Automatic assessment of OLAP exploration quality

par Mahfoud Djedaini

Thèse de doctorat en Informatique, spécialité Gestion et analyse des données

Le président du jury était Jean-Yves Antoine.

Le jury était composé de Pedro Nuno San-Banto Furtado, Tilman Rabl.

Les rapporteurs étaient Jérôme Darmont, Jacky Akoka.

  • Titre traduit

    Evaluation automatique de la qualité des explorations OLAP


  • Résumé

    Avant l’arrivée du Big Data, la quantité de données contenues dans les bases de données était relativement faible et donc plutôt simple à analyser. Dans ce contexte, le principal défi dans ce domaine était d’optimiser le stockage des données, mais aussi et surtout le temps de réponse des Systèmes de Gestion de Bases de Données (SGBD). De nombreux benchmarks, notamment ceux du consortium TPC, ont été mis en place pour permettre l’évaluation des différents systèmes existants dans des conditions similaires. Cependant, l’arrivée de Big Data a complètement changé la situation, avec de plus en plus de données générées de jour en jour. Parallèlement à l’augmentation de la mémoire disponible, nous avons assisté à l’émergence de nouvelles méthodes de stockage basées sur des systèmes distribués tels que le système de fichiers HDFS utilisé notamment dans Hadoop pour couvrir les besoins de stockage technique et le traitement Big Data. L’augmentation du volume de données rend donc leur analyse beaucoup plus difficile. Dans ce contexte, il ne s’agit pas tant de mesurer la vitesse de récupération des données, mais plutôt de produire des séquences de requêtes cohérentes pour identifier rapidement les zones d’intérêt dans les données, ce qui permet d’analyser ces zones plus en profondeur, et d’extraire des informations permettant une prise de décision éclairée.


  • Résumé

    In a Big Data context, traditional data analysis is becoming more and more tedious. Many approaches have been designed and developed to support analysts in their exploration tasks. However, there is no automatic, unified method for evaluating the quality of support for these different approaches. Current benchmarks focus mainly on the evaluation of systems in terms of temporal, energy or financial performance. In this thesis, we propose a model, based on supervised automatic leaming methods, to evaluate the quality of an OLAP exploration. We use this model to build an evaluation benchmark of exploration support sys.terns, the general principle of which is to allow these systems to generate explorations and then to evaluate them through the explorations they produce.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Tours. Service commun de la documentation. Bibliothèque de ressources en ligne.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.