Modeling and Multi-Dimensional Analysis of a Proton Exchange Membrane Fuel Cell

par Daming Zhou

Thèse de doctorat en Génie Electrique

Soutenue le 28-09-2017

à Bourgogne Franche-Comté , dans le cadre de École doctorale Sciences pour l'ingénieur et microtechniques (Besançon ; Dijon ; Belfort) , en partenariat avec FEMTO-ST : Franche-Comté Electronique Mécanique Thermique et Optique - Sciences et Technologies (Besançon) (laboratoire) , Université de technologie de Belfort-Montbéliard (Etablissement de préparation) et de Franche-Comté Électronique Mécanique- Thermique et Optique - Sciences et Technologies (UMR 6174) / FEMTO-ST (laboratoire) .

Le président du jury était Demba Diallo.

Le jury était composé de Demba Diallo, Babak Nahidmobarakeh, Hubert Razik, Mahesh Krishnamurthy.

Les rapporteurs étaient Babak Nahidmobarakeh, Hubert Razik.

  • Titre traduit

    Modélisation et analyse multidimensionnelle d'une pile à combustible à Membrane échangeuse de proton


  • Résumé

    Un des freins à la commercialisation de masse de la pile à combustible et notamment de la technologie à membrane échangeuse de proton vient de sa faible durée de vie due à la difficulté de contrôler le système sous certaines conditions. Pour pallier à ce problème, l’élaboration d’un modèle mathématique précis de la pile à combustible à membrane échangeuse de protons permettant d’observer les variables internes et l'état de la pile à combustible au cours de son fonctionnement permettrait le développement de la stratégie de contrôle du système.Cette thèse propose d’élaborer un modèle dynamique multi-physique complet pour la pile à combustible à membrane échangeuse de protons. Le modèle proposé couvre les domaines multi-physiques pour les caractéristiques électriques, fluidiques et thermiques. Dans ces deux derniers domaines, les phénomènes transitoires sont notamment pris en compte dans le modèle proposé, tels que les comportements dynamiques de la teneur en eau de la membrane de la pile et la température. Par conséquent, ce modèle peut être utilisé pour analyser les effets de couplage des variables dynamiques entre différents domaines physiques.Grace à ce modèle ainsi définit, un second modèle multi-physique bidimensionnel plus détaillé est également présenté. Le modèle proposé couvre les domaines électriques et fluidiques avec une approche de modélisation 2-D innovante. Les distributions spatiales de quantité physique dans le domaine électrique peuvent ainsi être obtenues. Par conséquent, ce modèle 2-D PEMFC peut être utilisé pour étudier les influences des paramètres de modélisation sur la prédiction de performance multidimensionnelle locale. Une étude expérimentale est effectuée pour valider le modèle 2-D proposé avec une pile commerciale PEMFC Ballard NEXA de 1,2 kW.Dans un second chapitre, une analyse des phénomènes dynamiques est réalisée en fonction du modèle dynamique multidisciplinaire développé en s’appuyant sur la méthode RGA (gain relatif) pour diverses variables d'entrée de contrôle, afin d'analyser quantitativement les effets de couplage dans différents domaines physiques. L’étude s’intéresse entre autre aux interactions de la teneur en eau et de la température de la membrane. L'analyse de couplage présentée dans cette thèse peut aider les ingénieurs à concevoir et à optimiser les stratégies de contrôle des piles à combustible, en particulier pour la gestion de l'eau et de la chaleur dans les systèmes de piles à combustible.Une deuxième analyse portant sur la sensibilité aux paramètres de l'étude est effectuée sur la base du modèle multidisciplinaire bidimensionnel développé. Ces résultats d'analyse de sensibilité globale fournissent des informations utiles pour la compréhension de la dégradation, le réglage des paramètres et la simplification du modèle des piles à combustible.Dans un troisième temps, le modèle proposé se décline dans un algorithme de résolution mathématique en temps réel basé sur un algorithme de matrice tri diagonal efficace (TDMA). Les résultats expérimentaux démontrent les possibilités pratiques du modèle 2-D proposé pour le contrôle en temps réel avancé des systèmes de pile à combustible avec un temps de calcul de la boucle de contrôle de l'ordre de la milliseconde. Le temps d'exécution du modèle peut être quadruplé par rapport aux algorithme séquentiels présent dans la littérature; garantissant ainsi des décisions et des actions de contrôle rapide.


  • Résumé

    Before mass commercialization of proton exchange membrane fuel cell, the research on the design of appropriate control strategies and auxiliaries need to be done for achieving proton exchange membrane fuel cell (PEMFC) optimal working modes. An accurate mathematical PEMFC model can be used to observe the internal variables and state of fuel cell during its operation, and could further greatly help the system control strategy development.A comprehensive multi-physical dynamic model for PEMFC is developed in chapter I. The proposed model covers multi-physical domains for electric, fluidic and thermal features. Particularly, the transient phenomena in both fluidic and thermal domain are simultaneously considered in the proposed model, such as the dynamic behaviors of fuel cell membrane water content and temperature. Therefore, this model can be used to analyze the coupling effects of dynamic variables among different physical domains.Based on the developed multi-physical PEMFC model, a full two-dimensional multi-physical model is further presented. The proposed model covers electrical and fluidic domains with an innovative 2-D modeling approach. In order to accurately describe the characteristics of reactant gas convection in the channels and diffusion through the gas diffusion layer, the gas pressure drop in the serpentine pipeline is comprehensively analyzed by fully taking the geometric form of flow field into consideration, such as the reactant gas pressure drop due to the pipeline sharp and U-bends. Based on the developed 2-D fluidic domain modeling results, spatial physical quantity distributions in electrical domain can be further obtained. Therefore, this 2-D PEMFC model can be use to study the influences of modeling parameters on the local multi-dimensional performance prediction. The simulation and experimental test are then performed to validate the proposed 2-D model with a commercial Ballard NEXA 1.2 kW PEMFC stack.In chapter II, analyses of dynamic phenomena step responses are conducted based on the developed multi-physical dynamic PEMFC model using the relative gain array (RGA) method for various control input variables, in order to quantitatively analyze the coupling effects in different physical domains, such as the interactions of membrane water content and temperature. Based on the calculated values of relative gain array, the proposed model can be considered as a fuel cell MIMO system, which could be divided into two independent control sub-systems by minimizing parameter coupling effects between each other. Due to the closely coupled parameters in the proposed first control sub-system, a decoupling control method is recommended to achieve optimized control results. The coupling analysis presented in this thesis can help engineers to design and optimize the fuel cell control strategies, especially for the water and thermal management in fuel cell systems.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse ?

  • Bibliothèque : Université de technologie de Belfort-Montbéliard. Bibliothèque.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.