Distributed automata and logic

par Fabian Reiter

Thèse de doctorat en Informatique

Sous la direction de Olivier Carton.

Soutenue le 12-12-2017

à Sorbonne Paris Cité , dans le cadre de École doctorale de Sciences mathématiques de Paris Centre (Paris) , en partenariat avec Université Paris Diderot - Paris 7 (établissement de préparation) et de Institut de recherche en informatique fondamentale (Paris) (laboratoire) .

Le président du jury était Bruno Courcelle.

Le jury était composé de Olivier Carton, Bruno Courcelle, Wolfgang Thomas, Jukka Suomela, Nicolas Ollinger, Christine Tasson, Pierre Fraigniaud.

Les rapporteurs étaient Wolfgang Thomas, Jukka Suomela.

  • Titre traduit

    Automates distribués et logiques


  • Résumé

    Les automates distribués sont des machines à états finis qui opèrent sur des graphes orientés finis. Fonctionnant comme des algorithmes distribués synchrones, ils utilisent leur graphe d'entrée comme un réseau dans lequel des processeurs identiques communiquent entre eux pendant un certain nombre (éventuellement infini) de rondes synchrones. Pour la variante locale de ces automates, où le nombre de rondes est borné par une constante, Hella et al. (2012, 2015) ont établi une caractérisation logique par des formules de la logique modale de base. Dans le cadre de cette thèse, nous présentons des caractérisations logiques similaires pour deux classes d'automates distribués plus expressives.La première classe étend les automates locaux avec une condition d'acceptation globale et la capacité d'alterner entre des modes de calcul non-déterministes et parallèles. Nous montrons qu'elle est équivalente à la logique monadique du second ordre sur les graphes.En nous restreignant à des transitions non-déterministes ou déterministes, nous obtenons également deux variantes d'automates strictement plus faibles pour lesquelles le problème du vide est décidable.Notre seconde classe adapte la notion standard d'algorithme asynchrone au cadre des automates distribués non-locaux. Les machines résultantes sont prouvées équivalentes à un petit fragment de la logique de point fixe, et plus précisément, à une variante restreinte du μ-calcul modal qui autorise les plus petits points fixes mais interdit les plus grands points fixes. Profitant du lien avec la logique, nous montrons aussi que la puissance expressive de ces automates asynchrones est indépendante du fait que des messages puissent être perdus ou non.Nous étudions ensuite la décidabilité du problème du vide pour plusieurs classes d'automates non-locaux. Nous montrons que le problème est indécidable en général, en simulant une machine de Turing par un automate distribué qui échange les rôles de l'espace et du temps. En revanche, le problème s'avère décidable en LOGSPACE pour une classe d'automates oublieux, où les nœuds voient les messages reçus de leurs voisins, mais ne se souviennent pas de leur propre état. Finalement, à titre de contribution mineure, nous donnons également de nouvelles preuves de séparation pour plusieurs hiérarchies d'alternance de quantificateurs basées sur la logique modale.


  • Résumé

    Distributed automata are finite-state machines that operate on finitedirected graphs. Acting as synchronous distributed algorithms, they use their input graph as a network in which identical processors communicate for a possibly infinite number of synchronous rounds. For the local variant of those automata, where the number of rounds is bounded by a constant, Hella et al. (2012, 2015) have established a logical characterization in terms of basic modal logic. In this thesis, we provide similar logical characterizations for two more expressive classes of distributed automata.The first class extends local automata with a global acceptance condition and the ability to alternate between non deterministic and parallel computations. We show that it is equivalent to monadic second-order logic on graphs. By restricting transitions to be non deterministic or deterministic, we also obtain two strictly weaker variants for which the emptiness problem is decidable.Our second class transfers the standard notion of asynchronous algorithm to the setting of non local distributed automata. There sulting machines are shown to be equivalent to a small fragment of least fixpoint logic, and more specifically, to a restricted variantof the modal μ -calculus that allows least fixpoints but forbids greatest fixpoints. Exploiting the connection with logic, we additionally prove that the expressive power of those asynchronous automata is independent of whether or not messages can be lost.We then investigate the decidability of the emptiness problem forseveral classes of nonlocal automata. We show that the problem isundecidable in general, by simulating a Turing machine with adistributed automaton that exchanges the roles of space and time. Onthe other hand, the problem is found to be decidable in logspace for a class of forgetful automata, where the nodes see the messages received from their neighbors but cannot remember their own state. As a minor contribution, we also give new proofs of the strictness of several set quantifier alternation hierarchies that are based on modallogic.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université Paris Diderot - Paris 7. Service commun de la documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.