) : C — Gr to the following short
exact sequence

0— [E, Elpq, 5 E 25 E — 0

For f € C(E, [E, El4.), then we check that the right-hand square is commutative:
i20 05 o ((abg)*) " (f) = (i2 0 0)(f*)

= 22(% H(igo f®o abE))
= (0. 5 G0 7))

= ((iz o 4™, 5 Gz 1)
= Q%E(ZE o f)

= ¢p.k © (in)-(f)
Let g € C(E, E), then we prove that the left-hand square commutes:

(b)) o (abi).() = 1 = m (7, SHF) =m0 6h(f)

As gb@E?E :C(E, E) — Fp is a quadratic map relative the subgroup group C(E, [E, E]MC) by ,
it is a bijection by 4.4.2] [

Let us recall the canonical isomorphism ev,5 @ Alg — P(Fp, Fp) — Fp, then we define the
composite map Lgp = ev(;;ﬁ) o gbIE,E : C(E, E) — Alg — P(Fp, Fp) that is a bijection (as a

composite of two bijections). It will correspond to the image of endomorphisms of E in C by the
Lazard equivalence L (see 3.2, 6.12 and 6.16 of [12]), and it has the following explicit expression:

Lemma 4.5.4. Let « € C(E, E), f € P(1) and h € P(2). Then we have

Les(@)(f, B) = (a0 £, T a(a® @ a® @ ) + 5 7 (@) © 1))

Proof. We consider the equalities as follows:
Lgp(a)(f, h)

= ev(_i;,ﬁ) o QZSé’E(OZ)(f, E)

o L
- 61](1576) (Oé ba 5 H(Oé))(f, h) , by

=\ <(a“b, H(a)) @ (a®, %H(a}) ® h> , by

1
= (a0 £, 5921 (H(@) ® 1)) + (0, y112(a® @ a? @ h) ) by (L5 and

H(«)) ®f> + Afp((oﬂb, %

1
2

2

as desired. []

1
_ <oﬂb o f, Miz(a® @ a® @ h) + = you (H(0) @ f)) ,
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The bijection Ly g : C(E, E) — Alg — P(L(E), L(E)) gives rise to the following left A-module
structure on Fp:

Proposition 4.5.5. The map Lg g : C(E,E) — Alg — P(L(E), L(E)) gives rise to a left A-module
structure on Fp as follows:

axr (f, h) = Lp(@)(f, h)

1
= (0”0 f, Y12(a® ® @ & h) + 5 2a(H(a) @ 1)) , by

= a.(f, h) + %q‘(wzﬂ(H(a) ® f))

where o € C(E, E), f € P(1), h € P(2) and a.(f, h) is given in .

Proof. Let oy, ay € C(E, E) and (f, h) € Fp, then it suffices to prove that we have

(a0 aq) *p, (f, E) = Qg *[, (041 L (f, h))
We get

(agoaq)*g, (f, h)

= (a0 ay).(f, h) + 1(i(’yz;l(lﬁf(ozz o) ® f))

2
= 0z (a0 (1, ) + 502 ((H(02) 0 01") & ) + 121 (delaslaz) o H(an) @ £) ) by
= ag.(on.(f, B)) + %Q<72;1(72;1<H(a2) ® o) @ f) + 21 (112(05 ® a8’ © H(a)) ® f)) by
= (0., ) + 0.0, 3 3B & 1)) + 3 (20 (H(2) @ (a0 1)
= (o (s )+ 5 a0 (Hlaa) @ 1)) + 5 (e (H02) ® (0 1)
= (00 %2 (F, 1)) + 5 (22 (H(02) © (0" 0 1))
= azxp (a1 x (f h))
as desired. O

Assumption: we now consider that Fp is equipped with the left A-module structure given in

On the other hand, we are looking for the expression of the map HL : Ty cry(Ug)(E, E) @ Fp —

E
P(2). For this we define the (right) P(1)-module homomorphism (v)xy : Ug(X +Y) ® Fp —
TUp(X) ® iUp(Y) ®aea P(2) by

(vp)xy (E@(f, 7)) = ti(rfo&) @t (rj o) @ (h+T(h) — % H(2) 0 f) + (up(gas 10—y xy (r2(§)® o f)

where X and Y are objects in (F), and Ue(gab 10 (— |-y * IUE®T1UE @rea P(2) = C(E®, Ide(X|Y))

is the natural transformation between bifunctors given in which is an isomorphism on (E) x (E).
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Proposition 4.5.6. Let X and Y be two objects in (E). Then the (right) P(1)-module homomor-
phism (vp)xy Ug(X +Y) @ Fp — ThUg(X) @ ThUg(Y') ®aca P(2) is A-bilinear, i.e.

(ve)xy (§® axp (f, 7)) = (vr)xy (€ o) @ (f 1))
where £ € C(E,X +Y), a € C(E,E) and (f,h) € Fp.
Proof. Let ¢ € C(E,X +Y), a € C(E,E) and (f,h) € Fp. Then we have the following equalities:

(v)xy (@ axp (f, D))

= (vr)xy (f ® (a0 fimip(a® @ a® @ h) + %72;1(17(04) ® f)))
=t1(r7 o) @t (1308 ® (71,1;2(0/“’ ®a® @ h)
5 H(@)o f +T(aa(a” ©a® @ h) + 5 H(a)o f)

N — N~

H(2)0oa™o f) + (Uggab 1ap (1) x v (12() 0 a0 f)
=t (1 o&) @t (r308) @ (ti(a) @ ti(a).(h + T(h))

Fh( o8 ®not) e g (Hla)o f +T(H(0))o f

—H(2)oa”o f> + (UIC(Eab,IdC(—|—)));(,1Y (Tz(f)ab oa®o f)
=ti(riofoa)@ti(riofoa)® (h+T(h))

Fhi e ®no) e (Ha)o f +T(H()o f

—H(2)o a™ o f) + (ué(Eab,Idc(—|—))))_(,lY (T2<5)ab oa”o f)

Now we consider the following term:

(e sy (3 0O © (30 ) @ 3 (H(a) o f + T(H(a)) o f
— H(2) 0™ o ) + (U g say )3y (2(E) 7 0 a0 f) )
= 2 1de(r} o €lra 0 €) o H(a) o [ + 5 Tde(r o lra 0 &) o T(H(a)) o f
- % Ide(r} 0 €|y 0€) 0 H(2) 0 a™ o ) +15(€) 0 a o f
By we have
ro(€) o a™ =ry(E0a)® — Ide(ri o &|ri 0 €) o H(a)
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Hence we get
(e ) (BT 0 @ 1130 ) @ % (H(a)o f+T(H(a))o f
— H(2)00™ 0 f) + (Weggo 1ag( )Xy (2 0 a0 f))
= =3 de(r} 0 €lrs0 &) 0 H(a)o f + 5 Tdelrt o €lrz 0 €) o T(H(a)) o f
— 5 Tde(r o €lr0€) 0 H(2) 00 o F) +ma(£0 ) o f

By (4.1.19), we have
T(H(a)) = H(a) + H(2) 0 a® — Ide(a|o) o H(2)

Then it gives the following equalities:
1
(W paei oy (0T 0 ) © 113 06 L (H(a) o f+ T(H(0)) o f
—H(2)oa"o f> + (U gas 1oy xy (r2()® 0 a® o f))
1
=3 Ide(r?otoalriotoa)H(2) o f +ryfoa)®of
/ 2 2 1
= (Ug(gab rdg(——))) XY (tl(ﬁ o) ®@ti(r;08) ® (— 5 Ide(ala) o H(2) o f)

+ (u/(,’(Eab,Idc(—\—)));(}Y (7’2(5 oa)®o f))

implying that we have

e @hlrof)e % (H(a) of +T(H(e)o f—H(2)oa"o f> + (U’chE))_(,lY(T2(§)ab oca®o f

1
= t(riof) @t (rj o) ® ( 3 Ide(ala) o H(2) 0 f) + (UE:(Eab,[dc(_|_))))_(,1y(7“2(5 o Ol)ab o f)

because (ul,.,;, )xy : TiUp(X) @ TYUg(Y) ®@aga P(2) = C(E®, Ide(X|Y)) is an isomorphism, see

KHI11and K171 Hence we have

(v)xy (E@ax* (f,h))
=ti(riofoa)@ti(r;ofoa)® (h+T(h))

1
+t (7o) @t (r508) @ (— 5 Ide(alar) o H(2) 0 f) + (u¢gab rae () xy (12(€ © a)®o f)

=ti(riofoa)@ti(riofoa)® (h+T(h) - %H@) o f) + (e gab rae () xy (12(€ © a)®o f)

= (v)xy (o) @ (f, 1)),
as desired. [

Then it follows that the (right) P(1)-module homomorphism (v.)xy : Ug(X +Y) ® Fp —
TUgp(X) @ TYUR(Y) ®agn P(2) factorizes through the quotient map ¢ : Ug(X +Y) ® Fp —
Up(X+Y)@nFp by We denote by (vr)xy : Ug(X+Y)@xFp — T1Up(X)RT1Up(Y )@reaP(2)

its factorization.
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Proposition 4.5.7. For two objects X and Y in (E), the P(1)-module homomorphism (vi)xy
Up(X+Y)®Fp - ThU(X) @ TWUE(Y) ®aga P(2) is natural in X and Y.

Proof. Let a € C(X1,X>), B € C(Y1,Ys), £ €C(X, X, +Y)) and (f,h) € Fp. Then we have

() xawa (@ + B) 0 €) ® (£,1)

=ti(rio(a+pB) o) @ti(rio(a+B)of)® (h+T(h)— %H(Z) o f)
- (et s (2 (@ + B) 0 ) o f)

=ti(aoriol) @t (Bor;ol) ® (h+T(h)— %H(Q) o f)
o+ (gt e 1) (r2 (@ + B) 0€) o )

= t(@) ®1(8).(h(F 0 (o) @ (h+T(h) — 3 H(2)o 1))
+ (U gan, rag (-1 Xarva (T2 (@ + B) 0 g)ab o f)

However we have

—(a+B)og—(Forio((a+B)og)+iforio((a+p) o)), by ELI)
—(a+B)of— (oH—B ot ortot+(a+pB)oBoriot)
=(a+pf)of—(a+P)o(iforfos+ijor;og) by (1121)

—(a+p)o ( orlo§+2207’205)>,by

= (a+ B) 0 13 o 1y(€) , by
= 15% o Idc(a|B) o 12(€)

As 139 Tde(X, Xo|Ya) — C(X, Xy + Y3) is a monomorphism, we get
ro((a+ B) 0 &) = Ide(a|B) 0 ra(€) = ti(@) @ t1(B).r2(€)

Hence we have

(U(gar 1ae(—1—9) Xy, (T2 () Og)abof) = (t1(@) @11 (8) @asaid) o (U gab 1ae(—-y) X214 (r2(6)™ o f)

by naturality of the natural transformation (U/C(Eab Idc(f|f))>X17Y1 :TUE(X,)@ThUg(Y1)@agaP(2) —
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C(X,Ide(X1|Y1)) in X; and Y;. Finally we get
() xa: (@ + B) 0 &) ® (f,1)
=ti(aoriol) @t (Bor;ol) ® (h+T(h) — %H(Q) o f)
+ (U o) xma (r2 (@ + B) 0 €)™ o f)
= (ti(@) @ t:(B) ® id) (tl(r% o) @t (r30&) ® (h+T(h) - %H@) o f)

/

+ (Ue(pab 1de(~ | )))Xi yi (r2(§)* o f)
— (t1(@) ® 11(B) @rea id) o (v)x,m (€@ (f, 1))
as desired. O

Consequently the (right) P(1)-module homomorphism (v7)xy : Ug(X +Y)®@x Fp = T1UR(X)®
TWUE(Y) @aga P(2) is also natural in X and Y. Then we define the map (wr)xy : craUg(X,Y) ®a
.Fp — TlUE(X) ® TlUE(Y> RARA P( ) by

(wr)xy = (U1)x,y © (LQ XA id)

Remark 4.5.8. Let X and Y be two objects in (E). If ¢ € C(E, X +Y) and (f,h) € Fp, then we
have the following relation:

(wr)xy (p2(6) @ (f, 1) = (WD) xv (€@ (f, R)) (4.5.4)

because we have

(wi)xy (p2(6) @ (f, 1) = @) xy © (12 @a id) (p2(€) @ (£, 1))
= () xy © (120 p2)(€) @ (f, 1))
= (U)xy o (E®a (f,h))
— (z)xy o ((iTorfog) @ (f h))

(i7
— (Ur)x,y o ((i30r30&) @4 (f, 1))
= (0)xy o (£ ®a (f,h))

since it is straightforward to check that rq(i7 or? o &) = 0, for k = 1,2. Moreover the map (wr)xy :
croUp(X,Y) @ Fp = THUp(X) @ TiUR(Y) @pga P(2) is natural in X and Y because so is the map
(D) xy  Up(X +Y) @ Fp — T1Up(X) @ TiUR(Y) @rpn P(2) by I5.7

In summary, we get a natural transformation wy, : croUp ®p Fp = ThUp @ Th'Ug Qpgn P(2)
between bifunctors whose target is a bilinear bifunctor. By [I.2.14] there is a unique factorization
wr, - T1erUg @a .Fp = TUg® ThUE RASA 7)(2) of wy, . craUp @a ./T"p = TUg® TYUE RASA 73(2)
through t1; ®p id : croUp @5 Fp = Ti1crUp @) Fp, ie.

wr, o (t11 ®n id) = wy, (4.5.5)

Let evpra) : A ® A @aga P(2) — P(2) be the canonical isomorphism, where T1Up(E) = A (s
2.0.2). Then we choose a spec1ﬁc expression of the morphism HL : Ty1ero(Up)(E, E) @ Fp — P(2
such that the diagram (4 is a quadratic C-module over P.

€

)
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Lemma 4.5.9. If we define the morphism HY : Ty cry(Up)(E, E) @ Fp — P(2) by
H" (t11(p2(€)) @ (f, h)) = evpa) o (Wr) g, (tin (p2(§)) @4 (f, h))

=130 &) @t(F o). (h+T(h) — 5 1ma(HR) @ 1) + 1 (l&) ® f).

for € € C(E, E*?) and (f, h) € Fp, then the diagram of homomorphisms of abelian groups (4.5.1))
15 a quadratic C-module over P.

Proof. First we know that the bottom row in (£.5.1) is a quadratic C-module over P(1) by [3.6.7 Then
it suffices to verify that the top one is a quadratic C-module over P(1) and that the diagram (4.5.1)
commutes We recall that Fp and P(2) are respectively a left A-module and a left A ® A-module
(see (4.5.5) and (4.2.6))). The map ¢ : P(2) — P(2)e, is a homomorphism of A — P(1)-bimodules, in
fact:

axp §(h) =ax*g (0, h) = (0, Y112(a% @ at ® h)) = q'(tl(a) ® tl(a).h)

)‘]:P( ( )®f) A{P((()? E) ®f) = (07 72;1(h®f>) = Q(72;1(h®f)>

where o € C(E, E), f € P(1) and h € P(2). Moreover the map ¢ clearly satisfies ¢ = ¢ o T' because
GoT =iy0qoT =iy0q=¢q. Now it remains to prove the relations (QM1) and (QM2) in2.1.1]
First we prove that (QQM2) is verified. We remark that (QM2) holds whenever the right-hand square
of the diagram commutes. We have

(H" o (id @ i2)) (t11(p2(€)) @ h) = H" (11 (p2(€)) @ (0, 1))
=t (r}o&) ®t1(r3 0 &).(h+ T(h)), by definition of H*

= H(t11(p2(€)) ®a 1) , by (E5.2)
Next we verify that (QM1) holds. By we have

(V30 5 (1, 1) = (T 08" 0 £, 1ial(VE 0 OT & (VEo &P @ ) + 3 7 (H(VEE) &)

= ((Vhoo)” o f, Tde(VEo VG oG o h + 5 7a(H(VE0 D) & )
As Ide(—|—) : C x C — C is a bilinear bifunctor, we have the following equalities by 3.7 of [12]:
Ide(Vi; 0 €|V 0€) = Ide(ri o §|Vi; 0 ) + Ide(r o §| Vi)
= Ide(ry o &|ri o &) + Ide(ri o &]r3 0 &) + Ide(r; o &|ry o &) + Ide(ry o Elr; o €)

Since the abelianization functor Ab¢ : C — Ab(C) is linear, we have (V% 0&)® = (rfo&)® + (rZo &)
by 3.6 of [I2]. Moreover we have the following equalities:

H(Vgo§)
=H((r}o&) + (r30&) + (c5 ora(€))) , by postcomposing with V7 to the equation (4.1.11)
=H((r}o&)+(r;0¢)) + H(cy ory(€)), by (£.1.17) and (£.1.16)

=H(rjo&)+ H(r3o&) 4+ Ide(r3 o &|rf o &) o H(2) + H(ch ors(€)), by
= H(r{ o &) + H(rj 0 &) + 112((r3 0 )™ ® (1] 0 )™ ® H(2)) + H(cg o12(€)) , by
=H(r{o&)+ H(r; 0 &) +71,12((r3 0™ @ (r} 0 ) @ H(2)) + H(c} or2(£)™ o abp)
= H(r}o&) + Hr2o&) +7112((r2 0 )™ @ (r} 0 €)® @ H(2)) + 7o(6)™ + T(r2(€)™) , by ([#1.22)

151



Finally we obtain

(VEo&)*L (f, h)

= (300" o To 0™ @ (Fo 07 ® h) + 5 1 (AT o6 & /)

0. 310307 (T 007 ® H@) o f + 5 ral@ o + 5 Tl o )

L(f? E)—F(Tgof)*L(f, E)

+ (0. Tae(T o €30 & o h+ Tde(rF o €3 0 €) o T(h)

I
~—
R
— o
(@]
S~—
*

+(0 %WW% 0 )™ ® (17 0 ) @ 720 (H(2) ® f)) + %rz@ab of + %Tm(oab o)

= (r{ o &) x (fs h) + (r3 0 &) #1 (f, h) + q(ta(r] 0 &) @ t1(r3 0 &).(h + T (h))

+ (0, % Ta2((rf 0 &) @ (r3 0 ) ® (T(H(2)) o f)) +12(6)* o f) , because T(ry(£)™) = ra(£)™

= (1o &) x1 (f, h) + (r3 0 &) =L (f, h) +q(tu(r] 0 &) @ ta(ry 0 €).(h+ T(h))

+ (0, —% T2((rF 0 ) ® (13 0 )™ ® (H(2) 0 f)) + 720(r2(§)* ® f)) ;as T(H(2)) = —H(2)

= (rfo&) = (f, h)+ (r3 0 &) %1 (f, h) +Q'(t1(7“f 0 &) ®t1(r; 0&).(h+T(h) — %72;1(H(2) ®f))>
+ (21 (r2()™ @ f))
= (r; 0 &) (f, h)+ (r30&) =1 (f, h) + (40 H") (ti(p2(£)) ®a (f, 1))

This ends the proof. m

This provides a quadratic functor L : C — Alg — P by applying the functor T) : QMod} —
Quad(C, Alg — P) defined in [2.4.27| to the quadratic C-module over P given in m For an object
X in C, it is defined on objects by the following pushout, see [2.1.3

<T1UE(X)®2 ®A®A THCT2<UE)<E, E) ®A .FP) D (UE<X) X P(2)) ox TQUE<X) ®A ]:73

2

(TWUE(X)®? @aea P(Q))G

L(X
2 = (X)

(4.5.6)
Notation 4.5.10. The quadratic functor L : C — Alg — AbOp(C) will be called the Lazard functor in
the sequel.
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4.6 The Lazard functor is an equivalence

Here we show that the functor L : C — Alg — AbOp(P) constructed in the previous section satisfies
the equivalence criterion established in Theorem [3.5.2] This in particular requires to prove that the
functor L restricted to the full-subcategory of free objects of finite rank in C takes values in the full
subcategory of free P-algebras of finite rank and is an equivalence.

However, as we found the criterion|3.5.2 only recently and time is too short to adapt this section
to it, we will here only show that the restriction of L to (E) takes values in (Fp) (up to isomorphism)
and is an isomorphism of theories by using the criterion given in[3.5.1f This is sufficient to establish
an equivalence L*: Model((Fp)) — Model({E)), which provides a Lazard correspondence between
Alg-AbOp(C) ~ Model({Fp)) and C ~ Model({E)) which will be made explicit in the next chapter,
in terms of a BCH type formula.

We start with the following remark.

Remark 4.6.1. By 6.11 of [12], we know that L(FE) is isomorphic to Fp. To simplify calculations,
we consider that L(FE) = Fp, which is the same as considering that 7,2 = id where ny : M* —
ST.TY(M*Y) = ST (L) is the unit of the adjunction of 2.4.37 evaluated on M* and S} : Quad(C, Alg—
P) — QMod? is the functor defined in [2.4.27

We recall that the morphism ¢ in the pushout (4.5.6) is defined by ¢x = (¢} ® id, t ® ¢) (see
2.1.3)), where the morphism ¢ : T/Ug(X)®? @aep T11cr2(Ug)(E, E) — ToUgp(X) is given in (2.1.1)
by:

¢/
TUp(X)®2? @ppp Tiicra(Ug)(E, E) : ToUp(X)
id®2Qcro (t2) | = SZQUE
TlUE(X)®2 ®A®A C?"Q(TQUE)(E,E) o CT‘Q(TQUE)(X,X)
c7”2(T2UE)

where u’CTZ(TQUE) : TYUp @ TYUg = cro(ToUg) is the natural transformation between bifunctors with
domain C x C and values in Ab given in 3.21 of [I2]. By 3.22 of [12], it is an isomorphism when
restricted to (E), the full subcategory of free objects of finite rank of C.

Lemma 4.6.2. The natural transformation u’CTQ(TZUE) :TWUp®@TUg = cro(ThUg) between bifunctors
with domain C x C and values in Ab is an isomorphism.

Proof. Tt suffices to see that the functors T1Ug, ToUg : C — Ab preserve filtered colimits and co-
equalizers of reflexive graphs by 6.24 of [12], and that the property given in holds in C. Then
the proof is a direct consequence of 6.25 of [12]. O

Now we recall that the morphism @ in the pushout (4.5.6)) is given by @ = (id** ® HV 7o
(6 @ id)), where § : Ug(X) — TiUg(X)®?, 0 — t1()®? and 7 : TYUp(X)®? Qaga P(2) —
(TYUR(X)®? @aea 73(2))62 is the canonical quotient map. The explicit expression of the morphism

HY : Tyery(Ug)(E, E) @5 Fp — P(2) implies the following property on @:

Proposition 4.6.3. Let X be an object in C. Then the morphism

V% (MUB(X)® @nen Tucera(Up)(E, E) @a Fp) s, @ (Us(X) @ P(2)) = (TiU(X)®* @aga P(2)) s,

—

restricted to the first summand (in (£.5.6)) is surjective. Hence the morphism Y¥" : ToUg(X) ®4
Fp — L(X) also is surjective.
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Proof. Let f1, fo € C(E,X) and h € P(2). Then we have the following equality:

Uk (t1(f1) @ ti(f2) @ ta(p2(15™ 0 h o abp)) @ (id, 0), 0)

=t(f1) @t1(f2) ® HL(tH(pz(agdC ohoabg)) ® (z’d,ﬁ))

However we get

b

HL (tll(pQ(LédC oho CLbE)) X (Zd76)) = T9 (Lédc oho abE)a =h
because, for k = 1,2, we have 77 o Lédc = 0. It proves that

@(tl(fl) ® tl(fQ) X tll(pQ(Lédc o h O abE)) & (zd,ﬁ), 0) == tl(fl) ® tl(fg) X h,
as desired. ]

Remark 4.6.4. As C is a semi-abelian category (in particular Mal’cev and Barr exact), the functor
L : C — Alg — P preserves coequalizers of reflexive pairs (hence regular epimorphisms by 2.31 of
[14]) because it is the quadratic tensor product (see [2.1.3) of some quadratic C-module over P by
6.24 of [12].

For an object X in C, we recall that the linearization of the Lazard functor is given in by
TL(X) =T ( — @M")(X) =2 TyUp(X) @ Coker(q) = TYUp(X) @5 P(1)

and M’ is the quadratic C-module over the ring P(1) given in and v : 'L = TyUg ®, P(1) is
the corresponding natural transformation given in (2.3).

Notation 4.6.5. We denote by 7 : T\ L = C(E“b7 Abc) the natural isomorphism that is the postcom-
position of the natural isomorphism “/C(Eab ey - TiUE @4 P(1) = C(E", AV°) (see [4.2.11) with the
natural isomorphism v : 71 L = T1Ug ®4 P(1) (see (2.3))).

In addition, the structure linear maps that make L(X) a P-algebra are given in [2.4.26, Here we

recall the construction of the structure linear map encoding binary operations parametrized by P(2)
that is given by the natural transformation A} : L®? @ P(2) = L defined as follows:

Ay = T3 ((ia, id)) o (1) @5 id) 0 ™" 0 gf", (4.6.1)

see (2.4.16) where R = P(1). Then, for an object X in C, it is now possible to prove that A\l : L®? ®
P(2) = L is entirely determined by the natural transformation ¢M"* : (TyUZ* ®pea P(2)) L= L
given in 2.1.3]

Notation 4.6.6. Let X be an object in C. We consider the following notations:

(&

o We recall that, for any a € C(E®, X%), we denote by @ = Fx *(«), see [4.6.5]

e We denote by b € L(E) an antecedent of id = 5~ '(id) by the regular epimorphism ¢, : L(FE) —
T\ L(E).

Proposition 4.6.7. Let X be an object in C. Then we have
Im(oX") = Im((Ay)x) = [L(X), L(X)] 1,5

—

where the morphism ¢ : (T1Up(X)®2 ®pea 77(2))62 — L(X) is present in the pushout (4.5.6) and
(M) x : L(X)®? @ P(2) — L(X) is a part of the structure linear maps of L(X).
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Proof. First we prove that Im(¢¥") C Im((\f)x) = [L(X), L(X)]1d,, »- For this, we consider
fi,f2 € C(E,X) and h € P(2) = C(E®, Idc(E|E)). For k = 1,2, consider the following diagram

tL

L(X) ! TiL(X) X (B, X
L(fx) T1L(fx) |(f;?b)*
L(E) = ThL(E) ——=—C(E", B) (4.6.2)

The above diagram commutes by naturality of ¢ : L(X) — TyL(X) and 7y : T1L(X) — C(E®, X*)
in X. Then we have

—_

V(G © 0 @) = T2 (i id) 0 607 (G () © () 1) , by

= T3 (2, id))  (RL(f1) (i) @ Ty L( f>)(id) @5 D)

As the morphism t{' : L(E) — TiL(E) is an epimorphism, there is an element b € L(E) such
that t{(b) = id = 7g '(id) (see 4.6.6). Then we set z;, = L(fi)(b), for k = 1,2 and we get
th(zy) = TV L(fx)(id) because the left-hand square of the diagram (4.6.2) commutes. Then we have

A (007 @ 0(fa) @ B) = T O ((ia, id)) (T L) ) © TLL(fo) () @5 h)

— ‘T;D(l) ((iQ, id))X(tf(Iﬁ ® ty (22) ®s h)

- T;D(l) ((ig, id))X o ((tf)?f Rg id) o q%L o qg“@R(xl ® o @ h)

=\ (21 ® 3, ® h) by

Hence we get

I (0(F1) @ 1 (f2) @ h) = A (L(f1)(b) @ L(f2)(b) ® h) (4.6.3)

Next we prove that [L(X), L(X)]1a,, » = Im((Ay)x) C Im(¢¥"). Let 21,2, € L(X) and h € P(2).
As the right-hand square commutes and Fx : T L(X) — C(E®, X) is an isomorphism (see |4.6.5)),

there is a unique ay € C(E®, X%) (k = 1,2) such that
ty(ze) = 7x (o) (4.6.4)

As E is a regular-projective object and aby : X — X is a regular epimorphism, there is a (non-
unique) morphism f € C(F, X) such that, for k£ = 1,2, we have

abx o fx = agoabp, ie. ap= f¥ (4.6.5)
By (4.6.4) and (4.6.5)), it follows that, for £ = 1,2, we get
t (@) = TLL(fi) (75 (id)) = TiL(fi)(id) (4.6.6)

Hence we get
Ay (Il ® T2 @ h) = Tf(l)«@,id))x © ((ﬁ)?f Qs id) © qg(ﬂ © qu(xl ® 2 ® h), by
= T7Y (i, id)) , (t(21) @ th () @5 1)

= 15" (i, i) (T L(f1)(id) ® TV L(f2)(id) @5 h) , by

= T2 ((iy,id)) 0 60 (1) @ 1r(fa) @ F)

=¥ (ti(f1) ® t1(fo) @ h) , by
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as desired. Then gives [L(X), L(X)]1d,,_» = Im(A}) because the (linear) operad P = AbOp(C)
is 2-step nilpotent. O]

Now we are able to prove that the linearization T7L of the Lazard functor and the composite
functors Ab~F L both with domain C and values in M odp(1)y are isomorphic to each other. We
first give up to isomorphism an explicit expression of the second cross-effect of the Lazard functor
L :C — Alg — P that has been already given in 6.20 of [I2]. In fact it says that there is a natural
transformation ® : TiUg ® ThUg ®aga P(2) = croL between bilinear bifunctors such that, for X
and X, two objects in C, fr € C(E, Xy) (k=1,2) and h € P(2), we get

D, x, (0 (f1) @11 (f2) ®h) = (15) 7 o ¢X1+x2 (Lo fi) @ti(i50 fo) @ h) (4.6.7)
By and 6.27 of [12], it is a natural isomorphism on C xC. Then we have the following proposition:
Proposition 4.6.8. For an object X in C, we have

—

(SQL)XO(I)XJ( :ng(/[LO?T

where S¥ : cryL.A* = L is the natural transformation given in and 7 : TiUp(X)®? @ P(2) —
(MUE(X)*?* @ 73(2))62 is the canonical quotient.

Proof. Let f1, fo € C(E,X) and h € P(2). Then we get
(S3)x 0 Pxx(ti(f1) @ t1(f2) ® h)
= L(VX) oty 0o @x x(ti(if o fi) @ ti(i3 0 fo) @ h), by
— (V%) 0 UL (W@ o ) G (B o f2) D), by
= @(ZL o (t1(VX)®? ®aenid) g (t1(iF 0 fr) @t (i3 0 fo) ©® h), by

= <Z5X (ti(fr) @ta(fe) @ R),
as desired. O

Now we are able to give the following proposition:

Proposition 4.6.9. The linear functors Ty L and AbA9~P . L with domain C and values in Modp )

are isomorphic to each other; more precisely, there is a unique isomorphism Uy : AbA9=P . [(X) —
T1L(X) natural in X such that

Proof. For all X € C, we have the following equalities:

Im(sgd*‘lg—? Td g p(L(X)|L(X)) — L(X)) — [L(X), L(X)}14n,_» » by definition
(2 “@P(2) = L(X))
(o} ) by (.67
( o) ,since 7 is a surjection
— Im((S§)x 0 @x.x) b
((

Im((S5)x : L(X|X) = L(X))
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The last equality holds because ®x x is an isomorphism (hence a surjection). As the cokernels of
S, 1977 and (SE)x are respectively abyx) : L(X) — AbY~P . L(X) and (tX)x : L(X) — TyL(X),
it concludes the proof. O

Remark 4.6.10. For an object X in C and = € L(X), we remark that we clearly have the following

relation:
Ox(T) = t{(z)

where T = aby(x)(z) (see the notations given in [1.7.6)).

4.6.1 The functor L) : (E) — Alg — AbOp(C) preserves finite coproducts

Here we check that the quadratic functor Lyp) : (E) — Alg — P restricted to (£), or simply L,
preserves finite coproducts. In this case, this ensures that Lz : (E) — Alg —P takes values in (Fp)
so that it is a quadratic functor between algebraic theories. We first recall the explicit expression of
the coproduct Fp + Fp. By [1.8.5] it is given as follows:

.FP—F.FPI.FP Xfp XP(Z)
together with its structure linear maps given by
e X7 (F£2) @ P(1) = Fp is defined by
F+2 P P — -
X7 (1B, (s B2). ) @ 9) = ((fro g, huog)), (fzo g, haog), hog)
where fr,g € P(1), hy, h € P(2) and k =1, 2.

o NP (Fi2)™ @ P(2) — Fp is defined by

A7 (B, U3, R ) @ (7,700, (.78, ) @ 1)

= (0. T o M). (0. TR 0 M), Tde(fL173) o h+ Tde(f2113) o T(h))
where fr € P(1), fx,h € P(2) and k = 1,2.
Proposition 4.6.11. The functor L : C — Alg — P restricted to (E) preserves finite coproducts.

Proof. 1t suffices to verify that L(E + E) = L(E) + L(E) = Fp + Fp. For this we prove that the
following diagram is a pushout:

B(E*?) Pt TyUp(E*?) @y Fp
Vs ik
(TUE(E*?) @ TiUg(E*?)) @aen P(2)) 6, — Fp+ Fp (4.6.9)
v,

where B(Et?) = ((TlUE(E+2) QR TYUE(E™?)) @agn Tiicr2(Ug)(E, E) @a .7:73)62 ® (Ue(ET?*) @ P(2))

and the maps wgﬁé and ngfQ are defined as follows:

o Let £ € C(E, E*?) and (f, h) € Fp, then we have
ML

VML (€ @ (£ 1) = (030 ) = (£ B), (F0&) wu (£, B), HE (tu(pa(€)) @4 (£, 1)) )

157



o Let f1, fo € C(E, E*?) and h € P(2), then we have

M (1) @ 61 (o) ©nan 1)

= (C](%,m((r% o f1)* @ (17 o f2)" ® h)), q(ya2((r3 o [P @ (r30 f2)" ® h)),

Y12 ((r7 0 f1) ® (r5 0 f2)® @ h) +y1,12((r] 0 f2)® @ (r} 0 f1)™) ® T(h))>

First we check that the diagram (4 commutes. We denote respectively by i1 and 75 the injections
of the first and the second summand of B(E*?). Then it remains to prove that we have

— — — —

Qﬂ%fg o ¢E+2 01 = gb%[g o 1/JE+2 011 and wg/‘[fz o ¢E+2 019 = gﬁgfg o ¢E+2 0 19

by the universal property of the coproduct B(E™2). Let fi, fo, f,& € C(E, E™?), g € P(1) and
h € P(2). First we have

—

(V25 0 g o) (ti(f1) © ta(f2) @asa tia(p2(€)) @4 (f, 1))

= Vpls (tz(V%+z o (fit f2) 0&) @ (f,h) —ta(frori 0&) ®@a (f,h)
—t>(fr0308) @ (f,1)) by E1A

= <(7"% o V2E+2 o(fi+ fa) Of) XL (f,ﬁ), (7"% o V2E+2 o (f1+ fa) Of) *r (f, E)
H" (t11(P2(VE+2O(f1+f2) 5)) A (f, )))

h
- ((T%Ofl ori o) (f,h), (r5o fioriof) xp (f,h), H" (ti(pa(fior; o)) ®a (f, 1)) >
—((r%onOrgog) *L(f,ﬁ), (Tgof20r§o§) *L(f,ﬁ), HL(tll(pg(j}orgog ) ®a fh >

We compute each component of the above triplet. For kK = 1,2 we have
(ri o Vi o (fi+ f2) 0 &) % (fih) = (VE o (13 0 fi) + (10 f2)) 0 &) *1 (f. 1) (4.6.10)
By [4.5.9] the relation (QM1) holds and it implies that we get

(V3o (70 fi) + (F o f2)) 08) %0 (17) = (R0 frort o €) v (f.) = (o frordo€) wu ()
= (Vho((Fo )+ (Fo f2) 0&) s (L) = (Fo((F o fi) + (Fo ) 0 &) v (1)

= (130 ((rf o fo) + (ri 0 f2)) 0 &) %1 (f.1)
= (o HY) (1 (pal((F 0 fi) + (F 0 f2)) 0©) @ (£.7)
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Moreover, for kK = 1,2, we have

1 (tn(pa(((0F 0 fi) + (0 12) 0€)) @ (1. T)

=t (1} o ((rfo i) + (rio fa)) 0 &) @ ta(rs o ((ri o f1) + (rf o fa)) 0 &).(h+ T(h) — %’72;1(11[(2) @ [))

+ 701 (ra2 (P 0 f1) + (20 £2)) 0 ) ® f)

- tl(riofl or% o¢) ®t1(7“,%of2 or%of).(h—{—T(h) — %72;1(H(2) ®f))

21 (ra (P20 fi) + (12 0 fo)) 0 ) @ f)

=t o i) @t o ). (1} 0 &) @0 08).(h + T(R) — 5 rea (H(2) & 1))

2 (ra(((F 0 1) + (F 0 ) 0 )" @ 1)
Then we give another expression of r2(((rf o f1) + (rf o f2)) 0 €) as follows:

((rgo fi) + (o f2)) o€

= ((Fofi)+ 0o 1) o ((Forto) + (Bord o) + (d* oru®))) by ELT]

(iforﬁoflorfog) + (igorionOrgog) + (Lédc oIdC(T,%of1|T§of2) org(g)) , by
= (iforfo((rgo fi) + (rio f2)) 0 &) + (i30r3 0 ((1E 0 fi) + (1 0 f2)) 0 )
+ (Lgdc o Ide(rii o filry o f2) 0 12(£))

This proves that we have

ra(((ri o f1) + (ri o f2)) 0 &) = Ide(ri o filri o f2) 0 72(€)
= t1(ry o f1) @ t1(r} o fo).r2(£)

Hence we have

7"2(((le o fi) + (rio fa)) o f)ab =t1(rp o f1) @ ti(r} o fa).r2 (€)™

It implies that we get
(1 (pa(((F 0 )+ (F 0 ) 0 ©) @ (£,7)

=ti(rio fi) @t (rio f2)-<751(7’% 0 &) @ty (r3 Of)-(fH‘ T(h) — %72;1([{(2) ® f)))

+ (7o f1) @t (77 © f2) 721 (r2(6)™ @ f)
—t(rfo f) @ t(rEo fo). (0 0 & @ u(rF 0 €).(h+ T(h) - %’m(H (2) @ )+ (r2(O)" ® 1))
=t1(ri 0 f1) @ ti(ri o f2). H" (t11(p2()) @ (f, )
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Consequently we obtain

(0 Vs o (h+ )0 ) i (1) = (rEo frorio ) (1) = (rEo frorfo€) wu (1.F)
= q(tEo f) @t o o). H (tn(pa(€)) @ (£.1))

— q‘(’YLl;Q((T”z (e} f1>(lb ® (7’]3 (@] f2)ab ® HL (t11<p2(§)) ® (f’ h))))
Then we compute the following term:

H" (t11(p2 (V2 0 (fi + f2) 0 &) @a (f, 7)) — H* (t1(p2(fi 075 0 &) @4 (f. 1))
— H"(tu(pa(f2 075 0 €)) @ (f, h))

For this we first give another expression of ry (V2E+2 o(fi+ fa)o& ) “® We have the following equalities:

Vio(fi+ f)ol=(fi, fo) ok
= (i, f2)o ((Forto &)+ (Bordot) + (5% ory(¢))) , by (LI
)+ (faori o) + (5 o Ide(filf2) o r2(€)) , by (I.21)

(florlo

Then we have

ra(Viie o (fi + f2) 0 &)

ZTz((flor?of)Hfzor%oSH(E+2ofdc(f1|f2)orz ) by ELID

=ry((fior? o)+ (faoriof)) +ra(cE™ o Ide(fi|f2) 0 ma(€)) , by E1.27 and (41.16)

=ry(frorfo) +ra(faor o) +ya((rio faor; 0 &)™ @ (1o fior! 0 &)™ ® Hp(2))
+712((F 0 f1)® @ (15 0 o) @ 72(€)) + Ma2((1F 0 ) @ (15 0 f1)® @ T(r2(£)))

by 4.1.27] and [£.1.29] Hence we obtain

ab

7”2(V2E+2 o(fi+ f2) Of)
=ry(fiorf o &)™ +ra(faori 0 &) +map((rfo faori o)™ ® (o fror] 0 &)™ @ H(2))
+y,12((rf 0 )P @ (5o f2)"® T2(§)ab) +y12((rf 0 )P @ (r5o )" ® T(Tz(@ab))

Now we give another expression of ¢ (r o Vg+2 o (fi + f2) 0 §). By 2.14 of [12], we get

ti(rio Vg o (fi+ fa) 0 &) =t1(Vio ((rio fi) + (ri o f2)) 0 €)
ti(r} o ((rio f1) + (rio f2)) 0 &) +ta(ri o ((ri o f1) + (ri o f2)) 0 €)

tl(r,%OflorfOS)—I—tl(riofzorgof)
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Hence we have the following equalities:

HL(tll(pQ(VQE+2 o (fl =+ f2) Of)) @A (f?ﬁ))

=ti(rio fior; o) @ti(rio fror; o&).(h+T(h) — %’yz;l(H(Q) ® f))

+ti(rio froriol) @t (rjo fror; o). (h+T(h)— %’72;1(1{(2) ® f))

+t1(7”f0f207“§0€)®t1(T§0f10TfO§)‘(h+T(h)—%72;1(H(2)®f))

Fh(o frord o ®n(o frordod).(h+ T(h) — s wa(HR) & )

+ 721 (r2(f1or7 0 ) @ f) + Y251 (ra(fo o130 £)™ @ f)
+y112((rf 0 faor308)” @ (r3 0 fror] 0 )™ @ (H(2) o f))
+7112((r] 0 1) @ (r3 0 f2) @ (r2(§)™ o f))

+y112((rF 0 f2)* @ (15 0 1) @ (T(ra(€)™) © f))

Ztl(rfoflorf05)®t1(7“§0f107”f0§)-(h+T(h)—%72;1(H(2)®f)) + 721 (r2(fiorf 0o )® @ f)

+t1(rfo faoriol) @ty (rjo faori o). (h+T((h) - %72;1(11[(2) ® f))
+ 721 (r2(f20130)? @ f)

—|—t1(7“% ofio r% o¢) ®t1(7“§ o fy or% of).(h—l—T(h) — %72;1(]{(2) ® f))

Fh(o fror3o& @n(io fiortof).(h+ T(h) — 5 wa(HQ) @ 1))
+t1(r1onOTQOf)(X)tl(TQofloTl05)721( (2) ® f)
+11(rf o fi) @413 o fo) Y2 (ra(6)™ @ f)

+1(rf o fo) @ t1(r3 o f1). 721 (T(r2(6)*) ® f)

= H"(t11(p2(fr 075 0€)) @4 (f, h)) + H" (t11(pa(f2 075 0 €)) @n (f, 1))

+ti(rio fioriol) @t (rjo fror;of).(h+T(h)— %’72;1(1{(2) ® f))

+t1(7”%0f207“§°§)®t1(T§Of10TfO§)‘(h+T(h)—%71,1;2(H(2)®f))
+ti(riofaorsoé)@ti(rio frors 0&).721(H(2) ® f)

+t1(r7 o f1) @t (15 0 f2) 21 (r2(6)® @ f)) + ta(rf o fo) @ t1(r3 o f1) 721 (T (r2()™) @ f))
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Hence we have

HE (1 (po(Vez © (fu+ f2) 0€)) @1 (£.) = HE (tn(pa(fr 018 0 &) @4 (£ 1)
— H"(tu(pa(fo 0 13 0 €)) @ (£, 1))

Itl(rfoflorfOf)®t1(7”§szorgof)-(thT(h)—%72;1(H(2)®f))

+ta(rfo frordof) ®t(do fiort08).(h+ T(h) + 5 T(a(H(2) @ ))), by LI
—t(3o fror30) @t o fyort 0 &) T (H(2)® f)) by

+ (0 f1) © (13 0 £2) 120 (&) ® ) + 11 0 fo) ® 1(rF 0 1)-T (2 (r2(€) © )
=t o frorto) (3o frord o €).(h+ T(h) — 51 (H2) ® f))

+11(r] 0 fi) ® (75 0 f2) 72 (r2(€) " @ f)

Fh o hrordo) @ 3o fiort0€).(h+ T(h) — 3 T (H(2) @ f)))

F (3 0 ) @ i 0 fi) T(ra(ra(€)™ @ )
=130 f)® (3o f). (105 0 &) ® (3 06). (b + T(h) — 5101 (H2) ® £)) )

+t(ri o fi) @ ta(r3 0 f2) A2 (r2(€) @ f)

+h(o )@t 0 fi). (30 ) @13 0 )T (T(h) +h— S 1a(H2) @ f)))

Fh(E o ) @ h(F 0 ) T(rea(ra(€)™ @ 1))

b(rEo fi) @ h(rf o fo). H  (tu(pa(©) ©n (£,7)
+ (P20 fo) @t (2o f1).T(t(r2 0 &) @ 1y (r2 0 €).(T(h) + h—lyz;l(H@)@f)))

2
+t1(r7 o fa) @ty (15 0 f1).T (121 (r2(£)™ @ f))
t(rf o f1) ® (15 o f2). H (t11(p2(€)) ®a (f, 1))
+ti(rio fo) ®ty(re0 f1). T HL t11 p2(§)) ®a fﬁ)))
:’72;1<(7“10f1) ® (130 f2)* ®HL(t11(p2(f))®A(f, )))

+ 72;1((7”1 0o f2)ab ® (rg 0 fl)ab ® T(HL(tll(W(g)) ®n (f, h»))

Finally it proves that we have

— —

L - . ML - .
¢1\E4+2 0 Ypt2 011 = Y5 O Ppi2 0l
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Then we have the following equalities:

(4% 0 Gz 0 i) (€ @2 1)
wE+2( (5) XA (O7E))
= ((708) %1 (0.B), (13 08) 1 (0.F), H: (tui(p2(€)) @4 (0.1))

= <(0, Yi12((rF 0 &) @ (17 0 )® @ h)), (0,7112((r3 0 &)? @ (r} 0 £)* @ h)),
t1(rf 0 &) @ ty(ra 0 &).(h+ T(h)))

¢E+2( 1(6) @ t1(€) ® h)
= (%‘iz 0 Ppg+2 042) (€ @4 h)

Hence it proves that we get

—

¢J\E4+L2 O Yp+2 Oly = ¢E+2 ¢E+2 0 iz

By the universal property of the coproduct B(E*?), the diagram (4.6.9) commutes. Next we verify
that the universal property of the push-out holds. Let a : ((T1Ug(E™)®T; UE(E+2))®A®AP(2))62 —

Aand B : ThoUg(E™?) @4 Fp — A be two morphisms in Ab such that

o OWE+2 = B0 ¢pr

It gives the following two equations:

a(ti(fi) ® ti(f2) @aea HE(t11(p2(8)) @4 (f. 1)) = B(ta(Viz o (fi + f2) 0 &) @4 (f. 1))
< —B(t2(frori o) @ (f,h))
—B(t2(fa0r3 0 &) @4 (f, 1))
[ B(t2(6) ®4 (0, h)) = a(t1(€) @ 11(E) Dawa h)

where fi, fo,£ € C(E, E*?), f € P(1) and h € P(2). Let ((g1, h1), (g2, ha), k) € Fp + Fp. First we
observe that there is a decomposition of any element in Fp 4+ Fp as follows:

((g1, M), (92, ho), h) = 1/1E+2( 2(i3) ®a (91, 1)) + ¢E+2 (t2(i3) @4 (g2, h2))

+ ¢J\E4+L2 (t1 (i?) @ t1(73) @aga h)

Then we define the map ¢ : Fp + Fp — A by

5((g1, h1), (g2, ha), h) = B(t2(i7) @4 (g1, h1)) + B(t2(33) @4 (g2, h_2)) + a(ti(i%) @ t1(13) Qaga h)

Now
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—

e we have S =60 wgf? because we get
5 0 UL (t(6) @1 (£, 1))
=0((r7 0 &) *1 (f, ), (r3 0 &) * (f, h), H"(tin(p2(€)) @4 (f, 1))
= B(t2(i3) ®a (17 0 &) *1 (f, 1)) + B(t2(33) @a (r3 0 &) *1 (f, 1))
+ a(t1 (i) © t1(13) @ren HE(t11(p2(€)) @4 (f, 1))
= B(t2(iF 0 7Y 0 ) ®n (£, B)) + B(ta(i3 075 0 &) @4 (. B))
+ ot (13) © t1(13) @rea H-(t11(p2(€)) @ (f, 1)),
for ¢ € C(E, E*?) and (f, h) € Fp. But we have the following relation:
a(t1(i) @ t1(i3) @aen HE(tn(p2(€)) ®a (f, 1))
= B(t2(Vipee 0 (if +13) 0 &) @4 (f, 1)) = B(t2(iF 017 0 &) @ (f, B)) — B(t2(i3 075 0 &) @a (£, 1))
= B(t2(§) @a (f, 1)) = B(ta(iT o rf 0 &) @4 (f, h)) = B(ta(i5 015 0 &) @ (f, 1))

It proves that we have

50@@(752(5) @ (f, ) = B(ta2(6) @a (f, 1))

as desired.
—_—

L
e we have o = ¢ o ¢}, because we get

o ¢E+2 (t1(f1) @ t1(f2) ©aea h)

— 5((0, ti(rio fi) @ t1(r? o fo).h), (0, ti(r3 o f1) @ t1(r3 o f2).h),

bt o i) @ (o fo)h+t(rf o ) @115 0 f1) T(h))

= 5(152(@?) ®a (0, 617 0 fr) @ 11 (r] 0f2)-h)> +5(t2(i3) ®a (0, ti(r3 o fi) @ t1(r3 Of2)~h))

+ 04<t1(i%) ® t1(13) @aga t1(r7 o f1) @ t1(r3 0 f2)'h>

+ (@) @ 1(B) Gaon (T 0 ) @ Li(F o ) T(R)) |
for f1, fo € C(E, E™?) and h € P(2). Moreover we have the following relation:

5(t2(752) @A (0, t1(rf o f1) @ ta(r o f2)-h)) = a(t1(i2) @ t1(i}) Qnga t1(rf o f1) @ t1(rf o f2).h)

=a(ti(iforio fi) ®ti(if o1} o f2) @rea h)
for K =1,2. Then we obtain

5((0, ti(rio fi) @ t1(r o fa).h), (0, ti(r3 0 fi) @ t1(r3 o f2).h),

b(rfo fi) @10 fo)h+ (1 o f2) 91115 0 f1).T(h))

a(t (20120 f1)@ti1(i20rfo fo) Rasa h) + a(t1(22 or3o f1)@ti(i3orio f3) Dasa h)

+ a(tl(il orfo fi) ®ti(if o013 o fo) @asa h) + CY(tl<i1 orfo fo) ®ti(ifor3 o fi) Drea T(h))
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Moreover we have

ti(i3orio fo) @t1(i3 orf o f1) ®aea T(h) = T(t1(i3 0713 0 f1) @ t1(if 0 1 0 f2) @aea h)

=t1(i30r3o0 f1)@t1(130rfo fo) Qrga h
This implies that we obtain
6o pML, (t1(f1) @ t1(f2) ®asn h)

=a(ti(iforio fi) @ti(Zorfo fo) @aea h) + a(ti(i3ordo fi) @ t1(i3 013 o f2) Raea h)

+a(ti(iForio fi) ®ti(oro f) Dnen h) +a(ti(iBorio fi) @ti1(ifori o fo) Qaea h)

= a(t1(f1) @ t1(f2) @aga h) , by 3.12 of [12]

The morphism ¢ : Fp + Fp — A is necessary unique because any element of Fp + Fp is decomposed
as a sum of images of wg{é and ¢]‘E4+L2. Consequently the functor Ly gy, : (E) — Alg — P (restricted
to (E)) preserves finite coproducts. O
Remark 4.6.12. By 4.6.11} the functor L : (E) — Alg — P takes values in (Fp), the full subcategory
of free P-algebras of finite rank.

Moreover it is now possible to have an explicit expression of the quadratic functor L : (E) — (Fp)
on morphisms in C with source E and target E+2. The explicit expression of the functor L on these
kind of morphisms is important in order to provide the BCH formula later in this section.

Proposition 4.6.13. For ¢ € C(E, E*?) and (f,h) € Fp, we have

L@@B:W%@ﬁwﬂm@wwuﬂmH%mﬁm®mm0

Proof. For this, we recall that the functor L is the quadratic tensor product (see [2. associated
with the quadratic C-module over P given in [£.5.90 As L(§) : L(E) — L(E”) is given by the
universal property of we have in particular

/\

L(§) o @Z}EH © ( 2(€) ®a id)

Hence we get
L) = (L) 0 07 (ta(id) © (£.T70)
(ZE@ o (t2(€) ®a id)) (t2(id) @ (f, h))

= (2o &) 1 (1.7, (B o€) 51 (1.B), HE (tu(pa(€) @ (£, 1))
as desired. []

Now we prove that the quadratic functor L : C — Alg — P preserves not only the coproducts in
the full subcategory (E) of C but also all finite coproducts in the whole of C. We recall the natural
isomorphism uC(Eab A6°) : YU @A P(1) = C(E“b, Abc) given in Consider an object X in C.
By [2.3.3, 4.2.11] and 4. 2 10} we have the following isomorphisms

TiL(X) =T ( — oM")(X) = TWUp(X) @ Coker(q) = T1Up(X) ®x P(1) = T1UR(X) @4 A = TyUp(X)
where M* is the quadratic C-module over the ring P(1) given in and ¢ =iy0q:P(2) = Fp.
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Notation 4.6.14. For an object X in C, we set
wx = evo (id®@x (t)5") o vx : TIL(X) = TyUR(X)

where ev : T1Up(X) ®A — TyUg(X) is the canonical isomorphism (since T1Ug(X) is a left A-module,
see [2.0.3)), (t1)g : A — P(1) is the isomorphism given in 4.2.10|and ~ : T1L = T1Ur ®, Coker(q) =
T'Ug ®a P(1) is the natural isomorphism in [2.3.3] (see (2.3)).

Corollary 4.6.15. Let X be an object in C. Then wyx :_TlL = T1Ug 1s a natural isomorphism in
the category of functors from C to the category of (left) A-modules such that, for any object X in C
and x € L(X), we have

wx (1 (2)) = t1(fo)
where f, € C(E,X) is a morphism (which exists because E is a regular projective object) such that
(f)® € C(E™, XY is unique morphism satisfying t=(x) = Fx((f2)®) since 7 : TyUp @5 P(1) =
C(E“b, Abc) 18 a natural isomorphism (see in the category of functors from C to the category
of A-P(1)-bimodules.

Proof. Tt is a direct consequence of [4.6.14] O
Now we are able to prove that

Proposition 4.6.16. The Lazard functor L : C — Alg — P preserves finite coproducts.

Proof. Let X and Y be objects in C. We consider the following diagram

—

LL
0 L(X]Y') : L(X +Y) L(X) x L(Y) —=0
(L(i2), L(:3)) (L(2), L(i3)
A TI“EZQ\*P
0—— Idasg_p(L(X)| LY )2 L(X) + L(Y) 22 LX) X L(Y) ——0 (4.6.11)

We aim at proving that (L(:3), L(i3)) : L(X) + L(Y) — L(X +Y) is an isomorphism. For this

—_—

it suffices to check that its restriction to Iday,—p(L(X)|L(Y)), here denoted by (L(i%), L(i3)) :
Idyy—p(L(X)| L(Y)) = L(X|Y) is an isomorphism. By [1.7.1 we recall that

Idag—p(L(X)|L(Y)) = L(X) ® L(Y) ®p)er@) P(2)
LX) ® L(Y)" @puera) P(2)
and the kernel 14”7 : Idg,_p(L(X)|L(Y)) — L(X)+ L(Y) of the comparison morphism r?‘”\” :
LX)+ L(Y) = L(X) x L(Y) (see is given by
077 (w) = (0, 0, u)

Moreover we recall that we have up to an isomorphism an explicit expression of the second cross-effect
of the Lazard functor L : C — Alg — P, namely we get the natural isomorphism

¢ :TUgT\Ug RASA P(Q) = cryl

between bilinear bifunctors given in (4.6.7). We recall that, for x € L(X), T = aby(x)(z) € L(X)*®
(see the notations given in [1.7.6). Then we define the morphism ixy : T1L(X) ® TlL(Y) Rp(1)ePa)
P(2) = ThiUg(X) ® TWUR(Y) ®asa P(2) by

ixy(T®Y®h) =wx(tf(z) @wy(t{(y) @ h (4.6.12)
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where x € L(X), y € L(Y), h € P(2) and w : T1L = T 1Ug is the natural isomorphism given in
[4.6.151 We observe that

ixy(T@Y®h) =wx(ty(z) @wy(t{(y) © h
= wx (Ux(7)) @ wy (Vx())) © h, by E6.10)

Hence iy y is well-defined, and it is an isomorphism because w and Jx are natural isomorphism (see
14.6.15) and [4.6.9). We now consider the following diagram

Lod
T\Ug(X) @ ThUR(Y) @pan P(2) S L(X +Y)
ix)y |2 (L(i2), L(33))
LIdAlg—P
Idarg—p(L(X)|L(Y)) 2 L(X) + L(Y) (4.6.13)

Then we prove that this diagram commutes. Let z € L(X), y € L(Y) and h € P(2). As 7 :
WU = C'(E“b7 Abc) is a natural isomorphism (see , there is a unique a, € C(E®, X%) (resp.
o, € C(E®,Y)) such that

ty(z) =7x(az), (resp. t{(y) = (ay)) (4.6.14)

Since E'is a regular-projective object and abx : X — X% is a regular epimorphism, there is a
(non-unique) morphism f, € C(E, X) (resp. f, € C(E,Y)) such that

oy 0 abp = abx o fy ( resp. ayoabE:aonfy)
By (4.6.14) and by naturality of 7 : T1L = C(E“*, A°), we get

t7(x) = TiL(fo) (i), (resp. t{(y) = TyL(f,)(id) ) (4.6.15)
We get the following equalities:

(L(&}), L)) o " T (@ @G © )
= (L(i1), L(53))(0, 0, T® G ® h)
= () (L) (2) © L(53)(y) © h) by (L3.G)
2 ((i2,id) 1y (8 0 L()) (@) @ (¢ © L(i3))(y) @5 h) by

P(1) ) @ Ty L(i3) (t] (y)) ®s h)

(12 id))
((i2,d)) ¢y (T1L
(i, i) ¢,y (TYLGE3) © Ta(£2))(id) @ (T L(33) 0 TiL( £,))(id) @5 h) , by
)((iQ,zd)X+Y( 20 f,)(id) ® T\L(i3 o f,)(id) @ h)

—

=T ((in,id)) .,y 0 8% (13 0 fo) @ (i3 0 f,) @ h)

= @i\y(tl(ﬁ o fo) ®ti(i3o f,) ®h) by
=1 0 Oxy(ti(fo) @ ti(f,) @ h), by

= 1§ 0 Dy (wx(tf(2) @ wy(t{(y)) @ 1) , by
=1y odxyoixy(TRYRA),by
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It proves that (L(i%), L(i3)) : Ida,—p(L(X)| L(Y)) — L(X|Y) is an isomorphism. By applying the
five lemma to the diagram (4.6.13), it follows that (L(:%), L(i3)) : L(X) + L(Y) — L(X +Y) is an
isomorphism. It concludes the proof. O

Notation 4.6.17. For an object X in C, we denote by

®2

ixx : (LX) @pmera) @P(2) s, = (TiU(X)®* @payera) @P(2)),
the canonical factorization between the coinvariants sets, i.e. 7o ixy = txx o7 where 7 :
TlUE(X)®2 ®A®A ®P( ) — (TlUE<X)®2 ®A®A ®P(2))62 and 7 : TlL(X) ®7)( ®P( )

(T1L(X)®? @payera) @P(2)) o o, are the canonical quotient maps (which are both 73( ) module ho-
momorphisms).

Remark 4.6.18. Let X be an object in C. Then ix x, given in|4.6.17 is a P(1)-module homomorphism
which is an isomorphism by the five lemma applied to an appropriate diagram.

4.6.2 L:C — Alg— P commutes with the abelianizations

In this part, we prove that the (quadratic) functor L : C — Alg—"P commutes with the abelianization
functors, i.e.

LAV = ApMoP . L
We first provide the following lemma:

Lemma 4.6.19. Let X be an object in C. For fi, fo € C(E,X) and h € P(2), we have the equility
as follows:

— —_

M5 (0 (fr) @ i (fa) @ B) = O (ta(c5 o Ide(fil f2) © h) ® (id, D))

Proof. We have the following equalities:

—_

M5 (0 (A) @ t(f2) @ R)

= OV (1 (f1) @ t1(f2) @ HE (b1 (pa (15 0 ) @ (i, 0)))
= o) O@DX( (1) ® i (fo) ® L (5% o h) @ (id, 0), 0)
= czﬁ/%\ o dx (t1(f1) ® ti(f2) ® t11(15% o h) @ (id,0), 0)

— /XM\L(tg(cg( o Ide(fi]f2) o h) ® (id,0))

as desied. O

Remark 4.6.20. Let Z be an abelian object in C. Then the morphism ¢} (T1UE(Z)%* ®pen
P(2))s, — L(Z) is trivial.

Next we prove that the Lazard functor has the following preservation property:

Lemma 4.6.21. The Lazard functor L : C — Alg — P preserves abelian objects.

—

Proof. By 4.6.20 we know that ¢%" : (T\Up(Z)®* ®pea P(2))s, — L(Z) is trivial because ¢f = 0
(since Z is an abelian object in C, see[L.3.1)). By it implies that the linear map AL : L(2)®? ®
P(2) — L(Z) is trivial. By it proves that L(Z) is an abelian object in Alg — P, i.e. a (right)
P(1)-module. O
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Notation 4.6.22. Let I : Ab(C) — C be the inclusion functor. We also denote by L = L -1 : Ab(C) —
Ab(Alg — P) = Modpy the restriction of the Lazard functor to the abelian core Ab(C) of C.

Now we prove that the Lazard functor L : Ab(C) — Ab(Alg — C) restricted to the abelian core
Ab(C) is isomorphic to its linearization rectricted to the same abelian source.

Proposition 4.6.23. The natural transformation I* - t- =t . L. I = T\L - I is an isomorphism
between functors with domain Ab(C) and values in Ab(Alg —P) = Modp().

Proof. Let Z be an abelian object in C. We consider the pushout (4.5.6)), as follows:

(TlUE(Z)®2 ®A®A TllcTQ(UE)(E, E) ®A Fp)@ D (UE(Z) & 77(2)) ¢z TQUE<Z) ®A Fp

2

wé\ e

(TlUE<Z)®2 OARA P(Q))eg

L(Z
oz (2)
We here denote by B(Z) = (T1Up(Z)%* @aea Tiicr2(Ug)(E, E) @4 .7-'7>)62 ® (Up(Z) ® P(2)). We
denote respectively by i; and iy the injection of the first and second summand of B(Z). By [4.6.20]

the morphism ¢%" is trivial. Hence it follows that the pushout (4.5.6) can be seen as the following
right exact sequence:

¢z

ML
vy

B(Z) TUp(Z) @n Fp L(Z) 0

By , we know that ¢, = (W, ty ® Q). Hence we have
coker(¢z o) = coker(¢] ®id) = coker((¢} @ id) o 7') = coker(¢} ® id)
where the map
7 TWUE(Z)®* @pen Tiicr2(Up) (B, E) @ Fp = (T1WUR(Z)®? @psn Thicra(Up)(E, E) @4 fp)62

is the quotient map which is clearly a surjection. Then we obtain

coker(¢z oi1) = coker(¢| ® id) = coker(¢}) ® id

because the functor — ®, Fp : Mody — Ab preserves right exact sequences. By (2.1.1), we know
that

&) = (532"8) 7 0 (Ulory(1y0)) 2.2 © (id™* @ cr5(t2) 5 1)

By [4.6.2, the morphism (u’m(TZUE))Z,Z is an isomorphism. As cry(te) : TiierUp(Z,7) —
cro(ThUg)(Z, Z) also is an isomorphism by 2.5 of [12], we get

coker(¢z oiy) = coker(¢}) ® id
= coker((SzTQUE)Z) ® id
= (t1Y7); @ id , see L2100
By [2.3.2] we know that we get

T (TyUg) = TWUpg,
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more precisely the natural transformation (7}).-ts : T7Ugp = T} (TQUE) is an isomorphism. We prove
that we have

((Tl)* . tg) @) E = t{2UE

where t; : ToUp = T,Ug is the unique factorization of ¢; : Uy = T Ug though t, : Uy = ToUg by
1.2.11| (because the functor T1Ug : C — Mod, is linear hence quadratic), i.e.

thle oty =t (4.6.16)
For this we have the following equalities:

((Tl)* . tg) OEO t2 = ((Tl)* . tg) o tl
= tlTZUE oty , by naturality

As the natural transformation ¢y : Ug = T2Ug is a regular epimorphism, the relation (4.6.16)) holds.
Then we can choose the cokernel of ¢z o iy to be

coker(¢z oiy) =t ®id

Now it suffices to determine the cokernel of (f; ® id) o ¢4 oy to find out the cokernel of ¢,. For this
we have

(t,®id)o gz oiy = (f,®id) o (ty®q) =t, ® ¢, by (4.6.16)

Since Coker(q) = P(1) whose cokernel (morphism) is the projection m; : Fp — P(1) onto the first
summand, we get

coker((ﬂ ®id) o @ o ig) =t ®m
because the functor T)Ug(X) ® — : Mody — Ab preserves right sequences. Hence the cokernel of ¢,

is tp @m : TYUR(X) @p Fp — ThUR(X) @ P(1). Tt implies that there is an isomorphism of (right)
P(1)-modules e : L(Z) — T1Ug(Z) @5 P(1) such that

ezoM =T @ m (4.6.17)
By (4.6.17) and we get the following isomorphisms:
L(Z) = TyUg(Z) @y P(1) = T\ L(Z)
More precisely, we have
ey oz o (t))z oY =<, o ((fh)z @am)

= M by (4.6.17)

By 4.6.3 the morphism ¥} : ToUp(Z) @5 Fp — L(Z) is an epimorphism. Hence we get

€5 0z 0 (t7)z =id

It implies that the morphism (t¥); : L(Z) = Ty L(Z) is a monomorphism. As it is a regular epimor-
phism (because it is the cokernel of S¥ : L(Z|Z) — L(Z)), it proves that (¢,)z is an isomorphism,
as desired. []
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Corollary 4.6.24. The Lazard functor L : Ab(C) — Ab(Alg—P) restricted to the abelian core Ab(C)
is linear.

Proof. By [4.6.23| the natural transformation [* - tf' : L - I = TyL - I is an isomorphism. Then the
functor T1L - I : Ab(C) — Modp(y) is linear because it is a linear functor postcomposed by a linear

functor with abelian source and target by [1.2.6 Hence the Lazard functor L : Ab(C) — Modp)
restricted to Ab(C) is a linear functor. O

Now we prove that the Lazard functor L : C — Alg — P commutes with the abelianization
functors:

Proposition 4.6.25. There is a natural isomorphism o : AbA9~P . [ = L . AW such that, for an
object X in C, we have
Ox ©O abL(X) = L(abx)

Proof. Let X be an object in C. By the natural transformation T} L* - ab : T1 L = T\ L - AtC is
an isomorphism because T1L : C — Modp(y) is a linear functor. By 4.6.9] [4.6.23| and [1.4.8| we get

AV P (X)) 2 TV L(X) 2 TiL(X™) = L(X®) = L+ Al°(X),

We denote by o : AbA=P.L = LAl the (above) natural isomorphism such that, for an object X in
C,ox = (t§) choTiL(abx)oVx : AbM9~P. L(X) — L-Ab°(X), where ¥y : AbM9~". L(X) — T L(X)
is the isomorphism given in (4.6.8)). Moreover we have the following equalities:

as desired. O

Now we observe that, for an abelian object Z in C, we have the following isomorphisms of (right)
P(1)-modules (natural in Z):

L(Z) —Z—TUg(Z) @ P(1) —2—C(E®, AV¥(Z))

where the isomorphisms are given in and It says that yoe : L = C(E®, Al°) is a
natural isomorphism between functors with domain Ab(C) and values in Ab(Alg —P) = Modp(y).

Then we check that the (linear) functor C(E®, Ab¢) : Ab(C) — Modp() is an equivalence of cat-
egories. In fact, we just apply the Gabriel-Popescu theorem given in Corollary 6.4 of [35] (or also
in 4.6 of [12]) by taking the set {E} of the small projective generator £ in the abelian category
Ab(C). Let us denote by Cpes the full subcategory of C whose set of objects is { E%}. The Gabriel-
Popescu theorem says that the functor assigning each abelian object Z in C to the additive functor
Ab(C)(—, Z) = C(—, Z) with domain C}},, and values in Ab is an equivalence of categories. Moreover
it is a well-known fact that the category of additive functors with domain C]O;f]b and values in Ab is
isomorphic to the category of (right) P(1)-modules, where P(1) = C(E®, E®). This isomorphism of
categories assigns in particular the additive functor C(—, Z) : C7%, — Ab to the (right) P(1)-module

Eab
C(E®,Z) = C(E®, Al°(Z)). 1t permits us to give the following proposition:

Proposition 4.6.26. The Lazard functor L = L -1 : Ab(C) — Ab(Alg — P) restricted to Ab(C) is a
(linear) equivalence of categories.
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4.6.3 Ly : (E) = (Farop(c)) is an equivalence of categories

In this part, we prove that the quadratic functor L : (E) — (Fp) is an equivalence of categories.
First we recall that Im(Ab°) is the category defined in and (AC) : C — Im(AV°) is the functor
(that is the identity on objects and the abelianization functor on morphisms) given in Here we
consider the restriction of the functor (Ab°)" and the category Im(Ab°) to the objects of (E). Recall
that the functor Im(Ab(L)) : Im(AbE)) — Im(AbYP)) is defined in , as follows:

e On objects, let. X be an object in Im(Ab®)) (i.e. in (E)), then Im(Ab(L))(X) = L(X);

e On morphisms, let X and Y be two objects in Im(AbE)), and f € Im(AbP) (X, Y) =
C(X%, Y%) (because objects in (E) are regular-projective as a finite coproducts of the regular-
projective object F), see3.1.9, Then we set

Im(Ab(L))(f) = oy o L(f) o ox (4.6.18)
where o : AbM9~P . [ = L - AlC is the natural isomorphism given in [4.6.25|

Proposition 4.6.27. The functor Im(Ab(L)) : Im(AbE)) — Im(AbYP)) is a linear equivalence of
categories.

Proof. 1t is a direct consequence of |4.6.26] O]

Now we consider the following morphism of linear extensions of categories:

Alg—Py/
D’ * (Fp) w ) Im(AbYP))
L Im(Ab(L))
+
D (E) Y Im(AbED) (4.6.19)

The bottom linear extension of categories is the restriction of the one given in to the full
subcategory (E) of C. The top linear extension of categories is an in replacing the category C
with (Fp). Then we check that the criterion, given in[3.5.1] for the quadratic functor L : (E) — (Fp)
to be an equivalence of categories is satisfied. By [£.6.4] the functor L : (E) — (Fp) preserves regular
epimorphisms because it preserves coequalizers of reflexive pairs by 6.24 of [12] (since (E) is a semi-
abelian category). Then we have a (unique) natural isomorphism o : AbA9=P. [ = L. Al by

such that, for X object in (F), the triangle
L
;L(a% w
) L(X)® (4.6.20)

commutes. Moreover the functor Im(Ab(L)) : Im(AbE)) — Im(AbUP)) is an equivalence of cate-
gories by Finally we observe that there is just one condition left to check, namely the natural
transformation ¢ : D = D¥, defined in , is an isomorphism between bifunctors with domain
Im(AV)? x Im(Ab°) and values in Ab, where the bifunctor DY : Im(Ab°)P x Im(A) — Ab is
given in |3.5.0}

First we observe that up to isomorphism we give another expression of the commutator
[L(X), L(X)] =Im((\)x : L(X)®? ® P(2) = L(X)), for an object X in (E), as follows:

(X)

L(Xab

(=23

Idaig—p
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Lemma 4.6.28. For an object X in (E), the map

(AD)x t Idayg—p (L(X)|L(X))g, = [L(X), L(X)]

Ss Idaig—p

given in [2.4.5 is an isomorphism of P(1)-modules, and we have

SzIdAlgf7J — iL(X) o (/\él)X oT

where SzldAlg’P : Idug—p(L(X)|L(X)) — L(X) is the morphism defined in |1.2.7 and iry :
Im((\Y)x) = [L(X), L(X)] — L(X) is the canonical inclusion (which is the image of the

) Tdarg-
morphism Sy 77 ).

Idarg—p

Proof. If X is an object in (E), then L(X) is a free P-algebra of finite rank because the Lazard
functor L : C — Alg — P preserves finite coproducts by [4.6.16, Hence it is a direct consequence of

applying to A = L(X). By we recall that we have

[L(X), L(X)] = Im((A))x : L(X)®* @ P(2) = L(X))

Idatg—p

Moreover, for x,y € L(Y) and h € P(2), we get the equalities as follows:
Sy M@ RTRh) = Vx0T (T@Fh)

= Vi (0,007 ®h)

= (\)x(@@y@h), by

=(A\)xom(T®@y®h),by2.4.6

=ipx) o (A)x om(TRY R h)

for x,y € L(X) and h € P(2). Hence we obtain

SQIdAlg*P = ZL(X) (e} (A%)X (o) ﬂ"

as desired. O

The next proposition says that the Lazard functor preserves a certain class of monomorphisms in
C, namely those of the form iy : [Y,Y]r4. ~— Y (which is the image of the morphism ¢} : Ide(Y|Y) —
Y), for an object Y in (E).

Proposition 4.6.29. Let Y be an object in (E). Then the coimage e[LYY]Id : LY, Y])1a.) —
X lde

Y, Y)1a.1e of L(iy) : L([Y,Y]1a.) — L(Y) is an isomorphism. Hence the morphism L(iy) :

L([Y,Y]1a.) = L(Y) is a monomorphism.

Proof. We recall that L(Y) = L(Y)® where L(Y) is the quotient of L(Y) by the ideal L(Y)2% We

173



first consider the following diagram:

Id _
S, Alg—P

Idag—p(L(Y)|L(Y)) : L(Y)
I

L(Y)® L(Y) ®p@erq) P(2)

o iy’y

(S3)yoPy,y

TWUp(Y)®Ti\Ug(Y) ®aea P(2)

oY

(U/C(Eab,ldc(—\—)))Y,Y

C(E®, Idc(YY))

—1

’
(uC(Eab,AbC))IdC(Y\Y)

o

TWUg(1de(Y]Y)) @ P(1) (4.6.21)

—1 ~
Crae(vyy | =

L(cy)

L(Ide(YY)) L(Y)

where Uc(pab AbC) - TVWUg Qx P(l) = C(Eab, Abc) and U/C(E“b,ldc(ﬂf)) :TWUg ® TYUg RAA 7)(2) =
C(E®, Idc(—|—)) are the natural isomorphisms between bifunctors respectively given in and
.17 The top rectangle commutes by using the relation expressed by Diagram [£.6.13] We prove
that the bottom rectangle commutes. Let fi, fo € C(E,Y) and h € P(2). Then we have

-1

L(C%/) © gl_dlc(Y|Y) © (UIC(Eab,—))]dC(my) © (U,C(Eab,ldc(ﬂf)))y,y (tl(fl) ®t1(f2) ® h)
. -1

= L(¢3) © 1o iviyy © (Uemm —) rgp vy (Lde(fil f2) o ) by (4.1.6)

=L(cy)o sfdlc(y‘y) (t1(Ide(f1]f2) o ho abg) @ id)

= L(cY) o gl_dlc(Y\Y) o (t1 @) (t2(Ide(f1]f2) o h o abg) ® (id,0))

—

= L(cy) o %CL(Y\Y) (t2(Ide(filf2) © hoabp) @ (id,0)) , by ([#.6.17)
— M o (ta(cY) @ id) (t2 (Ide (fil f2) © h o abg) @ (id, D)) , by @12
— U (t5() 0 Ide(fi]f2) o h o abp) @ (id, D))

—_

MU (4 (fr) @ ti(fo) ® h) , by E6.19
= (S)y o (I)Y,Y(t1(f1) ®t1(f2) ® h)

where ¢, : ToUr = TUg is the unique factorization of ¢, : Uy = T Ug through t, : Up = ThUg
by (because the functor T1Ug : C — Mody is linear hence quadratic) and m @ Fp — P(1)
is the projection onto the first summand. It proves that the bottom rectangle of diagram (4.6.21])
commutes. By we get

Sy P — i o (Ab)y o (4.6.22)
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Then we have the commutative diagram as follows:

™

L(Y) ® L(Y) ®@payer) P(2)
’L'y,y o

TWUe(Y)®@ TiUgp(Y) @aga P(2)

(a2

(u/C(Eab,IdC(—\—)))Y,Y

R

<T1UE(Y) @ TYUE(Y) ®aea 73(2)>62

o

(ué(Eab,Idc(ﬂf)))Y

C(E®, I1de(Y]Y))

C(E™, Ide(YY))s,

, -1 N (ey )« ol
(uC(E“b,AbC))IdC(Y\Y) = =] lev)s
TlUE(Idc<Y|Y)) ®A P(l) C(Eabv[y7 Y]Idc)
1 ~ TlUE(ey)®A’id N , -1
Crde(v|y) | = = (uC(Eﬂb,Abc))[Y,Y]Idc
L(Ide(Y]Y)) TUE([Y,Y]14.) ®a P(1)
L(ey) ~ ezt
=YY,

L([Y, Y]Idc)

where the isomorphism of A-P(1)-bimodules (ey). : C(E®, Ide(Y]Y))s, — C(E®,[Y,Y]1a.) (see

) is defined in (4.2.1)), and the isomorphisms of P(1)-modules (U/C(Eab,ldc(_l_))/)y

and 1yy are

respectively given in 4.1.12| (see moreover [4.1.13)) and [1.8.8| (see [4.6.18| in addition). Then we have

the following equalities:

-1

. 1 g
L{iv) © €y, © (“'6<Eab,—>)[Y7Y]mC o (ev)s © (Ug(gen 1o (~|-y)y @ vy © T

. _ -1 .
= L(iy) o L(ey) o 51dlc(y|Y) © (“/C(Eab,f))mc(ym © (“/C(E“b,ldc(flf)))Y,Y oy

L -1 -1 .
= L(cy) o Elde(v|y) © (ué(Eab,—))Idc(Y\Y) © (ué(E“dec(—l—)))Y,Y oy

= (57)y o ®yyy 0iyy

_ oldayg-p
= 5’2

=iry) o (Af)y om, by (4.6.22)

Hence it implies that we get

-1 -1

L(iv) © ey, © (“/C(E“b,—)>[y,yhdc 0 (ev)« © (Ug (g 1ao(-1-y)y © Iy = inr) o (A

)y

because the canonical quotient map

7 TL(Y) @ TLY) @pera) P(2) = (L) & TILY) @pjera) P(2))

(4.6.23)

So

is a surjection. Thus the morphism L(iy) : L([Y,Y]1q.) — L(Y) is a monomorphism. By we

recall that L(iy) = i[LY,Y]zdc o e[LY’Yth implying that the coimage e[LY’Yth

. . . L
L(iy) is a monomorphism. Hence €YY 1,
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is an isomorphism because it also is a regular epimorphism.
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We now are able to prove that the Lazard functor L : (E) — (Fp) restricted to (F) is an
equivalence of categories:

Lemma 4.6.30. The functor L : (E) — (Fp) is a quadratic equivalence of categories between
algebraic theories.

Proof. Let X and Y be two objects in (E). Consider the morphism of linear extensions of categories

given in (4.6.19). By [4.6.11] and L : (E) — (Fp) is a quadratic functor preserving finite

coproducts and coequalizers of reflexive graphs. Moreover there is a unique natural isomorphism

o AbM9P . [ = L. AVC on (E) by [4.6.25 such that the triangle (4.6.20) commutes. By [3.5.10)

the functor L : (E) — (Fp) preserves the action +p of D(X, Y) on C(X, Y) to the action +p

of D'(L(X), L(Y)) on Alg — P(L(X), L(Y)). Moreover Im(Ab(L)) : Im(Ab‘E)) — Im(AbYP)) is

an equivalences of categories by [£.6.27 Now it remains to prove that the natural transformation

Y% : D = DY between bifunctors with domain Im(Ab°)% x Im(Ab°) and values in Ab (see (3.5.3))
defined by:

(bg(,Y : C(Xab7 [Ya Y]Idc) — Alg_P(L(Xab>7 H}/ﬂ Y}Idc]L)

f — e[LYa Ylrae o L(f) -

where e[LY7 Vira, - LY Yrae) = [[Y) Yige]r is the coimage of the morphism L(iy) : L([Y, Y]1q,) —
L(Y) (see [1.3.7); it is an isomorphism by |4.6.291 By definition of ¢%,, we have the following

commutative diagram:
Alg - P<L(Xab)7 L([Y7 Y]Idc))

xab [v,Y]r4
~|(.L
= (e[Yv Y][dc)*

Alg — P(L(X®),[[Y,Y]1a.]L)

R

C(X[Y,Y]1a.)

L
d)X,Y

As the Lazard functor L : Ab(C) — Ab(Alg — P) = Modp) restricted to the abelian core Ab(C) is
an equivalence of categories, the map

Lixab v y]g, * C(X, [Y,Y]14,) = Alg — P(L(X®), L([Y, Y] 14.))

is a bijection. Hence the map ¢% , also is a bijection. By [3.5.1} the functor L : (E) — (Fp) is an
equivalence of categories. O
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Chapter 5

The Baker-Campbell-Hausdorff formula for
2-radicable 2-step nilpotent varieties

In this chapter, we first recall how to recover (concrete) operations of any arity of objects in C, a
variety supposed 2-setp nilpotent. Then we provide a decomposition of morphisms from E to E*",
for n € N*  as a sum (under the group law of C(E, E™")) of some morphisms. Finally, we use the
latter decomposition of such morphisms and their evaluation by the Lazard functor so as to determine
a Baker-Campbell-Hausdorff type formula, expressing any operation in C from the structure linear
maps of AbOp(C)-algebras.

5.1 Decomposition of certain morphisms in C

In this part, we provide a decomposition of any morphism with source E and target E+" (with n > 3)
in C as a sum of elements belonging to C(F, F) and C(E, E*?).
First we recall that, for X € (E) and Y € C, the set C(X,Y) has a group structure (written

additively) by as follows:
f+g=1(f9)0pnx

where f,g € C(X,Y) and pux : X — X + X is the morphism in C given by If moreover Y is an
abelian object in C, then the group C(X,Y’) is abelian by and by Let k,l € {1,...n},
k # 1. Here i} : E — E™ denotes the injection of the k-th summand. Moreover we define
i EY? — ET™ and 7} : EY" — ET? the unique morphisms such that

rp oty =0,ifp # k1

it 02 =7

Mo and ot = i (5.1.1)
i Cl3 =1 nom D

We point out that 77 o %, = id by the universal property of the coproduct E™2. For n € N, n > 3,

we consider E1" to be the coproduct £ 4+ E+(™=1 by choosing the appropriated injections, namely

it E— ET" and 271”” : Et=) 5 B+ where 271”” is the unique morphism such that
iAgLoz'Z_l =i ,forl1<k<n—1
and we consider 1:? . Bt — E+(=1 the unique morphism such that

rt o =0
r?oz’ZziZj,forZépgn

Then we recall that C(E, —|—) : C*? — Ab is the bifunctor given in as follows:
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e On objects, for two objects X and Y in C, C(E,X|Y) = C(E, [dc(X|Y)), and (.2%), -
C(E, X|Y) — C(E, X +Y) is the kernel of the comparison morphism 75 = ((r?),, (r3),)" :
C(E, X+Y)—=C(FE, X)xC(E,Y) (see[4.1.5).

e On morphisms, let f : X — X" and g : Y — Y’ be two morphisms in C, then C(E, flg) =
Ide(flg)« : C(E, X|Y) = C(E, X'|Y").

Note that, for two objects X and Y in C, Id¢(XY') is an abelian object in C by (because C

is a 2-step nilpotent category). Hence the bifunctor C(E, X|Y') is an abelian group by [L.5.15 Then
we deduce that the bifunctor C(E, —|—) : C** — Gr takes in fact values in Ab.

Remark 5.1.1. The bifunctor C(E, —|—) : C** — Abis bilinear (i.e. linear on each variable, see|1.2.12)
because Ide(—|—) : C*? — Ab(C) is a bilinear bifunctor and the representable functor C(E,—) : C —
Gr preserves finite products.

Notation 5.1.2. For n € N*, we here denote by 7,, the comparison morphism 7,

—

C(E»f)

Then the following lemma gives a decomposition of morphisms from E to E*", for n € N*, as a

sum (under the group law of the set morphisms C(E, E™™)) of some morphisms.

Lemma 5.1.3. There is the following short exact sequence in the category of groups:

0— @ c(E, EE) (B, B 5 C(B, E)*" — 0

1<k<I<n

where 7, = ((r1)e, ..., (r;‘)*)t and the morphism k, is defined explicitely by

k. + P C(E, EE) — C(E, E+")
1<k<i<n
(fr1)1<h<i<n — Z iy © Lédc o fu -
1<k<I<n

Moreover, for all £ € C(E, E™"), we have

n
E=) iporpof+ Y ihon™on(of)

p=1 1<k<i<n

where the sums are for the group structure + of C(E, E™™).

Proof. Let P, be the property given in the statement. We prove this result by induction.

e [t is clear that P; is verified because it corresponds to the canonical short exact sequence

Ide

0 — C(E, E|E) "“{" C(E, E*?) 2 C(E, E)*® — 0
and any & € C(E, E*?) is decomposed in the following way
E=(5ori0f) + (i30r508) + (157 0ry(€))
by BT
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e Now we suppose that P,_; is satisfied, for n > 3. We consider the following diagram

0 0 0

0——C(E, B|E)*0) —2——C(E, B|E*") | .

in e
»— D cmnmn b C(E, ET) & C(E, B)" 0
1<k<iI<n

lp” B=((r7)e (7). )"

0 1<k§21—1 (O,kn,l)tC(E’ E)xC(E, B )idw;:C( , E) 0
0 0 0

Here
— the morphism ¢, = (C(E, Eliv™Y,...,C(E, E\zzj)) . C(E, E|B)®™1

C(E, E|ET(" V) is an isomorphism of abelian groups whose inverse is
o' = (C(E, Elri™),....C(E, Elri~)": C(E, E|E*"Y) = C(E, E|E)*Y

because the bifunctor C(E, E|—) : C — Ab is linear by and it is a consequence of 3.6
in [12].

— the morphism p, is defined by

1<k<l<n 1<k<i<n—1
(fr1)1<h<i<n > (flt1141)1<k<i<n—1 -

— the morphism 17, is given by
in : C(E, E[E)®*" Y — B C(E, E|E)
1<k<lI<n

(91, e 7gn71> — (fkl)1<k<z<n .

where f1;, = g;_1, for [ =2,...,n, and fi; =0 for &k > 2.
Then we prove that the four squares of the above diagram commute.

o The bottom right-hand square commutes. It is just an observation that, for k. = 1,...n — 1,

we have rz_l o 7" = rp,, by the uniqueness in the universal property of the coproduct E*".

Consequently it also proves that the top right-hand square commutes.
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e The bottom left-hand square

Then we have

(2 © k) (fu)scicrcn) =

TQ( E ZklOLQ de ofkl)

1<k<i<n

commutes. Take a familly (fi)1<k<i<n Of elements of C(E, E|E).

Z TIOZklOLQ € o fu, Z T3 oszOL2 ofkl)

~n _ -n Ide
0, Z Tj Ofpy Oly ofk.l)

1<k<i<n

n
~n . 1d,
0, E 7o, 015" o fi, +
p=2

-n—1
0, E, V11—

2<k<i<n

-n—1
0, g iy O

1<k<i<n—1

Ide
1 (o] L2 O fkl)

= (0, kn—1)" ((frs1 151) 1<k<t<n—1)

=

o The top left-hand square commutes. First we know that the functor C(E, E|-)

(0, kn—1)" © ) ((fra) 1<k<i<n)

linear. By 3.6 of [12], we have the following relation:

id = ZCE E|

ork )

Then, for £ € C(E, E|E+*™Y), we have

3
—

(139, o C(E, B|if " orn™

T
I

i
L

(id+ i Mo (id+ 1), o

e
Il
—

i
L

(id + 7Y o

B
Il
—

i
L

n n Ide
g1 OT 10ty < 0§

ol
—_

1<k<i<n

~n ) Ide
E TP Oy Ol Ofkl>

2<k<i<n

Ide
Ly 0 fry1 l+1)

()

(4

)«(€)

(id + 1.~ 1)OL£dC o0&

:C — Abis

where we recall that (5% : C(E, E|ET("Y) — C(E, E*") is the kernel of the comparison

morphism 75 =

(

(), (" >*)t

Ide
Ly

n—1

)«(§) =

k=1
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E :21k+1 OT1kt+1 0l

°§

:C(E, E™") = C(E, E) x C(E, E*("=V). Hence we have

(5.1.2)



Then we have

(ki 0 i © 6,1)() = (n 0 in 0 (C(E, BIry™), .., C(B, Elri=})") ()
= (ko i) (Tdelidri ™) o €. Tde(idlri=}) o €)

= kn((fer)1<k<i<n)

where (fi)1<k<i<n is the familly such that fy; = Ide(id|r] ') o & for [ =2,...,n and fy; =0 if
k > 2. Then we obtain

ke ((fit)1<h<t<n) = Z iy 0 157 o fu

1<k<i<n
n

— C C

= E le o L2 o fu + E e OL2 o fr
p=2 2<k<i<n

n

3
[|
N

?
L

k+1obzcold (Zd|7‘ )Of

B
Il
—

?
L

kHo(zd—i—T" l)oédcog

?
I

i
L

-n n Ide
U 41 OT 1 O Lo < 0&

=
—_

= (15").(€) , by 1.2
It proves that we get k, 04, 0 ¢, ! = (LédC)*_

Applying the nine lemma to the above diagram, the middle short vertical sequence is exact as desired.
Now we prove the decomposition of elements in C(E, E*") as in the assumption. Let £ € C(E, E™™),
we have

§=(iorfog) + (i ofi"og) + d(g)
where d(€) = — (i1 07" 0&) — (Forfof) + & € C(E, E|ET™ V). By assumption, we know that
n—1
Aleg=D i ten oMol + Y it on  on(r 0" 0g)
p=1

1<k<I<n—1

n—1

_ n—1 n n—1 Ide n

—E iy oTp0& + E i 0Ly ¢ ora(riy 141 08)
p=1

1<k<i<n—1

Postcomposing by z:n to the above equation gives the following equality:

~

n . Id
ori" o0& = Z Ipr1 0Ty 08 + Z iRa1141 0 L2 012y 1 ©€)

1<k<i<n—1

—Zz oryoé + Z i 0 129 o ry(rih o €)

2<k<i<n
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Moreover there is another expression of d(¢) € C(E, E|ET(™V) that is

n—1 n
d(§) = Z kg1 © de o ra(rfppr 0 d(§)) = Z i) © Lédc o ra(rfy 0 d(§))
k=1 k=2
However, for k = 2,...,n, we have
riod(€) = = (Myod ofi"o&) — (ryoiiorf o) + (rfof)

== (izor50(y08)) — (Torio(reg)) + (rxo¢)

= dec ory(riy o §)

Hence we get
d§) = Zz?k © Lédc o ra(rfy o &)
k=2
Thus we have

E=(Portol) + (i3 ofi"o&) + d(€)

:(i?orqfog) —i—ZiZorgof—i— Z iZloédCorgrklog Z OT2T1pO§>

p=2 2<k<i<n =2

—ZZ oryof + Z i 0 15,% o ry(rfy 0 §)

1<k<i<n

This proves the result. []

5.2 The Baker-Campbell-Hausdorff (BCH) formula

We finally deduce this desired formula for 2-step nilpotent varieties from the Lazard functor and the
decomposition of operations provided in the previous section.

Recall that AbOp(C) is the 2-step (right) operad living in the monoidal category of Z[%]-modules
as

AOp(C)(1) = |E®| and  AbOp(C)(2) = |Idc(E|B)|

in which the composition operations are given as follows:

(@@ ) = (@00)@),  wal©a) = (70@) @), uela®be p) = (Ide(alb) o i) (@)

where a,b € P(1) and p € P(2) and the notations are given in [£.0.2, Here T : AbOp(C)(2) —
AbOp(C)(2) denotes the involution of AbOp(C)(2) obtained by restriction of the canonical switch
T2 |ET?| — |ET?| to |Ide(E|E)|.
Now we recall the definition of "concrete" operations of the variety C. Any (formal) n-ary operation
0 of the algebraic theory (E) can be seen as a morphism 6° : E — E*" in C by the Yoneda’s lemma.
For an object X in C, the concrete n-ary operation fx : |X|*" — |X| in |X| associated with 6 is
given in the following way:

C(E, X) = X
N A
|
(6°)° | 0x
|
- |
C(Et", X) C(E, X)* = | X |

xn
evy "
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Now we write e, =i} (e), for k =1,...,n. Let i} : E — E™" be the injection of the k-th summand,

for k=1,...,n, we point out that §°(e) = Og+n(eq,...,e,) which is the evaluation of g+~ on the n
generators ey, of the free object ET" of rank n in C. As the above diagram is natural in X, this gives
rise to a natural transformation 6 : | — |*™ = | — | such that fx is defined by

O(x1,...,x,) =0x(x1,...2,) = |(£1,...,2,) 0 0°|(e) (5.2.1)

where z1,...,z, € |X| and @} : E — E is the unique morphism such that 7y (e) = z (see [4.0.2)), for
k=1,...,n.

Notation 5.2.1. For k,l € {1,...,n}, k # 1, we set O, = r}! 06° and Oy, = r},00° where r}! : ET" — E
is the retraction onto the k-th summand and r, : E*" — E*2 is the morphism defined at the
beginning of section 3.4.

Lemma 5.2.2. Let X be an object in C. For x,x1,x5 € | X|, we have

Qk(ZL’) :9)((0,...,0,1',0,...,0)
le(xl,@) :9)((0,...,0,1’1,0,...,O,ZL’Q,O,...,O)

where x, x1 are settled in the k-th place and xy is settled in the l-th place.

Proof. First we have the following equalities:

0u(x) = |& 017 0 0°](e) by (52.1)

=|zorg|obOgm(er,... €k ..., )
=0Ox(zorp(er),...,2orp(er),..., L orp(es)), by naturality
=0x(zorfoil(e),...,zoryoip(e),...,zory oir(e))
=0x(0,...,0,2(e),0,...,0)

=0x(0,...,0,2,0,...,0)

Next we get

Ori(x1, x0) = | (21, T2) 0 15y 0 0°|(e)

= ‘(fl,.]?2> e} TZZ| ©) 9E+n<€1, RN ,en)
= OX((fb za) orgler), ..., (71,73) 0 TZl(en)) , by naturality
= HX((fth) orgoiy(e), ..., (71, 7)oy o @Z(e))

We recall that 7, : E™™ — E*? is the unique morphism such that r, o i = 2, rf, 0 i = i3 and
ryoidp =0, for [ # 1,2 (see (5.1.1)). Hence we have

O (1, 22) = 0x(0,...,0, (1,22) 043 (e),0,...,0, (1, 42) 0 i5(e),0,...,0)
=0x(0,...,0,41(e),0,...,0,25(e),0,...,0)
0x(0,...,0,21,0,...,0,22,0,...,0)

with z; and x5 being respectively settled in the k-th and [-th places. O
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By the uniqueness in the universal property of the coproduct E*", it is easy to check that
72 0 0y = 0}, and 73 0 Oy = ;. Hence we get

5% 0 ra(0) = O — (B 073 0 0) + (70 0u)) = O — (3 066) + (3 06))
by (4.1.11)). Evaluating 75(6x;) to the basis element e of E gives
r2(O)(e) = Orler, e2) —ar (O(er) +ar Oiles))

where +,; and —,; respectively refers to the multiplication and to the inverse of the group structure
of | X|. By using the notations given in 4.0.2) we get

r2(0k1)(e) = Ori(er, e2) —mr (‘gk(61> +m 91(62)) (5.2.2)

because we have 75(£) = 79(£)® o abg. Afterwards we recall the Lazard (quadratic) equivalence of
categories L : (E) — (Fapop(c)) (between algebraic theories) explicitely defined on certain morphisms
in C. Here the left action of A on the free AbOp(C)-algebra Fapop(c) of rank 1 making it into a (left)

A-module (see [4.5.5)) is given by

axs (z,7) = L)(e, 1) = (a00), @ ©7 @) + 5 7 (H(@) ©7))

where (x, J) € Fapopc) and § denotes the equivalence class of y in AbOp(C)(2)s,. We denote by
ip : L(E) — L(E)* the injection of the p-th summand, for 1 < p < n. Let s, = (L(i}), ..., L(i})) :
L(E)™ — L(E'™) be the unique morphism obtained by the universal property of the coproduct
L(E)*™ in Alg — AbOp(C) such that s, 0i, = L(i}), for I <p < n. It is a consequence of that
s, is an isomorphism. As we have supposed that L(E™?) = L(E)™, it remains to assume that s, is

the identity. Let £ : E — E*2 be any morphism in C, then we have
L(&)($7 y) - ((T% o g) *L (xay)v (7’% o 5) *L (.T,y>, HL(tll(p2(§)) QA (.T, y)))

by [4.6.13| and we recall that
H" (t11(p2(€)) @4 (2, 7))

=t (r} o) @ty (r; 0 &).(y+T(y) — % Vo1 (H(2) @ 7)) + 721 (r2(€)(e) ® )

= 112(FA OB © (4 +T(0) ~ 5 a(HR © 1)) + 720 (@ ©1)

see Now we are able to give the main theorem:

Theorem 5.2.3. There is a Lazard correspondence
L*: Alg — AbOp(C) — C

given by |L*(A)| = |A| and the following Baker-Campbell-Hausdorff formula holds : an n-ary opera-
tion 0 of the variety C acts on |L*(A)| by

Bar, ) = 37 (Nlay 950 + 5 Nolay © @ H(B,)))

p=1

+ Ao (ap X ag & V1,12 (9p<e> ® 04(e) @ [en, GQ]M))

1<p<g<n

+ Z Ay (ap ® aq ® (Opg(er, e2) —nr (Bp(e1) +u Qq(ez)))>

1<p<gsn

foray,...,a, € A. Here
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o the multiplication maps N\, : A°*@P (k) — A, k = 1,2, are the structure maps of the P-algebra
A .

’

o fork=1,2, e, =ii(e) € E+ F where iz : E — E + E is the injection of the k-th summand.
Furthermore, [a,bly = (a +a ) —p (b+aa) 5

e for any unary operation V of C,

H(V) = Vg2 (61 +nm 62) —M (VE+2(61) +um Ve (62))

e 0, is the unary operation of C given by:
0,(a) =6(0,...,0,a,0,...,0)
where a is placed in the p-th place. Similarly, 0, is the binary operation of C given by :
Opg(a,b) = 6(0,...,0,a,0,...,0,b,0,...,0)
where a,b are respectively in the p-th and q-th place.

Proof. We recall that (e,0) is the generator of Fauop(c) the free AbOp(C)-algebra of rank 1. Let 6 be
an n-ary (formal) operation of the algebraic theory (F) and ay,...a, € |A|, then finding the BCH
formula for # amounts to giving an explicit expression of the following concrete operation in |A|:

0(ay,...,a,) =|(dy,... ,d,)os," o L(0°)|(, 0)
using the structure linear maps of |A|. We give four main steps to prove the result:
1. The group structure 4+, in |A|: we use the following relation
ay 4+ ay = |(dy, do) o syt o L(i% +i3)|(e, 0)
where ay,as € |A|. Let (z, y) € Fp = L(E), then we have by

sy’ o L(if +143)(z, 7)
= (70 (3 + ) %1 (2, 7). (30 (i +83) =1 (2, 7, H (tupa(if +33) @ (2, 7)) )
= ((Gd+0) 1 (@, 7). (0+id) %1 (2, 7). H- (tulpa(if +3)) @1 (. 7))

= (& 7). (@, 9), HE (00 (ol + ) @4 (5, )
Moreover we have

H"(t11(pa(i7 +i3)) ®a (7, 7))

=t o (B +3) © (o (2 +2)-(y+TW) - 5 ma(HER) © 1))

+ 2.1 (127 + i3) (e) ® )

1
=Y+ T(y) — 5 1alH(2) @ 2) , because ry(if + ) = 0

Then we obtain

(82_1 o L(Z% +Zg))($7 ?) = <(ZL‘, g)? (‘Tv @)7 y+T(y) - % 71§2(H(2) ®ZL')>
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Hence we have

= di(e, 0) + da(e, 0) + A2 (di(e, 0) ® da(e, 0) ® (—% H(2))),by[1.8.5

=a, + ayg + 1 /\2 (CLl ® a9 ® T(H(?))) ,because T(H(Z)) = —H(Z)

2
1
=a; +as + 3 )\g(al Qas ® [el,eg]M) ,by [4.1.19
Finally we obtain
1
a1 +p a9 = ay + ag + = /\2 (a1 X ag ® [61, 62]M) (523)

2

. The unary operations: let  be a unary (formal) operation. We have the following relation

6(a) = a0 L(8°)|(@. D)

where a € |A]. Thus we get

0a) = a(300), 5 HE))

= A1 (a(e, 0) ®@6(e)) + Ao (a(e, 0) @ a(e, 0) ® % H(6%))

= N(@@ ) + 5 (e @ aw HE))

Finally we obtain
— 1
0(a) = M(a@b(e)) + 5 dao(a®a® H(0%)) (5.2.4)

. Let X be an object in (F) and f,g € C(E, X). We denote by (\)x : L(X) @ P(1) — L(X)
and (\)x : L(X)®? @ P(2) — L(X) the structure linear maps of L(X). Then we have

(s3" o L(f + g))(_ 6)
:SQ_IOL( +Z2))(E 6)
— e L((f, >> o L(2 + 2)(e, 0)

= (L(f), L(g)) o 53" o L(i} + i3)(€, 0)

= (L(f), L(9)((.0), (¢,0), —



Thus we have the following relation:

(s2' o L(f +9))(e. 0) = L(f)(€.0) +u L(9)(e.0) (5.2.5)
by using (5.2.3). In the rightmost term, +,; refers to the group structure of |L(X)], see (5.2.3)).
. The n-ary operations: let 6 be a (formal) n-ary operation and 6° : E — E*" be its correspond-
ing morphism in C by the Yoneda’s lemma. By we know that 6° can be seen as the sum

(for the group structure +) of unary and binary operations in C(E, E*") as follows:

n

Q":E iy 01y 00+ g iy 0 1 o ro(rp, 0 0°)

M, p=1 1<k<i<n
Let aq,...,a, € |A|, then we aim at giving an explicit expression of the following term:
O(ay,...,a,) = |(dy,...,d,)os," o L(0°)|(, 0)
By using (5.2.5)), this gives the sums for the group structure +, given in (5.2.3), as follows:
O(ay,...,a,)

= > (d,...,dn) 08, o L(if) o L(r) 0 6°)|(%, 0)

far Y (drse e sdn) 05yt 0 L) 0 L% o ra(rfy 0 6°))] (@, O)

far Y A1 ydn) o (i i) 0 L(S% 0 15(rfy 0 0°))|(2, 0)

1<k<i<n

= Y ldyoL(ry o)l 0)+a D (i, d) o L(x™ ora(rfy 0 6%))](, D)

M, p=1 1<k<i<n

= Y ldpo L(B)I(@ 0) +ar Y |(dk, di) o L1 o 2(01)| (2, D)

M, p=1 1<k<I<n

= Z Op(ap) +ar D |k, 1) o L(15% o ra(01)| (@, )

M, p=1 1<k<i<n

However we get

L(15% o ra(ry 0.6°)) (2, 0) = ((0, D), (0, 0), 2(@)(e) ),
by Then we deduce that we have

(ar, ... a Z (dp 0 LO)IE 0) +ar Y |(di, 1) 0 L(5™ o 15(01))| (2, O)

M, p=1 1<k<i<n

n

= Y @) +u > Ne(d@n(@ 0) @ e, 0) @ ra(fi)(e)) , by [8F]

M, p=1 1<k<iI<n

= Y Oplap) tur Y Mo(m ®a @ ra(0)(e))

M, p=1 1<k<I<n
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We turn it into sums for the abelian group structure of |A|. The leftmost term of the following
relation is a sum for the group structure +,,. By induction, we have

n n 1
Z Op(ap) = Z Op(ap) + 2 Z A2 (Or(ar) ® Oi(ar) ® [ex, e2]nr)
M, p=1 p=1 1<k<i<n
As Ao (MA@ A ®id) = Ao (A ® A ®id) = 0 (because AbOp(C) is a 2-step nilpotent operad),

then we have

Z Qp(ap> = 29p<ap Z )\2< ak & Qk( )) ® )\1((11 ®m) & [61762]M) , by

M, p=1 p=1 1<k<l<n

= Z Op(ap) + % Z Ao <ak ® a; ® 11,12 (0k(e) @ bi(e) @ [ex, 62]M)>

1<k<I<n
, by one of the axioms of AbOp(C)-algebras
By using (5.2.3]), we obtain

n

ar, o) = 3 (Ml @ B0) + 3 Nolay © 0, © H(G,)))

%1<kz<;< Ao (ak K a; ® M, 12(9 (e) ®@0i(e) ® [e1, 62]M)>
+ Z Ao (ar ® a; @ ra(011) (€))

1<k<i<n

zn: <)\1 (ap ®0,(e)) + = /\Q(ap®ap ® H(6, )))

p=1
1
5 Z A2 (ak @ a; @ 7 1; 2(9 (e) ®0i(e) @ [ex, ez]M))
1<k<i<n
+ Z )\2 (ak (059 a; X (Hk,l(el, 62) —M (Qk(el) + (9[ 62 ))) by -
1<k<i<n
This proves the result. O

5.3 Application of the BCH formula to modules over a square

ring

In this section, we give an example of application of the Baker-Campbell-Hausdorff type formula
given in Theorem First we recall the definition of a square ring and a module over a square
ring introducted by Baues, Hartl and Pirashivili in [4]. Then we use the latter formula for expressing
operations of any module over a given square ring from structure linear maps of algebras over a
certain operad depending on the square ring.
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The notion of square rings, respectively modules over a square ring, is the quadratic analogue of
the notion of (classical) rings, respectively modules over a ring. These notions have been introduced
and used by Baues, Hartl and Pirashvili in the context of metastable homotopy theory, and later
in a series of papers by Baues and Muro in the study of other subjects, in particular of secondary
operations in the homotopy of ring spectra. For example, it is observed in [4] that the endomorphism
of the suspended projective plan XRP?, denoted by End(XRP?), is a square ring (by a result of
M.G Barrat) and the category of free modules over End(>RP?) is identified with the homotopy
category of Moore spaces in degree 2 whose single non-trivial homology group is of exponent 2 (see
Theorem 8.1 of [4]).

Now we recall the definition of a square ring given in Definition 7.1 of [4] as follows:

Definition 5.3.1. A square ring R is a diagram
R~ (R~ R = R.)

where

1. R.is a (2-step nilpotent) group (whose law group is written additively) and it is a multiplicative
monoid with unity denoted by 1. Moreover we have

r(s+s)=rs+rs

2. R.. is an abelian group endowed with an action of the multiplicative monoid R, x R, X R on
Re., denoted by (1,7, s)x = (r,r")xs, where r,7’, s € R, and © € R,.

3. H and P are maps satisfying the following relations:

r+r)s=rs+r's+ P((r,r)H(s)),
(r+r") = H(r) + H(r') + (r,7") H(2),
H(r)r
)

—~

H

H(rr') = (r,r)H(r') + H(r)r',
(z +2') = P(x) + P(2'),
((r,r)zs) = rP(x)s,

P(z),1)z = (1, P(z))z = yP(z) = 0,

where r; 1’ s € R, and z,y € R...

Remark 5.3.2. A square ring as defined in is the same as a square ringoid as in Definition 3.1
of [4] with only one object by Lemma 7.4 of [4].

Notation 5.3.3. Let R be a square ring as in We set R = Coker(P). For r € R,, we denote by
T the equivalence class of r in R.

Remark 5.3.4. Let R be a square ring as in p.3.1} We observe that
e R is an ordinary ring,
e R isa (left) (R® R® R™")-module.

Let R be a square ring as in [5.3.1] Then we recall the definition of a module over R, already
given in Definition 7.7 of [4] as follows:
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Definition 5.3.5. A module over R is a group M (which we write additively) endowed with maps

M xR, — M, (m,r) — m.r

M X M X Ree — M, (m,m,x) — [m,m/|y.

satisfying the following relations:

1. m.1=m, (m.r).s=m.(rs), m.(r+s)=m.r+m.s,

2. [m,m/]js. z is linear in m, m’ and =z,

3. [m.r,m! sl x = [m,mar. ((r,8)z) and ([m,m]a. ). r = [m,m/]y. (2.7),

4. (m4+m/).r=m.r+m'.r+[m,my. H(r),

5. m. P(x) = [m,m]y. z,

6. [m,m/|p.T(z) = [m',m|y. z,

7. [m,m/|y.x =0if m e [M],

where m,m' € M, r,s € R, and « € R,.. Here T'= H o P — Id and [M] denotes the subgroup of M
generated by elements of the form [m,m’];.x.

Definition 5.3.6. A morphism f : M — N of modules over R is a group homomorphism such that

f(Im,m/|ar-2) = [f(m), f(m)]x.x and  f(m.r) = f(m).r,
form,m' € M, r € R, and = € R,..

Notation 5.3.7. We denote by Modp the category of modules over the square ring R. For m € M,
we denote by m the equivalence class of m in M.

Then the category Modp has the following properties, already proved by M. Hartl and F. Goichot:

Proposition 5.3.8. The category Modpg is a semi-abelian variety, complete and cocomplete, and R,
1s the free module over R of rank 1.

Remark 5.3.9. The relation 7. of Definition says that [M] is a central subgroup of M. Moreover,
for m,m’ € M, the commutator of m and m’ is

m+m' —m—m'=[m' mly. H(2)

by relation 4. Hence M is a 2-step nilpotent group.

Remark 5.3.10. Now we explain the role of structure components of the square ring R on a module
M over R:

e the elements r of R, encode quadratic unary operations m — m.r on M,
e the elements x of R.. encode bilinear operations (m,m’) — [m, m/]5;. x on M,

e the map H assigns to every quadratic unary operation m +— m.r, for r € R.., its cross-effect
(m,m') — (m+m').r —m.r—m'.r,
as being the bilinear operation defined by H(r), see relation 4. of
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e the map P assigns to every bilinear operation the associated squaring operation, see relation 5
of (.3.5
Notation 5.3.11. Let M be a module over R. We denote by M the quotient of M by [M].
Remark 5.3.12. Let M be a module over R. We clearly observe that M is a (right) R-module.
Next we give an explicit expression of binary coproducts in Modg, which has been already

constructed by M. Hartl.

Proposition 5.3.13. Let M and N be two modules over the square ring R. Then the binary coproduct
M + N in Modpg s the group M x N x (M ® N Rzer Ree) with group law given by

(m,n,u) + (m/, 0 W)= (m+m',n+n, u+uv +m @ne H(2)),

form,m’ € M, n,n' € N and u,u’ € M@)N@E@E Ree. It is endowed with maps (M—i—N) X R, —
M + N given by
(m,n,u).r = (m.r, n.r, ur+ MmN ® H(r))

and (M+N) X (M+N) X Ree — M + N given by

[(m,n,w), (m',n',u)] ([m,m']Mw, n,nly.o, M @z + W@ﬁ@T(x)).

Man- T =
The universal property of the coproduct M + N is the following:

Let P be a module over R, let f : M — P and g : N — P be two morphisms in Modg. Then the

unique morphism h : M + N — P in Modg such that

hoiy =f and hoiy =g,
has the following explicit expression:
h(m,n,m/ @' ® x) = f(m) + g(n) + [f(m'), g(n)]p. z,

where m,m’ € M, n,n’ € N, u,u’ € M@N@E@)R Ree, 7 € R, and v € R... Here iy, : M —
M + Nm +— (m,0,0), respectively iy : N — M + N ,n +— (0,n,0), is the injection of the first,
respectively second, summand.

Proof. 1t is a straightforward verification. O]

Remark 5.3.14. Let M and N be two modules over R. The inverse of an element (m,n,u) in M + N
for the group structure of M + N is (—m, —n, —u+m @7 Q@ H(2)).

Thus it is possible to have an explicit expression for the second cross-effect of the identity functor
of Modg, as follows:

Corollary 5.3.15. Let M and N be two modules over R. Then we have

Id]VIodE(M“V) = M & N ®§®E Ree

Idy,
and 1, 2 Tdproa(M|N) — M + N, u + (0,0,u) is the kernel of the comparison morphism
Tdntod,
ry R :MA+N-—MxN.
Proof. 1t is a direct consequence of [5.3.13] [

Let M be a module over R. We now give an explicit expression of the morphism c) :

Tdproqn,(M|M) — M, defined in
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Proposition 5.3.16. For mm’' € M and x € R,., we have

Mmom @)= (Vi on B (Mmem @) = [m,m|y.z € M)

where [M] is the (central) subgroup of M generated by elements of the form [m,m']y. z.
Proof. 1t is a direct consequence of [5.3.13] O
Remark 5.3.17. By |5.3.16| and by M is the abelianization AbM°4z()M) of M. Moreover the

abelian core Ab(Modg) of Modg is exactly Modz, the category of (right) R-modules.

From , we deduce that the second cross-effect of the identity functor Idaseq, : Modr —
Modp, is bilinear, because the abelianization functor AYM*2 : Modg — Ab(Modg) = Modz is linear
by and by Thus the identity functor Idyroq, is quadratic by @l Hence it means that
the category Modpg has the following additional property, already found by M. Hartl and F. Goichot:

Proposition 5.3.18. The category Modg is a 2-step nilpotent variety.

Thus it says that it is possible to apply Theorem for C = Modr and E = R,. In this case,

E® = AbMedz(R,) = R by 5.3.17 and by Moreover we have

Idptodn(Re|Re) = R® R Qg Ree = Ree, (5.3.1)

by [5.3.15| and [5.3.4]

Assumption: from now on, we assume that the 2-divisibilty condition holds as in Chapter 5,
section 2. Here it means that % € R.

Now we determine the 2-step nilpotent symmetric unitary operad AbOp(Modg) in the monoidal
category of Z[5]-modules, given in ([£.2.3):

AbOp(Modg)(1) = Modg(R, R) = R,
AbOp(MOdE)(Q) = Modﬁ<§7 [dl\/fodﬁ(Reu%e)) = IdModB(Re|Re) = Reeaby ') :

Here we set |AbOp(Modg)|(1) = R and |AbOp(Modg)|(2) = Re.. Then |AbOp(Mody)| is also a 2-step
nilpotent linear symmetric unitary operad whose unity is 1 € R. Its structure linear composition
maps are entirely determined by those of the (linear) operad AbOp(Modg). More precisely, the
composition map

M [AbOp(Modg)|(1) @ [AbOp(Modg)|(1) = [AbOp(Modg)|(1)
is the multiplicative law of the ring R, the linear map
Y21+ [ADOp(Modpg)|(2) ® [AbOp(Modg)|(1) — [AbOp(Modg)|(2)
is the (right) action of R on R.. (see , and the following composition map
Mz [AbOp(Modg)|(1) @ [AbOp(Modg)|(1) © |AbOp(Modg)|(2) — [AbOp(Modg)|(2)

is the (left) action of R® R on R, (see also [5.3.4)).

Let R be a square ring. Next we know that each |AbOp(Modg)|-algebra A can be endowed with
a structure of modules over R via the Baker-Campbell-Hausdorff formula given in [5.2.3] Denote by
it : R, — RI?.r +— (r,0,0), respectively i3 : R, — R*,r + (0,7,0), the injection of the first,
respectively second summand. Here e = 1, e; = 3(1) and ey = i3(1).
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e The group structure on A: the group law + 4 of A is given by

1
a+Aa'=a+a’+§)\§‘(a®a’®H(2)),
for a,a’ € A. The group law of the variety Modg may be seen as a binary operation 6,
in which we observe that the unary operations 6, and 6, are both the identity. It implies
that H(6,) = H(0;) = 0. Now we check that [ej,es]py = —H(2). For this we calculate the
commutator of e; and ey in RF? as follows:

e1+ e — (e2+€1) =(1,0,0) + (0,1,0) — ((0,1,0) + (1,0,0))
=(1,1,0) = (1,,1® 1® H(2))
=(1,1,0) — (1,1, H(2))
=(1,1,0)+(-1,-1,H2)+1®1® H(2)),by 5.3.14
= (1,1,0) + (=1, —1,2H(2))
=(0,0,2H(2) —1®1® H(2))
= (0,0, H(2))

Hence we have here [e1, es]y = H(2). Then we get

Y1,12(01(1) @ 02(1) @ [e1, e2]r) = 112(1@T@ H(2)) = (1,1)H(2) = H(2).
Moreover the term 6y5(eq, e2) —ar (01(e1) +ar O2(e2)) becomes
tha(e1, e2) —nr (Bi(er) +ar B2(e2)) = (€1 + e2) — (e1 +€2) = (0,0,0),
as desired.

e The unary operations encoded by R.: the action of R, on A is given by

1
a.T:Af(a@?)—i—ﬁ)\f(a@a@[{(r)),

fora € Aand r € R,.

e The binary operations encoded by R..: these are given as follows:

la,a]a. = )\‘24(a®a’®x),

for a,a’ € A and © € R... For x € R.., we consider the binary operation 6 of the variety
Modpg such that 6% (a,a’) = [a,ad']. z. It is clear that the unary operations 67 and 65 are trivial
(see the relations in [5.3.5)), and that 6], = 6*.
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