interactive molecular dynamics software development : Application to biomolecule folding.

par Sébastien Doutreligne

Thèse de doctorat en Physiologie et biologie des organismes - populations - interactions. Bioinformatique

Sous la direction de Philippe Derreumaux et de Marc Baaden.

Soutenue le 24-11-2017

à Sorbonne Paris Cité , dans le cadre de École doctorale Médicament, toxicologie, chimie, imageries (Paris) , en partenariat avec Université Paris Diderot - Paris 7 (1970-2019) (établissement de préparation) et de Laboratoire de biochimie théorique (Paris) (laboratoire) .

Le président du jury était Catherine Etchebest.

Le jury était composé de Philippe Derreumaux, Marc Baaden, Catherine Etchebest, Bruno Raffin, Sébastien Limet.

Les rapporteurs étaient Alexandre Bonvin, Bruno Raffin.

  • Titre traduit

    Développements logiciels pour les Simulations Moléculaires Interactives : applications au repliement des biomolécules


  • Résumé

    Le repliement de biomolécules à partir de méthodes computationelles reste un grand défi. Plus particulièrement, les simulations de dynamique moléculaire tout-atomes sont intrinsèquement longues et ne permettent pas encore d’atteindre l’échelle de temps de la microseconde de façon courante. En général, un approche gros-grain est préférée pour simuler des systèmes plus grands et des échelles de temps plus longues. Les approches automatiques comme la dynamique moléculaire ne tiennent pas compte de l’expertise de l’investigateur. Ce travail de thèse explore le repliement des biomolécules au moyen de simulations de dynamique moléculaire interactives avec les modèles gros-grains OPEP et HiRE-RNA, respectivement dédiés aux acides aminés et nucléiques. Les simulations interactives sont comme les simulations classiques, mais permettent en plus à l’utilisateur d’appliquer des forces sur une sélection d’atomes et d’observer la réaction du système en direct pendant que la simulation tourne depuis un logiciel de visualisation moléculaire. Des développements logiciels dédiés ont été faits dans un de ces programmes, UnityMol, couplé aux simulations gros-grain OPEP et HiRE-RNA. Ce travail est complété par une incursion dans la biologie intégrative. L’utilisation de modèles théoriques et expérimentaux est proposée sous deux formes: l’introduction de biais dans les simulations pour les faire converger plus rapidement vers des résultats plausibles et le guidage des utilisateurs au cours de sessions interactives. Cette réflexion montre la complémentarité des méthodes théoriques et des méthodes expérimentales pour l’étude des biomolécules. Quelques essais de repliement ont été menés par des simulations interactives avec nos outils. Une approche dite collaborative (ou plus généralement “crowdsourcing”) au repliement de molécules d’ARN gros-grains avec le modèle HiRE-RNA fut menée. Le repliement de peptides a suivi dans une configuration de laboratoire avec OPEP. En complément, des aspects de réalité virtuelle et des améliorations de performance du logiciel de simulation de réseaux de ressorts BioSpring ont été explorés


  • Résumé

    The folding of biomolecules by computational methods remains a big challenge. Most notably, all-atom molecular dynamics (MD) simulations are intrinsically time consuming and do not yet commonly reach the microsecond time scale. Generally, a coarse-grained approach is preferred to simulate bigger systems and larger time scales. Automated approaches like MD do not account for the investigator expertise. The present thesis explores the folding of biomolecules with interactive molecular dynamics (IMD) simulations using the OPEP and HiRE-RNA models, respectively for amino acids and nucleic acids. IMD is like MD, but in addition, the user can apply forces on a selection of atoms and see the reaction of the system live from a molecular visualization software while the simulation is running. Dedicated software developments were done in such a program named UnityMol, coupled with coarse-grained OPEP and HiRE-RNA simulations. The picture is completed with an incursion into integrative biology. The use of theoretical and experimental models is proposed in two declinations: biasing MD simulations to faster converge to plausible results and guide users during interactive sessions. This work shows the complementarity of experimental and theoretical methods when it comes to biomolecules. A few trials at folding with IMD and our set of tools are exposed: mainly a crowdsourcing approach to RNA folding with coarse-grained HiRE-RNA models and the interactive folding of peptides in a laboratory setup of OPEP simulations. In complement, virtual reality aspects and performance enhancement of a spring network model simulation package named BioSpring have been explored

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?